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School of Mathematical Sciences Institute of Theoretical Computer Science
Tel Aviv University ETH Zürich
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Abstract. In this paper, we compare the offline versions of three Ramsey-type one-
player games that have been studied in an online setting in previous work: the online
Ramsey game, the balanced online Ramsey game, and the Achlioptas game. The goal
in all games is to color the edges of the random graph Gn,m according to certain
rules without creating a monochromatic copy of some fixed forbidden graph H. While
in general the three online games have different thresholds, we prove that for most
graphs H, the offline threshold for all three problems is m0(n) = n2−1/m2(H), where
m2(H) := maxH′⊆H(eH′ − 1)/(vH′ − 2).

1. Introduction

The motivation for this work comes from three Ramsey-type one-player games that have been
studied in an online setting in previous work: the online Ramsey game [2, 9, 10], the balanced
online Ramsey game [7, 12], and the Achlioptas game [5, 11]. In all three games, the edges of the
complete graph Kn appear in a random order, either one by one or in batches of some fixed size. In
each step of the game, the player has to color the new edges immediately and irrevocably, according
to certain rules and in particular without creating a monochromatic copy of some fixed forbidden
graph H. The question we are interested in is how long the player can ‘survive’ in a given online
game, i.e., how many random edges she can color without creating a monochromatic copy of H. The
‘typical’ number of edges the player is able to color in a given game (using an appropriate coloring
strategy) is called the threshold of the game (cf. below for a precise definition), and the main goal
when investigating these games is to determine their thresholds asymptotically as a function of n.

We use the word online to emphasize the fact that in each step, the player has to decide how to
color the new edges before seeing the random edges that appear later in the game. In this paper,
we investigate what happens if the player is allowed to ‘see into the future’ or, more precisely, is
given a large number of random edges all at once and is asked to color them subject to the same
rules as before. Throughout, we refer to this as the offline version of a given game (or as the offline
problem corresponding to a given game). Note that when studying these offline versions we are
investigating colorability properties of static random objects.

Before describing the three games in detail and giving the technical definitions needed to state our
results precisely, we summarize our findings as follows: While in general the three online games
have different thresholds, for most graphs H, the offline versions of all three games have the same
threshold, namely m0(n) = n2−1/m2(H), where

m2(H) := max
H′⊆H

eH′ − 1

vH′ − 2

(cf. Theorems 2, 4 and 5 below).
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1.1. Online Ramsey game. Consider the following one-player game. Starting with the empty
graph on n vertices, in every step a new edge is drawn uniformly at random from all non-edges and
inserted into the current graph. This edge has to be colored immediately with one of r available
colors, where r ≥ 2 is a fixed integer. The player’s goal is to avoid creating a monochromatic copy
of some fixed graph H for as long as possible. We will refer to this game in the following as the
online H-avoidance game (with r colors). As usual, we use the phrase asympotically almost surely
(a.a.s.) to indicate that some statement holds with probability 1 − o(1) as n → ∞. We say that
N0 = N0(H, r, n) is a threshold for the game if, on the one hand, there exists a strategy such that
for any function N ≪ N0, the player a.a.s. can play for N steps following this strategy, and if, on
the other hand, for any function N ≫ N0 the player a.a.s. loses the game after at most N steps,
regardless of her strategy. This game was introduced in [2] for the case H = K3 and r = 2 colors.
In [9, 10], the following theorem was shown.

Theorem 1 ([9, 10]). Let H be a non-forest that has a subgraph H− ⊂ H with eH−1 edges satisfying

m2(H−) ≤ m2
2(H) ,

where

m2
2(H) := max

H′⊆H

eH′

vH′ − 2 + 1/m(H)

and

m(H) := max
H′⊆H

eH′

vH′
.

Then the threshold for the online H-avoidance game with two colors is

N0(H, 2, n) = n2−1/m2
2(H) .

This result applies in particular to cliques and cycles of arbitrary size. However, in general

n2−1/m2
2(H) is only a lower bound for the threshold of the online H-avoidance game with two colors

– if, e.g., H is the graph consisting of two triangles overlapping in exactly one vertex, the threshold
is strictly higher (see [9]).

It seems plausible that e.g. for H a clique or cycle, the threshold for the game with r colors is

N0(H, r, n) = n2−1/mr
2(H) ,

where mr
2(H) is inductively defined as

mr
2(H) := max

H′⊆H

eH′

vH′ − 2 + 1/mr−1
2 (H)

.

This would be in line with known results for the corresponding vertex-coloring problem [8]. (In fact,

it was shown in [9] that for any r ≥ 2 and any non-forest H, n2−1/mr
2(H) is indeed a lower bound

for the threshold of the game with r colors. However, the upper bound proof presented in [10] does
not extend to the game with more than two colors.)

Note that, by symmetry, after N steps the board of the online Ramsey game is distributed uniformly
over all graphs on n vertices with exactly N edges. Thus the corresponding offline problem is the
following: Given a random graph Gn,m (a graph drawn uniformly at random from all graphs on
n vertices with m edges), is there an edge-coloring avoiding monochromatic copies of H? This
question is answered by a classical result of Rödl and Ruciński. For any pair of graphs G and H, let
G → (H)er denote the property that every r-coloring of the edges of G contains a monochromatic
copy of H. In this notation, the result of Rödl and Ruciński reads as follows.
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Theorem 2 ([6, 13, 14]). Let r ≥ 2, and let H be a non-forest. Then there exist positive constants
c = c(H, r) and C = C(H, r) such that

lim
n→∞

Pr[Gn,m → (H)er] =

{
0, m ≤ cn2−1/m2(H)

1, m ≥ Cn2−1/m2(H)
. (1)

In this paper, we prove results of a similar flavor for the offline problems corresponding to two
variants of the online game that we will introduce now. In the following, we will refer to the setting
of Theorem 2 as the classical case.

1.2. Balanced online Ramsey game. This balanced variant of the online Ramsey game is similar
to the unbalanced game except that in each step, a set of r new edges is drawn uniformly at random
(from all non-edges as before) and presented to the player. The player has to color these edges
immediately subject to the restriction that each of the r available colors is used for exactly one of
these edges. Intuitively, this makes the player’s task more difficult than in the unbalanced game.
Thus we expect that the thresholds for this balanced game do not exceed those of the unbalanced
game, and indeed this turns out to be the case. We will refer to this game in the following as the
balanced online H-avoidance game (with r colors).

Extending results from [7], the following theorem was shown in [12].

Theorem 3 ([12]). Let r ≥ 2, and let H be a non-forest that has a subgraph H− ⊂ H with eH − 1
edges satisfying

m2(H−) ≤ mr
2b(H) , (2)

where

mr
2b(H) := max

H′⊆H

r(eH′ − 1) + 1

r(vH′ − 2) + 2
.

Then the threshold for the balanced online H-avoidance game with r colors is

N0(H, r, n) = n2−1/mr
2b(H) .

This result applies to cycles of arbitrary size and to arbitrary integers r ≥ 2. For cliques Kℓ however,
the result applies only if r is large enough (roughly, if r ≥ ℓ). Again there are examples of graphs

for which the threshold is strictly higher than n2−1/m2
2b(H).

In order to state our results, we need to introduce some notation. An r-matched graph Gr = (V,K)
consists of a finite set V of vertices and a family K of pairwise disjoint sets of edges of cardinality
r each. We refer to these as r-sets. A valid coloring of some r-matched graph is an r-edge-coloring
with the property that each of the r colors appears exactly once in every r-set. Note that, by
symmetry, after N steps the board of the balanced online Ramsey game is distributed uniformly
over all r-matched graphs on n vertices with rN edges.

By Grn,m we denote an r-matched graph drawn uniformly at random from all r-matched graphs on
n vertices with m edges (we assume that m is divisible by r). The offline problem corresponding
to the balanced online Ramsey game is the following: Given a random r-matched graph Grn,m, is
there a valid edge-coloring avoiding monochromatic copies of H?

Note that finding such a coloring is harder than just finding a coloring of Grn,m in which each color
is used equally often. (In fact, it is fairly straightforward to see that the 0-statement of Theorem 2
remains true if only the latter requirement is made: A standard first moment calculation shows
that if m ≤ cn2−(vH−2)/(eH−1) for a small enough constant c > 0, a.a.s. all but a tiny fraction of
the edges are not contained in any copy of H and can be colored arbitrarily. Combined with the
observation that in order to avoid monochromatic copies of H it suffices to avoid monochromatic
copies of H ′ for a subgraph H ′ ⊆ H attaining m2(H) = (eH′ − 1)/(vH′ − 2), the claim follows.)
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For any r-matched graph Gr and any graph H, let Gr
valid→ (H)er denote the property that every

valid r-coloring of the edges of Gr contains a monochromatic copy of H. We say that a graph H
on at least three vertices is 2-balanced if m2(H) = (eH − 1)/(vH − 2), and is strictly 2-balanced if
in addition (eH′ − 1)/(vH′ − 2) < (eH − 1)/(vH − 2) for all proper subgraphs H ′ ⊆ H on at least
three vertices. Note that every graph H on at least three vertices has a strictly 2-balanced subgraph
H ′ ⊆ H such that m2(H) = (eH′ − 1)/(vH′ − 2).

Theorem 4 (Main Result 1). Let r ≥ 2, and let H be a non-forest that has a strictly 2-balanced
subgraph H ′ ∕= K3 such that m2(H) = (eH′ − 1)/(vH′ − 2). Then there exist positive constants
c = c(H, r) and C = C(H, r) such that

lim
n→∞

Pr[Grn,m
valid→ (H)er] =

{
0, m ≤ cn2−1/m2(H)

1, m ≥ Cn2−1/m2(H)
. (3)

Note that the 1-statement is an immediate consequence of Theorem 2. Our proof of the 0-statement
is based on the following observation. Assume that H is strictly 2-balanced, and consider the
hypergraph ℋ′ which has the vertex set K = K(Grn,m), i.e., the family of all r-sets of the random
r-matched graph, and as its edge set the copies of H such that a hyperedge is incident to a vertex
K ∈ K if and only if the corresponding copy of H intersects K. This hypergraph has similar
properties as the one considered in [13] for the classical case, which is defined analogously on the
vertex set E(Gn,m) instead of K(Grn,m). Specifically, it turns out that – analogously to [13] – a.a.s.
all components of ℋ′ are unicylic and have at most logarithmic size as long as m is below the
threshold. This insight allows us to extend the classical proof to our scenario.

The case where H ′ is a triangle is excluded in our result. We believe that Theorem 4 also holds
in this case, but it seems a proof would have to proceed by somewhat different methods. The
difficulties involved are essentially inherited from the classical case – for triangles the 0-statement
of Theorem 2 was also proved separately in [6].

1.3. Achlioptas game. This last game is very similar to the balanced Ramsey game. The differ-
ence is that in each step, instead of coloring all r edges that are presented, the player simply has to
select one edge and is allowed to discard the remaining r − 1 edges (each edge appears only once,
so these edges will not be presented again later on). We will refer to this in the following as the
Achlioptas game. Note that this can be viewed as a balanced Ramsey game in which the player
needs to worry only about, say, red copies of H. Obviously this makes the player’s task easier than
in the balanced Ramsey game. Thus the thresholds for the balanced Ramsey game are lower bounds
for the thresholds of the Achlioptas game, both in the online and in the offline version.

Our definition of the Achlioptas process differs slightly from other definitions found in the literature
(e.g. in [5] or [15]), where in each step edges are sampled from all edges that have not been selected
before (or even from all

(
n
2

)
edges, allowing for multigraphs). In our setup, the requirement that

discarded edges are completely removed from the game instead of placed back in the pool of available
edges ensures that the edge sampling in a given step is not influenced by the player’s earlier choices.
This is needed in order to obtain an offline version of the problem with a well-defined distribution
(Grn,m, in our case). As argued in [11], the threshold of the online game does not depend on the
precise definition used.

The Achlioptas game was first investigated in [5], and solved completely in [11], where a general
threshold formula N0(H, r, n) valid for all graphs H and every integer r ≥ 2 was determined. This
formula is rather complicated and contains both a minimization over all possible orders in which the
edges of H may appear, and a maximization over entire sequences of appropriate subgraphs of H.
As can be seen from that formula, in all cases where Theorem 3 applies, the Achlioptas threshold
coincides with the one for the balanced Ramsey game. It is open whether in fact the thresholds of
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the two games are equal for all non-forests H (it is not hard to see that they differ if H is e.g. a
star).

To state our results for the corresponding offline problem, we introduce some more notation. We
say that A is an Achlioptas subgraph of some r-matched graph Gr (denoted A ⊏ Gr) if A contains
exactly one edge from every r-set of Gr. For any r-matched graph Gr and any graph H, let

Gr
Achlioptas→ (H)er denote the property that every Achlioptas subgraph of A ⊏ Gr contains a copy

of H.

Theorem 5 (Main Result 2). Let r ≥ 2, and let H be a non-forest that has a strictly 2-balanced
subgraph H ′ ∕= K3 such that m2(H) = (eH′ − 1)/(vH′ − 2). Then there exist positive constants
c = c(H, r) and C = C(H, r) such that

lim
n→∞

Pr[Grn,m
Achlioptas→ (H)er] =

{
0, m ≤ cn2−1/m2(H)

1, m ≥ Cn2−1/m2(H)
. (4)

Note that due to the assumptions on H, the 0-statement follows immediately from the 0-statement
of Theorem 4. We will prove the 1-statement for any graph H with at least one edge. Our proof
is inspired by [14] and proceeds by induction on e(H). To make the inductive approach work, we
prove the following strengthening of the desired result: For m as in the theorem, a.a.s. there is not
only one, but Θ(nvH (m/n2)eH ) many copies of H in every Achlioptas subgraph A ⊏ Grn,m.

1.4. Organization of this paper. In Section 2 we prove the 0-statement of Theorem 4 (which,
as discussed, also implies the 0-statement of Theorem 5). In Section 3 we prove the 1-statement of
Theorem 5.

2. Lower bound for the balanced Ramsey problem

2.1. Preliminaries. Recall that an r-matched graph Gr = (V,K) consists of a finite set V of
vertices and a family K of pairwise disjoint sets of edges of cardinality r each, referred to as the
r-sets of Gr. We use the notations V (Gr) and K(Gr), and write E(Gr) =

∪
K∈K(Gr)K to refer to

the edge set of the underlying unmatched graph. For each edge e ∈ E(Gr), we let K(e) ∈ K denote
the unique r-set containing e. For a subset E′ ⊆ E(Gr), we let

K(E′) :=
∪
e∈E′
{K(e)} ⊆ K and V (E′) :=

∪
e∈E′

e ⊆ V .

For any K′ ⊆ K, we let

E(K′) :=
∪
K∈K′

K ⊆ E(Gr) and V (K′) := V (E(K′)) =
∪
K∈K′

∪
e∈K

e ⊆ V .

Recall that by Grn,m we denote an r-matched graph drawn uniformly at random from all r-matched
graphs on n vertices with m edges (we assume that m is divisible by r). Note that, by symmetry,
such a graph can be obtained by first generating a normal random graph Gn,m and then choosing a
random partition of its edge set into sets of size r uniformly at random. We will use the following
elementary lemma.

Lemma 6. For every integer r ≥ 1, there exists a constant Cr > 0 such that, for n large enough,
the expected number of copies of any r-matched graph F r = (V,K) with ∣K∣r ≤ 0.99

(
n
2

)
edges in

Grn,m is at most

n∣V ∣−∣K∣⋅2r(Crm)∣K∣ .
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Proof. There are at most n∣V ∣ copies of F r in Kn. For each of these, the probability that it is present
in Grn,m is the probability that all ∣K∣r edges of E(F r) are present, multiplied with the probability
that these edges are matched up correctly. It follows that the probability that a fixed copy of F r

in Kn is present in Grn,m is exactly((n2)−∣K∣r
m−∣K∣r

)
((n2)
m

) ⋅ 1(
m−1
r−1

) ⋅ 1(
m−r−1
r−1

) ⋅ . . . ⋅ 1(
m−(∣K∣−1)r−1

r−1

)
=

(
(
n
2

)
− ∣K∣r)! ⋅ (r − 1)!∣K∣ ⋅m(m− r) . . . (m− (∣K∣ − 1)r)(

n
2

)
!

≤
((

n

2

)
− ∣K∣r

)−∣K∣r
⋅ (r − 1)!∣K∣ ⋅m∣K∣

≤(n−2r ⋅ 201r(r − 1)! ⋅m)∣K∣

if n is large enough. Thus the statement of Lemma 6 follows for Cr := 201r(r − 1)!. □

2.2. Overview of proof. We present our proof algorithmically. We first give a deterministic
algorithm that for any r-matched graph Gr either finds a valid coloring avoiding monochromatic
copies of H or terminates with an error. For this part of the argument, H can be any graph with
at least two edges.

In order to prove the 0-statement of Theorem 4, we then apply this algorithm for a strictly 2-
balanced graph H ′ ⊆ H with m2(H) = (eH′ − 1)/(vH′ − 2) and prove that a.a.s. it finds a valid
coloring of Grn,m avoiding monochromatic copies of H ′ (and thus also avoiding monochromatic copies

of H) if m ≤ cn2−1/m2(H) for a suitable constant c = c(H ′, r).

To be precise, we will prove this statement only for the case where H ′ is different from K4 and C4 at
first (recall that the case H ′ = K3 was excluded in the statement of the theorem). In order to deal
with K4 and C4, the base algorithm needs an extra twist; we will sketch the necessary modifications
at the end of this section.

2.3. The algorithm. In this section, we let H denote an arbitrary fixed graph with at least two
edges. For any r-matched graph Gr = (V,K), we define a family of copies of H in Gr as follows:

ℒGr := {L ⊆ E(Gr) : L ∼= E(H) ∧ ∣K(L)∣ = eH} (5)

To simplify notation, these copies of H are viewed as edge-sets throughout. Note that the second
condition excludes copies of H that contain several edges from the same r-set. Clearly, such copies
will not be monochromatic in any valid coloring of Gr. Furthermore, for any subfamily ℒ ⊆ ℒGr

we define a subsubfamily ℒ∗Gr(ℒ) ⊆ ℒ of ‘ℒ-critical’ copies of H as follows:

ℒ∗Gr(ℒ) :=
{
L ∈ ℒ s.t. ∀e ∈ L :

(
∃L′ ∈ ℒ s.t. L ∩ L′ = {e}

)
∨
(
∀f ∈ K(e) ∖ {e} ∃Lf ∈ ℒ s.t. f ∈ Lf

) }
⊆ ℒ . (6)

In words, a copy L is ℒ-critical if it is in ℒ and if each of its edges (a) is the intersection of L with
another copy from ℒ, or (b) satisfies that all r − 1 other edges in its r-set are also contained in
copies from ℒ.

Consider now the algorithm Bal-Edge-Col given in Figure 1. The algorithm is started with
G′ = (V,K′) being a copy of Gr, and proceeds by removing and inserting r-sets into G′.

In the first while-loop the algorithm tries to successively remove r-sets from G′ in such a way that
when they are reinserted in the reverse order during the second loop, a valid coloring of Gr avoiding
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1: procedure Bal-Edge-Col(Gr = (V,K))
2: s← empty-stack()
3: K′ ← K
4: ℒ ← ℒGr

5: while G′ = (V,K′) is not empty do
6: if ∃ K ∈ K′ s.t. ∀L ∈ ℒ : K ∩ L = ∅ then
7: s.push(K)
8: K′.remove(K)
9: else

10: if ∃L ∈ ℒ ∖ ℒ∗G′(ℒ) then
11: s.push(L)
12: ℒ.remove(L)
13: else
14: error “stuck”
15: end if
16: end if
17: end while
18: while s ∕= ∅ do
19: if s.top() is an r-set then
20: K ← s.pop()
21: K′.add(K)
22: Color-Arbitrarily(K)
23: else
24: L← s.pop()
25: ℒ.add(L)
26: if L is monochromatic then
27: e′ ← any e ∈ L s.t.

(
∄L′ ∈ ℒ : L ∩ L′ = {e}

)
and

(
∃f ∈ K(e) ∖ {e} s.t. ∄Lf ∈ ℒ : f ∈ Lf

)
28: f ′ ← any f ∈ K(e′) ∖ {e′} s.t. ∄Lf ∈ ℒ : f ∈ Lf
29: Swap-Colors(e′, f ′)
30: end if
31: end if
32: end while
33: end procedure

Figure 1. The implementation of algorithm Bal-Edge-Col.

monochromatic copies of H can be obtained by a simple local recoloring strategy. These r-sets are
stored in the stack s, cf. lines 7–8 and 20–21.

The algorithm uses a local variable ℒ to keep track of the copies of H in G′ it ‘still needs to worry
about’ (cf. the next paragraph). Throughout we have ℒ ⊆ ℒG′ , and at the beginning we have
ℒ = ℒG′ = ℒGr . These copies are also handled by the stack s, cf. lines 11–12 and 24–25. (Thus s
contains both r-sets and copies of H.)

In lines 6–8, the r-sets that do not intersect any of the copies of H in ℒ are removed from the
graph G′. If no such r-sets exist, the algorithms checks in lines 10–12 whether there are non-
ℒ-critical copies of H in ℒ. Such copies of H are deleted from ℒ (and therefore ignored in all
subsequent checks of the condition in line 6). This may allow more r-sets to be removed from G′,
and may also cause further copies of H in ℒ to become non-ℒ-critical.



8

As we shall show next, if all r-sets can be removed from Gr during the first while-loop, the second
while-loop creates a valid coloring of Gr avoiding monochromatic copies of H when reinserting the
r-sets in the reverse order. In order to do so, it uses the two procedures Color-Arbitrarily
and Swap-Colors. The procedure Color-Arbitrarily(K) assigns each of the r available colors
to exactly one edge of the r-set K, and Swap-Colors(e, f) simply interchanges the colors of two
edges e and f .

Lemma 7. Let H be any fixed graph with at least two edges. On any r-matched graph Gr, algorithm
Bal-Edge-Col either terminates with an error in line 14 or finds a valid edge-coloring of Gr

avoiding monochromatic copies of H.

Proof. Assume that the first while-loop of Bal-Edge-Col terminated without error. We show that
the second loop creates a valid edge-coloring of Gr avoiding monochromatic copies of H.

First we show that the edges e′ and f ′ in lines 27 and 28 always exist. Since the second loop inserts
r-sets into G′ in the reverse order in which they were deleted during the first loop, when we select e′

and f ′ in lines 27 and 28, G′ and ℒ are exactly as at the time when L was pushed on the stack
in line 11. Thus L satisfies the condition of the if-clause in line 10, i.e., L is not ℒ-critical. Hence
there exist edges e′ and f ′ as specified, cf. (6).

Moreover, note that since the algorithm only calls Swap-Colors for edges that are in the same
r-set, a valid coloring of G′ is maintained throughout.

We conclude the proof by showing that the algorithm maintains the following invariant during the
second loop: after each execution of line 29, no copy L ∈ ℒ is monochromatic. Since at the very
end we have ℒ = ℒGr , the lemma then follows. (Recall that copies of H that are not in ℒGr will
not be monochromatic in any valid coloring of Gr.)

We prove this by induction. Clearly, the statement is true at the beginning of the second loop since
then ℒ is empty. Consider thus the situation immediately after some copy L is popped from the
stack and inserted back into ℒ ⊆ ℒG′ in lines 24 and 25. If L is monochromatic at this moment,
exactly one of its edges is recolored in line 29, so clearly L is not monochromatic after that. It
remains to prove that the execution of line 29 does not cause other copies of H in ℒ to become
monochromatic. This is an easy consequence of the following two observations: By our choice of
f ′, there are no copies of H in ℒ that contain f ′. By our choice of e′, copies of H in ℒ that contain
e′ overlap in more than one edge with L and will therefore not become monochromatic when e′

is recolored. This proves that no monochromatic copy in ℒ is created, concluding the proof of
Lemma 7. □

The algorithm Bal-Edge-Col gets stuck if and only if the conditions in lines 6 and 10 both
fail. Then all copies in ℒ are ℒ-critical, and each of the remaining r-sets K ∈ K′ intersects
with such a critical copy. In the following we denote by G′ the r-matched graph (V,K′) at the
moment Bal-Edge-Col gets stuck, and – with slight abuse of notation – by ℒ∗G′ the family
ℒ = ℒ∗G′(ℒ) ⊆ ℒG′ at the moment the algorithm gets stuck.

2.4. Analysis. In order to prove the 0-statement of Theorem 4, we consider a subgraph H ′ ⊆ H
that is strictly 2-balanced and satisfies m2(H ′) = m2(H). If we show that Bal-Edge-Col a.a.s.
finds a valid coloring of Grn,m with m as claimed avoiding monochromatic copies of H ′, the claim
immediately follows. As already mentioned, we will deal with the special cases H ′ = K4 and
H ′ = C4 later.

Lemma 8. Let H be a strictly 2-balanced non-forest different from K3,K4, C4. Then there exists
a constant c = c(H, r) > 0 such that for m ≤ cn2−1/m2(H), a.a.s. algorithm Bal-Edge-Col
terminates on Grn,m without error.
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For the rest of this section, we consider H fixed as in the lemma. Our approach for the proof of
Lemma 8 is as follows. We describe a procedure Grow that takes as input the r-matched graph
G′ and the family ℒ∗G′ ⊆ ℒG′ left when Bal-Edge-Col gets stuck, and constructs as output an r-
matched subgraph F r ⊆ G′ that is either too dense or too large to appear in Grn,m with m as claimed.
Together with a bound on the number of non-isomorphic graphs Grow can output, this will imply
that Bal-Edge-Col succeeds a.a.s. In the next few pages we describe the procedure Grow and
prove a series of preparatory claims. The proof of Lemma 8 is then carried out at the end of this
section on page 15.

The procedure Grow starts with any F1 = L1 ∈ ℒ∗G′ and in every step adds a new copy Li ∈ ℒ∗G′
of H to the graph Fi−1 already found. Throughout, Fi =

∪i
j=1 Lj is viewed simply as a subset of

E(G′). By F ri := (V (K(Fi)),K(Fi)) we denote the r-matched graph spanned by the complete r-sets
that intersect Fi.

In every step, Grow determines an edge fi ∈ E(K(Li−1)) that satisfies a set of properties we will
specify later. The main purpose of these properties is to ensure the existence of a copy Li ∈ ℒ∗G′
that contains fi and is not contained completely in E(F ri−1). Such an Li is then added to Fi−1. As
a consequence, Li−1 and Li either intersect directly (fi ∈ Li−1, option A below) or are ‘linked’ via
a common r-set (fi ∈ E(K(Li−1)) ∖ Li−1, option B below).

If Li and E(F ri−1) intersect only in fi, then F ri−1 is extended by exactly eH − 1 many r-sets since
by definition of ℒG′ each ‘new’ edge in Li ∖ {fi} is in a different r-set. In general however, Li and
E(F ri−1) might intersect in more edges, and thus F ri−1 might be extended by fewer r-sets. For i ≥ 2
we denote by xi the amount by which the actual number of new r-sets differs from the upper bound
eH − 1, i.e., we set

xi : = eH − 1−
(
∣K(Fi)∣ − ∣K(Fi−1)∣

)
= eH − 1− ∣Li ∖ E(F ri−1)∣
= ∣Li ∩ E(F ri−1)∣ − 1 ≥ 0 .

(7)

Similarly, F ri−1 is extended by at most vH − 2 ‘inner’ vertices from V (Li), and in addition to that,
by at most ∣Li ∖E(F ri−1)∣ ⋅ 2(r− 1) ‘outer’ vertices incident to edges from E(K(Li)) ∖Li. Note that
the latter bound depends on ∣Li ∖E(F ri−1)∣ and thus on xi. For i ≥ 2 we denote by yi the amount by
which the actual number of new vertices differs from this upper bound of inner and outer vertices,
i.e., we set

yi : = vH − 2 + ∣Li ∖ E(F ri−1)∣ ⋅ 2(r − 1)−
(
∣V (F ri )∣ − ∣V (F ri−1)∣

)
= vH − 2− ∣V (Li) ∖ V (F ri−1)∣

+ ∣Li ∖ E(F ri−1)∣ ⋅ 2(r − 1)− ∣V (F ri ) ∖ (V (F ri−1) ∪ V (Li))∣
(7)
= ∣V (Li) ∩ V (F ri−1)∣ − 2

+ (eH − 1− xi) ⋅ 2(r − 1)− ∣V (E(K(Li)) ∖ Li) ∖ V (E(F ri−1) ∪ Li)∣ ≥ 0 .

(8)

In the last expression, the term ∣V (Li)∩V (F ri−1)∣−2 accounts for inner vertices analogously to (7),
and the remaining terms account for outer vertices that are lost due to outer edges E(K(Li)) ∖ Li
intersecting among themselves or with E(F ri−1) ∪ Li. For i = 1 we define

x1 := 0 and y1 := vH + eH ⋅ 2(r − 1)− ∣V (F r1 )∣ ≥ 0 . (9)

We will relate yi to xi by considering the graph

Ji := (V (Li) ∩ V (F ri−1), Li ∩ E(F ri−1)) . (10)
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We have

xi
(7)
=e(Ji)− 1 (11)

and

yi
(8)

≥v(Ji)− 2 , (12)

which implies in particular that xi can only be positive if yi is positive. In order to make use
of the assumption that H is strictly 2-balanced, we will show that Ji is a proper subgraph of
(V (Li), Li) ∼= H. (Note that this is a reformulation of the requirement mentioned above that Li is
not contained completely in E(F ri−1).)

Procedure Grow stops and returns the current r-matched graph F ri as soon as
∑

1≤j≤i yj ≥ 3 or

i ≥ log n. We will show that if the procedure stops because
∑

1≤j≤i yj ≥ 3, the r-matched graph
F ri is so dense that a.a.s. it will not appear in Grn,m. If on the other hand Grow stops because i
reaches log n, then at this point F ri is so large that a.a.s. it will not appear in Grn,m.

To complete the description of procedure Grow, we need to specify the precise properties we require
fi and Li to satisfy. For fi, we require that either

A. fi ∈ Li−1, and
(i) there is a copy L ∈ ℒ∗G′ with L ∩ Li−1 = {fi}, and

(ii) at most one vertex of fi is incident to an edge from E(F ri−1) ∖ Li−1, and
(iii) if yi−1 = 0, no vertex of fi is incident to an edge from E(F ri−1) ∖ Li−1,

or

B. fi ∈ E(K(Li−1)) ∖ Li−1, and
(i) there is a copy L ∈ ℒ∗G′ containing fi, and

(ii) at most one vertex of fi is incident to an edge from E(F ri−1) ∖ {fi}, and
(iii) if yi−1 = 0, no vertex of fi is incident to an edge from E(F ri−1) ∖ {fi}.

Once such an fi is picked, any L as in property A.(i), respectively B.(i), is a valid choice for Li.

We now show that it is always possible to find an edge fi as specified, and that this in turn ensures
that F ri gets strictly larger in every step. Observe that whenever Grow needs to find an edge fi,
we have yi−1 ≤ 2 since otherwise Grow terminates after step i− 1.

Claim 9. Let G′ and ℒ∗G′ be the r-matched graph and the family ℒ at the moment Bal-Edge-Col
got stuck, and assume that Grow has successfully constructed an r-matched graph F ri−1 ⊆ G′ in the
first i− 1 steps.

If yi−1 ≤ 2, then there exists an edge fi satisfying properties A.(i), (ii), (iii) or B.(i), (ii), (iii) in
step i of Grow. As a consequence, the copy Li added to Fi−1 is not contained in E(F ri−1) completely
(i.e., Ji as defined in (10) is isomorphic to a proper subgraph of H).

Proof. We will use that H as in Lemma 8 has at least five vertices, has minimum degree 2, and is
‘spacious’, i.e., for every edge e of H there exists an edge of H that is disjoint from e.

By definition of Grow, the copy Li−1 that was picked in step i− 1 is in ℒ∗G′ . This implies that for
every edge e ∈ Li−1 there is an edge fe ∈ K(e) for which there exists L ∈ ℒ∗G′ as specified in A.(i)
(then fe = e) or B.(i) (then fe ∈ K(e)∖{e}), cf. (6) and the last paragraph of Section 2.3. Thus we
have a set of ‘candidate edges’ Ci−1 := {fe ∣ e ∈ Li−1} for which a copy L ∈ ℒ∗G′ as required exists.
Note that the two cases A and B give rise to a natural distinction between ‘inner’ candidate edges
in Ci−1 ∩ Li−1 and ‘outer’ candidate edges in Ci−1 ∖ Li−1.
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We first deal with the easier case yi−1 = 0. Then we also have xi−1 = 0 by (11) and (12). Thus
K(Li−1) and F ri−2 intersect only in the two vertices of fi−1, and none of the candidate edges is
involved in any other undesired intersections. Since H is spacious, there exists an edge e′ ∈ Li−1

that is disjoint from fi−1, and the corresponding candidate edge fe′ ∈ Ci−1 is an edge satisfying
A.(iii) (if fe′ = e′ is an inner candidate edge) or B.(iii) (if fe′ ∈ K(e′) ∖ {e′} is an outer candidate
edge). In either case, fe′ can be chosen as fi.

In the remaining case 1 ≤ yi−1 ≤ 2, condition A.(ii) or B.(ii) might not hold for some of the edges
in Ci−1 due to undesired intersections. Our argument will be that there are not enough intersections
to rule out all candidate edges. In order to show this, we decompose yi−1 as defined in (8) into
smaller terms corresponding to different types of intersections.

We distinguish three types of contributions to yi−1. The first one corresponds to intersections of
Li−1 with E(F ri−2) ∖ {fi−1}. These intersections contribute an amount of ∣V (Li−1)∩V (F ri−2)∣ − 2 =
v(Ji−1)− 2 to yi−1 (cf. the remarks after (8) and the definition of Ji in (10)). We let

V1 := V (Li−1) ∩ V (F ri−2) = V (Ji−1) .

The second contribution comes from (outer) edges in E(K(Li−1))∖Li−1 that are not vertex-disjoint
from each other. Their contribution to yi−1 is at least the cardinality of

V2 := {v : ∃e1 ∕= e2 ∈ E(K(Li−1)) ∖ Li−1 : v ∈ e1 ∩ e2}

(this is a lower bound because we ignore multiplicities). The last contribution to yi−1 comes from
outer edges that are not vertex-disjoint from E(F ri−2) ∪ Li−1. Their contribution to yi−1 is the
cardinality of

V3 := V (E(K(Li−1)) ∖ Li−1) ∩ V (E(F ri−2) ∪ Li−1) .

Note that the sets V1, V2, V3 are not necessarily disjoint from each other, as several intersections
might happen at the same vertex. We have yi−1 ≥ (∣V1∣ − 2) + ∣V2∣+ ∣V3∣ and in particular

∣V1 ∪ V3∣ ≤ yi−1 + 2 (13)

and

∣V2 ∪ V3∣ ≤ yi−1 . (14)

A moment’s thought reveals that e ∈ Li−1 satisfies property A.(iii) if it is disjoint from V1 ∪ V3,
and that it satisfies A.(ii) if it shares at most one vertex with V1 ∪ V3. Similarly, an edge e ∈
E(K(Li−1)) ∖ Li−1 satisfies property B.(ii) or B.(iii) if it shares at most one, resp. no vertex with
V2 ∪ V3.

It follows with yi−1 ≤ 2 from (14) that there is at most one outer candidate edge e ∈ Ci−1 ∖ Li−1

that cannot be picked as fi, namely the edge V2 ∪ V3 (if it is indeed a candidate edge). Thus if
∣Ci−1 ∖ Li−1∣ ≥ 2, there always is a valid choice for fi. On the other hand, if ∣Ci−1 ∖ Li−1∣ ≤ 1, the
assumption that H has at least 5 vertices implies with (13) that there is a vertex v ∈ V (Li−1) ∖
(V1 ∪ V3). Since H has minimum degree at least 2, there are at least two edges from Li−1 incident
to v. Since ∣Ci−1 ∖ Li−1∣ ≤ 1, at least one of them is an (inner) candidate edge and can be chosen
as fi.

This proves the first statement of Claim 9. It remains to show that Li is not contained completely
in E(F ri−1). We distinguish two cases that correspond to options A and B.

If fi ∈ Li−1, by property A.(ii) there is a vertex v ∈ fi that is not incident to E(F ri−1) ∖ Li−1. As
H has minimum degree at least 2, there is at least one other edge f ′ ∈ Li incident to v besides fi.
Moreover, since Li ∩Li−1 = {fi} due to property A.(i), we have f ′ /∈ Li−1. It follows that f ′ is not
in E(F ri−1), as the opposite would contradict our choice of v.
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Similarly, if fi ∈ E(K(Li−1)) ∖ Li−1, by property B.(ii) there is a vertex v ∈ fi that is not incident
to E(F ri−1) ∖ {fi}. As H has minimum degree at least 2, there is at least one other edge f ′ ∈ Li
incident to v besides fi. Again f ′ is not in E(F ri−1) by our choice of v.

Thus in both cases Li is not contained in E(F ri−1) completely. This concludes the proof of Claim 9.
□

Our next goal is to prove that the output of Grow is either too large or too dense to appear in
Grn,m with m as claimed. Eventually, we shall apply Lemma 6 to the r-matched graph F r = (V,K)

returned by Grow and use that the expected number of copies of F r in Grn,m with m = cn2−1/m2(H)

is bounded by

n∣V ∣−∣K∣⋅2r(Cr ⋅ cn2−1/m2(H))∣K∣ = (c ⋅ Cr)∣K∣n�H(F r) , (15)

where �H is the function that assigns to every r-matched graph F r = (V,K) the value

�H(F r) := ∣V ∣ − ∣K∣ ⋅
(

2(r − 1) +
1

m2(H)

)
. (16)

In order to show that (15) tends to zero fast enough, we take a closer look at the exponent �H(F ri ).

Claim 10. After every step of Grow we have

�H(F ri ) =

∑
1≤j≤i xj − 1

m2(H)
−
( ∑

1≤j≤i
yj − 2

)
. (17)

Proof. We have

�H(F ri ) =
∑

2≤j≤i

(
∣V (F rj )∣ − ∣V (F rj−1)∣

)
+ ∣V (F r1 )∣

−
( ∑

2≤j≤i

(
∣K(Fj)∣ − ∣K(Fj−1)∣

)
+ ∣K(F1)∣

)
⋅
(

2(r − 1) +
1

m2(H)

)
(7),(8),(9)

=
∑

2≤j≤i

(
vH − 2 + ∣Lj ∖ E(F rj−1)∣ ⋅ 2(r − 1)− yj

)
+
(
vH + eH ⋅ 2(r − 1)− y1

)
−
( ∑

2≤j≤i
∣Lj ∖ E(F rj−1)∣+ eH

)
⋅ 2(r − 1)

−
( ∑

2≤j≤i

(
eH − 1− xj

)
+ eH − x1

)
⋅ 1

m2(H)

= i ⋅ (vH − 2) + 2−
∑

1≤j≤i
yj −

i ⋅ (eH − 1) + 1−
∑

1≤j≤i xj

m2(H)

=

∑
1≤j≤i xj − 1

m2(H)
−
( ∑

1≤j≤i
yj − 2

)
,

where the terms containing i cancel out because H is (strictly) 2-balanced, i.e., m2(H) = (eH −
1)/(vH − 2). □

Using Claim 10 we now prove the desired upper bounds on the exponent �H(F ri ).

Claim 11. There exist constants �0 = �0(H) > 0 and 
 = 
(H) > 0 such that the following holds:

∙ The output of Grow satisfies �H(F ri ) ≤ �0.
∙ If Grow terminates because

∑
1≤j≤i yj ≥ 3, its output satisfies �H(F ri ) ≤ −
.
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Proof. Let
�0 = �0(H) := 2− 1/m2(H) > 0

and


 = 
(H) := min
H′⊊H
v(H′)≥3

(v(H ′)− 2)− e(H ′)− 1

m2(H)
> 0 , (18)

where 
 is positive due to our assumption that H is strictly 2-balanced. Note that considering H ′

with 3 vertices and one edge in (18) yields 
 ≤ 1.

We first prove that �H(F ri ) is non-increasing. Let

Δi := �H(F ri )− �H(F ri−1)
(17)
=

xi
m2(H)

− yi

denote the change of �H in step i, and consider Ji as defined in (10). By (11) and (12) and using
that Ji is isomorphic to a proper subgraph of H (cf. Claim 9), we have

Δi

(11),(12)

≤ e(Ji)− 1

m2(H)
− (v(Ji)− 2)

(18)

≤ − 
 (19)

if v(Ji) ≥ 3. Otherwise it follows from (11) and (12) that xi = e(Ji)− 1 = 0 and yi ≥ v(Ji)− 2 = 0
(observe that Ji always contains the edge fi), which implies Δi ≤ 0. Thus �(F ri ) is non-increasing
throughout, and the graph returned by Grow satisfies �(F ri ) ≤ �(F r1 ) ≤ �0, where the last step
follows from (17) using that x1 = 0 and y1 ≥ 0. This proves the first part of Claim 11.

Consider now the graph J ′i obtained from Ji by removing the edge fi and the vertices of fi that
have degree one in Ji. Clearly, we have

xi
(11)
= e(Ji)− 1 = e(J ′i) , (20)

and we now show that moreover we have ∑
1≤j≤i

yj ≥ v(J ′i) . (21)

This is true because of the following: If yi−1 = 0, the edge fi satisfies property A.(iii) or B.(iii),
and all edges f ′ ∈ Li incident to fi are not in E(F ri−1) (cf. the arguments at the end of the proof of
Claim 9). In other words, fi is isolated in Ji, and we obtain from (12) that v(J ′i) = v(Ji)− 2 ≤ yi.
On the other hand, if yi−1 ≥ 1 the edge fi satisfies only property A.(ii) or B.(ii) and is not
necessarily isolated in Ji. However, at most one of the two vertices of fi is incident to an edge
from E(F ri−1) (cf. again the arguments at the end of the proof of Claim 9), and with (12) we obtain
v(J ′i) ≤ v(Ji)− 1 ≤ 1 + yi ≤ yi−1 + yi, which proves (21).

Assume now that Grow terminates after step i because
∑

1≤j≤i yj ≥ 3. Clearly, if
∑

1≤j≤i xj = 0,

the output of Grow satisfies �H(F ri ) ≤ 2 −
∑

1≤j≤i yj ≤ −1 ≤ −
. Otherwise, assume first that i

is the only step with xi = e(J ′i) ≥ 1. If xi ≥ 2, we have v(J ′i) ≥ 3, and thus

�H(F ri )
(17)
=

xi − 1

m2(H)
− (

∑
1≤j≤i

yj − 2)
(20),(21)

≤ e(J ′i)− 1

m2(H)
− (v(J ′i)− 2)

(18)

≤ − 
 .

If xi = 1, we obtain with (17) and
∑

1≤j≤i yj ≥ 3 that �H(F ri ) ≤ −1 ≤ −
.

It remains to consider the case where xj ≥ 1 for some j < i. Since Grow did not terminate in step

j, we have
∑j

k=1 yk ≤ 2, which implies with (20) and (21) that xj = 1,
∑j

k=1 yk = 2. Moreover,
for all j < k < i we have xk = yk = 0 since otherwise Grow would have terminated in step k. It
follows that �H(F rj ) = 0 and �H(F ri ) = Δi. Since, similarly to above, we have Δi ≤ −
 by (19) if

v(Ji) ≥ 3 and Δi = −yi ≤ −1 ≤ −
 if v(Ji) ≤ 2 (since then xi = 0), this concludes the proof of the
second part of Claim 11. □
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In order to show that a.a.s. Grn,m contains none of the r-matched graphs that can be generated by
Grow, we prove an upper bound on the number of such graphs, making crucial use of the fact
that only constantly many steps with xi > 0 or yi > 0 may occur before Grow terminates. For
i ≥ 1, let ℱr(H, i) denote a family of representatives for the isomorphism classes of all r-matched
graphs F ri that can be the output of Grow when it terminates after exactly i steps on some input
G′ and ℒ∗G′ as in Claim 9. Note that, crucially, we do not consider a fixed input G′ and ℒ∗G′
here, but consider all possible outputs of Grow on all possible inputs G′ and ℒ∗G′ . Moreover, let

ℱr(H,≤ i) :=
∪i
j=1ℱr(H, j).

Claim 12. There exists a constant C = C(H, r) such that for all i ≥ 1 we have

∣ℱr(H, i)∣ ≤ (i+ 1)C(reH)i . (22)

Proof. In the following, we say that step i is non-degenerate if yi = 0 (which implies in particular
that xi = 0, as argued above), and degenerate otherwise. For 0 ≤ d ≤ min{i, 3}, let ℱr(H, i, d)
denote a family of representatives for the isomorphism classes of all r-matched graphs F ri that Grow
can generate in exactly i steps if it performs exactly d degenerate steps along the way (recall that
Grow terminates after at most 3 degenerate steps).

In a non-degenerate step, the isomorphism class of the r-matched graph F ri is uniquely defined by
the structure of F ri−1 and the edge fi ∈ E(K(Li−1)) chosen by Grow: since we have xi = yi = 0, F ri
is obtained by attaching a new copy Li to fi such that V (Li)∩V (F ri−1) = fi, and embedding each of
the eH − 1 edges in Li ∖{fi} into an r-set such that the (eH − 1)(r− 1) edges in E(K(Li ∖{fi})) ∖Li
are completely vertex-disjoint from each other and from E(F ri−1)∪Li. Thus regardless of the input
instance G′ and regardless of what happened in all previous steps, there are at most reH ways to
extend F ri−1 to F ri in a non-degenerate step. This implies in particular that ∣ℱr(H, i, 0)∣ ≤ (reH)i

for all i.

In order to analyze what happens in degenerate steps, we use a more generic argument. Observe
that the newly added r-sets K(Li) ∖ K(Fi−1) span an r-matched graph on at most

K := vH + (eH − 1) ⋅ 2(r − 1)

vertices. In particular, at most K vertices are added in every step. Together with ∣V (F r1 )∣ ≤
K + 2(r − 1), we obtain ∣V (F ri )∣ ≤ Ki+ 2(r − 1).

In the following, GrK denotes the set of all r-matched graphs on at most K vertices. F ri is uniquely
defined if one specifies the r-matched graph Gr ∈ GrK spanned by the new r-sets K(Li) ∖ K(Fi−1),
the number s of vertices in which Gr intersects F ri−1, and two ordered lists of vertices from Gr

and F ri−1 respectively of length s, which specify the mapping of the intersection vertices from Gr

into F ri−1. Thus, the number of ways to extend F ri−1 to F ri in a degenerate step is bounded from
above by

∑
Gr∈GrK

∣V (Gr)∣∑
s=2

∣V (Gr)∣s∣V (F ri )∣s ≤ ∣GrK ∣ ⋅K ⋅KK(Ki+ 2(r − 1))K ≤ (i+ 1)C0 ,

for a large constant C0 depending only on H and r. It follows that for 0 ≤ d ≤ min{i, 3} we have

∣ℱr(H, i, d)∣ ≤
(
i

d

)(
(i+ 1)C0

)d
(reH)i−d ≤ (i+ 1)d(C0+1)(reH)i .



15

Here the binomial coefficient corresponds to the choice of the d degenerate steps. We obtain

∣ℱr(H, i)∣ ≤
min{i,3}∑
d=0

∣ℱr(H, i, d)∣

≤ 4(i+ 1)3(C0+1)(reH)i

≤ (i+ 1)C(reH)i

for an even larger constant C depending only on H and r. This concludes the proof of Claim 12. □

We now have all the ingredients to prove that a.a.s. Grn,m does not contain one of the graphs that
can be generated by Grow. In the informal language used at the beginning of this section, we will
show that the graphs in ℱr(H,≤ ⌈log n⌉ − 1) are too dense, and the graphs in ℱr(H, ⌈log n⌉) too
large to appear in Grn,m with m as claimed.

Claim 13. There exists a constant c = c(H, r) > 0 such that for m ≤ cn2−1/m2(H), a.a.s. the
random r-matched graph Grn,m does not contain any r-matched graph from ℱr(H,≤ ⌈log n⌉).

Proof. In addition to the bounds on �(F ri ) and ∣ℱr(H, i)∣ proved in Claims 11 and 12, we use that
due to Claim 9, every step i extends F ri−1 by at least one r-set and thus all r-matched graphs
(V,K) ∈ ℱr(H, i) satisfy ∣K∣ ≥ i. It follows from Lemma 6 that for

c = c(H, r) :=
e−�0−


Cr ⋅ reH
, (23)

the expected number of copies of r-matched graphs from ℱr(H,≤ ⌈log n⌉) in Grn,m with m ≤
cn2−1/m2(H) is bounded by∑

F r=(V,K)∈ℱr(H,≤⌈logn⌉)

n∣V ∣−2r⋅∣K∣(Crm)∣K∣

(15)

≤
⌈logn⌉∑
i=1

∑
F r=(V,K)∈ℱr(H,i)

(c ⋅ Cr)∣K∣n�H(F r)

(∣K∣≥i,
c⋅Cr≤1)

≤
⌈logn⌉∑
i=1

∑
F r=(V,K)∈ℱr(H,i)

(c ⋅ Cr)in�H(F r)

(Cl. 11)

≤
⌈logn⌉−1∑
i=1

∣ℱr(H, i)∣ ⋅ (c ⋅ Cr)in−
 + ∣ℱr(H, ⌈log n⌉)∣ ⋅ (c ⋅ Cr)⌈logn⌉n�0

(22), (23)

≤
⌈logn⌉−1∑
i=1

(i+ 1)Ce(−�0−
)in−
 + (⌈log n⌉+ 1)Ce(−�0−
)⌈logn⌉n�0

≤ (log n+ 2)C+1 ⋅ n−
 = o(1) ,

which implies Claim 13 by Markov’s inequality. □

Proof of Lemma 8. Suppose that the call to Bal-Edge-Col(Gr) gets stuck for some r-matched
graph Gr, and consider G′ ⊆ Gr and ℒ∗G′ ⊆ ℒG′ at this moment. Applying Grow to G′ and ℒ∗G′
yields a copy of an r-matched graph F r ∈ ℱr(H,≤ ⌈log n⌉) that is contained in G′ ⊆ Gr. However,
by Claim 13, Gr = Grn,m with m as claimed contains a.a.s. no such graph. Thus Bal-Edge-Col
succeeds a.a.s. in finding a valid coloring of Grn,m avoiding monochromatic copies of H. This proves
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Lemma 8 (and thus the 0-statement of Theorem 4 if none of the special cases discussed below
occurs). □

2.5. Dealing with the special cases. We first consider the case H = K4. Let us point out
where the proof of Lemma 8 goes wrong in this case. Recall that the purpose of Claim 9 was
to show that we can always find an edge fi ∈ K(Li−1) and a copy Li containing fi that is not
contained completely in E(F ri−1). The argument presented there does not guarantee this forH = K4.
However, a more detailed analysis shows that the only case in which no such fi and Li exist occurs
if Li−3 ∪ Li−2 ∪ Li−1 ⊆ E(F ri−1) is isomorphic to K6. This happens if the edges fi−2 and fi−1

were chosen according to option A.(iii) and consequently fi−2 ∩ fi−1 = ∅, Li−3 ∩ Li−2 = {fi−2},
Li−2 ∩Li−1 = {fi−1} and if, moreover, Li−1 ∩Li−3 = {f} for an edge f disjoint from fi−2 and fi−1.
Note that this implies in particular that yi−1 = 2, xi−1 = 1 and, since Grow did not terminate in
step i− 1, yj = xj = 0 for all 1 ≤ j ≤ i− 2.

This is not just a shortcoming of our analysis of Bal-Edge-Col. It is not hard to see that, for m
as claimed, copies of K6 appear with positive probability in Grn,m and that, moreover, the algorithm
Bal-Edge-Col as stated in Figure 1 is indeed unable to deal with these, despite the fact that K6

is obviously colorable without creating monochromatic copies of K4.

We now describe how this issue can be overcome. Let Kr∗
6 denote the r-matched graph obtained

by embedding every edge e of K6 into a r-set K(e) such that the underlying unmatched graph
consists of a copy of K6 and 15(r − 1) isolated edges. Standard first moment calculations show
that a.a.s. every copy of K6 in Grn,m is contained in a copy of Kr∗

6 , and that moreover all copies of
Kr∗

6 are vertex-disjoint. Consider now the algorithm Bal-Edge-Col-K4 that proceeds exactly as
Bal-Edge-Col, except that if the first loop gets stuck in line 14, it checks whether the current
graph G′ is a collection of vertex-disjoint copies of Kr∗

6 . If so, it colors these copies ‘by hand’ and
then starts the second loop as usual; if not, it terminates with an error. It follows with the same
arguments as before that Bal-Edge-Col-K4 finds a valid coloring of any r-matched graph Gr if
it terminates correctly.

In order to analyse Bal-Edge-Col-K4, we consider a modified algorithm Grow-K4. At the
beginning, Grow-K4 makes sure that the copy F1 = L1 ∈ ℒ∗G′ it starts with (that is picked
arbitrarily in Grow) is not contained in a copy of K6. It then proceeds exactly as Grow until it
either terminates regularly or it encounters a K6 as described above. In the latter case, it performs
a single exceptional step and picks the next edge fi not in Li−1 (as Grow would try and fail to
do), but chooses any edge in F ri−4 that is different from f1, . . . , fi−4 instead. Since xj = yj = 0 for
all 1 ≤ j ≤ i − 2, F ri−4 is free from any undesired intersections, and either fi itself or some other
edge in K(fi) is contained in a copy of H = K4 that adds at least one new edge to F ri−1. After this
exceptional step, Grow-K4 continues to operate exactly like Grow. Note that if it encounters a
second (or for a second time the same) copy of K6 in step i′, it terminates due to

∑
1≤j≤i′ yj ≥ 3.

The proof of Lemma 8 can now be completed as before (note that Claim 12 still holds for Grow-K4

since the choice of fi in the single exceptional step contributes a factor of at most C̃i2 to ∣ℱr(K4, i)∣
for some constant C̃ = C̃(r)). This settles the case H = K4.

Very similar remarks apply to the case H = C4. The only case in which we cannot find fi ∈ K(Li−1)
and a copy Li containing fi that is not contained completely in E(F ri−1) occurs if Li−4 ∪ Li−3 ∪
Li−2 ∪ Li−1 ⊆ E(F ri−1) is isomorphic to the three-dimensional cube D3. Again this is not just an
issue in our analysis since copies of D3 appear with positive probability in Grn,m with m as claimed
and cannot be handled by Bal-Edge-Col. The analogous tweak as in the case H = K4 yields
algorithms Bal-Edge-Col-C4 and Grow-C4 for which the proof can be completed as before.
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3. Upper bound for the offline Achlioptas problem

3.1. Preliminaries. We will use the Azuma-Hoeffding inequality. Here we present the formulation
given in [4].

Theorem 14 ([1, 3]). If (Xk)
n
0 is a martingale with Xn = X and X0 = E[X], and there exist

constants ck > 0 such that

∣Xk −Xk−1∣ ≤ ck
for each k ≤ n, then, for every t > 0,

Pr[X ≥ E[X] + t] ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
,

Pr[X ≤ E[X]− t] ≤ exp

(
− t2

2
∑n

k=1 c
2
k

)
. (24)

3.2. Proof. As mentioned in the introduction, we proceed by induction on e(H) and prove the
following strengthening of the 1-statement of Theorem 5. Note that H may be disconnected and
even contain isolated vertices. For convenience we define m2(H) := 1/2 if e(H) = 1.

Theorem 15. Let H be a fixed graph with at least one edge, and let r be a fixed integer. There
exist positive constants C = C(H, r) and a = a(H, r) such that for m ≥ Cn2−1/m2(H) with m≪ n2,
a.a.s Grn,m has the property that every Achlioptas subgraph A ⊏ Grn,m contains anvH (m/n2)eH many
copies of H.

Proof. Note that any A ⊏ Grn,m has exactly m/r edges. Thus for the base case e(H) = 1, the
statement holds deterministically for any C > 0 (in fact, for any m ≥ 0) and a = 1/(2r). For the
induction step, we start by fixing some constants. Fix an arbitrary subgraph H− ⊂ H with eH − 1
edges and vH vertices, and set

a′ := min
{
a(H−, r), 1

}
, C ′ := max

{
C(H−, r), (3/a′)1/(eH−1), 1

}
, (25)

where a(H−, r) and C(H−, r) are the constants guaranteed inductively by the theorem. Further-
more, let


 :=
(a′)2

12 ⋅ 220v2
H

< 1 , b :=

2r

8r
< 1 . (26)

We shall prove Theorem 15 for

C := (1 + b−1) C ′ , a :=
a′

(1 + b−1)eH
. (27)

We proceed by a two-round approach as follows. For given m ≥ Cn2−1/m2(H), set

m1 :=
1

1 + b−1
m , m2 :=

b−1

1 + b−1
m . (28)

Note that m1 +m2 = m and

m1 ≥ C ′n2−1/m2(H) ≥ C ′n2−1/m2(H−) . (29)

We assume w.l.o.g. that both m1 and m2 are integers divisible by r. In the first round we generate a
random r-matched graph Grn,m1

and ask the adversary to pick an Achlioptas subgraph A1 ⊏ Grn,m1
.

In the second round, we add another m2/r random r-sets (uniformly at random from all edges in
E(Kn) ∖ E(Grn,m1

)) and ask the adversary to extend her choice of A1 ⊏ Grn,m1
to an Achlioptas

subgraph A of the resulting r-matched graph Grn,m.
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For a fixed choice of A1 ⊏ Grn,m1
and any e ∈ E(Kn), let xe denote the number of copies of H− in

A1 that e completes to copies of H, and set

Γ(A1) := {e ∈ E(Kn) ∣ xe ≥ a′nvH−2(m1/n
2)eH−1} . (30)

We shall prove the following two claims.

Claim 16. A.a.s. Grn,m1
has the property that for every Achlioptas subgraph A1 ⊏ Grn,m1

we have

∣Γ(A1)∣ ≥ 
n2 .

Claim 17. If Grn,m1
is as in Claim 16, for any fixed choice of A1 ⊏ Grn,m1

we have that with

probability at least 1− e−bm2, at least bm2 many r-sets of the second round are completely in Γ(A1).

These two claims imply the induction step of Theorem 15 as follows. A.a.s. Grn,m1
is as in Claim 16.

Since there are rm1/r choices for A1 ⊏ Grn,m1
, Claim 17 guarantees that with probability at least

1− rm1/r ⋅ e−bm2
(28)
= 1− (r1/r e−1)m1 = 1− o(1) ,

at least bm2 many r-sets of the second round are completely in Γ(A1) for every choice of A1 ⊏ Grn,m1
.

Moreover, since one edge from every r-set must be included in A ⊏ Grn,m, by the definition of Γ(A1)
(cf. (30)), a.a.s. at least

bm2 ⋅ a′nvH−2(m1/n
2)eH−1(27),(28)

= anvH (m/n2)eH

copies of H are created in the second round. This concludes the proof of Theorem 15 (which, as
discussed, implies the 1-statement of Theorem 5). □

It remains to prove Claim 16 and Claim 17.

Proof of Claim 16. We will use several times that, by definition of m2(H), for every subgraph J ⊆ H
with at least one edge we have

n
vJ−2− eJ−1

m2(H) ≥ n0 = 1 . (31)

Consider a fixed choice of A1 ⊏ Grn,m1
, and recall that for every edge e ∈ E(Kn), xe denotes the

number of copies of H− in A1 that e completes to copies of H. Let k(H−) denote the number of
copies of H− in A1. Since every copy of H− in A1 contributes to at least one of the xe, we have∑

e∈E(Kn)

xe ≥ k(H−) .

By definition of Γ(A1) (cf. (30)) it follows that∑
e∈Γ(A1)

xe ≥ k(H−)−
(
n

2

)
⋅ a′nvH−2(m1/n

2)eH−1

≥ k(H−)− a′/2 ⋅ nvH (m1/n
2)eH−1 .

Due to (25) and (29), we have by induction that a.a.s. k(H−) ≥ a′nvH (m1/n
2)eH−1 and, conse-

quently, ∑
e∈Γ(A1)

xe ≥ a′/2 ⋅ nvH (m1/n
2)eH−1 . (32)

Note that in fact the induction hypothesis guarantees that a.a.s. this bound holds for all choices of
A1 ⊏ Grn,m1

simultaneously.
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Let T be the family of all pairwise nonisomorphic graphs T which are unions of two copies of H−,

say H1
−∪H2

−, such that for some edge f ∈
(
V (T )

2

)
∖E(T ), both H1

−∪{f} and H2
−∪{f} are isomorphic

to H. Let k(T ) denote the number of copies of graphs from T in A1. We have∑
e∈E(Kn)

(
xe
2

)
≤ 217v2

H ⋅ k(T ) , (33)

where the constant 217v2
H is due to the fact that a given copy of some T ∈ T contributes at most(

vT
vH−2

)2( eT
eH−1

)2 ≤ 22vT +2eT ≤ 24v2
T ≤ 216v2

H to at most
(
vT
2

)
≤ 2v2

H ≤ 2v
2
H terms of the sum.

For a fixed graph T ∈ T , let I = H1
− ∩H2

− denote the intersection of the two copies of H−, and let
J denote the graph obtained by adding the edge f to I (if there are multiple choices for H1

−, H2
−,

and f , pick one arbitrarily). Letting the random variable XT denote the number of copies of T in
Gn,m1 (the underlying unmatched graph of Grn,m1

), we have

E[XT ] ≤(1 + o(1))n2vH−vI (2m1/n
2)2(eH−1)−eI ≤ 22eHn2vH−vJ (m1/n

2)2eH−1−eJ

≤ 2v
2
H
(
n2vH−2(m1/n

2)2eH−2
)
/
(
nvJ−2(m1/n

2)eJ−1
) (25),(29),(31)

≤ 2v
2
Hn2vH−2(m1/n

2)2eH−2 .
(34)

If E[XT ] is a growing function of n, then by a standard application of Chebyshev’s inequality, we
have XT ≤ 2E[XT ] a.a.s. Otherwise, Markov’s inequality implies that for any growing function
!(n) we have XT ≤ !(n) a.a.s. As the right hand side of (34) is indeed a growing function of n
(due to (29) and (31), it grows at least quadratically), we obtain that in either case XT exceeds
the r.h.s. of (34) at most by a factor of two a.a.s. Since A1 is a subgraph of Gn,m1 , it follows in
particular that a.a.s.

k(T ) ≤ ∣T ∣ ⋅ 2 ⋅ 2v2
Hn2vH−2(m1/n

2)2eH−2

≤ 23v2
H ⋅ n2vH−2(m1/n

2)2eH−2 ,
(35)

where we bounded ∣T ∣ by the number of graphs on at most 2vH vertices, which in turn is bounded

by
∑2vH

i=1 2(i
2) ≤ 2(2vH

2 )+1 ≤ 22v2
H−1. Again a.a.s. the bound (35) holds for all choices of A1 ⊏ Grn,m1

simultaneously. From (33) and (35) we obtain∑
e∈Γ(A1)

(
xe
2

)
≤

∑
e∈E(Kn)

(
xe
2

)
≤ 220v2

H ⋅ n2vH−2(m1/n
2)2eH−2 . (36)

Jensen’s inequality now yields∑
e∈Γ(A1)

(
xe
2

)
≥ ∣Γ(A1)∣

(∑
e∈Γ(A1) xe

∣Γ(A1)∣
2

)
≥

(
∑

e∈Γ(A1) xe)
2

3∣Γ(A1)∣
, (37)

where in the last step we used that for all e ∈ Γ(A1) we have

xe
(30)

≥ a′nvH−2(m1/n
2)eH−1

(29)

≥ a′(C ′)eH−1n
vH−2− eH−1

m2(H)
(25),(31)

≥ 3 .

It follows that a.a.s.

∣Γ(A1)∣
(37)

≥
(
∑

e∈Γ(A1) xe)
2

3
∑

e∈Γ(A1)

(
xe
2

)
(26),(32),(36)

≥ 
n2

for every choice of A1 ⊏ Grn,m1
. This concludes the proof of Claim 16. □
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Proof of Claim 17. Conditioning on Grn,m1
being as in Claim 16 and considering a fixed choice of

A1 ⊏ Grn,m1
, we let X denote the number of r-sets of the second round that are completely in Γ(A1).

From Claim 16 we obtain

E[X] = m2/r ⋅
(∣Γ(A1)∣∖E(Gr

n,m1
)

r

)((n2)−m1

r

) = m2/r ⋅ (1 + o(1))

(
2∣Γ(A1)∣

n2

)r Cl. 16
≥ m2 ⋅


r

r
, (38)

where we used that ∣Γ(A1)∣ = Θ(n2) and m1 ≪ n2. We now apply the Azuma-Hoeffding inequality
(Theorem 14) with t = E[X]/2 to the Doob Martingale that arises if we draw the m2/r many r-sets
of the second round sequentially, using that each of these r-sets changes X by at most ck = 1,
1 ≤ k ≤ m2/r. Observing that by (26) and (38) we have bm2 ≤ E[X]/2, we obtain

Pr[X ≤ bm2] ≤ Pr[X ≤ E[X]/2]
(24)

≤ exp

(
−(E[X]/2)2

2 ⋅m2/r

)
(26),(38)

≤ exp (−bm2) .

This concludes the proof of Claim 17. □
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[11] T. Mütze, R. Spöhel, and H. Thomas. Small subgraphs in random graphs and the power of multiple choices.
Submitted for publication.

[12] A. Prakash, R. Spöhel, and H. Thomas. Balanced online Ramsey games in random graphs. Electron. J. Combin.,
16(1):Research Paper 11, 22, 2009.
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