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Parameter testing in bounded degree graphs of subexponential

growth
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Abstract. Parameter testing algorithms are using constant number of queries to estimate

the value of a certain parameter of a very large finite graph. It is well-known that graph

parameters such as the independence ratio or the edit-distance from 3-colorability are not

testable in bounded degree graphs. We prove, however, that these and several other interesting

graph parameters are testable in bounded degree graphs of subexponential growth.
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1 Introduction

1.1 Dense graph sequences

The main motivation for our paper is to develop a theory analogous to that recently developed

for dense graph sequences [9],[10],[22]. First let us recall some basic notions. A sequence of

finite simple graphs G = {Gn}
∞
n=1, |V (Gn)| → ∞ is called convergent if for any finite simple

graph F , limn→∞ t(F,Gn) exists where

t(F,G) =
|hom (F,G)|

|V (G)||V (F )|

is the probability that a random map from V (F ) into V (G) is a graph homomorphism. The

convergence structure above defines a metrizable compactification of the sets of finite graphs.

The limit objects of the graph sequences were first introduced in [22]. They are measurable

symmetric functions

W : [0, 1] × [0, 1]→ [0, 1] .

A graph sequence {Gn}
∞
n=1 converges to W if for every finite simple graph F ,

lim
n→∞

t(F,Gn) =

∫

[0,1]V (F )

∏

(i,j)∈E(F )

W (xi, xj)dx1dx2 . . . dx|V (F )| .

For any such functionW one can find a graph sequence {Gn}
∞
n=1 converging toW and conversely

for any graph sequence {Gn}
∞
n=1 there exists a measurable function W such that the sequence

converges to W . Consequently, the boundary points of the compactification can be identified

with equivalence classes of such measurable functions [22]. Note that if {Gn}
∞
n=1 is a sparse

sequence with limn→∞
|E(Gn)|
|V (Gn)|2

= 0, then {Gn}
∞
n=1 in fact converges to the zero function.

A graph parameter is a real function on the sets of finite simple graphs that is invariant under

graph isomorphims. A parameter φ is continuous if limn→∞ φ(Gn) exists for any convergent

sequence {Gn}
∞
n=1. It was shown by Fischer and Newman [17] that continuous graph parameters

are exactly the ones that are testable by random samplings. It has been proved first in [3] and

then later in [22] that the edit-distance from a hereditary graph property is a continuous graph

parameter.

1.2 Bounded degree graphs

Let d ≥ 2 be a positive integer and let Graphd be the set of finite graphs G (up to isomorphisms)

such that deg(x) ≤ d for any x ∈ V (G). The notion of weak convergence for the class Graphd
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was introduced by Benjamini and Schramm [6]. Let us start with some definitions. A rooted

(r, d)-ball is a finite, simple, connected graph H such that

• deg(y) ≤ d if y ∈ V (H) .

• H has a distinguished vertex x (the root).

• dG(x, y) ≤ r for any y ∈ V (H).

For r ≥ 1, we denote by U r,d the finite set of rooted isomorphism classes of rooted (r, d)-balls.

Let G(V,E) be a finite graph with vertex degree bound d. For α ∈ U r,d, T (G,α) denotes the

set of vertices x ∈ V (G) such that there exists a rooted isomorphism between α and the rooted

r-ball Br(x) around x. Set pG(α) :=
|T (G,α)|
|V (G)| . Thus we associated to G a probability distribution

on U r,d for any r ≥ 1. Let G = {Gn}
∞
n=1 ⊂ Graphd be a sequence of finite simple graphs such

that limn→∞ |V (Gn)| =∞. ThenG is called weakly convergent if for any r ≥ 1 and α ∈ U r,d,

limn→∞ pGn(α) exists. The convergence structure above defines a metrizable compactification

of Graphd in the following way. Let α1, α2, . . . be an enumeration of the elements of ∪∞r=1U
r,d.

For a graph G we associate a sequence

s(G) = {
1

|V (G)|
, pG(α1), pG(α2), . . .} ∈ [0, 1]N .

By definition, {Gn}
∞
n=1 is weakly convergent if and only if {s(Gn)}

∞
n=1 converge pointwise. We

consider the closure of s(Graphd) in the compact space [0, 1]N. This set can be viewed as the

compactification of Graphd. Again, a graph parameter φ : Graphd → R is called continuous

if limn→∞ φ(Gn) exists for any weakly convergent sequence. Equivalently, φ is continuous if it

extends continuously to the compactification above.

1.3 Hyperfinite graph classes

Hyperfinite graph classes were introduced in [14] and studied in depth in [23],[7]. Also, under

the name of non-expanding bounded degree graph classes they were studied in [11] as well.

A class H ⊂ Graphd is called hyperfinite if for any ǫ > 0 there exists K > 0 such that if

G ∈ H then one can delete ǫ|E(G)| edges from G in such a way that all the components in the

remaining graph G′ have size at most K. Planar graphs, graphs with bounded treewidth or,

in general, all the minor-closed graph classes are hyperfinite [7]. Let f : N → N be a function

of subexponential growth. That is, for any δ > 0 there exists Cδ > 0 such that for all n ≥ 1:
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f(n) ≤ Cδ(1+δ)
n. The class Graphfd consists of graphsG ∈ Graphd such that |Br(x)| ≤ f(r) for

each x ∈ V (G). The classes Graphfd are also hyperfinite [14]. We will call a graph parameter

φ continuous on Graphfd if limn→∞ φ(Gn) exists whenever {Gn}
∞
n=1 ⊂ Graphfd is a weakly

convergent sequence. Equivalently, φ is continuous on Graphfd if it extends continuously to the

closure of Graphfd in [0, 1]N.

1.4 Union-closed monotone properties

Let P ⊂ Graphd. We say that P is union-closed monotone graph class (or being in P is a

union-closed monotone property) if the following conditions are satisfied:

• if |E(A)| = 0 then A ∈ P

• if A ∈ P and B ⊂ A is a subgraph, then B ∈ P (we consider spanning subgraphs, that is

if B ⊂ A then V (B) = V (A))

• if A ∈ P and B ∈ P then the disjoint union of A and B is also in P .

Let us list some union-closed monotone graph classes :

• planar graphs

• bipartite graphs

• k-colorable graphs

• graphs that are not containing some fixed graph H.

If G and H are finite graphs with the same vertex set V then their edge-distance is defined

as

de(G,H) :=
|E(G)△E(H)|

|V |
.

The edit-distance from a class P is defined as

de(G,P) = inf
V (H)=V (G), H∈P

de(G,H) .

It is important to note that de(∗,P) is not continuous on Graphd even for such a simple class as

the set of bipartite graphs Bip. Indeed, Bollobás [8] constructed a large girth sequence of cubic

graphs such that de(Gn, Bip) > ǫ > 0 for any n ≥ 1. On the other hand there are bipartite large

girth sequences of cubic graphs. Since by the definition of weak convergence all sequences of
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cubic graphs with large girth converge to the same elements of the compactification of Graphd,

de(∗,P) is not continuous. We shall see, however, that in the class Graphfd the graph parameter

de(∗,P) is continuous if P is a union-closed monotone property (Theorem 2). We also prove

that continuous graph parameters are effectively testable via random samplings (Theorem 3).

1.5 Continuous graph parameters in Graph
f
d

In Section 6 we prove that the independence ratio as well as the matching ratio are continuous

parameters for the class Graphfd (Theorem 5). We also prove that the log-partition functions

associated to independent subsets resp. to matchings are continuous graph parameters in

Graphfd . This shows that for certain aperiodic graphs such as the Penrose tilings, in which all

neighbourhood patterns can be seen in a given frequency, the thermodynamical limit of the

log-partition functions exists. Such results are well-known for lattices. We also show a similar

convergence result for the integrated density of states for discrete Schrödinger operators with

random potentials extending some recent results in [20] and [21](Theorem 4).

1.6 The main theorem

It is known [2] that there exists δ > 0 such that to construct an independent set that ap-

proximates the size of a maximum independent set within an error of δ|V (G)| in a 3-regular

graph G is NP-hard. The situation is dramatically different in the case of planar graphs. For

any fixed δ > 0 there exists a polynomial time algorithm to construct an independent set that

approximates the size of the maximum independent set within an error of δ|V (G)| for cubic

planar graphs G [4] (note that finding a maximum independent set in a planar cubic graph is

still NP-hard). First, using a polynomial time algorithm one can delete δ|E(G)|
3 edges from G

to obtain a graph G′ with components of size at most K(δ). For each component of G′ one

can find a maximum independent set in L(δ) steps. Obviously, the union of these sets can not

be smaller in size that the maximum independent set in G. If we delete all the vertices from

the union that are on some previously deleted edges, then we get an independent subset of

the original graph G. Since the number of deleted vertices is at most δ|V (G)| we obtained an

approximation of the maximum independent set within an error of δ|V (G)|.

How can we use this idea for constant-time algorithms ? Let f be a function of subexponential

growth and G ∈ Graphfd . Fix ǫ > 0. Since Graphfd is a hyperfinite class one can delete ǫ|E(G)|
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edges from G to obtain a graph G′ with components of size at most K(ǫ). Let A(d,K(ǫ)) be

the finite set of all finite connected graphs of size at most K(ǫ). If for each H ∈ A(d,K(ǫ))

someone tells us how many components of G′ are isomorphic to H we can calculate the size

of the maximum independent set in G′. What we need is to test the following value : the

number of components in G′ isomorphic to H divided by |V (G)|. Unfortunately, this is not

a well-defined graph parameter since there are many ways to delete edges from G to obtain

graphs with small components. Informally speaking, what we need to show is that if two graphs

G1, G2 ∈ Graphfd are close to each other in terms of local neighborhood statistics, then one can

delete edges from G1 resp. G2 in such a way that in the remaining graphs G′1 resp. G′2 the

ratios of H-components are close to each other for any fixed H ∈ A(d,K(ǫ)). That is exactly

what we prove in our main theorem, which is the main tool of our paper.

Theorem 1 Let G = {Gn}
∞
n=1 ⊂ Graphfd be a weakly convergent sequence of finite graphs.

Then for any ǫ > 0 there exists a constant K > 0 and also, for all connected simple graphs

H ∈ Graphfd with |V (H)| ≤ K a real constant cH such that for any n ≥ 1 one can remove

ǫ|E(Gn)| edges from Gn satisfying the following conditions:

• The number of vertices in each component of the remaining graph G′n is not greater than

K.

• If V n
H ⊆ V (Gn) is the set of vertices that are contained in a component of G′n isomorphic

to H then

lim
n→∞

|V n
H |

|V (Gn)|
= cH .

Note that the second condition is equivalent to saying that {G′n} is a convergent sequence. In

order to prove the theorem we combine the limit object method of Benjamini and Schramm [6]

and the non-standard analytic technique developed in [16].

2 The canonical limit object

2.1 Hyperfinite graphings

In this subsection we briefly recall the basic properties of graphings (graphed equivalence rela-

tions) [18]. Let F∞2 be the free product of countably many copies of the cycle group of order

two. Thus

F∞2 = 〈{si}i∈N|s
2
i = 1〉
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is a presentation of the group F∞2 , where the si’s are generators of order two. Suppose that the

edges of a simple graph H (finite or infinite) are coloured by natural numbers properly, that

is, any two edges having a common vertex are coloured differently. Then, the colouring induces

an action of F∞2 on the vertex set V (H) in the following way:

• si(x) = y if e = (x, y) ∈ E(H) and e is coloured by i.

• si(x) = x if no edge incident to x is coloured by i.

We regard graphings as the measure theoretical analogues of N-coloured graphs. Let (X,µ)

be a probability measure space with a measure-preserving action of F∞2 that is not necessarily

free such that if si(p) = q 6= p and sj(p) = q then i = j. Let E ⊂ X × X be the set of

pairs (p, q) such that γ(p) = q for some γ ∈ F∞2 . Thus E is the measurable equivalence

relation induced by the F∞2 -action. Connect the points p ∈ X, q ∈ X, p 6= q by an edge of

colour i if si(p) = q for some generator element si. Thus we obtain a properly N-coloured graph

with a measurable structure, the graphing G. If p ∈ X then Gp denotes the component of G

containing p. In this paper we consider only bounded degree graphings, that is, graphings for

which all the degrees of the vertices are bounded by a certain constant d. Thus, for any p ∈ X

the number of generators {si} which do not fix p is at most d. The edge-set of the graphing

G, E(G) has a natural measure space structure as well. Let i ≥ 1 and A ⊆ X be a measurable

subset of vertices such that

• If a ∈ A then si(a) ∈ A, si(a) 6= a.

Let Âi ⊆ E(G) be the set of edges such that their endpoints belong to A. Then we call Âi a

measurable edge-set of colour i. These measurable edge-sets form a σ-algebra with a measure

µEi
,

µEi
(Âi) =

1

2
µ(A) .

Clearly, the σ-algebra above contains the set Ei consisting of all edges coloured by i. Then

E(G) = ∪∞i=1Ei. The set M ⊂ E(G) is measurable if for all i M ∩Ei is measurable and

µE(M) =
∞∑

i=1

µEi
(M ∩ Ei) .

A measurable subgraphing H ⊆ G is a measurable subset of E(G) such that the components

of H are induced subgraphs of G. A subgraphing H is called component-finite if all of its
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components are finite graphs. It is easy to see that if H ⊂ G is a component-finite subgraphing

and F is a finite connected simple graph, then

HF = {p ∈ X | Hp
∼= F}

is measurable and the span of HF is a component-finite subgraphing having components iso-

morphic to F .

The graphing G is called hyperfinite if there exist component-finite subgraphings H1 ⊂ H2 ⊂

. . . such that

lim
n→∞

µE(E(G)\E(Hn)) = 0 .

Suppose that f : N → R is a function of subexponential growth and |Br(x)| ≤ f(r) for all the

balls of radius r in G. Then we call G a graphing of subexponential growth. By the result of

Adams and Lyons [1] graphings of subexponential growth are always hyperfinite.

2.2 Graphings as graph limits

Let G = {Gn}
∞
n=1 ⊂ Graphd be weakly convergent graph sequence as in the Introduction. Let

(G,X, µ) be a graphing. If α ∈ U r,d then let T (G, α) be the set of points p ∈ X such that the

ball Br(p) ⊂ Gp is rooted isomorphic to α. Clearly, T (G, α) is a measurable set. We say that

G converges to G if for any r ≥ 1 and α ∈ U r,d

pG(α) := lim
n→∞

pGn(α) = µ(T (G, α)) .

In [13] we proved that any weakly convergent graph sequence admits such limit graphings.

There is however an other even more natural limit object for weakly convergent graph sequences

constructed by Benjamini and Schramm [6]. LetGrd be the set of all countable connected rooted

graphs (up to rooted isomorphism) with uniform vertex degree bound d. For each α ∈ U r,d we

associate a closed-open set R(α), the set of elements G ∈Grd such that Br(x) ∼= α, where x is

the root of G. Then Grd is a metrizable, compact space. Now let G = {Gn}
∞
n=1 be a weakly

convergent sequence in Graphd. Then

µ̂G(R(α)) := lim
n→∞

pGn(α) = pG(α)

defines a measure µ̂G on Grd. This measure space can be considered as the primary limit

object for weakly convergent graph sequences.
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Note that if G = {Gn}
∞
n=1 is a Følner-sequence in the Cayley-graph of a finitely generated

amenable group Γ then the limit measure µ̂G is concentrated on one single point in Grd namely

on the point representing the Cayley-graph itself. In order to avoid this technical difficulty, in

the following subsections we introduce a combination of the limit graphing and the Benjamini-

Schramm construction.

2.3 B-graphs

Let B = {0, 1}N be the Bernoulli space of 0− 1-sequences with the standard product measure

ν. A rooted B-graph is a rooted connected graph G equipped with a function τG : V (G)→ B.

We say that the rooted B-graphs G and H are isomorphic if there exists a rooted graph

isomorphism ψ : G → H such that τH(ψ(x)) = τG(x) for any x ∈ V (G). Let BGrd be the

set of such isomorphism classes of countable rooted B-graphs with vertex degree bound d. Let

α ∈ U r,d and consider a rooted r-ball T representing the class α. Consider the product space

B(T ) = BV (T ) with the product measure ν |V (T )| = νT . Note that the finite group of rooted

automorphisms Aut(T ) acts continuously on B(T ) preserving the measure νT . Let us consider

the quotient space Q(T ) = B(T )/Aut(T ) and the natural projection πT : B(T )→ Q(T ). For a

Borel-set W ⊆ Q(T ) let us define the measure λ by λ(W ) = νT (π
−1
T (W )) . Obviously if T and

S are rooted isomorphic balls then Q(T ) and Q(S) are naturally isomorphic. Hence we shall

denote the quotient space by Q(α). Let β ∈ U r+1,d, α ∈ U r,d such that the r-ball around the

root in β is isomorphic to α. Then we have a natural projection πβ,α : Q(β) → Q(α). Indeed

if f ∈ B(T ) for some rooted ball T representing β and the restriction of f on the r-ball around

the root is g, then the class of f is mapped to the class of g.

Lemma 2.1 If W ⊆ Q(α) is a Borel-set then

λ(π−1β,α(W )) = λ(W ) .

Proof. Let πT,S : B(T ) → B(S) be the natural projection, where S is the r-ball around the

root. Then

πS ◦ πT,S = πβ,α ◦ πT .

Also, since νT (π
−1
T,S(A)) = νS(A) for any Borel-set A ⊆ B(S) ,

λ(π−1β,α(W )) = νT (π
−1
T ◦ π

−1
β,α(W )) and λ(W ) = νS(π

−1
S (W )) = νT (π

−1
T,S ◦ π

−1
S (W )) .
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Now the lemma follows.

Hence we have the compact spaces Qr
d :=

⋃
α∈Ur,d Q(α) and the projections

Q1
d

π1

← Q2
d

π2

← . . .

where πr is defined as πβ,α on Q(β). It is easy to see that the elements of lim←Q
r
d are in a one-

to-one correspondence with the rooted isomorphism classes of the countable rooted B-graphs

with vertex degree bound d. Hence from now on we regard BGrd as a compact metrizable

space. Note that the forgetting functor provides us a continuous map F : BGrd → Grd. Note

that the forgetting functor maps a B-graph to its underlying graph in Grd.

Now let G = {Gn}
∞
n=1 be a weakly convergent graph sequence and µ̂G be the limit measure on

Grd.

Proposition 2.1 Let α ∈ U r,d and W ⊆ Q(α) be a Borel-set. We define the measure µ̃G by

µ̃G(W ) := λ(W )pG(α) .

Then µ̃G is a Borel-measure on BGrd and F∗(µ̃G) = µ̂G .

Proof. Clearly, we define a measure µ̃rG on Qr
d by

µ̃rG(∪α∈Ur,dWα) :=
∑

α∈Ur,d

pG(α)λ(Wα) .

We only need to prove that

πr∗(µ̃
r+1
G ) = µ̃rG .

Let U r+1,d
α be the set of classes such that the rooted r-ball around the root is just α. Then

•
⋃

α∈Ur,d U
r+1,d
α = U r+1,d .

• (πr)−1(Q(α)) =
⋃

β∈Ur+1,d
α

Q(β) .

• pG(α) =
∑

β∈Ur+1,d
α

pG(β) .

If W ⊆ Q(α) then

(πr)−1(W ) =
⋃

β∈Ur+1,d
α

π−1β,α(W ) .

Thus by Lemma 2.1, µ̃r+1
G (π−1β,α(W )) = pG(β)λ(W ) . Therefore

µ̃r+1
G ((πr)−1(W )) = µ̃rG(W ) .

Consequently, µ̃G is a well-defined Borel-measure on BGrd. Since µ̂G(R(α)) = µ̃G(Q(α)),

F∗(µ̃G) = µ̂G .
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2.4 The canonical colouring of a B-graph

Let us consider the triples (p, q, n), where 1 ≤ p ≤ d, 1 ≤ q ≤ d, n ≥ 1. Let G(V,E, τG) be a

countable B-graph such that τG(x) 6= τG(y) if x 6= y. These B-graphs are called separated.

Now colour the edge e = (x, y) ∈ E by (p, q, n) if

• τG(x) < τG(y) (in the lexicographic ordering of {0, 1}N) and l1 < l2 < . . . < ldeg(x) are

the values of τG at the neighbours of x and τG(y) = lp.

• m1 < m2 < . . . < mdeg(y) are the values of τG at the neighbours of y and τG(x) = mq.

• τG(x) = {a1, a2, . . .} ∈ B, τG(y) = {b1, b2, . . .} ∈ B, a1 = b1, a2 = b2, . . . , an−1 =

bn−1, an 6= bn .

Lemma 2.2 If (a, b) ∈ E, (a, c) ∈ E then the colours of (a, b) and (a, c) are different.

Proof. If the colour of (a, b) and (a, c) are the same, then either τG(b) > τG(a), τG(c) > τG(a)

or τG(b) < τG(a), τG(c) < τG(a). Hence by the definition of the colouring τG(b) = τG(c) leading

to a contradiction.

Now consider Od ⊂ BGrd, the Borel-set of separated B-graphs. Clearly µ̃G(Od) = 1. The

colouring construction above defines a canonical Borel F∞2 -action on Od as follows. Suppose

that z ∈ Od represents the rooted B-graph G with root a ∈ V (G). Consider the free generators

of order two {sδ}δ∈I , where

I = {1, 2, . . . , d} × {1, 2, . . . , d} × N .

Let α ∈ I, α = (p, q, n). Then

• If there exists an edge (a, b) ∈ E(G) coloured by (p, q, n) then define sα(z) = w, where w

represents the same B-graph as z, but with root b.

• If there exists no edge (a, b) ∈ E(G) coloured by (p, q, n) then let sα(z) = z.

Observe that we constructed an F∞2 -action on Od such a way that if z ∈ Od represents

a graph G then the orbit graph of z is isomorphic to G, We call this action the canonical

F∞2 -action on the canonical limit object (Od, µ̃G). In Corollary 3.1 we shall prove that the

measure µ̃G is invariant under the canonical action.

12



2.5 Random B-colourings of convergent graph sequences

Let G = {Gn}
∞
n=1 ⊂ Graphd be a weakly convergent sequence of graphs. Let Ω = B∪

∞
n=1V (Gn)

be the space of B-valued functions κ on the vertices of the graph sequence. We equip Ω with

the standard product measure νΩ.

Now let α ∈ U r,d and let Q(α) be the quotient space as in Subsection 2.3. Let U ⊆ Q(α) be a

Borel-subset, κ ∈ Ω and T (Gn, κ, U) be the set of vertices p ∈ V (Gn) such that

• p ∈ T (Gn, α) .

• κ|Br(p) ∈ U .

Proposition 2.2 For any Borel-set U ∈ Q(α),

lim
n→∞

|T (Gn, κ, U)|

|V (Gn)|
= λ(U)pG(α) = µ̃G(U) (1)

holds for almost all κ ∈ Ω.

Proof. We may suppose that pG(α) 6= 0, since if pG(α) = 0 then both sides of the equation (1)

vanish. Let x ∈ T (Gn, α) . Then we define AU
x ⊂ Ω by

AU
x := {κ ∈ Ω | x ∈ T (Gn, κ, U)} .

Clearly, νΩ(A
U
x ) = λ(U). Note however that if x 6= y ∈ T (Gn, α) then AU

x and AU
y might not

be independent subsets. On the other hand, if x ∈ T (Gn, α), y ∈ T (Gm, α) and n 6= m then

AU
x and AU

y are independent. Also, if S ⊂ T (Gn, α), S = {x1, x2, . . . , xk} and dGn(xi, xj) > 2r

if i 6= j then AU
x1
, AU

x2
, . . . , AU

xk
are jointly independent.

Lemma 2.3 There exists a natural number l > 0 (depending on r and d) and a partition

∪li=1B
n
i = T (Gn, α) for any n ≥ 1 such that if x 6= y ∈ Bn

i then dGn(x, y) > 2r .

Proof. Let Hn be a graph with vertex set V (Gn). Let (x, y) ∈ E(Hn) if and only if dGn(x, y) ≤

2r . Then deg(x) ≤ dr+1 for any x ∈ V (Hn). Let l = dr+1 + 1 then Hn is vertex-colorable by

the colours c1, c2, . . . , cl. Let B
n
i be the set of vertices coloured by ci.

To conclude the proof of Proposition 2.2, let us fix q ≥ 2. Let Bn
i1
, Bn

i2
, . . . , Bn

in,q
be those

elements of the partition of the previous lemma such that

|Bn
ij
|

|V (Gn)|
>

2−q

l
.

13



Then by the law of large numbers, for almost all κ ∈ Ω

lim
n→∞

|T (Gn, κ, U) ∩Bn
ij
|

|Bn
ij
|

= λ(U) ,

for any choice of ij . An easy calculation shows that for the same κ

lim
n→∞

|T (Gn, κ, U) ∩ (
⋃in,q

j=1B
n
ij
)|

|
⋃in,q

j=1B
n
ij
|

= λ(U) . (2)

On the other hand,

|T (Gn, α)\
⋃in,q

j=1B
n
ij
|

|V (Gn)|
≤ 2−q

and limn→∞
|T (Gn,α)|
|V (Gn)|

= pG(α) . Hence letting q →∞, (1) follows.

2.6 Generic elements

For any α ∈ U r,d let us choose closed-open sets {Uk
α}
∞
k=1 such that they form a Boolean-algebra

and generate all the Borel-sets in Q(α). We call κ ∈ Ω generic if for any k ≥ 1 and α ∈ U r,d

lim
n→∞

|T (Gnκ,U
k
α)|

|V (Gn)|
= λ(Uk

α)pG(α)

and for any n ≥ 1, κ(p) 6= κ(q) if p 6= q ∈ V (Gn). By Proposition 2.2, almost all κ ∈ Ω are

generic.

3 Graph sequences and ultraproducts

3.1 Basic notions

In this section we briefly recall some of the basic notions on the ultraproducts of finite sets [16].

Let {Xi}
∞
i=1 be finite sets, |Xi| → ∞. Let ω be a non-principal ultrafilter and limω : l∞(N)→ R

be the corresponding ultralimit. The ultraproduct of the sets Xi is defined as follows.

Let X̃ =
∏∞

i=1Xi. We say that p̃ = {pi}
∞
i=1, q̃ = {qi}

∞
i=1 ∈ X̃ are equivalent, p̃ ∼ q̃, if

{i ∈ N | pi = qi} ∈ ω .

We shall denote the equivalence class of {pi}
∞
i=1 by [{pi}

∞
i=1] . Define X := X̃/ ∼. Now let

R(Xi) denote the Boolean algebra of subsets of Xi, with the normalised measure µi(A) =
|A|
|Xi|

.

Then let R̃ =
∏∞

i=1R(Xi) and R = R̃/I, where I is the ideal of elements {Ai}
∞
i=1 such that

14



{i ∈ N | Ai = ∅} ∈ ω . It is important to note that the elements of R can be identified with

certain subsets of X: If

p = [{pi}
∞
i=1] ∈ X and A = [{Ai}

∞
i=1] ∈ R

then p ∈ A if {i ∈ N | pi ∈ Ai} ∈ ω . One can easily see that R is a Boolean-algebra on X. Now

let µG(A) = limω µi(Ai) . Then µG : R→ R is a finitely additive probability measure. We call

N ⊆ X a nullset if for any ǫ > 0 there exists Aǫ ∈ R such that N ⊂ Aǫ and µ(Aǫ) ≤ ǫ. We

call B ⊂ X measurable if there exists B̂ ⊂ R such that B△B̂ is a nullset. The measurable

sets form a σ-algebra B and µG(B) = µG(B̂) defines a probability measure on B.

3.2 The ultraproduct of B-valued functions

Let G = {Gn}
∞
n=1 ⊂ Graphd be a weakly convergent sequence of graphs. We shall denote

by XG the ultraproduct of the vertex sets {V (Gn)}
∞
n=1. Now consider an element κ ∈ Ω =

B∪
∞
n=1V (Gn) . We define the B-valued function Fκ on XG the following way. Let p = [{pn}

∞
n=1]

then Fκ(p) := limω κ(pi). Note that if {bn}
∞
n=1 ⊂ B is a sequence of elements of the Bernoulli

product space then limω bn = b is the unique element of B such that for any neighbourhood

b ∈ U ⊆ B

{n ∈ N | bn ∈ U} ∈ ω .

Lemma 3.1 Fκ is a measurable B-valued function on XG.

Proof. Let Ox1,x2,...,xn be the basic closed-open set in B, where xi ∈ {0, 1} and b ∈ Ox1,x2,...,xn

if b(i) = xi. It is enough to prove that F−1κ (Ox1,x2,...,xn) ∈ R . Let

Oi
x1,x2,...,xn

:= {pn ∈ V (Gn) | κ(pi) ∈ Ox1,x2,...,xn} .

Since Oi
x1,x2,...,xn

is an closed-open set [{Oi
x1,x2,...,xn

}∞i=1] = F−1κ (Ox1,x2,...,xn). Thus our lemma

follows.

3.3 The canonical action on the ultraproduct space

Let G = {Gn}
∞
n=1 ⊂ Graphd and XG be as in the previous subsections and let κ ∈ Ω be a

fixed generic element. Then κ determines a separated B-function on each vertex space V (Gn).
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Now let β ∈ {1, 2 . . . , d} × {1, 2, . . . , d} × N and let Si
β : V (Gi) → V (Gi) be the bijection

Si
β(p) = sβ(p) (as in Subsection 2.4). The ultraproduct of {Si

β}
∞
i=1 is defined the following way:

Sβ([{pi}
∞
i=1]) = [{Si

β(pi)}
∞
i=1] .

Then Sβ is a measure-preserving bijection on the ultraproduct space XG. Indeed if A =

[{Ai}
∞
i=1] ∈ R then Sβ(A) = [{Si

β(Ai)}
∞
i=1] . Clearly S2

β = Id, hence we defined a measure-

preserving action of F∞2 on XG.

Lemma 3.2 Each component Gp of the graphing G induced by the action above has vertex

degree bound d.

Proof. Let p = [{pi}
∞
i=1] ∈ XG. If Sβ(p) 6= p then sβ(pi) 6= pi for ω-almost all i ∈ N. Therefore

if Sβ1 ,Sβ2 , . . . ,Sβd+1
are bijections such that Sβj

(p) 6= p then sβj
(pi) 6= pi for ω-almost all

i ∈ N and 1 ≤ j ≤ d+ 1. This leads to a contradiction.

By the previous lemma each graph Gp is a rooted B-graph of vertex degree bound d, where p

is the root and the B-colouring on the vertices of Gp is induced by Fκ. Consequently, we have

a canonical map ρ : XG → BGrd (depending on the fixed generic element κ of course) such

that for each p, ρ(p) is the rooted B-graph representing the component Gp.

3.4 The canonical map preserves the measure

The goal of this subsection is to prove the main technical tool of our paper.

Proposition 3.1 ρ : (XG, µG)→ (BGrd, µ̃G) is a measure-preserving map.

Proof. We need to prove that for any Borel-set W ⊆ BGrd, ρ
−1(W ) is a measurable set in XG

and µG(ρ−1(W )) = µ̃G(W ) .

Lemma 3.3 Suppose that the r-neighborhood of p = [{pi}
∞
i=1] ∈ XG represents α ∈ U r,d . Then

for ω-almost all i ∈ N the r-neighbourhood of pi ∈ V (Gi) represents α as well.

Proof. Let q ∈ Br(p). Then there exists a path p0,p1, . . . ,pr in the graph Gp such that

p0 = p, pr = q. Therefore for ω-almost all i ∈ N, (pki , p
k+1
i ) ∈ E(Gi) thus if q = [{qi}

∞
i=1] then

qi ∈ Br(pi) for ω-almost i ∈ N. Obviously if q and q′ are vertices in Br(p) then (q,q′) ∈ E(Gp)

if and only if (qi, q
′
i) ∈ E(Gi) for ω-almost all i ∈ N. Also, if deg(q) = k then deg(qi) = k for

ω-almost all i ∈ N. This shows that Br(pi) ∼= Br(p) for ω-almost all i ∈ N.
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Lemma 3.4 Let U ⊆ Q(α) be a closed-open subset. Then Fκ|Br(p) ∈ U if and only if κ|Br(pi) ∈

U for ω-almost all i ∈ N, where κ|Br(pi) denotes the restriction of κ onto the set Br(pi).

Observe that Fκ|Br(p) = limω κ|Br(pi). Note that the ultralimit of a sequence in a compact

metric space is in the closure of the sequence. Therefore the lemma easily follows. .

By Lemma 3.4, if U ⊆ Q(α) be a closed-open subset

µG({p ∈ XG | Br(p) ∼= α and F κ
|Br(p)

∈ U}) = lim
ω

|T (Gi, κ, U)|

|V (Gi)|
.

Since κ is a generic element in Ω, µG(ρ−1(Uk
α)) = µ̃G(Uk

α) for any α ∈ U r,d and k ≥ 1.

Since {Uk
α}
∞
k=1 is a generating Boolean-algebra µG(ρ−1(W )) = µ̃G(W ) holds for any Borel-set

W ⊆ BGrd.

Corollary 3.1

(a) For almost all p ∈ XG, Gp is a separated B-graph.

(b) The F∞2 -action on Od ⊆ BGrd preserves the measure.

Proof. (a) follows from the fact that µG(ρ−1(Od)) = 1. On the other hand ρ commutes with

the F∞2 -action, that implies (b).

3.5 The ultraproduct of finite graphs

The goal of this subsection is to prove some auxiliary lemmas that shall be used in the proof

of our main theorem. Let G = {Gn}
∞
n=1 be a weakly convergent sequence of finite graphs

with vertex degree bound d. Let XG be the ultraproduct of their vertex sets and GX be the

graphing constructed in the previous subsection. Then we have two notions for measure space

of edge-sets. The first is the one constructed in Subsection 2.1. On the other hand, similarly

to the ultraproduct of the vertex sets we can also define the ultraproducts of edge sets with

normalised measure µE,

µE(L) = lim
ω

|E(Ln)|

|V (Gn)|
,

where L = [{Ln}
∞
n=1], Ln ⊆ E(Gn) . Again the ultraproduct sets L = [{Ln}

∞
n=1] form a

Boolean-algebra RE and we can define the σ-algebra of measurable edge-sets byME as well.

It is easy to see that the two measure spaces above coincide. If A ∈ ME, then let V (A) be

the set of points p in XG for which there exists q ∈ XG, (p,q) ∈ A. Clearly if A ∈ RE
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then V (A) ∈ R and if N is a nullset of edges then V (N) is a nullset of vertices. Consequently

if A ∈ ME then V (A) ∈ M. Note that we can regard the elements of ME as measurable

subgraphs of GX.

Lemma 3.5 Let HF ∈ ME be a subgraph such that all of its components are isomorphic to a

finite simple graph F . Then for any γ > 0 there exists SF ⊂ HF such that

• SF ∈ RE

• All the components of SF are isomorphic to F .

• µG(V (HF \SF )) < γ .

Proof. Let H′F ∈ RE be a subgraph such that µE(HF△H′F ) = 0 . Then V (HF△H′F ) is a

nullset in XG. Consequently, Q = Orb(V (HF△H′F )) is still a nullset in XG, where

Q = ∪p∈V (HF△H′
F
)V (Gp)

is the union of the orbits of the vertices in HF△H′F . Let Q ⊂ K ∈ R, µG(K) ≤ γ. Consider

the subset V (H′)\K ∈ R. Then the r-neighbourhood of V (H′)\K, Br(V (H′)\K) is also an

element of R for any r ≥ 1. Indeed, if V (H′)\K = [{Ai}
∞
i=1] then

Br(V (H′)\K) = [{Br(Ai)}
∞
i=1] .

Let r > diam (F ) and SF be the spanned subgraph of Br(V (H′)\K) in H′. Then clearly

SF ∈ RE. Also, SF does not contain any vertex of V (H′△H) . Thus V (SF ) ⊆ V (H) and

if p ∈ V (SF ) then the component of p in SF is just the component of p in H. Clearly,

µG(V (H\SF )) < γ thus our lemma follows.

Lemma 3.6 Let S = [{Sn}
∞
n=1] ∈ RE be a subgraph such that all of its components are isomor-

phic to the finite simple graph F . Then for ω-almost all n each component of Sn is isomorphic

to F .

Proof. We prove the lemma by contradiction. Suppose that there exists T ∈ ω such that for any

n ∈ T there exists pn ∈ V (Sn) such that the component of Sn containing pn is not isomorphic

to F .

Case 1: If for ω-almost all elements of T there exists qn ∈ V (Sn) such that d(pn, qn) = r >

diam(F ) then there exists (p,q) ∈ S such that dS(p,q) > diam(F ), leading to a contradiction.
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Case 2: If for ω-almost all elements of T the component containing pn has diameter less than

3r, then for ω-almost all elements of T the component containing pn is isomorphic to the same

finite graph G, where G is not isomorphic to F . Then there exists p ∈ V (S) such that the

component of S containing p is isomorphic to G. This also leads to a contradiction.

4 The proof of Theorem 1

Let ǫ > 0 and G = {Gn}
∞
n=1 ⊂ Graphfd be a weakly convergent sequence of graphs. Also

let (BGrd, µ̃G) be the canonical limit object as in Subsection 2.4. Let BGrf be the F∞2 -

invariant subspace of graphs G in BGrd satisfying |Br(x)| ≤ f(r) for all x ∈ V (G). Let

Of = BGrf ∩ Od. Then Of is also F∞2 -invariant and µ̃G(BGrd\Of ) = 0 . Consider the

induced graphing (G,Of , µ̃G). Since all the component graphs are of subexponential growth,

by the theorem of Adams and Lyons [1], this graphing is hyperfinite. Therefore there exists a

K > 0 and a component-finite subgraphing H ⊂ G such that

• µE(E(G)\E(H)) ≤ ǫ
2 .

• Of =
⋃

H, |V (H)|≤K HH , where HH is the set of points in Of contained in a component of

H isomorphic to H.

• E(H) =
⋃

H, |V (H)|≤K E(HH)

Let cH = µ̃G(HH). Now suppose that our theorem does not hold. Therefore there exists a

subsequence {Gni
}∞i=1 such that one can not remove ǫE(Gni

) edges from any Gni
to satisfy

condition (1) of our Theorem with the extra condition that

∣∣∣∣
|V ni

H |

|V (Gni
)|
− cH

∣∣∣∣ < δ,

for any finite simple graphH, |V (H)| ≤ K. LetXG be the ultraproduct of the graphs {Gni
}∞n=1.

Note that the canonical limit objects of the sequence {Gni
}∞i=1 and of {Gn}

∞
n=1 are the same.

Therefore we have a measure-preserving map

ρ : (OG, µG)→ (Of , µ̃G) ,

where OG is the set of elements p ∈ XG such that Gp is separated. Note that

• µG(XG\OG) = 0 .
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• ρ commutes with the canonical F∞2 -actions.

• ρ preserves the isomorphism type of the orbit graphs.

Clearly, ρ extends to a measure-preserving map

ρ̂ : (E(OG), µE)→ (E(Of ), µ̃E) ,

where µE and µ̃E denote the induced measures on the edge-sets. Now fix a constant γ > 0.

Let AH = ρ̂−1(HH). Then {AH}H,|V (H)|≤K are component-finite subgraphings and all the

components of AH are isomorphic to H. Observe that µG(V (AH)) = cH . Now first apply

Lemma 3.5 to obtain subgraphings SH ⊂ AH such that µG(V (AH\SH)) < γ for each H. Then

we apply Lemma 3.6 to obtain the graphs {SH
ni
}∞i=1 for each H such that

• SH
ni
⊂ Gni

• All the components of SH
ni

are isomorphic to H.

• limω

∣∣∣∣
|V (SH

ni
)|

|V (Gni
)| − cH

∣∣∣∣ < γ .

Thus for ω-almost all i ∈ N

•

∣∣∣∣
|V (SH

ni
)|

|V (Gni
)| − cH

∣∣∣∣ < 2γ

•

∣∣∣∣
E(Gni

)\
S

H,|V (H)|≤K E(SH
ni

)

|V (Gni
)|

∣∣∣∣ < 2dγgK + ǫ
2 where gK is the number of graphs having vertices

not greater than K.

Since γ can be chosen arbitrarily we are in contradiction with our assumption on the graphs

{Gni
}∞i=1.

Remark : In [23], Schramm proved that a graph sequence {Gn}
∞
n=1 is hyperfinite if and

only if its unimodular limit measure is hyperfinite. This idea was used in [7] to show that

planarity is a testable property for bounded degree graphs. If we prove that the canonical

limit of a hyperfinite graph sequence is always hyperfinite, then we can extend the results of

our paper to arbitrary hyperfinite classes. This is subject of ongoing research [15]. In [11],

the authors studied hereditary hyperfinite classes (see Corollary 3.2 of their paper). A graph

class is hereditary if it is closed under vertex removal. Thus planar graphs of bounded degree d

and Graphfd are both hereditary hyperfinite classes. The main result of [11] is that hereditary
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properties are testable in hyperfinite classes. It means that a tester accepts the graph if it has

the property and rejects the graph with probability at least (1 − ǫ) if the graph is ǫ-far from

the property in edit-distance. It would be interesting to see whether the edit-distance from a

hereditary property is testable in a hereditary hyperfinite graph class.

5 Testing union-closed monotone graph properties

5.1 Edit-distance from a union-closed monotone graph property

Theorem 2 Let P be a union-closed monotone graph property as in the Introduction. Then

ζ(G) = de(G,P) is a continuous graph parameter on Graphfd .

Proof. We define the normal distance from a union-closed monotone class by

dn(G,P) = inf
H⊂G,H∈P

de(G,H) .

Lemma 5.1 dn(G,P) = de(G,P)

Proof. Clearly, de(G,P) ≤ dn(G,P). Now let J ∈ P, V (J) = V (G). Then the spanning graph

J ∩G has also property P and de(G, J ∩G) ≤ de(G, J). Therefore de(G,P) ≥ dn(G,P).

Now we prove a simple continuity lemma.

Lemma 5.2 If G′ ⊆ G, de(G,G
′) ≤ δ then |dn(G

′,P)− dn(G,P)| ≤ δ.

Proof. Let H ′ ⊆ G′, H ′ ∈ P . Then de(G,H
′) ≤ de(G

′,H ′) + δ. Consequently, dn(G,P) ≤

dn(G
′,P)+ δ. Now let H ⊆ G, H ∈ P . Then H ∩G′ ∈ P. Since de(G

′,H ∩G′) ≤ de(G,H), we

obtain that dn(G
′,P) ≤ dn(G,P) .

Lemma 5.3 Let A1, A2, A3, . . . , Al be finite simple graphs. Suppose that the graph A consists

of m1 disjoint copies of A1 and m2 disjoint copies of A2 . . . and ml disjoint copies of Al. That

is |V (A)| =
∑l

i=1mi|V (Ai)| . Then

dn(A,P) =
l∑

i=1

widn(Ai,P) ,

where wi =
mi|V (Ai)|

Pl
i=1 mi|V (Ai)|

.
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Proof. Let B ⊂ A be the closest subgraph in P. Then B ∩ Aj
i is the closest subgraph in P in

each copy of Ai. Hence

dn(A,P) =
|E(A\B)|

∑l
i=1mi|V (Ai)|

=

∑l
i=1miE(Ai\B)

∑l
i=1mi|V (Ai)|

=

=

∑l
i=1midn(Ai,P)|V (Ai)|∑l

i=1mi|V (Ai)|

Now let G = {Gn}
∞
n=1 ∈ Graphfd be a weakly convergent graph sequence and ǫ > 0. Consider

the graphs G′n in Theorem 1. Then by Lemma 5.2, |dn(Gn,P)− d(G
′
n,P)| < ǫ. Let snH be the

number of components in G′n isomorphic to H. By Lemma 5.3,

dn(G
′
n,P) =

∑

H,|H|≤K

snH |V (H)|dn(H,P)

|V (Gn)|
.

By Theorem 1,

lim
n→∞

snH |V (H)|

|V (Gn)|
= cH .

Therefore limn→∞ dn(G
′
n,P) =

∑
H,|H|≤K cHdn(H,P) . Hence if n,m are large enough then

|dn(Gn,P)− dn(Gm,P)| < 3ǫ. Consequently, limn→∞ dn(Gn,P) exists.

5.2 Testability versus continuity

Let ζ : Graphfd → R be a continuous graph parameter. Let ǫ > 0 be a real constant and

N(ζ, ǫ) > 0, r(ζ, ǫ) > 0, k(ζ, ǫ) > 0 be integer numbers. An (ǫ,N, r, k)-random sampling

is the following process. For a graph G ∈ Graphfd , |V (G)| ≥ N(ζ, ǫ) we randomly pick k(ζ, ǫ)

vertices of G. Then by examining the r(ζ, ǫ)-neighbourhood of the chosen vertices we obtain

an empirical distribution

Y :
⋃

s≤r

U s,d → R .

A (ζ, ǫ)-tester is an algorithm T which takes the empirical distribution Y as an input and

calculates the real number T (Y ). We say that ζ is testable if for any ǫ > 0 there exist

constants N(ζ, ǫ) > 0, r(ζ, ǫ) > 0, k(ζ, ǫ) > 0 and a (ζ, ǫ)-tester such that

Prob(|T (Y )− ζ(G)| > ǫ) < ǫ .

In other words, the tester estimates the value of ζ on G using a random sampling and guarantees

that the error shall be less than ǫ with probability 1− ǫ.

Theorem 3 Any continuous graph parameter ζ on Graphfd is testable.
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Proof. Since ζ is continuous on the compactification of Graphfd , for any ǫ > 0 there exist

constants r(ζ, ǫ) > 0 and δ(ǫ, ζ) > 0 such that

If |pG(α)− pG′(α)| < δ for all α ∈ U s,d, s ≤ r then |ζ(G)− ζ(G′)| < ǫ . (3)

Also, by the total boundedness of compact metric spaces, there exists a finite family of graphs

(depending on ζ and ǫ) {G1, G2, . . . , Gt} ⊂ Graphfd such that for any G ∈ Graphfd there exists

at least one Gk, 1 ≤ k ≤ t such that

|pGk
(α)− pG(α)| <

δ

2

for each α ∈ U s,d, s ≤ r. By the law of large numbers there exist constants N(ζ, ǫ) > 0 and

k(ζ, ǫ) > 0 such that if Y is the empirical distribution of an (ǫ,N, r, k)-random sampling then

the probability that there exists an α ∈ U s,d for some s ≤ r satisfying

|pG(α) − Y (α)| >
δ

2

is less than ǫ. Note that the sampling is taking place on the vertices of G and |V (G)| > N(ζ, ǫ).

The tester works as follows. First the sampler measures Y . Then the algorithm compares the

vector {Y (α)}α∈Us,d ,s≤r to a finite database containing the vectors

{pG1(α)}α∈Us,d ,s≤r, {pG2(α)}α∈Us,d ,s≤r, . . . , {pGt(α)}α∈Us,d ,s≤r .

Now with probability at least (1−ǫ) the algorithm finds 1 ≤ k ≤ t such that |pG(α)−pGk
(α)| ≤ δ

for any α ∈ U s,d, s ≤ r. Then the output T (Y ) shall be ζ(Gk). By (3) the probability that

|ζ(G)− T (Y )| > ǫ is less than ǫ.

6 Continuous parameters in Graph
f
d

6.1 Integrated density of states

Integrated density of states is a fundamental concept in mathematical physics. Let us explain,

how this notion is related to graph parameters. Recall that the Laplacian on the finite graphs

G, ∆G : l2(V (G))→ l2(V (G)) is a positive, self-adjoint operator defined by

∆G(f)(x) := deg(x)f(x)−
∑

(x,y)∈E(G)

f(y) .
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For a finite dimensional self-adjoint linear operator A : Rn → R
n , the normalised spectral

distribution of A is given by

NA(λ) :=
sA(λ)

n
,

where sA(λ) is the number of eigenvalues of A not greater than λ counted with multiplicities.

Therefore N∆G
(λ) is a graph parameter for every λ ≥ 0. Now consider the 3-dimensional lattice

graph Z
3. The finite cubes Cn are the graphs induced on the sets {−n,−n+ 1, . . . , n− 1, n}3.

It is known for decades that for any λ ≥ 0 limn→∞N∆Cn
(λ) exists and in fact the convergence

is uniform in λ. In other words, the integrated density of states exists in the uniform sense.

The discovery of quasicrystals led to the study of certain infinite graphs that are not periodic

as the lattice graph. What sort of graphs are we talking about ?

Let G be an infinite connected graph such that |Br(x)| ≤ f(r), for any x ∈ V (G). We say

that a sequence of finite induced subgraphs {Fn}
∞
n=1, ∪

∞
n=1Fn = G form a Følner-sequence if

limn→∞
|∂Fn|
|V (Fn)|

= 0 , where

∂Fn := {p ∈ V (G) | p ∈ V (Fn) and there exists q /∈ V (Fn) such that (p, q) ∈ E(G) }

Note that subexponential growth implies that for any x ∈ V (G), {Bn(x)}
∞
n=1 contains a Følner-

subsequence.

We say that an infinite graph G of subexponential growth has uniform patch frequency if

all of its Følner-subgraph sequences are weakly convergent. Obviously, the lattices Z
n are of

uniform patch frequency, but there are plenty of aperiodic UPF graphs as well, among them

the graph of a Penrose tiling, or other Delone-systems [20].

Using ergodic theory, Lenz and Stollmann proved the existence of the integrated density of

states in the uniform sense for such Delone-systems [20] and later we extended their results for

all UPF graphs of subexponential growth [14]. This last result can be interpreted the following

way : N∆G
(λ) are continuous graph parameters in Graphfd for any λ ≥ 1.

In this subsection we apply our Theorem 1 to extend the theorem in [14] for discrete

Schrödinger operators with random potentials (as a general reference see the lecture notes

of Kirsch [19]). Let X be a random variable taking finitely many real values {r1, r2, . . . , rm}.

Let

Prob(X = ri) = pi .

For the vertices p of G we consider independent random variables Xp with the same distribution
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as X. Let ΩX
G be the space of {r1, r2, . . . , rm}-valued functions on V (G) with the product

measure νG. That is

µG({ω | ω(x1) = ri1 , ω(x2) = ri2 , . . . , ω(xk) = rik}) =
k∏

j=1

pij

for any k-tuple (x1, x2, . . . , xk) ⊂ V (G). Thus for each ω ∈ ΩX
G we have a self-adjoint operator

∆ω
G : l2(V (G))→ l2(V (G)), given by

∆ω
G(f)(x) = ∆G(f)(x) + ω(x)f(x) .

This operator is a discrete Schrödinger operator with random potential. The following theorem

is the extension of the main theorem of [14] for such operators. Note that in the case of

Euclidean lattices a similar result was proved by Delyon and Souillard [12].

Theorem 4 Let f be a function of subexponential growth. Let G be an infinite connected

graph such that |Br(x)| ≤ f(r), for any x ∈ V (G) with UPF and let {Gn}
∞
n=1 be a Følner-

sequence. Then for almost all ω ∈ ΩX
G {N∆ω

Gn
}∞n=1 uniformly converges to an integrated density

of states NX
G that does not depend on ω That is the integrated density of state for such discrete

Schröedinger operator with random potential is non-random. (see also [21] and the references

therein)

Proof. Let ǫ > 0 and G′n ⊂ Gn be the spanning graphs as in Theorem 1. First we prove the

analog of Lemma 5.2.

Lemma 6.1 For any ω ∈ ΩX
G ,

|N∆ω
Gn

(λ)−N∆ω
G′
n

(λ)| ≤ ǫd ,

for any −∞ < λ <∞ , where d is the uniform bound on the degrees of {Gn}
∞
n=1.

Proof. Observe that

Rank(∆ω
Gn
−∆ω

G′
n
) < 2ǫ|E(Gn)| . (4)

Indeed, let 1p ∈ l2(V (Gn)) be the function, where 1p(q) = 0 if p 6= q and 1p(p) = 1. Then

(∆ω
Gn
−∆ω

G′
n
)(1p) = 0 if the edges incident to p are the same in Gn as in G′n. Therefore

dimRKer(∆ω
Gn
−∆ω

G′
n
) ≥ |V (Gn)| − 2ǫ|E(Gn)| .

Consequently (4) holds. Hence the lemma follows immediately from Lemma 3.5 [14]. Now we

prove the analog of Lemma 5.3.
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Lemma 6.2 Let the finite graph A be the disjoint union of m1 copies of A1, m2 copies of

A2,. . . , ml copies of Al as in Lemma 5.3. Then

N∆ω
A
(λ) =

l∑

i=1

wiN∆ω
Ai
(λ) ,

where wi =
mi|V (Ai)|

Pl
i=1 mi|V (Ai)|

.

Proof. Clearly, s∆ω
H
(λ) =

∑l
i=1mis∆ω

Ai
(λ) . Therefore

N∆ω
H
(λ) =

∑l
i=1mis∆ω

Ai
(λ)

∑l
i=1mi|V (Ai)|

=

l∑

i=1

wiN∆ω
Ai
(λ) .

For each ω ∈ ΩX
G we have a natural vertex-labeling of G (and of its subgraphs), where ω(p) is the

label of the vertex p. Clearly, if ω and ω′ coincide on the finite graph F then ∆ω
F = ∆ω′

F . Now let

H be a finite simple graph, |V (H)| ≤ K, where K is the constant in Theorem 1. Let {Hα}α∈IH

be the set of all vertex-labellings of H by {r1, r2, . . . , rm} up to labelled-isomorphisms. By the

law of large numbers, for almost all ω ∈ ΩX
G the number of labelled vertices in G′n belonging

to a vertex-labelled component labelled-isomorphic to Hα divided by |V (Gn)| converges to a

constant q(Hα). Notice that q(Hα) = cHp(Hα), where p(Hα) is the probability that aX-random

labelling of the vertices of H is labelled-isomorphic to Hα.

Hence by Lemma 6.2, for almost all ω ∈ ΩX
G the functions {N∆ω

G′
n

}∞n=1 converge uniformly

to a function Nǫ that does not depend on ω. Let W ⊂ ΩX
G be the set of elements such that

{N∆ω
G′
n

}∞n=1 converge uniformly to N 1
k
for any k ≥ 1. Clearly, νG(W ) = 1. The following lemma

finishes the proof of our Theorem.

Lemma 6.3 {N 1
k
}∞k=1 converge uniformly to a function NX

G . Also, for any ω ∈W {N∆ω
Gn
}∞n=1

converge uniformly to NX
G .

Proof. By Lemma 6.1 if ω ∈W then for large enough n

|N∆ω
Gn

(λ)−N 1
k
(λ)| ≤ 2d

1

k
for −∞ < λ <∞ .

Therefore {N 1
k
}∞k=1 form a Cauchy-sequence and consequently {N∆ω

Gn
}∞n=1 converge uniformly

to NX
G .
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6.2 Independence ratio, entropy and log-partitions

First recall the notion of some graph parameters associated to independent sets and matchings.

Let H be a finite graphs.

• Let I(H) be the maximal size of an independent subset in V (H). The number I(H)
|V (H)| is

called the independence ratio of H.

• Let M(H) be the maximal size of a matching in E(H). The number M(H)
|V (H)| is called the

matching ratio of H.

• Let πIH(λ) =
∑
{S⊂V (H), S is independent} λ

|S| be the partition function corresponding to

the system of independent subsets.

• Let πMH (λ) =
∑
{T⊂E(H), T is a matching} λ

|T | be the partition function corresponding to

the system of matchings.

Now we prove that all the graph parameters above are continuous in Graphfd . That is we show

the analog of the existence of the integrated density of states for the quantities above.

Theorem 5 Let G be an infinite connected graph such that |Br(x)| ≤ f(r), for any x ∈ V (G)

(where f is of subexponential growth) with UPF and {Gn}
∞
n=1 be a Følner-sequence. Then

(a) limn→∞
I(Gn)
|V (Gn)|

exists.

(b) limn→∞
M(Gn)
|V (Gn)|

exists.

(c) limn→∞
log πI

Gn
(λ)

|V (Gn)|
exists for all 0 < λ <∞ .

(d)limn→∞
log πM

Gn
(λ)

|V (Gn)|
exists for all 0 < λ <∞ .

Note that if λ = 1 then the limit value is the associated entropy.

Proof. We prove only (a) and (c), since the proofs of (b) and (d) are completely similar. Let

ǫ > 0 and G′n ⊂ Gn be the spanning graphs as in Theorem 1. Again, we prove the continuity

lemma.

Lemma 6.4 ∣∣∣∣
I(G′n)

|V (Gn)|
−

I(Gn)

|V (Gn)|

∣∣∣∣ < ǫd

∣∣∣∣∣
log πIG′

n
(λ)

|V (Gn)|
−

log πIGn
(λ)

|V (Gn)|

∣∣∣∣∣ < (log(max(1, λ)) + 2)ǫd .
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Proof. Clearly, I(G′n) ≥ I(Gn). Let A be a maximal independent subset of G′n. Then if we

delete the vertices from A that are incident to an edge of E(Gn)\E(G′n), the remaining set is

an independent subset of the graph Gn. Hence

∣∣∣∣
I(G′n)

|V (Gn)|
−

I(Gn)

|V (Gn)|

∣∣∣∣ < ǫd .

Now let S be an independent subset of the graph Gn. Denote by Q(S) the set of independent

subsets S′ of G′n such that S ⊆ S′ and if p ∈ S′\S then p is incident to an edge of E(Gn)\E(G′n) .

Observe that

∑

{S′⊂V (Gn) |S′ is independent inG′
n}

λ|S
′| ≤

∑

{S⊂V (Gn) |S is independent inGn}

∑

S′∈Q(S)

λ|S
′| ≤

≤
∑

{S⊂V (Gn) |S is independent in Gn}

λ|S|max(1, λ)ǫd|V (G)|2ǫd|V (G)| .

That is

log πIG′
n
(λ) ≤ log πIGn

(λ) + (log(max(1, λ)) + 2)ǫd|V (Gn)| .

Lemma 6.5 Let A1, A2, A3, . . . , Al be finite simple graphs. Suppose that the graph H consists

of m1 disjoint copies of A1 and m2 disjoint copies of A2, . . . and ml disjoint copies of Al. Then

I(H)

|V (H)|
=

l∑

i=1

wi
I(Ai)

|V (Ai)|
(5)

log πIH(λ)

|V (H)|
=

l∑

i=1

wi

log πIAi
(λ)

|V (Ai)|
, (6)

where wi =
mi|V (Ai)|

Pk
i=1 mi|V (Ai)|

.

Proof. Note that I(H) =
∑l

i=1miI(Ai) and πIH(λ) =
∏l

i=1(π
I
Ai
)mi . That is log(πIH(λ)) =

∑l
i=1mi log(π

I
Ai
) . Now we proceed as in Lemma 6.1 .

By the two preceding lemmas Theorem 5 easily follows.

Remark: In Theorem 3. [5] the authors proved that limn→∞
I(Gn)
|V (Gn)|

exists if {Gn}
∞
n=1 is a

r-regular large girth sequence, where 2 ≤ r ≤ 5.
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