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A SHARP INVERSE LITTLEWOOD-OFFORD
THEOREM

TERENCE TAO AND VAN VU

ABSTRACT. Let 1;,,7=1,...,n be iid Bernoulli random variables.
Given a multiset v of n numbers vy, ..., v,, the concentration prob-
ability P1(v) of v is defined as Py(v) :=sup, P(v1in1 + ... 0n1p =
x). A classical result of Littlewood-Offord and Erdés from the
1940s asserts that if the v; are non-zero, then this probability is
at most O(n~1/2). Since then, many researchers obtained better
bounds by assuming various restrictions on v.

In this paper, we give an asymptotically optimal characteri-
zation for all multisets v having large concentration probability.
This allow us to strengthen or recover several previous results in a
straightforward manner.

1. INTRODUCTION

The purpose of this paper is to study the Littlewood-Offord and inverse
Littlewood-Offord problems regarding concentration of random walks
in torsion-free abelian groups. We recall some notation from [19].

Definition 1.1 (Concentration probabilities). Let G = (G, +) be an
additive group (e.g. the integers Z, the complex numbers C, or a
vector space R™). Let v = (vq,...,v,) be a multiset of n elements
of G (allowing repetitions). For any 0 < u < 1, we define the lazy
random walk S*(v) with steps v and density p to be the G-valued
random variable

SHW) = o+ o

where the 7!"’s are iid copies of the (lazy coin flip) random variable
n* which equals 0 with probability 1 — g and 41 with probability /2
each. We define the concentration probability P, (v) to be the quantity

P,(v):= réleaé(P(S“(v) =a). (1)
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Remark 1.2. We are interested in the regime when 0 < p < 1 is fixed
and n is large. The most interesting case is perhaps when p = 1. In this
case 7 is the Bernoulli random variable (fair coin flip), and P;(v) is the
maximum multiplicity among the 2" signed sums +v; +...+wv,, divided
by 2". Such probabilities appear in many situations in combinatorics
and the theory of random structures, for instance in understanding the
singularity probability of discrete random matrices (see e.g. [6], [16],
17, [, [200).

We will assume throughout this paper that G is torsion-free, thus nx #
0 whenever = € G is non-zero and n is a non-zero integer. In this case
we can usually reduce to the model case G = Z by means of Freiman
isomorphisms (see |21, Lemma 5.25]).

Broadly speaking, we expect P,(v) to be large if and only if v has
significant additive structure. To explore this phenomenon, we ask the
following two general (and closely related) questions:

e (Forward Littlewood-Offord problem) Given additive structural
hypotheses on vy, ..., v,, what bounds can one give for P,(v)?
o (Inverse Littlewood-Offord problem) Given bounds on P,(v),
what can one say about the additive structure of the vy, ..., v,”

Let us now recall some previous results on these problems; further
discussion may be found in [2I, Chapter 5]. For simplicity we take
= 1. With no assumptions on v = (vy,...,v,), we easily obtain the
inequalities

27" S Pl(V) S 1

with the upper bound being attained precisely when all the v; are zero,
and the lower bound attained precisely when the the v; are dissociated
(which means that all the 2" partial sums ), , v; with A C {1,...,n}
are distinct). These two cases represent extreme additive structure and
extreme lack of additive structure respectively.

Throughout this paper we adopt the following asymptotic notation:

Definition 1.3 (Asymptotic notation). The asymptotic notation X =
oY), X <VY,Y =Q(X), or Y > X denotes the bound X < CY
for all n > C and some absolute constant C; we also use X = O(Y)
for X <Y <« X. Subscripting such as O4(Y') means that the implied
constants C' in the asymptotic notation are allowed to depend on d.

Littlewood and Offord [10] and then Erdés [1] were able to improve the
upper bound assuming that some of the v; were non-zero. In particular,
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from the results in [I] one obtains the inequality
Py(v) <n /2 (2)

if all of the v; are non-zero (Littlewood and Offord obtained the slightly
weaker bound P (v) < n~"2?logn). This bound is sharp: ifv; = ... =
v,, one easily verifies that P;(v) > n~'/2 (and in fact this example
gives the precise maximum value of Py(v).

The above result is phrased as a forward Littlewood-Offord result, but
can be easily rephrased as an inverse theorem:

Theorem 1.4 (Erdés’ inverse Littlewood-Offord theorem). Let v =
(v1,...,0,) be an n-tuple in a torsion-free additive group G. Suppose
that P1(v) > k=Y2 for some k > 1. Then all but O(k) of the vy, ..., v,

are zero.

One can improve the upper bounds further by excluding the above
counter-example. Indeed, from the work of Erdés and Moser [2] and
then Sarkézy and Szemerédi [13], the bound

Py(v) < n 2 (3)

was established if all the v; were distinct (the earlier paper [2] estab-
lishes the slightly weaker bound P;(v) < n™%2logn). Again, this
result is sharp, since if one takes vq,...,v, to be a proper arithmetic
progression, one easily verifies that P;(v) > n=%2. Later, Stanley
[14], using algebraic methods, gave a very explicit bound for the opti-
mal value of Py(v).

The higher dimensional version of the problem, in which G is a vector
space R™, has also attracted attention. Without the assumption that
the v;’s are different, the best result was obtained by Frankl and Fiiredi
in [3], following earlier results by Katona [7], Kleitman [§], Griggs, La-
garias, Odlyzko and Shearer [4] and many others. However, the tech-
niques used in these papers did not seem strong enough to recover (3]).
On the other hand, Haldsz [5], using harmonic analysis methods, man-
aged to generalise ([B]), proving even stronger bounds upon forbidding
more additive correlations among the v;’s.

Theorem 1.5 (Halasz inequality). [B], [21, Exercise 7.2.8] Let v =
(v1,...,v,) be an n-tuple in a torsion-free additive group G. Let | > 1
be an integer and let 0 < pu < 1. Let R; be the number of solutions of
the equation

€1V, + -+ €y, =0
where €; € {—1,1} and iy,... iy are (not necessarily different) ele-
ments of {1,2,...,n}. Then

P,(v) <, n 272 R,.
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It is easy to see that the [ = 1 case of Theorem implies the bound

@).

1.6. Main results. Theorem [ states, roughly speaking, that if P,,(v)
is large, then there is a large amount of additive structure (in the form
of short additive relations) between the v;. Now we consider a slightly
different type of additive structure, namely containment in a (symmet-
ric) generalized arithmetic progression (or GAP); we recall this concept
in Section 21 It is not hard to show that if all the v; are contained in
a GAP of bounded rank and controlled size, then the concentration
probability P,(v) is large. More precisely, one has

Proposition 1.7 (Forward Littlewood-Offord theorem). Let Q) be a
symmetric GAP in an additive group G with rank d, and let v =
(v1,...,v,) be such that vi,...,v, € Q. Let 0 < pu < 1. Then we
have

P,(v) >a |Quml ™t >a (1+un)~ Q|
where the dilate Q; of Q is defined in Section [2.

We prove this easy result in Section [2} it reflects the intuition that a
lazy random walk with steps in () should mostly take values in the
dilate Qo(zm). Note that this result incorporates the examples used
to demonstrate that (2)) and (3] are sharp. See also [20, Theorem 6.6]
for a more complicated result in a similar spirit.

We now turn to the question of whether a converse to Proposition [L.1]
exists. In [19], the authors showed

Theorem 1.8 (Weak Inverse Theorem). Let A,e >0 and 0 < p <1,
and let v = (vy,...,v,) be an n-tuple in a torsion-free additive group
G be such that

P,(v) >n"
Then there exists a proper symmetric GAP Q of rank d for some d =
Oac(1), of volume On,c(nP) for some B = O4.(1), which contains
all but O ,-(n'~°) elements of v (counting multiplicity).

The reason we call Theorem a weak inverse theorem because the
dependence of B on A is not optimal (B is roughly 2A?). The first
main result of this paper is to obtain a sharper converse to Proposition
[L7 in which B is taken to be A — % +e:

Theorem 1.9 (Strong Inverse Theorem). Let A,e > 0, and let v =
(v1,...,0,) be an n-tuple in a torsion-free additive group G be such
that

P,(v) >n" (4)
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Then there exists a proper symmetric GAP Q of rank d < 2A of volume
OA%g(nA_%jLOA(a)), which contains all but O ,.(n'"¢) elements of v
(counting multiplicity).

Comparing this with Proposition [.7] we see that except for epsilons,
the exponent A — £ + O4(¢) here cannot be improved.

Theorem [L.9will be deduced as the special case of the following stronger
result.

Theorem 1.10 (General Strong Inverse Theorem). Let d > 1 be an
integer and let 0 < e,u < 1 be constants. Then there is a constant
Co = Co(d, e, ) such that the following holds for all sufficiently large
n and k with 1 < k < +/n. Suppose that v = (vq,...,v,) is an n-tuple
in a torsion-free additive group G that satisfies

P,(v) > Cok . (5)

Then there exists a proper symmetric GAP @ of rank at most d — 1
and volume

vol(Q) < P (v) A (6)

such that Q1 1, contains all but at most Oq, -(k*log k) of the vy, ..., vy.
Furthermore, there is a positive integer C' = C(d, u,€) such that the

steps of Q lie in {v,/C,...,v,/C}.
Let us see how this theorem implies Theorem

Proof of Theorem assuming Theorem [L.10. Let A, u,e,v,n,G be as
in Theorem By shrinking ¢ if necessary we may assume that ¢ is
small depending on A. We may assume that n is large depending on
A, p, € as the claim is trivial otherwise. Let d be the first integer larger
than 2A, and let Cy be as in Theorem [LI0. For ¢ small and n large,
we see from (@) that (B) holds for k := n'/?2~¢. By Theorem [[I0, we
obtain a proper symmetric GAP @ of rank r at most d — 1 and volume
O(n”*%) such that Q5. contains all but O(n'~¢) of the vy, ..., v,. Ob-
serve that any dimension of @) that is less than k£ does not contribute
anything to @k, so by deleting these steps (and reducing the rank r
of @) we may assume that all dimensions of () are at least as large as k.
Then @)y, is a proper symmetric GAP of rank at most 24 and volume
O4,e(k77Q) = O e (nA77/2404)) "and the claim follows. O

1.11. Applications. We now give some applications of Theorem
and Theorem [LTOL We first observe that these theorems can recover
the classical bounds (), ([8]) except for epsilon losses:
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Proposition 1.12. Let v = (vy,...,v,) be an n-tuple in a torsion-free
additive group G, and let € >0 and 0 < p < 1.

(i) If all the v; are non-zero, then P, (v) <, . n-1/2+e
(ii) If all the v; are distinct, then P, (v) <. n~%/**=.

Proof. We may assume that n is large compared to pu, e, as the claim
is trivial otherwise.

We first prove (i). Suppose for contradiction that P,(v) > n~/2%e,
Applying Theorem with A := 1/2 — ¢ we see that there exists
a symmetric GAP @ of rank at most 1 — 2¢ which contains all but
O,.(n'7¢) of the vy, ..., v,. But rank has to be an integer, thus @ has
rank zero and is therefore just {0}. Thus at least one of the v; is zero,
a contradiction.

Now we prove (ii). Suppose for contradiction that P, (v) > n=%/2*,
Applying Theorem with A := 3/2 — ¢ (and € replaced by a smaller
quantity ¢’ depending only on €) we see that there exists a symmetric
GAP @ of rank d at most 3 — 2¢ and volume O, .(n2~%?=¢") which

contains all but Omg(nlfel) of the vy, ..., v,. Since the v; are all distinct,
this forces |@| > n, which forces d = 0, which forces more than one of
the v; to be zero, a contradiction. O

In a similar spirit, we obtain the following variant of Theorem [L.5]
which essentially asserts that equality in Theorem is only attained
when the v; lie in a symmetric arithmetic progression (i.e. a symmetric

rank 1 GAP):

Proposition 1.13. Let n,v,G, u,l, Ry be as in Theorem [L.3, and let
0 < d,e < 1/2. Then one of the following statements hold:

o P,(V) < pes n~2-12-0p,.
o All but at most n'=% of the v; lie in an symmetric arithmetic
progression of length at most n o+t R1.

Note that by combining this proposition with Proposition [L7 and tak-
ing 0 = ¢ we obtain Theorem up to epsilon losses.

Proof. By shrinking ¢ if necessary, we may assume ¢ is small depending
on [,9. We may assume that n is large depending on [, u, €, 9, since the
claim is trivial otherwise. Finally, we may assume that

PM(V) > n—2l—1/2—6Rl

since we are clearly done otherwise.
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Applying Theorem [LI0 with & := n'/?>~¢ and d = O;(1) we obtain a
proper symmetric GAP @ of rank » = O;(1) and volume

VOI(Q) <<u,l,575 n21+1/2+6+5Rl—1

such that Q1 contains all but at most n'~¢ of the v;. Arguing as in
the proof of Theorem [LL9] we may assume that all dimensions of () are
at least k.

If 7 <1 then we are done, as ()1 is an arithmetic progression having
the right length (one can adjust the constant ). Now assume for
contradiction that » > 2. Then (if € is small enough) we conclude

Q1| <1 k72 vol(Q) < n® R

By relabeling we may assume that the vy,..., v,/ (say) lie in Q.
Consider the ©;(n') sums formed by taking [ of these vy, ... s Vln/2);
these lie in @k, which has cardinality O;(n*°R;'). Applying the
Cauchy-Schwarz inequality, we conclude that the number of solutions
to

Ui1+---+vn:Uz‘l+1+---+“m

with i1,...,iy € {1,...,[n/2]}, is > n?/(n?<R') = n°R;.. On
the other hand, this number is clearly bounded above by R;, giving the
required contradiction. O

The rest of the paper is organized as follows. In the next two sections,
we recall and prove several lemmas. The proof of Theorem [L.T0 will be
presented in the last two sections of the paper.

2. GENERALIZED ARITHMETIC PROGRESSIONS

In this section we recall the concept of a generalized arithmetic pro-
gression (GAP) and their basic properties. A detailed treatment of this
topic can be found in [21] Chapter 3]. We will restrict our attention to
symmetric GAPs.

Definition 2.1 (GAPs). Let G be an additive group. A symmetric
generalized arithmetic progression in G, or symmetric GAP for short,
is a quadruplet Q = (@, N,v,d), where the rank rank(Q) = d is a
non-negative integer, the dimensions N = (Ny,..., Ny) are a d-tuple
of positive reals, the steps v = (vy,...,v4) are a d-tuple of elements of

G, and @ C G is the set

d
Q = {anvl tn; € [—NZ, NZ]VZ = 1, .. .,d},
1=1
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where [a,b] denotes the set of integers between a and b inclusive. We
shall often abuse notation and write @) for Q. For any t > 0, we
define the dilate Q; of Q to be the GAP Q; := (Qy,tN,v,d) formed
by dilating all the dimensions by ¢. We say that Q is proper if all the
elements njvy + . .. + ngug for n; € [—N;, N;] are distinct. We say that
Q is t-proper if t() is proper.

We define the volume of Q to be vol(Q) := [, (2| N;| +1). Note that
|Q] < vol(Q), with equality if and only if Q is proper.

If @ is a GAP of rank d, a simple covering argument (see [21, Lemma
3.10]) shows the doubling bounds

Qi] <a (1+)%]Q) (7)
for all t > 0.

Proof of Proposition[I1.7]. Let wy, ..., wq be the steps of @, let Ny, ..., Ny

be the dimensions, and let ¢ : Z? — G be the homomorphism ¢(ay, . . ., ag) =
aiwy + ...+ aqwg. By hypothesis, we can write v; = E;l:l
some integers —N; < ¢;; < N;. Then we have S,(v) = ¢(z), where
r = (x1,...,24) € Z¢ is the random variable whose coefficients are

given by
Lj = Z NiCij-
i=1

A simple computation shows that each z; has mean zero and variance
O(N;pn), and so

CijWj for

d
E) |z;[’/N; <q pn.

j=1
By Markov’s inequality, we thus conclude that

d
> |z /N} <a pn

J=1

with probability at least 1/2 (say). This implies that S, (v) € Qo(,/mm)
with probability at least 1/2, and so by the pigeonhole principle

Pu(v)| > 1/1Qo(ymm)|
and the claim follows from ([7). U

One can easily pass from GAPs to proper GAPs by the following
lemma:
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Lemma 2.2 (Embedding Lemma). [I8] Let Q be a symmetric GAP
of rank d in a torsion-free additive group G, and let t be a positive
constant. Then there is a t-proper symmetric GAP Q" of rank at most

d such that Q C Q" C Qo,,q) and |Q'| <a. |Q|. If Q was not already
t-proper, one can take Q' to have rank at most d — 1.

Proof. See [18, Theorem 1.11]. O

Recall from the homomorphism theorems that if H, K are two finite
subgroups of an abelian group G, then |H||K| = |H + K||H N K]|.
We now establish the analogous conclusion for GAPs (cf. [21], Exercise
2.4.7)):

Lemma 2.3 (Intersection lemma). Let P and Q be symmetric GAPs
i an additive group G of rank at most d, then

[PNQJQ + P| = Ba(|P||Q)- (8)

Here of course Q@+ P :={q+p:q € Q,p € P} denotes the sumset of
Q and P.

Proof. We recall the Ruzsa triangle inequality
|[A—Cl|B| <|A-B||B-C|

for finite non-empty sets A, B,C C G (see e.g. [21, Lemma 2.6]); this
follows from the fact that any element a — ¢ with a € A and ¢ € C has
at least b representations of the form a — ¢ = (a — b) + (b — ¢) with
b € B. Applying this with A = P,C' = @Q, B = PN we obtain

[P =QIIPNQ|I <[P —(PNQII(PNQ)— Q| <[2P]]2Q)]
where we use the symmetry of P, Q). But from ([7) we have |2P| <, | P|,
12Q| <4 |Q|, which gives the upper bound in (8.

Now we turn to the lower bound. By reducing d if necessary, we can

assume that the dimensions of both P and @ are divisible by two, thus

P =Py —Pand Q= Q12 — Q2. Now we recall the inequality
[Al|B] < [(A—A)N (B - B)||A+ B

for finite non-empty A, B C G (cf. [21, Corollary 2.10]), which follows

by combining the identity

AlIBI = [{(a.Dla € Abe BY = Y [{(ab)lac Abe B ath=2}]

z€A+B
with the inequality

{(a,b)lac A,be Bja+b=ua}| <|(A—A)N(B—B)|

for all x € G (which follows from the observation that if a,a’ € A and
b,/ € B are such that a +b = a +V = x, then a —a’ = b — V' lies
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in (A— A)N (B — B)). Applying this inequality with A = P/, and
B = Q12 and using (), one obtains the claim. O

3. ARITHMETIC ON WORDS

In this section, we recall some tools developed earlier in [19], which
were used to prove Theorem and will be useful here as well.

For our purpose, it is convenient to think of v = (vq,...,v,) as a word,
obtained by concatenating the v;:

V =0V10V2...0Uy,.

This will allow us to perform several operations such as concatenat-
ing, truncating and repeating. For instance, if v = v;...v, and
W = Wy ... Wy, then

P,(vw) = max (Zl ntv; + Zl 'r]ﬁﬂwj = a)
= j=

where 7,1 < k < n +m are i.i.d copies of n*. Furthermore, we use
vl* to denote the concatenation of k copies of v.

We will need to generalize the concentration probabilities P, (v) as
follows. For finite non-empty set () C G, define

P.(v;Q) = SlelgP(S“(V) =a+q—4¢) (9)

where ¢, ¢’ are independently chosen uniformly at random from (. Note
that P,(v; Q) = P,(v) if @ is a singleton set.

Since P(a + ¢ — ¢ = x) < 1/|Q)| for any fixed a,¢’, x, a simple condi-
tioning argument reveals the crude bound

P.(v;Q) < 1/1Q|. (10)

We have the following basic properties of the P,(v) and P,(v; Q):

Lemma 3.1. Let v = vy...v, be a word vy,...,v, in a torsion-free
additive group G, and let Q) C G be a finite non-empty set. Then the
following properties hold.

(i) Pu(v; Q) is invariant under permutations of v.
(ii) For any words v,w

PM(VWQ Q) < Pu(V§ Q).
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(iii) For any 0 < pu <1, any 0 < p’ < p/4, and any word v,
P,(viQ) <Pu(v;Q).

(iv) For any number 0 < pu < 1/2 and any word v,

P,(v;Q) <P, (v Q).

(v) For any number 0 < u < 1/2 and any words v,wy, ..., W,, we
have

m 1/m
P,(vwi...w,;Q) < (H Pu(vwgm}; Q)) .
j=1

(vi) For any number 0 < p < 1/2 and any words v,wy,..., Wy,
there is an index 1 < j < m such that

P,(vwi...w,,; Q) < PM(VWE'm]§ Q).

Proof. When G = Z and @ is a singleton, this is [19, Lemma 5.1].
When G = Z and () is not a singleton, the claim can be established by
repeating the proof of [19, Lemma 5.1], using the Fourier identity

P(S*(v)=a+q—q) = /0 e(—at)|E(e(qt))|2H(l—u+,u00527rvit) dt

in place of

P(S*(v) =a) = /o e(—at) H(l — p+ pcos 2mu;t) dt;

i=1

we omit the details. (Here and later, e(x) denotes exp(2my/—1z).) Fi-
nally, the generalization to arbitrary torsion-free G' can be accomplished
by using Freiman isomorphisms (see [21, Lemma 5.25]). O

Note that for fixed 0 < p < 1, a random walk S*(v*’]) is roughly
uniformly distributed on the progression [—k, kv := {jv:j € Z, —k <
j < k}, thanks to the central limit theorem. (Here v/*"] is the word v
repeated k% times.) The following lemma can be viewed as a formal-
ization of this intuition.

Proposition 3.2 (Comparison of random walks). Let 0 < p < 1/2,
let v.= (vy,...,v,) be a tuple in a torsion-free additive group G, let
vg € G, and let k > 1. Let Q be a symmetric GAP in Z of rank d.
Then

PM(VU([]k I Q) <ua Pu(v; Q + [k, k]vy).
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Proof. Fix p, d; we allow all implied constants to depend on these quan-
tities. By definition,

P.(voy Q) = P(S*(v) + Xvo = ¢ — ¢)

where ¢, ¢’ are independent random variables uniformly distributed in
2

Q, and X := Ele ¢f. A direct computation using Stirling’s formula

shows that

P(X = m) < k" exp(—Q(|/ml/k))
for all m € Z, thus

P.(vol Q) < k1Y exp(—Q(|ml/k)P(S*(v) + mug = q — ¢).

meZ

This implies that

P,(vol Q) < k1> exp(—Q(|ml/k)P(S"(v)+mvy = g—q'+jvo—j'v0)
meZ

where j, j" are drawn uniformly at random from [—k, k], independently
of each other and of ¢, ¢’. It therefore suffices to show that

P(S*(v) =a+q—¢ + jvo— jvo) K Pu(v:Q + [k, k]u)
for all a € G.

The random variable g + jvg is supported in Q + [—k, k]vg. If it were
distributed uniformly in this set, we would be done. It is not quite
uniform, nevertheless we can compare it to the uniform distribution as
follows. Given any = € Q + [—k, k]vg, we have

1
|QI[=F, k]vol
Since |A] < |A — A|, we see that

QN (z = [k, KJwo)| < [(Q — Q) N ([—2k, 2K]uvo)|
and so by Lemma 2.3 and ([7)

P(q+jvo =) = QN (z — [k, K]vo)|.

QI|[=F, k]|
|Q N (l‘ - [—k’,k’]’l}oﬂ < |Q + [—k,k]’Uo‘
and thus
o 1
P+ I =) < o T Hul

Thus the probability distribution of g + jvy is majorized by a constant
multiple of the uniform distribution on @ + [—k, k]vg, and the claim
follows. O
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4. THE ALGORITHM

We begin the proof of Theorem [LI0. By Lemma B.I] we may assume
that u < 1/2. Fix d,e, p,n, k,v,G as in that theorem; we assume that
n, k are sufficiently large depending on d, e, u. We let K > 1 be a large
number depending on d, €, u, and then let Cjy be an even larger number
depending on d, ¢, i, K. We assume that (Bl holds.

In this section, we describe an algorithm which takes v as input and
produces, as output, a symmetric GAP @ as claimed by Theorem [L.T0l
A key concept is that of a bad element with respect to a symmetric
GAP.

Definition 4.1 (Bad element). Let K > 1, z € G, and let @ be a
symmetric GAP in G. We say that z is bad with respect to a symmetric
GAP Q@ if

and good otherwise.

We will also need the generalized concentration probabilities P,(v; Q)
defined in ([@). We now consider the following algorithm that generates
words v and symmetric GAPs Q; for various i = 0, 1,2, .. .:

Step 0. Set v' = v, Q, := {0}.

Step i + 1. Count the number of elements of v¢ which are bad with
respect to Q;.

Case 1. If this number is less than k2 then STOP.

Case 2. Tf this number is at least k%, we can assume (without loss
of generality) that the last k* coordinates of v’ are bad. Let vi*! be
the vector obtained from v* by truncating these bad coordinates. By
Lemma [B.Jl(vi), there is some value vy among the bad coordinates such
that

PM(VHlU([)m% Qi) > PL(v Q).
Set r; := rank(Q;) and Q,, = Q; + [—k, k]vy, thus Q). is a GAP
with rank r; + 1. If Q7 is proper, then set Q;11 := Q. If it is not
proper, then use Lemma 2.2 to embed it into a proper symmetric GAP

of rank at most r; and volume O, (|@Q7,]);. Call this proper GAP Q; 1.
CONTINUE to Step 7 + 2.

Notice that by the algorithm the Q¢ are symmetric GAPs at every step.
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5. ANALYSIS OF THE ALGORITHM

For each i that occurs in the algorithm, we define the rank
r; := rank(Q;)
and the potential A
Ey = [Qi|P (v Q).
Initially we have
ro=0; Fy=P,(v)>Cok™ |Qo|=1. (11)

We now record how r;, F;, and @); evolve with the algorithm. We say
that Step 7 + 1 is proper if Q},, is proper.

Lemma 5.1. Let Step i + 1 be a step that occurs in the algorithm.

(i) We have riyy = r; + 1 if Step i + 1 is proper, and ripq1 < 1y
otherwise.
(ii) We have |Qiy1| > K|Q;|. If Step i+1 is proper, we can improve
(ili) We have Fipq >, , KF;. If Step i+1 is proper, we can improve
this to Fiyq >, kE;.

Proof. The first two claims are clear from construction. To prove the
third claim, we observe from Proposition that

PM(VHIQ Qit1) i Pu(vi§ Qi); (12)
the claim (iii) now follows from (ii). O

Corollary 5.2. The algorithm has at most d — 1 proper steps, and
terminates in O(dlogy k) steps.

Proof. Suppose for contradiction that there were at least d proper steps.
Let 1 <4y < ... < i4 be the first d proper steps. By Lemma B.1J(i)
and (III), the ranks r; are bounded by d for all ¢ < iy. From Lemma
B.I)iii), we have F;, >, k%Fy if K is large enough; on the other hand,
from (I0) we have F;, < 1. This contradicts (L) if Cy is large enough.

Now that there are at most d — 1 proper steps, r; < d — 1 for all 7. By
Lemma [5.1((iii), we thus have Fj,; > /K F; for all i if K is large enough.
On the other hand, from ([I0]) we have F; < 1 for all i. Applying
(1), we conclude that the algorithm terminates in O(dlogy k) steps
as claimed. U

Let v and Q7 be the vector and GAP at the stopping time T =
O(dlogy k).
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Lemma 5.3. Q7 has rank at most d — 1 and

1Qr| < ke/zPu(V)_l

Proof. The rank bound follows from (1), Lemma [5.1)(i) and Corollary
b2

As proved above, Q7 has rank at most d — 1. We next prove that it
has small cardinality. Iterating (I2)) starting from (1), we see that

PM(VTQ QT) > Qd,u(l)TPu(V)'
Combining this with (I0) and the bound 7" = O(dlogk k) we conclude

|Qr| < exp(Oqyu(logy k)P ,(v)™"

and the claim follows by taking K sufficiently large. U

By construction, all but O(dk?*log k) = O(k*logk) of the vy, ..., v,
are good relative to Q7. To exploit this we use

Lemma 5.4. Suppose that x € G is good relative to a symmetric GAP
Q of rank r. Then there exists a proper symmetric GAP Q' of rank at
most r containing Q and volume |Q'| <, [Q| such that Cx € Qp )y,
where C' > 1 is an integer depending only on K and r.

Proof. The |Q||[—k, k]| sums g+ jx with ¢ € Q and j € [k, k] lie in the
set |@Q + [—k, k]z|, which has cardinality at most K|Q| by hypothesis.
By Cauchy-Schwarz, we conclude that there are > |Q|k* quadruplets
(¢.¢,7.7) € Q x Q x [—k, k] x [k, k] such that ¢ + jz = ¢ + j'z. By
the pigeonhole principle, we conclude that the set A := {j € [—2k, 2k] :
jr € Q — Q} has cardinality |A| >k k. Applying a result of Sarkézy
[12] (see also [9], [15], or [21], Chapter 12]) we conclude that there exists
a positive integer K; = Og(1) such that the iterated sumset K;A
contains an arithmetic progression of length | = O (k) and positive
integer step a = Ok(1). We conclude that [—[, l]ax € Quk, .

At present, [, a, and K, are all dependent on x. But K, a are bounded
by Ok (1), and [ is bounded from below by Qg (k). Thus, by taking
the ged over all possible values of a, one may assume that [, a, K; are
independent of x.

By Lemma 221 we can place QQuk, inside a 2-proper symmetric GAP
@’ of rank at most r and volume Ok ,.(|Q|), thus [—[,lJax € @)'. Write
Ni, ..., N/, for the dimensions of ()’. Since ()" is 2-proper, the obvious
map ¢ : [—N],N{] x ... x [-N/,N/] — Q' is a Freiman isomorphism
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of order 2 (see [21], Section 5.3]), and ¢~'([—1,lJaz) = [—I,lJ¢ " (ax) is
also an arithmetic progression. From this we see that

¢71(al‘) S [_N{/la N{/l] XX [_N;/lani/l]
and thus

ar € Q] /i
and the claim follows. O

Through the proof of this lemma, we see that all but at most O(k?log k)
of the v; are such that Cv; € (Qr)c/k- By Lemma 2.2 we may place
(Qr)c inside a proper symmetric GAP @ of rank at most d — 1 and
volume

|Ql < k°P,(v) ™
Since (Qr)c C @', we have (Qr)c/x C Q1/k, and Theorem [L.10 follows.

Acknowledgement. We would like to thank the referees for their careful
reading and useful remarks.

REFERENCES

[1] P. Erd8s, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51
(1945), 898-902.
[2] P. Erd8s, L. Moser, Elementary Problems and Solutions: Solutions: E736.
Amer. Math. Monthly 54 (1947), no. 4, 229-230.
[3] P. Frankl and Z. Fiiredi, Solution of the Littlewood-Offord problem in high
dimensions. Ann. of Math. (2) 128 (1988), no. 2, 259-270.
[4] J. Griggs, J. Lagarias, A. Odlyzko and J. Shearer, On the tightest packing of
sums of vectors, European J. Combin. 4 (1983), no. 3, 231-236.
[5] G. Haldsz, Estimates for the concentration function of combinatorial number
theory and probability, Period. Math. Hungar. 8 (1977), no. 3-4, 197-211.
[6] J.Kahn, J. Komlés, E. Szemerédi, On the probability that a random 41 matrix
is singular, J. Amer. Math. Soc. 8 (1995), 223-240.
[7] G.Katona, On a conjecture of Erdés and a stronger form of Sperner’s theorem.
Studia Sci. Math. Hungar 1 1966 59-63.
[8] D. Kleitman, On a lemma of Littlewood and Offord on the distributions of
linear combinations of vectors, Advances in Math. 5 1970 155-157 (1970).
[9] V. Lev, Optimal representations by sumsets and subset sums, J. Number The-
ory 62 (1997), 127-143.
[10] J. E. Littlewood and A. C. Offord, On the number of real roots of a random
algebraic equation. ITI. Rec. Math. [Mat. Sbornik] N.S. 12 , (1943). 277-286.
[11] M. Rudelson and R. Vershynin, The Littlewood-Offord problem and the con-
dition number of random matrices, Advances in Mathematics 218 (2008), no
2, 600-633.
[12] A. Sarkdzy, Finite addition theorems I, J. Num. Thy. 32 (1989), 114-130.
[13] A. Sérkézy and E. Szemerédi, Uber ein Problem von Erdés und Moser, Acta
Arithmetica, 11 (1965) 205-208.
[14] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property,
SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168-184.



SHARP INVERSE LITTLEWOOD-OFFORD 17

[15] E. Szemerédi, V. Vu, Long arithmetic progressions in sumsets: thresholds and
bounds, J. Amer. Math. Soc. 19 (2006), 119-169.

[16] T. Tao and V. Vu, On random (-1,1) matrices: Singularity and Determinant,
Random Structures and Algorithms 28 (2006), no 1, 1-23.

[17] T. Tao and V. Vu, On the singularity probability of random Bernoulli matrices,
Journal of the A. M. S, 20 (2007), 603-673.

[18] T. Tao and V. Vu, John type theorems for generalized arithmetic prgressions
and iterated sumsets, Advances in Mathematics 219 (2008), no 2, 428-449.

[19] T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition num-
ber of random matrices, Annals of Mathematics (2) 169 (2009) no 2, 595-632.

[20] T. Tao and V. Vu, Random matrices: The Circular Law, Communication in
Contemporary Mathematics 10 (2008), 261-307.

[21] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.

DEPARTMENT OF MATHEMATICS, UCLA, Los ANGELES CA 90095-1555

FE-mail address: tao@math.ucla.edu

DEPARTMENT OF MATHEMATICS, RUTGERS, P1scaTawAy, NJ 08854

E-mail address: vanvu@math.rutgers.edu-



	1. Introduction
	1.6. Main results
	1.11. Applications

	2. Generalized arithmetic progressions
	3. Arithmetic on words
	4. The algorithm
	5. Analysis of the algorithm
	References

