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CONVERGENCE TO EQUILIBRIUM OF BIASED PLANE

PARTITIONS

PIETRO CAPUTO, FABIO MARTINELLI, AND FABIO LUCIO TONINELLI

Abstract. We study a single-flip dynamics for the monotone surface in (2 + 1) di-
mensions obtained from a boxed plane partition. The surface is analyzed as a system
of non-intersecting simple paths. When the flips have a non-zero bias we prove that
there is a positive spectral gap uniformly in the boundary conditions and in the size
of the system. Under the same assumptions, for a system of size M , the mixing time
is shown to be of order M up to logarithmic corrections.
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1. Introduction, model and results

Consider a surface in 2 + 1 dimensions defined by non-negative integer heights ℓx,y,
where x, y ∈ Z+, such that ℓx,y > ℓx+1,y and ℓx,y > ℓx,y+1 for all x, y ∈ Z+. When
ℓx,y = 0 for all but finitely many x, y this is called a plane partition, the two-dimensional
generalization of an ordinary partition (Young diagram). When the surface is such that
ℓx,y 6 c and ℓx,y = 0 when either x > a or y > b, for some integers a, b, c, then it defines
a boxed plane partition, or a plane partition in the box a × b × c. As we shall see, a
convenient representation of a boxed plane partition is obtained by considering a system
of non-intersecting simple lattice paths. Other well known equivalent characterizations
are the perfect matchings (or dimers) configurations on a subgraph of the honeycomb
lattice and the lozenge tilings of an hexagon.

A continuous time flip dynamics of a plane partition in the box a× b× c is defined
as follows: Every point (x, y) in the rectangle Ra,b = {0, . . . , a − 1} × {0, . . . , b − 1}
is equipped with an independent, rate 1, Poisson clock. When (x, y) rings we flip an
independent {0, 1} coin X; if X = 1 we replace ℓx,y by ℓ′x,y = ℓx,y + 1 if allowed; if
X = 0 we replace ℓx,y by ℓ′x,y = ℓx,y − 1 if allowed. When the coin is unbiased the flip
dynamics converges to the uniform distribution over plane partitions in the box a×b×c.
The latter is known to exhibit non trivial limiting shape or “arctic circle” phenomena
in the limit of large parameters a, b, c, cf. [3], [7] and references therein. We refer to [2]
for the connection with the Wulff crystal in the low temperature 3D Ising model. It
is an interesting open problem to determine the speed of convergence to the uniform
equilibrium measure. We refer to [9] and references therein for the various polynomial
bounds known so far and for the conjectured diffusive behavior of the spectral gap.

In this paper we shall analyze the biased case. When X = 1 with probability p 6= 1
2

then the flip dynamics converges to the probability measure µα on plane partitions in
the box a×b×c such that every configuration ℓ has a weight proportional to e−2αVol(ℓ),
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where Vol(ℓ) stands for the volume
∑

x,y ℓx,y under the surface, and e−2α = p/(1 − p).

By symmetry, µα is equivalent to µ−α and we shall restrict to positive values of α (or
p < 1/2). In this model there is no critical value of α and one has a localized surface
(i.e., Vol(ℓ) = O(1)) for all α > 0. This follows from the fact that the number of plane

partitions ℓ such that Vol(ℓ) = v is eO(v2/3), see Section 2 for more details.
It has been recently shown that a direct coupling argument allows to prove that, if

α is sufficiently large, then uniformly in the size of the box one has a positive spectral
gap and a mixing time of order M = max{a, b, c}, see [6]. Below we shall prove
that this actually holds for all α > 0, up to a logarithmic correction in the mixing time
upper bound. As in [6] we use path-coupling arguments with an exponentially weighted
metric. However, in the case of small α > 0 these arguments can only be applied to
suitable coarse-grained versions of the process. In the proof of the spectral gap estimate
we compare the single-flip process to two auxiliary coarse-grained dynamics. Another
novel ingredient is a roughly deterministic description of the process at large scales
which allows to obtain the mixing time estimate.

It is worth pointing out that the measure µα, α > 0, has a natural extension to
infinite boxes, i.e. as a measure on plane partitions without any box constraint. Our
spectral gap estimates implies that for all α > 0 this extended measure has a positive
spectral gap.

1.1. The model. We first formulate the model in terms of configurations of non-
intersecting paths and then describe the mapping needed to obtain boxed plane parti-
tions.

Let k, n, h be integers, such that k, n > 1 and h ∈ {−n, . . . , n}. We consider the
set Ωh

k,n of k polymers of length n, described as follows. Each polymer is a simple
random walk path which starts at height 0 and ends at height h, and the paths are

ordered: a configuration η ∈ Ωh
k,n is characterized by integer heights η

(j)
x ∈ {−n, . . . , n},

j = 1, . . . , k and x = 0, . . . , n with the constraints:

η
(j)
0 = 0 , η(j)n = h , ∇η(j)(x) := η

(j)
x+1 − η(j)x ∈ {−1,+1} , and

η(j)x > η(j+1)
x , 1 6 j 6 k − 1 , 0 6 x 6 n− 1. (1.1)

Given α > 0, the equilibrium measure µ = µα
k,n,h is defined by

µ(η) =
exp

(
α
∑k

i=1

∑n
x=0 η

(i)
x

)

Z
, η ∈ Ωh

k,n , (1.2)

where

Z = Zα
k,n,h =

∑

η∈Ωh
k,n

exp

(
α

k∑

i=1

n∑

x=0

η(i)x

)

is the normalizing constant.
For every ξ, σ ∈ Ωh

1,n, we will write simply ξ > σ when ξx > σx, 0 6 x 6 n. For a
given pair ξ > σ we consider the subsets

Eξ,σ = {η ∈ Ωh
k,n , ξ > η(1) and η(k) > σ} .
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We call ξ and σ the ceiling and the floor respectively, for intuitive reasons, see Figure
1. Given a ceiling ξ and a floor σ (ξ > σ) we define the equilibrium measure µξ,σ by
conditioning on Eξ,σ:

µξ,σ = µ (· |Eξ,σ) . (1.3)

Note that we may write more explicitly

µξ,σ(η) =
e−2αV ξ(η)1{η∈Eξ,σ}

Ẑξ,σ

(1.4)

where

V ξ(η) :=
∑

1 6 j 6 k

∑

1 6 x 6 n−1

ξx − η
(j)
x

2
(1.5)

is the “total volume between ξ and η”, and

Ẑξ,σ :=
∑

η∈Eξ,σ

e−2αV ξ(η). (1.6)

Figure 1. A configuration η ∈ Eξ,σ. Here k = 6, n = 18, h = 6. For

graphical convenience η(i), the i-th component of η, has been shifted by
−i units in the vertical direction. The top path is the ceiling ξ while
the bottom path is the floor σ shifted by −(k + 1) units.

We will denote by ∧ := ∧(n,h) the maximal one-polymer configuration in Ωh
1,n:

∧x :=

{
x for 0 6 x 6 (n+ h)/2
(n+ h)− x for (n+ h)/2 6 x 6 n.

(1.7)

We will also use the notation ∨ := ∨(n,h) for the minimal one-polymer configuration:

∨x :=

{
−x for 0 6 x 6 (n− h)/2
(h− n) + x for (n− h)/2 6 x 6 n.

(1.8)

Note that (n+h)/2 is an integer since n and h have the same parity, and that ∨ = −∧
if h = 0.
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1.1.1. From non-intersecting paths to plane partitions. Suppose first that ξ = ∧ and
σ = ∨ so that there is no further constraint on η ∈ Ωh

k,n. Then there is a bijection

between Ωh
k,n and the set of plane partitions in the box a× b× c with c = k, a+ b = n,

b− a = h (i.e. a = (n− h)/2, b = (n+ h)/2). The map is best explained informally as
follows. From the configuration η we get the stepped surface ℓ(η) by adding layers of
height 1 to the basis rectangle Ra,b, according to the paths η(j) chosen in reverse order.

Namely, η(k) is the first layer. On top of that we put the second layer η(k−1) and so on.
This defines a bijection, see also Section 4.1.1 for more details.

Figure 2. The stepped surface corresponding to the paths in Figure 1.

For any ξ ∈ Ωh
1,k, let ξ̂ ∈ Ωh

k,n denote the configuration such that η(i) = ξ, i = 1, . . . , k.

Also, let ℓ(ξ̂) denote the associated stepped surface. Then it is easily seen that, for any
ξ > σ, the map described above gives a bijection between the set Eξ,σ and the set of

plane partitions ℓ in the box a× b× c (as above) such that ℓ(ξ̂) 6 ℓ 6 ℓ(σ̂), see Figure
2. Note that here inequalities are reversed with respect to the polymer representation.

1.2. Results. The following heat bath dynamics for configurations of lattice paths is
easily checked to be equivalent to the flip dynamics discussed in the introduction. We
define the continuous time Markov chain on the set Eξ,σ, for a given pair ξ, σ ∈ Ωh

1,n,

ξ > σ, as follows. At each (i, x), i = 1, . . . , k and x = 1, . . . , n − 1, there is an

independent rate 1 Poisson clock. When (i, x) rings we update the height η
(i)
x with a

new height η̃
(i)
x sampled according to the conditional distribution

µη
i,x(·) := µξ,σ(· | η(i)x−1 , η

(i)
x+1 , η

(i+1)
x , η(i−1)

x ) ,

where η(0) = ξ and η(k+1) = σ. The Dirichlet form of this process is given by

E(f) =
k∑

i=1

n−1∑

x=1

µξ,σ [Vari,x(f)] , (1.9)

where Vari,x(f) denotes the function

Eξ,σ ∋ η → Varηi,x(f) := µη
i,x(f

2)− µη
i,x(f)

2 ,
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and f : Ωh
k,n → R denotes an arbitrary function. The spectral gap is given by

gap(α) = min
f

E(f)
Var(f)

,

where Var(f) = µξ,σ(f2) − µξ,σ(f)2, and the minimum ranges over all f : Ωh
k,n → R

such that Var(f) 6= 0.

Theorem 1.1. For any α > 0, there exists c(α) > 0 such that, uniformly in k, n ∈ N,
|h| 6 n and ξ > σ ∈ Ωh

1,n:

gap(α) > c(α) . (1.10)

The estimate in Theorem 1.1 is already known to hold when k = 1 (see [4, Th. 4.3]
or, for an alternative proof, [6]).

Our second result concerns the mixing time of the Markov chain which, we recall, is
defined as

Tmix = inf{t > 0 : max
η∈Ωh

k,n

‖Pt(η, ·) − µ‖var 6 1/(2e)}, (1.11)

with ‖ · ‖var denoting the total variation norm:

‖ν − ν ′‖var :=
1

2

∑

η∈Ωh
k,n

|ν(η)− ν ′(η)|. (1.12)

Pt(η, ·) is the law, at time t, of the Markov chain started from η at time zero.

Theorem 1.1 implies that the mixing time of the Markov chain defined above in the
case 2k = n, h = 0, ξ = ∧, σ = ∨ is O(n3). This is a simple consequence of the
well-known inequality

Tmix 6 gap−1

(
1− log

(
min
η

µ(η)

))
, (1.13)

(see also Lemma 4.3 below). We can however prove:

Theorem 1.2. Let M = max(n, k) and c = 6. For every α > 0 there exists C(α) < ∞
such that uniformly in the choice of ceiling ξ and floor σ, Tmix 6 C(α)M(logM)c.

We mention that the conjectured behavior is O(M), without logarithmic corrections.
This bound is known to hold if α is sufficiently large [6].

For simplicity we have stated these results for a positive constant bias α > 0, but
there is no difficulty to extend them to the case of a non-homogeneous bias αx,y on
each column of the stepped surface ℓx,y, provided that there exists α0 > 0 such that
αx,y > α0 for all x, y. Alternatively, one could place a non-homogeneous bias α(i,x)

associated to each polymer i and position x in the definition of the measure (1.2).
The rest of the paper is organized as follows. In Section 2 we provide some prelim-

inaries and prove a couple of key equilibrium estimates to be used in the proof of the
main theorems. The latter is given in Section 3 (Theorem 1.1) and Section 4 (Theorem
1.2).
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2. Preliminaries

2.1. Particles and vacancies. Each polymer η(j) can be characterized by the posi-
tions of its positive increments, also called particles. More precisely, for every 1 6 j 6 k,

let x
(j)
i = x

(j)
i (η), i > 1 denote the position of the i-th positive increment in the j-th

polymer, defined recursively by:

x
(j)
1 = min{x ∈ {0, . . . , n− 1} : ∇η(j)(x) = +1} , . . .

x
(j)
ℓ+1 = min{x > x

(j)
ℓ : ∇η(j)(x) = +1} .

Note that, given h, the k polymers in the configuration η ∈ Ωh
k,n all have the same

number N = N(h, n) = (n + h)/2 of particles (they all have the same length n, the
same starting point 0 and the same end point h). Observe that, because of the order

constraint, particles obey the following relations: x
(j)
i 6 x

(j+1)
i , i = 1, . . . , N and

j = 1, . . . , k − 1. We often write x or x(η) for the collection of particle positions of a
given configuration η.

The set of vacancies for the polymer η(j) is defined as the set of points in {0, . . . , n−1}
which do not contain particles. Of course, the number of particles plus the number of
vacancies for η ∈ Ωh

1,n equals n.

2.2. Monotonicity. Trajectories of the Markov chain corresponding to distinct initial
conditions and/or distinct boundary constraints can be realized on the same probability
space by a standard coupling argument. This is a straightforward generalization of the
argument for a single polymer, see [5, Section 2]. It follows that the Markov chain
enjoys the following useful monotonicity property. If ηξ,σ(t; ζ) denotes the evolution of
the surface with ceiling ξ and floor σ at time t and with starting configuration ζ at
time 0, then almost surely one has

ηξ,σ(t; ζ) > ηξ
′,σ′

(t; ζ ′) , (2.1)

whenever ξ > ξ′, σ > σ′ and ζ > ζ ′. Here for two systems of polymers η, ζ ∈ Ωh
k,n we

use the convention that η > ζ means η(i) > ζ(i) for all i.
Let E denote expectation with respect to this global coupling P. Using the notation

E[f(ηξ,σ(t; ζ))] = Ptf(ζ), f : Ωh
k,n → R, then (2.1) implies that for every fixed t > 0,

the function Ptf is increasing whenever f is increasing, where a function f is called
increasing if f(η) > f(ζ) for any η, ζ such that η > ζ. Useful inequalities for the
equilibrium measures can be derived from this. For instance, taking the limit t → ∞
in (2.1) yields the inequality

µξ,σ(f) > µξ′,σ′

(f) , (2.2)

for any increasing f and any ξ > ξ′, σ > σ′. We will often use one form or another of
the inequality (2.2) without explicit reference.

2.3. Tightness of the excess volume and decay of correlation. Here we prove
some equilibrium results concerning the exponential decay of spatial correlations, and
the exponential tightness of the “excess volume” V ξ(η). While our main aim is to
provide the necessary tools for the proof of Theorems 1.1 and 1.2, such results may be
of independent interest.
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We start with a basic estimate for the case where h = 0, n ∈ 2N and the ceiling is
the maximal possible configuration, ∧.
Lemma 2.1. Let h = 0. For every α > 0 there exists c1(α) > 0 such that, uniformly
in n ∈ 2N, k ∈ N and in the configuration σ ∈ Ω0

1,n of the floor,

µ∧,σ(V ∧(η) > i) 6 e−c1(α)i (2.3)

for every i ∈ N. In particular, there exists p(α) > 0 such that

µ∧,σ
(
η(j) = ∧, ∀ 1 6 j 6 k

)
> p(α). (2.4)

Proof. By monotonicity, we can upper bound the probability in (2.3) replacing σ with
∨:

µ∧,σ(V ∧(η) > i) 6 µ∧,∨(V ∧(η) > i). (2.5)

Always by monotonicity, the right-hand side of (2.5) is non-decreasing in n and k.
Therefore,

µ∧,σ(V ∧(η) > i) 6

∑
v > i e

−2αvN (v)∑
v > 0 e

−2αvN (v)
(2.6)

where N (v) is the number of plane partitions of volume v, and the right-hand side is
just the limit n → ∞, k → ∞ of the right-hand side of (2.5). The dependence on σ, k
and n has then disappeared. Since

N (v)
v→∞∼ a1

v25/36
exp

(
a2v

2/3
)

(2.7)

for some (explicit) positive constants a1, a2 [10], one obtains immediately (2.3). Eq.
(2.4) is obtained from (2.3) just taking i = 1 and p(α) = 1− exp(−c1(α)). �

Even if the ceiling ξ does not coincide with ∧, it is intuitive that the polymer η(1)

gets more and more squeezed to ξ when k becomes large. This is one of the implications
of the next result:

Lemma 2.2. For every α > 0 there exists c2(α) > 0 such that the following holds.
Uniformly in ξ > σ ∈ Ωh

1,n, in n, k ∈ N, |h| 6 n and 0 6 x 6 n,

µξ,σ(η(j)x 6= ξx) 6 e−c2(α)(k−j+1). (2.8)

Moreover, for every 0 < a < b < n,

µξ,σ
(
η(k)x 6= ξx ∀a 6 x 6 b

)
6 e−c2(α)(b−a). (2.9)

Proof. For a fixed 1 6 x < n, let ∧̃ ∈ Ωh
1,n be defined as follows (see Fig. 3):

∧̃y := max(ξx − |y − x|,∨y) , 0 6 y 6 n. (2.10)

Note that ξ > ∧̃ and of course σ > ∨. Then, by monotonicity and the fact that ξx = ∧̃x

we have

µξ,σ(η(j)x < ξx) 6 µ∧̃,∨(η(j)x < ∧̃x). (2.11)
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x

0

Figure 3. Graphical construction of ∧̃. The thin full line denotes ξ,
the dashed line ∨ and the thick full line is ∧̃, for a given value of x. The
floor σ is not drawn, since it has no influence on the construction of ∧̃.

Now, η
(j)
x < ∧̃x implies V ∧̃(η) > k−j+1. As in Eq. (2.6), from monotonicity it follows

that

µξ,σ(η(j)x < ξx) 6

∑
v > (k−j+1) e

−2αvN (v)
∑

v > 0 e
−2αvN (v)

(2.12)

and (2.8) follows from (2.7).

Next, we prove (2.9). Denote by x
(0)
r , 1 6 r 6 N(n, h) the positions of the particles

of the ceiling ξ, and let Ia,b := {x(0)ia
, x

(0)
ia+1, . . . , x

(0)
ib

} the set of those particles which are

contained in the interval {a, . . . , b− 1} (the cardinality of Ia,b does not exceed (b− a)

and can be zero). We use also the notation x
(k+1)
r , 1 6 r 6 N(n, h) to denote the

positions of the particles of the floor σ. The event in the left-hand side of (2.9) implies

that x
(k)
r > x

(0)
r for every ia 6 r 6 ib. On the other hand, from (2.8) we know that the

event {x(j)ib
= x

(0)
ib

∀ 1 6 j 6 k} = {x(k)ib
= x

(0)
ib

} has probability at least 1−exp(−c2(α)),
uniformly in all the parameters. Assume that this event is not realized. In this case,

the probability that {x(j)ib−1 = x
(0)
ib−1 ∀ 1 6 j 6 k} = {x(k)ib−1 = x

(0)
ib−1} is again lower

bounded by 1 − exp(−c2(α)): indeed, by monotonicity it is sufficient to consider the

case where x
(j)
ib

= x
(k+1)
ib

for every 1 6 j 6 k, and to apply once more (2.8). Iterating

this procedure, we see that the left-hand side of (2.9) is lower-bounded by

e−c2(α)|Ia,b|. (2.13)

One can then repeat the argument with the vacancies replacing the particles. The
argument is the same except that vacancies have to be matched from left to right
(while particles have been matched from right to left). Since the number of vacancies
plus the number of particles in {a, . . . , b} equals (b− a), one obtains immediately (2.9)
(modulo redefining c2(α)).

�
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3. Proof of Theorem 1.1

To prove the spectral gap estimate we shall use a three-fold decomposition that
can be roughly described as follows. The first step, carried out in Section 3.2, allows
to reduce the original process to a process with a bounded (i.e. independent of n, k)
number s of polymers. This is achieved by estimating the spectral gap of a new process
whose elementary moves consist in the updatings of sets of s full-length polymers. The
second step, see Section 3.1 below, allows to further reduce the problem to a process
where each of the s polymers has a bounded (i.e. independent of n, k) number r of
particles. This is obtained by analyzing a coarse-grained dynamics where we update
blocks of particles. The last step is a rough estimate for a system with s polymers and
r particles, see Section 3.3. Finally, in Section 3.4 we prove the theorem by gathering
all the pieces together.

3.1. Particle block–dynamics. Let νxj,m, for j < m, denote the equilibrium measure

µξ,σ on Eξ,σ conditioned on the values of the particle positions

{x(u)v , u = 1, . . . , k} , v 6 j , and v > m. (3.1)

As a convention, if v < 1 then we set (deterministically) x
(j)
v = 0 for all j. Similarly,

if v > N , we set x
(j)
v = N . Recall that N = N(h, n) denotes the total number of

particles.
It will be convenient to have the following alternative notation. For a fixed integer

ℓ we define the measures ρxi,ℓ := νxi−ℓ−1,i+ℓ+1. Once the values of (3.1) are given, ρxi,ℓ
is a distribution on the portion of paths η(j) in the segments {a(j) + 1, . . . , b(j) − 1},
j = 1, . . . , k, where a(j) := x

(j)
i−ℓ−1 + 1, b(j) := x

(j)
i+ℓ+1, see Figure 4.

Figure 4. An illustration of the definition of the measure ρxi,ℓ for the
paths from Figure 1. Here ℓ = 2, i = 5. The shaded region is the portion
of paths distributed according to ρxi,ℓ, while the rest of the configuration
is frozen.

We will study the following Markov chain with state space Eξ,σ, for a given pair

ξ, σ ∈ Ωh
1,n, with ξ > σ. This auxiliary process, which we call the particle block-

dynamics, is reversible w.r.t. the equilibrium measure µξ,σ.
We have N(h, n) independent Poisson clocks with parameter 1. When the i–th clock

rings we consider the current configuration η, and update the portion of paths η(j) in
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the segments {a(j) + 1, . . . , b(j) − 1}, j = 1, . . . , k with a sample from the conditional
distribution ρxi,ℓ. The rest of the configuration η is left unchanged. In other words, we

are removing from the system all particles at positions x
(j)
i−ℓ, . . . , x

(j)
i+ℓ, j = 1, . . . , k and

we are replacing them by a sample from ρxi,ℓ.

The generator of this process can be written as

Gf =

N∑

i=1

[
ρxi,ℓ(f)− f

]
, (3.2)

where f denotes a function f : Eξ,σ → R and ρxi,ℓ(f) is the function η →
∫
f(ζ)ρxi,ℓ(dζ)

for x = x(η). Since ρxi,ℓ are conditional expectations we see that µ
ξ,σ
(
f(ρxi,ℓ(f)− f)

)
=

µξ,σ
(
(ρxi,ℓ(f))

2 − ρxi,ℓ(f
2)
)
, so that the Dirichlet form of the process is

− µξ,σ (fGf) =
N∑

i=1

µξ,σ
(
Varρxi,ℓ(f)

)
. (3.3)

In particular, G is self-adjoint in L2(µξ,σ). Let gap(G) denote the spectral gap of this
process, which of course depends on the choice of ℓ ∈ N.

Proposition 3.1. For any α > 0 and any k ∈ N, there exists ℓ = ℓ(α, k) such that
uniformly in h, n, and ξ, σ ∈ Ωh

1,n we have

gap(G) > 1 .

To prove Proposition 3.1 we use a coupling argument. Consider two evolutions
η(t), η′(t), t > 0, of the Markov chain described above, with initial conditions η and
η′ respectively, where η, η′ ∈ Eξ,σ. Proposition 3.1 is an immediate consequence of
Lemma 3.2 below. Indeed, a well-known argument (see e.g. Proposition 3 in [9]) shows
that, for any coupling P of the two evolutions

gap(G) > − lim inf
t→∞

1

t
log

[
max
η,η′

P
(
η(t) 6= η′(t)

)]
. (3.4)

Lemma 3.2. For every α > 0 and k ∈ N there exist ℓ ∈ N, γ > 0 and a coupling P

of (η(t), η′(t)) such that, uniformly in the starting configurations and uniformly in the
parameters h, n and ξ, σ ∈ Ωh

1,n

P(η(t) 6= η′(t)) 6 kN(h, n)eγ n e−t , t > 0 .

Proof. Consider the distance

dγ(η, η
′) =

N∑

i=1

k∑

j=1

e−γ i1
{x

(j)
i 6=y

(j)
i }

, η, η′ ∈ Eξ,σ , (3.5)

where x
(j)
i , y

(j)
i denote the positions of the i-th particle of the j-th polymer in the

configurations η and η′ respectively, and γ > 0 is to be determined later. Note that the
minimal non-zero value of dγ(·, ·) is e−γn. Therefore, by Markov’s inequality

P(η(t) 6= η′(t)) 6 eγ n
E(dγ(η(t), η

′(t))) .
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It remains to show that E(dγ(η(t), η
′(t))) 6 kN(h, n)e−t. In Lemma 3.4 below we show

that it is sufficient to prove that

[G̃ dγ ](η, η
′) :=

d

dt
E(dγ(η(t), η

′(t)))

∣∣∣∣
t=0+

6 − dγ(η, η
′) , (3.6)

for all pairs η, η′ such that d0(η, η
′) = 1, i.e. when there is only one discrepancy in

the particle configurations. In this case, dγ(η, η
′) = e−γ i where i is the label of the

discrepancy.
Up to now we have not specified the coupling. If we use the same Poisson clocks for

the two evolutions, the generator G̃ of the coupled dynamics can be written as

G̃ =
N∑

i=1

(Ei,ℓ − 1) , (3.7)

where Ei,ℓ denotes a (not yet specified) coupling of the local equilibria ρxi,ℓ of the block

of 2ℓ+ 1 particles around the i-th particle for the k polymers, cf. (3.2).
To prove (3.6), we may choose the coupling in such a way that if η, η′ have a

single discrepancy at a given particle label i and at a given polymer label j, then
[Ev,ℓdγ ](η, η

′) = 0 for all v such that v − ℓ 6 i 6 v + ℓ. By construction, there are at
least ℓ such blocks for any fixed i (this is the case if e.g. i = 1 or i = N).

Let E−
i = Ei−ℓ−1,ℓ (respectively, E

+
i = Ei+ℓ+1,ℓ) denote the coupling corresponding

to the block of 2ℓ+1 particles just to the left (resp. just to the right) of particle i. Note
that if e.g. i 6 ℓ+ 1 then there is no block just to the left of i and we may set E−

i = 1
for such i. Similarly, if i > N − ℓ then there is no block just to the right of i and we
can set E+

i = 1 in this case. Since all other blocks give a trivial contribution to (3.6)
we see that

[G̃ dγ ](η, η
′) (3.8)

6 − ℓ dγ(η, η
′) + [(E−

i − 1) dγ ](η, η
′) + [(E+

i − 1) dγ ](η, η
′) .

Recall that dγ(η, η
′) = e−γ i. Then we can estimate

[E+
i dγ ](η, η

′) =

k∑

u=1

i+2ℓ+1∑

v=i+1

e−γ v E+
i

[
1
{x

(u)
v 6=y

(u)
v }

]

6 k e−γ i
∞∑

v=1

e−γ v =
k e−γ

1− e−γ
dγ(η, η

′) , (3.9)

where we have bounded by 1 the probability of a discrepancy.
On the other hand, denoting by Fv the event that there exists u ∈ {1, . . . , k} such

that x
(u)
i−v 6= y

(u)
i−v, we have

[E−
i dγ ](η, η

′) =

k∑

u=1

i−1∑

v=i−2ℓ−1

e−γ v E−
i

[
1
{x

(u)
v 6=y

(u)
v }

]

6 k e−γ i
2ℓ+1∑

v=1

eγ vE−
i [1Fv ] = k dγ(η, η

′)
2ℓ+1∑

v=1

eγ vE−
i [1Fv ] ,
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with the convention that 1Fv = 0 if i− v < 1.
In Lemma 3.3 below we prove that for a suitable choice of the coupling there exists

c = c(α, k) > 0 independent of γ such that that

E−
i [1Fv ] 6 e−c v , 1 6 v 6 2ℓ+ 1 . (3.10)

If we accept this estimate, from (3.8), (3.9) we conclude that if e.g. γ = c/2 then (3.6)
follows for ℓ sufficiently large (depending on k and α). �

We turn to the proof of (3.10). Let x,y denote the collections {x(u)v }, {y(u)v } of all
positions of particles of two configurations η, η′ ∈ Eξ,σ and consider the associated
probability measures νxj,m, νyj,m defined in (3.1). For a fixed pair of integers j,m, let

ν̃ = ν̃j,m be the independent coupling of νxj−m−1,j and νyj−m−1,j. That is, we are
freezing all particles labeled i 6 j − m − 1 or i > j and we sample the m particles
labeled i = j − m, . . . , j − 1 according to the independent coupling of νxj−m−1,j and

νyj−m−1,j. We say that x,y agree up to j−m− 1 if x
(u)
v = y

(u)
v , for all u = 1, . . . , k and

for all v 6 j −m− 1.

Lemma 3.3. There exists ε > 0 depending only on α and k such that, if x,y agree up
to j −m− 1, then

ν̃
(
x
(u)
j−1 = y

(u)
j−1 , for all u = 1, . . . , k

)
> ε . (3.11)

In particular, (3.10) holds.

Proof. Let us first show that (3.11) implies (3.10). First of all, let us sample x
(u)
i−1, y

(u)
i−1,

u = 1, . . . , k, using ν̃ with j = i and (supposing for simplicity i > 2ℓ + 1) m = 2ℓ + 1
(recall that i is the index appearing in the proof of Lemma 3.2). Then (3.11) implies

that there is a full matching x
(u)
i−1 = y

(u)
i−1 for all u = 1, . . . , k with probability at least ε.

Thus (3.10) holds when v = 1 and e−c = 1−ε. The case v > 1 is obtained by recursion.
Namely, the coupling E−

i can be further defined as follows. If we have a full matching

x
(u)
i−1 = y

(u)
i−1 for all u = 1, . . . , k then we can match all the remaining particles. If we

do not have the full matching we sample particles labeled i − 2 by ν̃ with j = i − 1

and m = 2ℓ and a suitable choice of the values x
(u)
i−1, y

(u)
i−1 (the ones that were sampled

in the first step). Again, if we have a full matching for particles labeled i − 2 we can
match all the remaining particles labeled i− 3, . . . , i−m. We repeat this procedure at
later steps. Since (3.11) shows that there is a probability at least 1− e−c to have a full
matching at every step the bound (3.10) follows.

To prove (3.11) we are going to use the same argument as in the proof of Lemma

2.2, see the proof of (2.13) in particular. We first sample the pairs x
(1)
r , y

(1)
r , r =

j −m, . . . , j − 1 with an independent coupling for the corresponding marginals. Note

that even if x
(1)
j 6= y

(1)
j the positions x

(1)
j−1, y

(1)
j−1 have the same ground state (i.e. minimal

position) dictated by the ceiling ξ and the (common) boundary conditions for the
particles labeled 1, . . . , j −m− 1 of polymer 1. From the proof of Lemma 2.2 we know

that this implies that the matching event x
(1)
j−1 = y

(1)
j−1 has probability at least δ2 where

δ = δ(α) > 0 is the probability that x
(1)
j−1 equals its ground state position. Next, we
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sample x
(2)
r , y

(2)
r , r = j −m, . . . , j − 1 with an independent coupling of the marginals

conditioned on the configuration of {x(1)r , y
(1)
r }r=j−m,...,j−1 which we extracted in the

previous step. We claim that, conditionally on the occurrence of the matching x
(1)
j−1 =

y
(1)
j−1, the matching event x

(2)
j−1 = y

(2)
j−1 has probability at least δ2. Indeed, even if the

ceilings “felt” by the two copies of the positions x
(2)
r , y

(2)
r of particles of polymer 2 are

in general distinct, the ground state positions for x
(2)
j−1, y

(2)
j−1 are dictated only by the

positions x
(1)
j−1, y

(1)
j−1 which are now assumed to coincide. In particular the argument

from the proof of Lemma 2.2 again applies. This procedure can be repeated until the
last polymer is reached and in conclusion the independent coupling gives probability
at least ε = δ2k to the full matching event in (3.11). �

In the proof of Lemma 3.2 (cf. (3.6)) we have used a continuous time version of
the so-called path coupling argument, see [1] or e.g. [8, Theorem 14.5] for the usual
discrete-time version. For the sake of completeness we give a proof in the next lemma.

Lemma 3.4. Suppose that (3.6) holds for all pairs η, η′ such that d0(η, η
′) = 1. Then

E(dγ(η(t), η
′(t))) 6 kN(h, n)e−t, for all t > 0 and for all initial data η, η′.

Proof. We may define a graph having as vertices the elements of Eξ,σ by declaring a
pair η, η′ to be an edge whenever d0(η, η

′) = 1. For any η, η′, let Ω(η, η′) denote the set
of paths connecting η and η′, i.e. ω ∈ Ω(η, η′) if ω = (ω1, . . . , ωr), ω1 = η, ωr = η′ and
d0(ωi, ωi+1) = 1, i = 1, . . . , r − 1. Then one checks that

dγ(η, η
′) = min

ω∈Ω(η,η′)

r−1∑

i=1

dγ(ωi, ωi+1) . (3.12)

To prove (3.12) observe that it suffices to exhibit one path which achieves the equality

since by construction it is clear that dγ(η, η
′) 6

∑r−1
i=1 dγ(ωi, ωi+1) for any ω ∈ Ω(η, η′).

Such a path can be informally defined as follows. Consider the bottom paths η(k), η′(k)

and the positions x where η
(k)
x > η

′(k)
x . Then move one by one the particles of η(k) in this

region until we have η
(k)
x 6 η

′(k)
x everywhere. Then consider the paths η(k−1), η′(k−1)

and the positions x where η
(k−1)
x > η

′(k−1)
x . As before, move one by one the particles

of η(k−1) in this region until we have η
(k−1)
x 6 η

′(k−1)
x everywhere. We repeat this

procedure until we reach the top paths. At this point we have reached a configuration
η̃ such that η̃ 6 η (everywhere). Next we start from the top paths η(1), η′(1) and

consider the region where η̃
(1)
x < η

′(1)
x . We can move one by one the particles in this

region until we have η̃(1) = η′(1) (everywhere). We repeat with the paths η̃(2), η′(2) and
so on until we reach the bottom polymers labeled k. This construction produces a path
which realizes the minimum (3.12) since we never used more than the strictly necessary
moves.

From the triangle inequality, for each pair of initial conditions η, η′ we have

E[dγ(η(t), η
′(t))] 6

r−1∑

i=1

E[dγ(ζi(t), ζi+1(t)] ,
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where we call ζ1, . . . , ζr the minimizing path in (3.12) and ζ1(t), . . . , ζr(t) the corre-

sponding trajectory. In particular, subtracting dγ(η, η
′) =

∑r−1
i=1 dγ(ζi, ζi+1), dividing

by t and letting t ↓ 0 we obtain

[G̃dγ ](η, η′) 6
r−1∑

i=1

[G̃dγ ](ζi, ζi+1) .

Since each term in the r.h.s. above is of the form (3.6) with d0(ζi, ζi+1) = 1 we have
that the assumptions imply

[G̃dγ ](η, η′) 6 − dγ(η, η
′) ,

for arbitrary initial conditions. Therefore ϕ(t) := E[dγ(η(t), η
′(t))] satisfies d

dtϕ(t) 6 −
ϕ(t), which implies the claim since ϕ(0) ≤ maxη,η′ dγ(η, η

′) ≤ kN(h, n). �

3.2. A dynamics with full polymer moves. The next ingredient which enters the
proof of Theorem 1.1 is a dynamics where each move consists in updating (2s + 1)
whole polymers, s ∈ N. As usual, we let ξ, σ ∈ Ωh

1,n (with σ 6 ξ) and µξ,σ(·) denotes
the law on Eξ,σ for k polymers with floor and ceiling σ, ξ, as defined in (1.3). To each
1 6 j 6 k is assigned an independent Poisson clock of mean 1. When the clock labeled
j rings, we update the polymers η(u) with index max(j − s, 1) 6 u 6 min(j + s, k),
sampling the new configuration according to the law

ν̂j,s(·) := µξ,σ
(
·|η(max(j−s−1,0)), η(min(j+s+1,k+1))

)
, (3.13)

with the convention that η(0) := ξ and η(k+1) := σ. Call M the generator of this
dynamics.

Proposition 3.5. For every α > 0 there exists s := s(α) ∈ N such that, uniformly in
n, k, |h| 6 n and on σ 6 ξ, one has

gap(M) > 1. (3.14)

Proof. The general structure of the proof is similar to that of Proposition 3.1, but the
coupling argument is rather different. Given ρ > 0, we define the distance function
Dρ(·, ·) by setting for every η, η′,

Dρ(η, η
′) :=

k∑

j=1

e−jρ
n−1∑

x=1

|η(j)x − η
′(j)
x |

2
. (3.15)

In analogy with (3.12), one checks that

Dρ(η, η
′) = min

ω∈Ω(η,η′)

r−1∑

i=1

Dρ(ωi, ωi+1), (3.16)

where in this case one requires that D0(ωi, ωi+1) = 1 for i < r.
Given two initial conditions (η, η′), let (η(t), η′(t)) be the corresponding evolutions.

As in the proof of Proposition 3.1, cf. Lemma 3.4, to prove (3.14), it is then sufficient
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to prove that for every α > 0 there exists a choice of s ∈ N, ρ > 0 and a coupling P of
(η(t), η′(t)) such that

[
M̃Dρ

]
(η, η′) :=

d

dt
E(Dρ(η(t), η

′(t)))

∣∣∣∣
t=0

6 −Dρ(η, η
′) (3.17)

whenever D0(η, η
′) = 1.

Let (η̄, η̄′) satisfy the latter condition, with the single discrepancy consisting in η̄
(i)
x =

η̄
′(i)
x + 2. In analogy with (3.7), we write the generator of the coupled dynamics as

M̃ :=
k∑

j=1

(
Êj,s − 1

)
, (3.18)

where Êj,s is a coupling (to be specified) of ν̂j,s for the two configurations. For all j

such that i − s 6 j 6 i + s we can choose the coupling such that [Êj,sDρ](η̄, η̄
′) = 0.

Moreover, if j ∈ {1, . . . , k} \ {i− s− 1, . . . , i+ s+ 1} we can choose the coupling such

that [Êj,sDρ](η̄, η̄
′) = Dρ(η̄, η̄

′). One has therefore

[M̃Dρ](η̄, η̄
′) (3.19)

6 − sDρ(η̄, η̄
′) + [(Êi+s+1,s − 1)Dρ](η̄, η̄

′) + [(Êi−s−1,s − 1)Dρ](η̄, η̄
′).

It is clear that the last two terms may be non-negative, and that they vanish if i > k−s
or i 6 s+ 1, respectively.

Let us analyze first the easier case of Êi+s+1,s in which case, it is worth recalling, we

are updating polymers labeled i+ 1, . . . , i+ 2s+ 1. Since η̄(i) > η̄′(i) while η̄(i+2s+2) =
η̄′(i+2s+2), by monotonicity there exists a coupling Êi+s+1,s such that one has η(j) > η′(j)

for every i < j < i + 2s + 2. Moreover, since η̄(i) and η̄′(i) differ only at x, we can

choose Êi+s+1,s such that η
(j)
y = η

′(j)
y for every i < j < i + 2s + 2 and y outside the

interval {a−, . . . , a+}, where a+ := inf{y > x : η
′(i+2s+1)
y = η̄

(i)
y } and a− := sup{y < x :

η
(i+2s+1)
y = η̄

(i)
y }. As a consequence, going back to the definition of Dρ(·, ·),

[Êi+s+1,sDρ](η̄, η̄
′) 6

∞∑

j=i+1

e−jρν̂i+s+1,s

(
(a+ − a−)

2
)
. (3.20)

Thanks to (2.9) there exists c3(α) > 0 such that for every u > 0

ν̂i+s+1,s(a+ − a− = u) 6 e−c3(α)u. (3.21)

From this one deduces immediately that there exists c4(α, ρ) < ∞ such that

[Êi+s+1,sDρ](η̄, η̄
′) 6 c4(α, ρ)Dρ(η̄, η̄

′). (3.22)

Finally we deal with Êi−s−1,s. We have from (3.15)

[Êi−s−1,sDρ](η̄, η̄
′) =

1

2

i−1∑

j=i−2s−1

e−ρjÊi−s−1,s




n−1∑

y=1

|η(j)y − η′(j)y |


 . (3.23)
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Again, we can choose the coupling such that η′(j) 6 η(j) and η
(j)
y = η

′(j)
y for y /∈

{b−, . . . , b+}, where b− = sup{y < x : η
′(i−1)
y = η̄

(i−2s−2)
y }, and similarly for b+. In

analogy with (3.21) one has

ν̂i−s−1,s(b+ − b− = u) 6 e−c3(α)u. (3.24)

Then,

n−1∑

y=1

|η(j)y − η′(j)y | 6 |b+ − b−| × |{b− < y < b+ : η′(j)y 6= η̄(i−2s−2)
y }|. (3.25)

Using (3.25), (2.8) and (3.24),

Êi−s−1,s




n−1∑

y=1

|η(j)y − η′(j)y |


 = Êi−s−1,s


 Êi−s−1,s




n−1∑

y=1

|η(j)y − η′(j)y |



∣∣∣∣∣∣
b−, b+




6 ν̂i−s−1,s

[
(b+ − b−)

2
]
e−c4(α)(i−j) 6 c5(α)e

−c4(α)(i−j).

Therefore, going back to (3.23),

[Êi−s−1,sDρ](η̄, η̄
′) 6 c5(α)Dρ(η̄, η̄

′)
∞∑

r=1

e−(c4(α)−ρ)r = c6(α)Dρ(α)(η̄, η̄
′), (3.26)

where we chose ρ := ρ(α) = c4(α)/2. From (3.19), (3.22) and (3.26) one concludes that

[M̃Dρ(α)](η̄, η̄
′) 6 − (s − c7(α))Dρ(α)(η̄, η̄

′). (3.27)

At this point, it is sufficient to choose s := s(α) := ⌈c7(α)⌉ + 1 to get (3.17). �

3.3. An estimate for k polymers with r particles. The last ingredient we need
for the proof of Theorem 1.1 is a rough estimate on the spectral gap for a system with
k polymers, each with r particles; it is important that this bound is independent of
the lengths n1, . . . , nk of each polymer. Consider a configuration η ∈ Eξ,σ ⊂ Ωh

k,n with

k polymers, each with N particles. Let x = x(η) denote the corresponding particle
configuration. Fix 0 6 j < m 6 N + 1 and consider the probability measures νxj,m
defined in (3.1). If we freeze all particles labeled i 6 j and i > m we can perform
the local-update dynamics defined in (1.9) for the r := m − j − 1 particles labeled
j + 1, . . . ,m − 1. This process is clearly reversible with respect to νxj,m. Its Dirichlet
form is given by

Ex

j,m(f) =

k∑

u=1

x
(u)
m −1∑

x=x
(u)
j +1

νxj,m [Varu,x(f)] ,

where Varu,x(f) has the same meaning as in (1.9). As usual, below we use the notation
Varν(f) = ν(f2)− ν(f)2 for any probability measure ν.

Lemma 3.6. For every α > 0, k ∈ N and r ∈ N, there exists c = c(α, k, r) such that
for any pair j,m with m − j − 1 = r, for any choice of all other parameters and for
any f : Ωh

k,n → R

Ex

j,m(f) > c Varνxj,m(f) .
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Proof. The only delicate point here is that the length of the portion of paths where the
r particles live is arbitrarily long and we need an estimate which does not depend on
that. We introduce a further family of measures as follows. Let νx,uj,m denote the law of

η(u) according to the measure νxj,m conditioned on the value of the paths η(i), i 6= u. If
we let

Ex,u
j,m(f) =

x
(u)
m −1∑

x=x
(u)
j +1

νx,uj,m[Varu,x(f)]

denote the corresponding Dirichlet form we know from the k = 1 version of Theorem
1.1 (see the remark following the statement of Theorem 1.1) that

Ex,u
j,m(f) > δ(α) Varνx,uj,m

(f) , (3.28)

for some constant δ(α) depending only on α. Taking expectation w.r.t. νxj,m, using

νxj,m[ν
x,u
j,m(g)] = νxj,m(g) for any function g, and summing over u in (3.28), by definition

of Ex

j,m(f) we have

Ex

j,m(f) > δ(α)

k∑

u=1

νxj,m

[
Varνx,uj,m

(f)
]
.

Therefore it remains to prove that for some c = c(α, r, k) > 0 one has

k∑

u=1

νxj,m

[
Varνx,uj,m

(f)
]
> c Varνxj,m(f) , (3.29)

for all functions f . To prove this estimate we observe that the left-hand side of (3.29)
coincides with the Dirichlet form of the Markov chain described as follows. Attach
independent rate 1 Poisson clocks to the labels u = 1, . . . , k. When a label u rings

update the whole path between x
(u)
j +1 and x

(u)
m − 1 according to the distribution νx,uj,m

(that is, freeze all other polymers and update polymer u with a sample from νx,uj,m).

Thus, the following rough coupling argument will suffice for the proof of (3.29).
Namely, consider the Markov chain started in the minimal configuration (i.e. each of the

k polymers starts in the minimal path compatible with the particles x
(u)
j and x

(u)
m ). Let

Et denote the event that up to time t the Markov chain has never visited the maximal
allowed configuration. It is not hard to prove a bound of the form P(Et) 6 c−1e−c t for
some c = c(α, r, k) > 0. This, in turn, implies the desired spectral gap estimate (3.29)
using monotonicity and the bound (3.4).

To prove P(Et) 6 c−1e−c t we may reason as follows. Consider the event Fs that in
the time interval [s, s+1) the following sequence of k successive updatings appears: for
i = 1, . . . , k the i-th update is for polymer u = i and the configuration sampled from
νx,uj,m is the maximal allowed path for the i-th polymer given the current configuration.

Since there are r particles, an application of Lemma 2.2 shows that P(Fs) > p where

p = p(α, r, k) > 0 depends neither the lengths nu = x
(u)
m − x

(u)
j of the polymers, nor

on the configuration of η at time s. By construction, on the event Fs we know that
the Markov chain visited the maximal allowed configuration at least once in the time
interval [s, s + 1). Therefore the event Et implies that none of the events Fs occurred
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for s = 0, . . . , ⌊t − 1⌋. This implies P(Et) 6 (1 − p)t−1 6 (1 − p)−1e−p t. The proof of
Lemma 3.6 is complete. �

3.4. Putting everything together: proof of Theorem 1.1. Once Proposition 3.1,
Proposition 3.5 and Lemma 3.6 are established, the proof of Theorem 1.1 is obtained
through a chain of comparison inequalities. Indeed, Proposition 3.5 may be restated as

Var(f) 6

k∑

j=1

µ
[
Varν̂j,s(f)

]
, (3.30)

where Var(f) is the variance w.r.t. µ := µξ,σ and ν̂j,s is the conditional probability
measure defined in (3.13). Here s = s(α) is a fixed parameter (2s + 1 is the number
of polymers to be updated at each step in the process with generator M appearing
in Proposition 3.5: they are the polymers labeled u, with max(j − s − 1, 1) ≤ u ≤
min(j + s + 1, k)). For each j in (3.30) we apply the estimate of Proposition 3.1 with
the number of polymers equal to k = s. This yields

Varν̂j,s(f) 6

N∑

i=1

ν̂j,s

[
Varρxi,ℓ(f)

]
, (3.31)

where ρxi,ℓ is the conditional probability measure appearing in (3.3) and ℓ = ℓ(α) is a

fixed parameter (2ℓ+ 1 is the size of the block of particles to be updated at each step
in the process with generator G appearing in Proposition 3.1). Finally, recalling the
definition ρxi,ℓ = νxi−ℓ−1,i+ℓ+1 (cf. (3.1)) and applying the bound in Lemma 3.6 (with

r = 2ℓ + 1 and k = s) we know that for every i in (3.31) we have the estimate for all
x = x(η):

Varρxi,ℓ(f) 6 c−1
j+s+1∑

u=j−s−1

x
(u)
i+ℓ+1−1∑

x=x
(u)
i−ℓ−1+1

ρxi,ℓ [Varu,x(f)] . (3.32)

Note that the constant c = c(α, s, ℓ) depends only on α here. Also, note that since
there are at most 2ℓ+ 1 blocks of particles covering a given position x in the path we
obtain

N∑

i=1

ν̂j,s

[
Varρxi,ℓ(f)

]
6 c−1(2ℓ+ 1)

j+s+1∑

u=j−s−1

n−1∑

x=1

ν̂j,s [Varu,x(f)] , (3.33)

where we use the property of conditional expectation ν̂j,s

[
ρxi,ℓ(g)

]
= ν̂j,s(g) valid for

any function g.
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Putting everything together and using µ [ν̂j,s(g)] = µ(g) for any g, from (3.30)-(3.33)
we see that

Var(f) 6 c−1(2ℓ+ 1)

k∑

j=1

j+s+1∑

u=j−s−1

n−1∑

x=1

µ [Varu,x(f)]

6 c−1(2ℓ+ 1)(2s + 1)

k∑

i=1

n−1∑

x=1

µ [Vari,x(f)]

= c−1(2ℓ+ 1)(2s + 1)E(f) .

This shows that gap(α) > c′(α), with c′(α) = c (2ℓ + 1)−1(2s + 1)−1, which completes
the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

For clarity of exposition we give the proof first of all in the simpler case where the
ceiling ξ is the maximal configuration, ∧, in Ωh

1,n. Later, in Section 4.2 we sketch the
modifications which are needed in the general situation.

4.1. The case of maximal ceiling. By monotonicity and the definition (1.11) of mix-
ing time, it is clear that a sufficient condition for Tmix 6 T is that the first (random) time

when the dynamics started from the minimal configuration, {η(j) = σ, j = 1, . . . , k},
passes through the maximal configuration, {η(j) = ξ, j = 1, . . . , k}, is smaller than
T with probability at least 1 − 1/(2e). Again by monotonicity, it is easy to convince
oneself that this random time does not decrease if one replaces h with zero, n with
2M := 2max(n, k), k with M and σ with ∨.

Therefore, to prove Theorem 1.2 (in the case of maximal ceiling) it is sufficient to
prove the following. Let h = 0, n = 2M , k = M , ξ = ∧, σ = ∨, cf. (1.7), (1.8); start

the dynamics from the minimal configuration η− := {η(j) = ∨ for all j = 1, . . . ,M},
and call t(M) the first time when the maximal configuration η+ := {η(j) = ∧ for all
j = 1, . . . ,M} is reached. Then,

Theorem 4.1. There exists C(α) > 0 such that with probability larger than 1− 1/(2e)

t(M) 6 C(α)M (logM)6. (4.1)

A notational convention When in the following we say that an event occurs “with
large probability” (w.l.p.), we mean to say that the probability of the complementary
event goes to zero for M → ∞ faster than any inverse power of M . Since, as will
be clear, we have to exclude only polynomially many (in M) events which w.l.p. do
not occur, by the union bound we have that the occurrence of at least one of these
events still goes to zero for M → ∞. For simplicity of exposition, and when there is no
risk of confusion, we will often just pretend that an event which occurs w.l.p., occurs
deterministically.
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4.1.1. From polymer configurations to subsets of the cube. The proof of Theorem 4.1
becomes more intuitive if one interprets a configuration η ∈ Ω0

M,2M as a subset s of the

cube CM := [0,M ]3 ⊂ R
3. This mapping is just another way to see the mapping between

polymer configurations η and boxed plane partitions introduced in Section 1.1.1. To
define precisely this correspondence, divide first of all CM into M3 elementary cubes of
unit side, which we label with the (integer) coordinates r = (r1, r2, r3) of their point of
smallest L1 norm (observe that 0 6 ri < M). Then, to a given η ∈ Ω0

M,2M we associate

s = s(η) ⊂ CM , a union of elementary cubes, by establishing that the elementary cube
labeled r belongs to s if and only if (cf. Figure 5)

η
(M−r3)
M−r1+r2

< M − r1 − r2. (4.2)
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Figure 5. A graphical construction of the set s(η). Given η ∈ Ω0
M,2M ,

in order to obtain s(η) do the following, for r3 = 0, . . . , (M−1): a) draw

the configuration of η(M−r3) (thick line in the left drawing); b) rotate

the picture by 3π/4 anti-clockwise and shrink it by a scale factor 1/
√
2.

The shaded region coincides with the horizontal section of s(η) at height
r3 < h 6 r3 + 1. It is obvious from this construction that the subset
s(η) thus obtained is a monotone subset of the cube CM .

It is easy to check that:

• if η 6 η′ then s′ ⊂ s (note that the inequality is reversed!)
• the maximal configuration η+ defined above corresponds to the empty subset
of the cube: s− = ∅. Conversely, the minimal polymer configuration η− corre-
sponds to the maximal subset s+ = CM , i.e., the full cube. We will sometimes
refer to s− as to the ground state, for obvious reasons.

• for every η ∈ Ω0
M,2M , s(η) is a monotone subset of CM , i.e., if the elementary

cube labeled r belongs to s, then so do also all the elementary cubes r′ such
that r′1 6 r1, r

′
2 6 r2, r

′
3 6 r3.

The equilibrium measure can be described in terms of s by:

µ∧,∨(s) =
e−2α|s|

Ẑ∧,∨

, (4.3)
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where |s| denotes the number of elementary cubes contained in s, i.e., its volume.
The dynamics of Section 1.2 can also be explicitly described in terms of s. Here, let

us simply remark that the elementary moves of the Markov Chain consist in adding
or removing a single elementary cube, with the constraint that s remains a monotone
subset of CM after the update. Observe also that, under the η ↔ s correspondence,
the upward drift felt by the polymers η(j) during the dynamics translates into the fact
that the upper boundary of s feels a drift in the direction (−1,−1,−1).

4.1.2. Proof of Theorem 4.1. To avoid a plethora of ⌊·⌋, we assume that (logM)2 ∈ 2N
and that K := (M/(logM)2) ∈ N. Divide CM into sub-cubes Bv (called blocks from
now on) of side (logM)2, indexed by v = (v1, v2, v3) with 0 6 vi < K, and such that
the point of Bv with minimal L1 norm is (logM)2v (of course, vi are integers). Given
v, we will also define B+

v , B
−
v to be the half-blocks obtained cutting Bv horizontally

into two equal parts (B−
v will denote the bottom one). Call st the configuration at time

t, which starts from the completely full configuration s+. The idea is to consider an
easier dynamics ŝt such that st ⊂ ŝt almost surely and, calling t̂(M) the first time ŝt
reaches the empty configuration s−, to show that t̂(M) satisfies (4.1) with probability
at least 1− 1/(2e).

Let

τ := τ(M) := C(α)(logM)8/7, (4.4)

where C(α) is the same as in (4.1). We define now two deterministic sets S±
t ⊂

CM which (roughly speaking) coincide with s+ at t = 0 and get empty in a time
C(α)M(logM)6, and such that ŝt satisfies S

−
t ⊂ ŝt ⊂ S+

t , w.l.p. and for all t 6 M2.
{S−

t }t > 0, is defined as follows (see also Figure 6 for a graphical definition):

• S−
0 = CM

• if i ∈ N and (i−1)τ < t 6 iτ , then S−
t contains all and only the blocks Bv such

that v satisfies

v3 + 2(v1 + v2) 6 5(K − 1)− i (4.5)

On the other hand, letting for ease of notation

V ±
t := CM \ S±

t ,

{S+
t }t > 0 is defined as follows (see also the caption of Fig. 6):

• S−
t ⊂ S+

t ⊂ CM
• If Bv ∈ V −

τ⌊t/τ⌋ and Bv−ei ∈ V −
τ⌊t/τ⌋ for at least one choice of i = 1, 2, 3, then

Bv ∈ V +
t (ei are the canonical base vectors of Z3, and ⌊x⌋ := max{n ∈ Z :

n 6 x}).
• If Bv ∈ V −

τ⌊t/τ⌋ but there is no i = 1, 2, 3 such that Bv−ei ∈ V −
τ⌊t/τ⌋ then B+

v ∈ V +
t

but B−
v ∈ S+

t .

The following properties of S±
t are immediately checked:

• S−
t is the union of blocks Bv, while S

+
t is the union of blocks and of half-blocks

B−
v

• S−
· is left-continuous, non-increasing, constant in the time intervals ((i−1)τ, iτ ]

• S+
· is right-continuous, non-increasing and constant on intervals [(i− 1)τ, iτ)
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• S±
t are monotone subsets of CM for every t.

• For t > (6/7)C(α)M(logM)6 = 6Kτ , S−
t is empty and S+

t contains only B−
(0,0,0)

(K := M/(logM)2 was defined at the beginning of this section).

As an example, if 0 < t 6 τ then S−
t = CM \ B(K−1,K−1,K−1), while if 2τ < t 6 3τ

then

S−
t = CM \ (B(K−2,K−1,K−1) ∪B(K−1,K−2,K−1) ∪3

i=1 B(K−1,K−1,K−i)).
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Figure 6. The set S−
t for 14τ < t 6 15τ . Small cubes denote blocks

of side (logM)2, and there are K = M/(logM)2(= 10) of them along
each side. At time intervals of 2τ , a new diagonal set of columns with
v1 + v2 = const starts to move downwards: from then on, it moves one
block down each time interval τ . Once a column is empty, it stays empty
forever. Roughly speaking, the set S−

t contains all the blocks which are
below a plane perpendicular to the vector (2, 2, 1) and which moves at
constant speed, of order (logM)−6, in the direction (−2,−2,−1). The
set S+

t for iτ 6 t < (i + 1)τ can be obtained simply by taking S−
t

for some (i − 1)τ < t 6 iτ and adding a half-blocks B−
v on top of each

incomplete but not empty column, and also to each empty column which
is adjacent to a non-empty one (S+

t is not drawn in the picture).

We define the auxiliary dynamics ŝt by establishing that it has the same law as st
conditioned on the event that S−

t ⊂ st for every t > 0 . Remark that by monotonicity
we can couple st and ŝt in such a way that st ⊂ ŝt for every t > 0; also, remark that
once S−

t is empty there is no more constraint on the dynamics (which does not mean
that st = ŝt after that time!).

The basic point is the following:
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Theorem 4.2. W.l.p., for every 0 6 t 6 M2 one has

S−
t ⊂ ŝt ⊂ S+

t . (4.6)

Of course, the lower bound is trivial by the very definition of ŝt (and holds not only
w.l.p. but with probability one). Let us show that Theorem 4.2 implies (4.1). We know
that for all times (6/7)C(α)M(logM)6 6 t 6 M2 one has ŝt ⊂ S+

t = B−
(0,0,0), which

is a subset of a cube of side (logM)2. By Lemma 4.3 below, this means that, within
time (6/7)C(α)M(logM)6+O((logM)6) 6 C(α)M(logM)6 ≪ M2, ŝt has reached the
ground state at least once with probability at least 1 − 1/(2e), and (4.1) follows. Of
course, M2 could be replaced by M1+ǫ for any ǫ > 0. �

The first ingredient of the proof of Theorem 4.2 is the following lemma, which gives
a rough upper bound on the mixing time in a cube of size M :

Lemma 4.3. For every α > 0 there exists C1(α) < ∞ such that for every M ∈ N

Tmix 6 C1(α)M
3. (4.7)

Moreover, there exists C2(α) > 0 such that for every T > 0 the following is true:

(1) the probability that t(M) > TM3 is smaller than exp(−C2(α)T ).

(2) with probability at least 1 − T e−C2(α)M , the volume of st is at most M/10 for
all times t(M) 6 t 6 T .

Proof. We know that

min
η∈E∧,∨

µ∧,∨(η) =
e−2αM3

Ẑ∧,∨

>
e−2αM3

∑
v > 0 e

−2αvN (v)
> C2(α)e

−2αM3
, (4.8)

where N (v) was defined after formula (2.6) and is just the number of plane partitions of
volume v. Then, it follows from (1.13) (and the fact that the gap is uniformly positive)
that the mixing time is O(M3).

From (4.7) it is immediate to deduce (modulo redefining C1(α)) that the probability
that t(M) 6 C1(α)M

3 is greater than some ǫ(α) > 0. (Indeed, Lemma 2.1 implies that
there exists a set A of configurations such that µ∧,∨(A) > 1/2 and such that all the
configurations s ∈ A can be reached via at most m = m(α) Markov Chain moves from
the ground state s−, for some m(α) < ∞ independent of M). From this, one easily
deduces that, for every n ∈ N, the probability that t(M) > nC1(α)M

3 is smaller than
(1 − ǫ(α))n, i.e., claim (1). Indeed, if the evolution has not passed through s− before
time (n− 1)C1(α)M

3, just restart the dynamics from the maximal configuration s+ at
t = (n− 1)C1(α)M

3: this can only make t(M) larger, by monotonicity.
To prove statement (2), observe first of all that for all times t > t(M) (or, more

precisely, conditionally on t(M) < t) the distribution of st is stochastically dominated
by the equilibrium distribution µ∧,∨. On the other hand, Lemma 2.1 tells us that

µ∧,∨(|s| > M/10) 6 exp(−c1(α)M/10). (4.9)

Secondly, the number of Markov Chain moves in the interval [0, T ] is a Poisson random
variable ζ with average TM2, and an elementary computation shows that for a Poisson
random variable ζλ of parameter λ one has

P(ζλ > n) 6 e−n(log(n/λ)−1). (4.10)
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We have therefore, calling ti, i = 1, . . . , ζ the random times when the updates occur,

P (∃t ∈ [t(M), T ] : |st| > M/10) 6 e−M2T (4.11)

+P
(
ζ 6 4M2T ;∃i : t(M) 6 ti 6 T, |sti | > M/10

)

6 e−M2T + 4M2 T exp(−c1(α)M/10),

where in the last inequality we used the union bound and (4.9). �

Notational convention: in the rest of this section, we will use for simplicity of exposi-
tion expressions like “for all times larger than t0” to mean “for all times t0 6 t 6 M2”.

For the next lemma we need some notations. Let 0 6 j < 2(K − 1) and let S(j)
be the set of configurations s such that Bv ⊂ s if (v1 + v2) < j and Bv ∩ s = ∅ if
(v1 + v2) > j + 1 or if v1 + v2 ∈ {j, j + 1} and v3 > 2. Let smax

j be the maximal

configuration in S(j), see Figure 7 (of course, both S(j) and smax
j depend on M). We

define a dynamics {s(j)t }t > 0 by requiring that (in law) it equals our usual dynamics,

with initial condition s
(j)
t=0 = smax

j and conditioned on the event that s
(j)
t ∈ S(j) for

every t > 0.
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Figure 7. The maximal configuration smax
j =: s

(j)
t=0 in S(j). The dark

region is the one which is constrained to remain completely full during

the evolution of s
(j)
t , while the dashed one remains empty. The white

region is the one which can evolve. Note that, for graphical convenience,
the axes are drawn with orientations which differ from those of Fig. 6.

Lemma 4.4. W.l.p., the following holds for all times t > τ . If (v1+v2) = j and v3 = 1,

or if (v1 + v2) = j + 1, then Bv ∩ s
(j)
t = ∅. If (v1 + v2) = j and v3 = 0, B+

v ∩ s
(j)
t = ∅.

Proof of Lemma 4.4 As in the proof of Theorem 4.1, we introduce an auxiliary

dynamics {ŝ(j)t }t > 0 for which the claim is easier to prove, and such that almost surely
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s
(j)
t ⊂ ŝ

(j)
t (so that the claim follows also for s

(j)
t ). The auxiliary dynamics is defined

simply by requiring that its law equals that of {s(j)t }t > 0 conditioned on the event that,

for all times 0 6 t 6 τ/2, Bv ⊂ s
(j)
t if (v1 + v2) = j and v1 ∈ 2N + 1. In other words,

such blocks Bv are frozen and remain completely full up to time τ/2. This implies
that during this time interval the blocks which are not frozen evolve independently by
groups of at most six, see Figure 8. Applying Lemma 4.3, one sees that at time τ/2
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Figure 8. Here we drew only the region where s
(j)
t is allowed to evolve

(the white region in Fig. 7). Under the dynamics ŝ
(j)
t , blocks marked by

a ⋆ are constrained to remain full up to time τ/2. As a consequence, up
to that time the remaining blocks (shown in gray) evolve independently
by groups of at most six.

the situation is the following (w.l.p.):

(1) Bv ∩ ŝ
(j)
τ/2 = ∅ if (v1 + v2) = j + 1 or (v1 + v2) = j, v1 ∈ 2N and v3 = 1;

the same remains true for all later times (of course here we are using the fact
that, since τ = C(α)(logM)8/7, the probability that t((logM)2) > τ/2 is
O(exp(−C ′(α)(logM)2)), cf. statement (1) of Lemma 4.3, i.e., w.l.p. such event
does not occur.)

(2) If (v1 + v2) = j, v1 ∈ 2N and v3 = 0, the volume of Bv ∩ ŝ
(j)
τ/2 is at most

(logM)2/10 (in particular, B+
v ∩ ŝ

(j)
τ/2 = ∅); the same remains true for all later

times. Here we are using statement (2) of Lemma 4.3, with T = M2.
(3) all blocks marked by a star in Figure 8 are of course still completely full.

During the interval (τ/2, τ ] the blocks marked by a ⋆ in Fig. 8 are free to move.
However, now the pairs of blocks v1 + v2 = j, v1 ∈ 2N + 1, v3 ∈ {0, 1} evolve inde-
pendently for v1 different, thanks to point (1) above. Therefore, applying once more

Lemma 4.3 and point (2) above, one sees that for t > τ one has Bv ∩ ŝ
(j)
t = ∅ for
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v1 + v2 = j, v1 ∈ 2N + 1, v3 = 1, and B+
v ∩ ŝ

(j)
t = ∅ for v1 + v2 = j, v1 ∈ 2N+ 1, v3 = 0.

The claim is proven. �

Proof of Theorem 4.2 It is sufficient to prove the following: for every i ∈ N ∪ {0}
such that iτ 6 M2, one has (w.l.p.)

ŝt ⊂ S+
iτ for every t > iτ. (4.12)

For i = 0 the statement is trivial since S+
0 = CM .

Now we assume that the claim is true up to a certain i, and we show that it holds also
for i+1. It is convenient to introduce the definition of column Cv1,v2(H) with (integer)
base coordinates 0 6 v1, v2 < K and height 0 6 H 6 K: this is just a parallelepiped
of height (logM)2H and whose base is the square of side (logM)2 such that the base
point of minimal L1 norm has coordinates ((logM)2v1, (logM)2v2). Note that, for each
t, S±

t can be viewed as composed of K2 such columns: in the case of S−
t the heights

H−
t (v1, v2) take values in {0, 1, . . . ,K} while in the case of S+

t we call them H+
t (v1, v2)

and they take values in {0, 1/2, 1, . . . ,K − 1/2,K}. Note also that, by construction,
H±

t (v1, v2) depends on (v1, v2) only through v1 + v2 (see Fig. 6).
To complete the inductive proof, we need to prove that for all (v1, v2)

[ŝt ∩Cv1,v2(K)] ⊂ Cv1,v2(H
+
(i+1)τ (v1, v2)) for every t > (i+ 1)τ. (4.13)

The following cases can occur (keep Fig. 6 in mind):

(1) H−
(i+1)τ (v1, v2) = K. In this case, (4.13) is obvious because alsoH+

(i+1)τ (v1, v2) =

K.
(2) 1 < H−

(i+1)τ (v1, v2) < K. In this case, we have that

Cv1,v2(H
−
(i+1)τ (v1, v2)) ⊂ [ŝt ∩ Cv1,v2(K)] ⊂ Cv1,v2(H

−
(i+1)τ (v1, v2) + 2) (4.14)

for every iτ < t < (i + 1)τ . The lower bound is trivial by the definition of
the dynamics ŝt, while the upper bound follows from the inductive hypothesis
(4.12) and from the fact that the definition of S+

t implies that 0 6 H+
t (v1, v2)−

H−
t (v1, v2) < 2. Since we want to prove (4.13), by monotonicity we can assume

that all the columns labeled (w1, w2) with w1 + w2 < v1 + v2 are completely
full during the time interval iτ < t < (i + 1)τ . But then, as we shall argue in
a moment, in the time interval (iτ, (i + 1)τ) the column ŝt ∩ Cv1,v2(K) evolves
independently of all the others, and an application of Lemma 4.3 implies (4.13),
since H+

(i+1)τ (v1, v2) is just H
−
(i+1)τ (v1, v2) + 1/2, cf. the caption of Figure 6.

To see that the column (v1, v2) evolves independently of all the others in the
interval iτ < t < (i + 1)τ , note that it can be influenced only by the columns
labeled (w1, w2) with w1+w2 = v1 + v2+1. However (cf. Figure 6) in this case
H−

(i+1)τ (w1, w2) = H−
(i+1)τ (v1, v2)−2 so that, from the induction hypothesis (cf.

(4.14))

ŝt ∩ Cw1,w2(K) ⊂ Cw1,w2(H
−
(i+1)τ (v1, v2)). (4.15)

In other words, the column (w1, w2) is too low to influence the column (v1, v2).
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(3) H−
(i+1)τ (v1, v2) = 1. Again one has (4.14) and one can assume by monotonicity

that the columns with w1+w2 < v1+v2 are completely full in the time interval
iτ < t < (i + 1)τ . The argument proceeds like in the previous case once one
realizes that for w1+w2 = v1+v2+1 one has H+

iτ (w1, w2) = 1/2, so that by the
induction hypothesis ŝt ∩Cw1,w2(K) ⊂ Cw1,w2(1/2) for t ≥ iτ and such column
cannot influence the one labeled (v1, v2).

(4) It remains to consider the case of the columns with H−
(i+1)τ = 0. Define

j := max
0≤w1<K,0≤w2<K

{w1 + w2 : H−
(i+1)τ (w1, w2) > 0}+ 1 < 2K − 1,

with the convention that j := 0 if the set is empty. It is convenient to distinguish
two sub-cases:
(a) if v1 + v2 > j + 1 then, by definition of S+

t one sees that H+
iτ (v1, v2) = 0,

so that (4.13) follows (both sets are empty) from the induction hypothesis
(4.12).

(b) if j ≤ v1+v2 ≤ j+1 then by monotonicity we can assume that all columns
with w1 +w2 < j are completely full in the time interval iτ ≤ t ≤ (i+1)τ ,
and on the other hand we know that all columns with w1 +w2 > j +1 are
completely empty for t ≥ iτ . Also, we know from (4.12) that, always for
t > iτ , [ŝt ∩ Cw1,w2(K)] ⊂ Cw1,w2(2) for all (w1, w2) such that w1 + w2 ∈
{j, j + 1}. We can therefore apply Lemma 4.4 to deduce that for all times
t > (i+1)τ the columns with w1+w2 = j+1 are completely empty, while if
w1+w2 = j then [ŝt∩Cw1,w2(K)] ⊂ B−(w1, w2, 0). Recalling the definition
of S+

t (in particular, as explained in the caption of Fig. 6) we have therefore
proven (4.13) for all columns (w1, w2) such that w1 + w2 ∈ {j, j + 1}.

�

4.2. The general case. Here we prove Theorem 1.2 in the general situation where
ξ is not the maximal configuration in Ωh

1,n. The proof is conceptually similar to the
one where the ceiling is maximal, and therefore some arguments will be only sketched
(see however Remark 4.6 below, where an important difference between the two cases
is pointed out).

As in section 4.1, we can assume by monotonicity that h = 0, n = 2M , k = M and
σ = ∨. First of all, it is important to realize that the maximal configuration (ground

state) {η(j) = ξ for all j = 1, . . . ,M} corresponds to the subset of CM defined by the
property that the elementary cube labeled r = (r1, r2, r3), with ri ∈ {0, . . . ,M −1} (cf.
Section 4.1.1) belongs to s− if and only if

ξM−r1+r2 < M − r1 − r2 (4.16)

(we still call the ground state s−, even if it is no longer the empty set as in previous
section). We note also that the equilibrium measure (1.4) is given in this case by

µξ,∨(s) =
e−2α|s\s−|

∑
s′⊃s− e−2α|s′\s−|

1s′⊃s− . (4.17)

Of course, the sum in the denominator is only over the configurations s′ ⊂ CM which
are given by unions of elementary cubes. The dynamics st just coincides with that
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described in Section 4.1.1, conditionally on the event that st ⊃ s− for every t (of
course, the initial condition st=0 has to verify the same property).

As in Section 4.1.2, we cut CM into K3 blocks Bv of side (logM)2 ∈ N. Consider
the dynamics started from some st=0 ⊃ s−. The basic estimate which allows to prove
Theorem 1.2 is the following:

Proposition 4.5. For every α > 0 there exists C(α) < ∞ (independent of M , ξ and
st=0) such that the following holds w.l.p.:

st ⊂ (s− ∪A1) (4.18)

for every (6/7)C(α)M(logM)6 6 t 6 M2 where A1 = A2 ∪A3,

A2 := ∪{Bv : v3 = 0, Bv ∩ s− contains at least one elementary cube} (4.19)

and

A3 := ∪{Bv : v3 = 0, B(v1−1,v2,0) /∈ (CM \A2) and B(v1,v2−1,0) /∈ (CM \ A2)}, (4.20)

see Figure 9.

Note that, in the case ξ = ∧, one has A2 = ∅, A3 = B(0,0,0) and Proposition 4.5
follows from Theorem 4.2 above.
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Figure 9. The sets Ai and s− seen from above. Squares should be
imagined to have side (logM)2, and here K = M/(logM)2 = 8. The
dark region is a horizontal section of s−, while the lightly colored (re-
spectively, the dashed) region is the set A2 \ s− (resp. A3) seen from
above. s− extends vertically up to height M , while A2, A3 extend only
up to height (logM)2 (i.e., one single block). Note that the block B(0,6,0)

belongs to A3 because neither B(−1,6,0) nor B(0,5,0) belong to CM \ A2

(in particular, B(−1,6,0) falls out of CM). A similar remark holds for
B(7,0,0).
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Proposition 4.5 is proven below, and now we show that it does imply Theorem 1.2.
Indeed, note that the volume of A1 satisfies

|A1 \ s−| 6 4M(logM)4, (4.21)

so that

min
s:s−⊂s⊂(s−∪A1)

µξ,∨
(
s| s− ⊂ s ⊂ (s− ∪A1)

)
> e−c8(α)M(logM)4 (4.22)

for some c8 > 0 (we used the fact that the number of configurations s satisfying
s− ⊂ s ⊂ (s− ∪A1) is smaller than

2|A1\s−| :

this would be the exact number of configuration if there were no monotonicity con-
straints on s). Call, for ease of notation,

TM := C(α)M(logM)6. (4.23)

From (1.13), (4.22) and Theorem 1.1 one easily deduces that the mixing time of the
dynamics constrained to s− ⊂ st ⊂ [s− ∪ A1] is O(M(logM)4). Since (6/7)TM +
M(logM)4 ≪ TM , we have proven Theorem 1.2 (with c = 6).

Remark 4.6. It is important to notice that we have not proven that the dynamics
started from an arbitrary st=0 hits the ground state s− within time TM , which is in
general false if the ceiling ξ has a jagged shape.

4.2.1. Proof of Proposition 4.5. By monotonicity, it is clear that it suffices to prove the
claim for st=0 = CM . As in the proof of Theorem 4.1, we introduce two deterministic
subsets Ŝ±

t of CM . If S±
t are the sets which were defined in Section 4.1.2, then we

establish that

Ŝ−
t := S−

t ∪ s−, (4.24)

while

Ŝ+
t := S+

t ∪A1. (4.25)

We note that from the discussion of the properties of S±
t in Section 4.1.2 it follows that

for t > (6/7)TM one has Ŝ−
t = s− and Ŝ+

t = A1. The claim of the proposition then
follows if we can prove, in analogy with Theorem 4.2, that w.l.p. one has

st ⊂ Ŝ+
t (4.26)

for every 0 6 t 6 M2. The proof of this fact proceeds with the help of an auxiliary
dynamics ŝt, which dominates st, and whose law is that of st conditioned on the event
that {st ⊃ Ŝ−

t for every t > 0}. Since the proof is very similar to that of Theorem 4.2,
we do not give details. The only fact which requires some care is that we cannot apply
Lemma 4.3 to the blocks which have a non-empty intersection with s−, since a certain
number of its elementary cubes are frozen to be full for all times.

The extra result we need concerns therefore the evolution of a single cube of side
(logM)2 and with arbitrary ceiling. Let ξ̃ ∈ Ω0

1,2(logM)2 , let s̃− ⊂ C(logM)2 = B(0,0,0)
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be the ground state corresponding to the ceiling ξ̃ and s̃t be the evolution started from
the full configuration B(0,0,0) and constrained to

s̃− ⊂ s̃t ⊂ B(0,0,0)

for every t > 0, and call T̃mix its mixing time. Needless to say, its invariant measure

is µξ̃,∨. Notice that when s̃− = B(0,0,0) (i.e., when ξ̃ = ∨) the dynamics is trivial

(s̃t = B(0,0,0) for all times) while when s̃− = ∅ (i.e., when ξ̃ = ∧) the forthcoming

lemma is already implied by Lemma 4.3 (just replace M with (logM)2 there).

Lemma 4.7. For every α > 0 there exist C4(α) < ∞ and C5(α) > 0 such that

uniformly in M and ξ̃

T̃mix 6 C4(α)(logM)6. (4.27)

Moreover, with τ defined as in (4.4),

P

(
∃ τ 6 t 6 M2 : (s̃t \ s̃−) ∩B+

(0,0,0) 6= ∅
)

6 e−C5(α)(logM)2 . (4.28)

What Eq. (4.28) is saying is essentially that for all times larger than (logM)2T̃mix

but smaller than M2 the upper half of the cube under consideration contains only the
elementary cubes which are imposed by the constraint s̃− ⊂ s̃t. Useless to say, this
means that w.l.p. the event in the left-hand side of (4.28) does not occur.

Proof of Lemma 4.7 The proof of (4.27) is completely analogous to that of (4.7) and

uses the fact that the spectral gap of the dynamics is positive, uniformly in M and ξ̃.
To prove (4.28), let us recall the well known inequality which relates the total variation
distance from equilibrium of a reversible Markov Chain at time t with its mixing time
Tmix:

sup
s∈Ω

||P s
t (·)− µ(·)||var 6 e−⌊t/Tmix⌋, (4.29)

where Ω is the state space of the Markov Chain, µ its invariant measure and P s
t the

law at time t, if the initial condition at time zero is s. Call ti, 1 6 i 6 ζ the random
times when Markov Chain updates occur in the time interval [τ,M2], and observe that
in our case ζ is a Poisson random variable of parameter (M2 − τ)(logM)4. One has
then, using (4.10), that the left-hand side of (4.28) is upper bounded by

e−M2
+ P

[
ζ 6 4M2(logM)4 and ∃ i 6 ζ : (s̃ti \ s̃−) ∩B+

(0,0,0) 6= ∅
]
. (4.30)

On the other hand, calling P̃t(·) the law of s̃t and defining the set

U := {s ⊂ B(0,0,0) : (s \ s̃−) ∩B+
(0,0,0) 6= ∅},

one has

P

[
(s̃t \ s−) ∩B+

(0,0,0) 6= ∅
]

= P̃t (U) 6

∣∣∣P̃t (U)− µξ̃,∨ (U)
∣∣∣+ µξ̃,∨ (U) (4.31)

6 e−⌊t/T̃mix⌋ + e−C5(α)(logM)2 .

In the last step, we used (4.29) for the first term and Lemma 2.2 to estimate the
equilibrium probability of U . The claim (4.28) then follows from (4.30), a union bound

and the fact that τ/T̃mix > C6(α)(logM)2 for some C6(α) > 0.
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