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Duality in inhomogeneous random graphs, and

the cut metric
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Abstract

The classical random graph model G(n, λ/n) satisfies a ‘duality princi-
ple’, in that removing the giant component from a supercritical instance of
the model leaves (essentially) a subcritical instance. Such principles have
been proved for various models; they are useful since it is often much eas-
ier to study the subcritical model than to directly study small components
in the supercritical model. Here we prove a duality principle of this type
for a very general class of random graphs with independence between the
edges, defined by convergence of the matrices of edge probabilities in the
cut metric.

1 Introduction and results

Throughout, a matrix denoted An is assumed to be symmetric, n-by-n, and to
have non-negative entries. Given such a matrix An = (aij), let G(An) denote the
random graph on [n] = {1, 2, . . . , n} in which edges are present independently
and the probability that ij is an edge is min{aij/n, 1}. If An is itself random,
then G(An) denotes the random graph whose conditional distribution, given An,
is as above. As shown by Bollobás, Janson and Riordan [7], if the matrices An

converge (in probability) in a certain sense defined below, then the random graph
‘model’ G(An) may be seen as a generalization of many earlier inhomogeneous
models, such as that introduced in [5]. Furthermore, results for G(An) generalize
corresponding results for percolation on sequences of dense finite graphs of the
type proved by Bollobás, Borgs, Chayes and Riordan [4].

It is well known that in the classical random graph G(n, p), p = λ/n, the
small components of the supercritical graph behave like a subcritical instance
of the same model; this fact was first exploited by Bollobás [3]. It was also used
by  Luczak [13], who stated it explicitly as the ‘symmetry rule’; see also [11].
It is also sometimes known as a (discrete) ‘duality principle’; see, for example,
Alon and Spencer [1]. Corresponding results have been proved for several other
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models, for example by Molloy and Reed [14] for the configuration model of
Bollobás [2], and by Bollobás, Janson and Riordan [5] for their inhomogeneous
model. Our aim in this note is to prove such a result for the very general model
G(An) described above.

First we need a few definitions, mainly from [7], although many of the im-
portant concepts are from earlier papers. Let (S, µ) be a measure space with
0 < µ(S) < ∞. Almost all the time, µ will be a probability measure; in fact,
most of the time we shall take S to be [0, 1] (or (0, 1]) with µ Lebesgue measure.
A kernel on S is an integrable, symmetric function κ : S2 → [0,∞). Adapting
a definition of Frieze and Kannan [10], for W ∈ L1(S2) we define the cut norm
‖W‖� of W by

‖W‖� := sup
‖f‖∞,‖g‖∞≤1

∣∣∣
∫

S2

f(x)W (x, y)g(y) dµ(x) dµ(y)
∣∣∣. (1)

(This is equivalent within a factor 4 to the variant where f and g are 0/1-valued
functions.) A rearrangement of the kernel κ is any kernel κ(τ) defined by

κ(τ)(x, y) = κ(τ(x), τ(y)), (2)

where τ : S → S is a measure-preserving bijection. Given two kernels κ, κ′ on
[0, 1], the cut metric of Borgs, Chayes, Lovász, Sós and Vesztergombi [9] may
be defined by

δ�(κ1, κ2) = inf
τ
‖κ1 − κ

(τ)
2 ‖�, (3)

where the infimum is over all rearrangements of κ2. (Of course, it makes no
difference if we rearrange κ1 instead, or both κ1 and κ2.)

Probabilistically, it is more natural to define δ� via couplings, as discussed
in [9]; see also [8]. Given two measure spaces (S1, µ1), (S2, µ2) with 0 < µ1(S1) =
µ2(S2) < ∞, a coupling of these spaces is simply a measure space (S, µ) together
with measure preserving maps σi : S → Si, i = 1, 2. Given kernels κi on Si, the

corresponding pull-backs κ
(σi)
i are the kernels on (S, µ) defined by

κ
(σi)
i (x, y) = κi(σi(x), σi(y)),

and the cut metric may be defined by

δ�(κ1, κ2) = inf ‖κ
(σ1)
1 − κ

(σ2)
2 ‖�,

where the infimum is taken over all couplings. It is not obvious that this defi-
nition agrees with (3) for kernels on [0, 1], but this turns out to be the case, as
shown in [9].

Although the coupling definition is perhaps more natural (and is forced on
us if we consider probability spaces with atoms), the rearrangement definition
seems intuitively simpler, and is often notationally simpler. Where possible, we
shall work with rearrangements rather than couplings. However, we shall still
need to consider kernels on different spaces. In this setting a rearrangement of
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a kernel κ on (S1, µ1) is any kernel κ(τ) on (S2, µ2), where τ : S2 → S1 is a
measure preserving bijection and κ(τ) is defined by (2) as before. In fact, for
technical reasons it is convenient to allow τ to be a measure-preserving bijection
between S2 \N2 and S1 \N1, where the Ni are null sets: µi(Ni) = 0.

Given a symmetric n-by-n matrix An, there is a piecewise constant kernel
κAn

on [0, 1] naturally associated to An, taking the value aij on the square
((i−1)/n, i/n]×((j−1)/n, j/n]. (When working with couplings, one can simply
view An itself as a kernel on a finite space with n points.) We often identify
An and κAn

, writing, for example, δ�(An, κ) for δ�(κAn
, κ). Throughout we

consider the following random graph ‘model’: we have a kernel κ on [0, 1] and

a sequence An of (deterministic or random) matrices with δ�(An, κ)
p
→ 0, and

study Gn = G(An). We shall show that deleting the giant component from such
a graph Gn, when it exists, leaves another instance of the same model. To make
sense of this requires some further definitions.

Let Tκ denote the integral operator associated to κ, defined by (Tκf)(x) =∫
S
κ(x, y)f(y) dµ(y).
Given a kernel κ on a type space (S, µ), where µ is a probability measure, let

Xκ be the Poisson Galton–Watson branching process naturally associated to κ:
we start with a single particle whose type is distributed according to µ, particles
have children independently of each other and of the history, and the types of
the children of a particle of type x form a Poisson process on S with intensity
κ(x, y) dµ(y). We write Xκ(x) for the same process started with a single particle
of type x.

As in [5], let ρ(κ) denote the survival probability of Xκ and ρ(κ;x) that of
Xκ(x). Also, let ρk(κ;x) and ρk(κ) denote respectively the probabilities that
Xκ(x) or Xκ consists of exactly k particles in total.

We now turn to the ‘dual’ of a kernel κ on a probability space (S, µ), giving
two versions with slightly different normalization. First, let κ̂ be the kernel
that is equal to κ as a function, but defined on the space (S, µ̂), where µ̂ is the
measure defined by

dµ̂(x) = (1 − ρ(κ;x)) dµ(x). (4)

Note that µ̂(S) = 1 − ρ(κ). Second, to return to a probability space, let µ̂′ be
the normalized measure µ̂/(1 − ρ(κ)), and let κ̂′ be the kernel on (S, µ̂′) equal
to κ as a function. Finally, let κ̃ = (1 − ρ(κ))κ̂′ be the kernel on (S, µ̂′) given
by κ̃(x, y) = (1 − ρ(κ))κ(x, y). The kernels κ̂ and κ̃ are equivalent in a certain
natural sense; for example, the operators Tbκ and Teκ coincide.

Finally, the kernel κ is reducible if there is some A ⊂ S with 0 < µ(A) < 1
such that κ is zero a.e. on A×Ac, and irreducible otherwise.

We write Ci(G) for the ith largest component of a graph; for definiteness, if
there is a tie, we order components of equal sizes according to any fixed ordering
on the subsets of [n]. Let G̃ denote the graph formed from G by deleting C1(G).

Recall from [7] that if δ�(An, κ)
p
→ 0 and κ is irreducible, then

|C1(Gn)|/n
p
→ ρ(κ) (5)
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and
|C2(Gn)|/n

p
→ 0, (6)

where Gn = G(An). Recall also from [5] that ρ(κ) > 0 if and only if ‖Tκ‖ > 1.

Given a (symmetric, n-by-n, non-negative, as always) matrix An, let Ãn

denote the random |G̃|-by-|G̃| sub-matrix of An corresponding to G̃, where

G = G(An). More precisely, Ãn may be defined ordering the vertices of G̃

arbitrarily, and setting Ãij = avw where v and w are the ith and jth vertices of

G̃.
Our aim in this paper is to prove the following ‘duality’ result.

Theorem 1.1. Let (An) be a (random or deterministic) sequence of symmetric,

non-negative matrices with δ�(An, κ)
p
→ 0 for some irreducible kernel κ on [0, 1].

Then δ�(Ãn, κ̂
′)

p
→ 0.

The main significance is the following consequence.

Theorem 1.2. Let (An) be a sequence of symmetric, non-negative matrices with

δ�(An, κ)
p
→ 0 for some irreducible kernel κ with ρ(κ) > 0, and let Gn = G(An).

Then there is a random sequence (Bn) of matrices such that G̃n and G(Bn)

may be coupled to agree whp, with Bn m(n)-by-m(n), m(n)/n
p
→ 1 − ρ(κ), and

δ�(Bn, κ̃)
p
→ 0,

Proof. Conditioning on the An, we may assume without loss of generality that
the An are deterministic, with δ�(An, κ) → 0.

The result is essentially immediate from Theorem 1.1 and the uniqueness of

the giant component in Gn. Indeed, we simply take Bn = m(n)
n Ãn. Note that

m(n) = n − |C1(Gn)| satisfies m(n)/n
p
→ 1 − ρ(κ) by (5). Since δ�(Ãn, κ̂

′)
p
→

0 by Theorem 1.1, this implies δ�(Bn, κ̃)
p
→ 0. Note that Bn depends on

Gn, but only via the vertex set of C1(Gn). Conditioning on this vertex set,

we see that the distribution of G̃n is exactly that of G(Bn) conditioned on
containing no component larger than C1(Gn) (or of the same size but earlier in
our fixed order). However, the unconditional probability of G(Bn) containing
such a component tends to 0, as otherwise Gn would have positive probability
of containing two components of order Θ(n), contradicting (6). For full details
of a related argument see [5, page 79].

In turn, Theorem 1.2 implies, for example, that the number of edges in the
giant component of G(An) is ‘what one would expect’, i.e., that Theorem 3.5
of [5] extends to this more general setting.

Corollary 1.3. Let κ be an irreducible kernel, and let Gn = G(An), where

δ�(An, κ)
p
→ 0. Then

1

n
e(C1(Gn))

p
→ ζ(κ),

where

ζ(κ) :=
1

2

∫

S2

κ(x, y)
(
ρ(κ;x) + ρ(κ; y) − ρ(κ;x)ρ(κ; y)

)
dµ(x) dµ(y).
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Proof. As usual, we condition on the An assuming that δ�(An, κ) → 0. Next
we eliminate ‘large’ entries (in particular those exceeding n), as well as any
diagonal entries.

If δ�(An, κ) → 0, then, as shown in [7, Lemma 2.1], there is some M(n)
with M(n)/n → 0 such that the sum of the entries of An exceeding M(n) is
o(n2). Define A′

n by setting all such entries, and all diagonal entries, to 0.
Noting that the sum of the diagonal entries of An not exceeding M(n) is at
most nM(n) = o(n2), we have δ�(An, A

′
n) ≤ ‖κAn

− κA′

n
‖L1 = o(1), and in the

natural coupling G(An) and G(A′
n) agree in all but op(n) edges. The expected

number of edges in G(A′
n) is simply n/2 times

∫
κA′

n
. Since the actual number

is a sum of independent indicator variables, its variance is at most its mean,
and hence O(n). Thus

n−1e(G(An)) = n−1e(G(A′
n)) + op(1) =

1

2

∫

S2

κA′

n
+ op(1) =

1

2

∫

S2

κ + op(1).

Applying this result to G̃n, which agrees whp with G(Bn), we see that

1

n
e(G̃n) =

|G̃n|

2n

∫

S2

κ̃(x, y) dµ̂′(x) dµ̂′(y) + op(1)

= (1 − ρ(κ))
1

2

∫

S2

(1 − ρ(κ))κ̂′(x, y) dµ̂′(x) dµ̂′(y) + op(1)

=
1

2

∫

S2

κ̂(x, y) dµ̂(x) dµ̂(y) + op(1)

=
1

2

∫

S2

κ(x, y)(1 − ρ(κ;x))(1 − ρ(κ; y)) dµ(x) dµ(y) + op(1).

Subtracting from e(Gn) gives the result.

Theorem 1.2 has more substantial applications, allowing other quantities as-
sociated to the small components of a suitable random graph Gn to be studied in
a simple way. For one example, concerning susceptibility, see [12]. For another,
consider Theorem 3 in [4]. Translated to the present notation, this result con-
cerns the graphs Gn = G(An), where the matrices An have uniformly bounded
entries and δ�(An, κ) → 0. It makes two statements: (a) when ‖Tκ‖ < 1 then
|C1(Gn)| ≤ B logn holds whp for some constant B (depending on κ and the
bound on the entries of the An) and (b) when ‖Tκ‖ > 1 and κ is irreducible,
then |C2(Gn)| ≤ B′ logn whp for some B′. The proof of part (a) in [12] is very
simple, that of part (b) rather lengthy. Using Theorem 1.2 it is easy to de-
duce part (b) from part (a); one only needs the simple fact that in this setting,
since κ is bounded and hence Tκ is Hilbert–Schmidt, the dual kernel is strictly
subcritical; see [5, Theorem 6.7].

Remark 1.4. Theorems 1.1 and 1.2 extend mutatis mutandis to the graphs
G(Hn) studied in [7, Section 3], which may be seen as the simple graphs underly-
ing random (non-uniform) hypergraphs whose ‘hypermatrices’ of edge probabil-
ities converge in a suitable sense to a ‘hyperkernel’, i.e., a sequence of symmetric
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functions κr on Sr, r = 2, 3, . . .. Since the changes needed are very simple, but
complicate the notation, we do not give the details. Note that for the analogue
of Corollary 1.3, one needs an additional condition, called ‘edge integrability’
in [7, Remark 3.5], as well as convergence in the corresponding version of the
cut metric.

2 Proofs

The main idea is to prove an analogue of [5, Theorem 9.10]. The statement,
Theorem 2.5 below, is a little awkward, as we are trying to formulate a result
about the ‘type’ of a vertex in a setting where individual vertices don’t really
have types.

We start with a much simpler statement concerning branching processes.
As in [7] we write W for the set of all integrable non-negative functions W :
S × S → [0,∞), and Wsym for the subset of symmetric functions, i.e., kernels.
For W ∈ W , we write λW and λ′

W for the marginals of W with respect to the
first and second variables:

λW (x) :=

∫
W (x, y) dµ(y), λ′

W (y) :=

∫
W (x, y) dµ(x).

Of course, for W ∈ Wsym we have λW = λ′
W .

Given a finite graph F with vertex set {1, . . . , r}, integrable functions fi :
S → R, and W ∈ Wsym, let

t×isol(F, (fi),W ) :=

∫

Sr

∏

ij∈E(F )

W (xi, xj)
r∏

k=1

fk(xk)e−λW (xk) dµ(x1) · · · dµ(xr).

(7)
Note that this differs from the quantity tisol(F,W ) considered in [7] by the
inclusion of the factors fk(xk), k = 1, . . . , r.

Lemma 2.1. Let F be a tree and f1, . . . , f|F | bounded functions on S. Then

W 7→ t×isol(F, (fk),W ) is a bounded map on Wsym that is Lipschitz continuous
in the cut norm. More specifically, there exists a constant C (depending on
F only) such that |t×isol(F, (fk),W )| ≤ C

∏
k ‖fk‖∞ for all W ∈ Wsym, and

|t×isol(F, (fk),W )− t×isol(F, (fk),W ′)| ≤ C‖W −W ′‖�
∏

k ‖fk‖∞ for all W,W ′ ∈
Wsym.

Proof. The proof is a simple extension of [7, Theorem 2.3], so we only outline
the differences.

Firstly, writing each fk as the sum of its positive and negative parts, we may
assume without loss of generality that fk ≥ 0 for each k. Also, we may rescale
so that ‖fk‖∞ = 1 for all k.

Given a tree F with r vertices in which each edge has an arbitrary direction,
and for every edge ij ∈ F a (not necessarily symmetric) kernel Wij ∈ W , set

t0
(
F, (Wij)ij∈E(F )

)
:=

∫

Sr

∏

ij∈E(F )

Wij(xi, xj) dµ(x1) · · · dµ(xr). (8)
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Note that we have omitted both the exponential factors and the factors fk(xk)
from (7). As in [7], given W ∈ W let

W (a,b)(x, y) := e−aλW (x)W (x, y)e−bλ′

W (y). (9)

Also, let
W(ij) := fi(x)1/diW (x, y)fj(y)1/dj ,

where di is the degree of vertex i in F . It is shown in [7, Lemma 2.4] that the
map W 7→ W (a,b) is Lipschitz continuous with respect to the cut norm, with
the constant independent of a and b. Since ‖fi‖∞, ‖fj‖∞ ≤ 1, the linear map

W 7→ W(ij) cannot increase the cut norm, so it and the composition W 7→ W
(a,b)
(ij)

are Lipschitz continuous. Noting that

t×isol(F, (fk),W ) = t0
(
F, (W

(1/di,1/dj)

(ij) )ij
)
,

and that the marginals of W
(a,b)
(ij) are at most those of W (a,b) and are hence

bounded by constants depending only on a and b, the rest of the proof of [7,
Theorem 2.3] goes through unchanged.

Lemma 2.1 corresponds roughly to counting tree components of a given size
in a certain random graph by a weight which is a product of the weights of their
vertices. In fact, we wish to count vertices in such trees by a certain weight,
i.e., to count trees by a weight that is the sum of the weights of their vertices.

Given a finite graph F with vertex set {1, . . . , r}, an integrable function
f : S → R, and W ∈ Wsym, let

t+isol(F, f,W ) :=

∫

Sr

r∑

k=1

f(xk)
∏

ij∈E(F )

W (xi, xj)

r∏

k=1

e−λW (xk) dµ(x1) · · · dµ(xr).

(10)

Lemma 2.2. Let F be a tree and f a bounded function on S. Then W 7→
t+isol(F, f,W ) is a bounded map on Wsym that is Lipschitz continuous in the
cut norm. More specifically, there exists a constant C (depending on F only)
such that |t+isol(F, f,W )| ≤ C‖f‖∞ for all W ∈ Wsym, and |t+isol(F, f,W ) −
t+isol(F, f,W

′)| ≤ C‖W −W ′‖�‖f‖∞ for all W,W ′ ∈ Wsym.

Proof. Write t+isol(F, f,W ) as a sum of |F | terms t×isol(F, (fk),W ); in each, one
of the fk is equal to f , and the others are the constant function 1.

Although we shall not use this, let us note a corollary.

Corollary 2.3. Let κn be a sequence of kernels with ‖κn − κ‖� → 0. Then for
each fixed k we have ‖ρk(κn; ·)−ρk(κ; ·)‖L1 → 0, and ‖ρ(κn; ·)−ρ(κ; ·)‖L1 → 0.

Proof. It is not hard to check that for any kernel κ′ and any bounded f we have
∫

S

ρk(κ′;x)f(x) dµ(x) =
∑

T

1

aut(T )
t+isol(T, f, κ

′),

7



where the sum is over all isomorphism classes of trees on k vertices. (This
generalizes (43) in [7]; it is perhaps most easily seen by considering a finite
random graph associated to κ′.) Lemma 2.2 thus gives

∣∣∣∣
∫

S

(ρk(κn;x) − ρk(κ;x))f(x) dµ(x)

∣∣∣∣ ≤ C′‖f‖∞‖κn − κ‖�

for some constant C′. Taking f(x) to be the sign of (ρk(κn;x) − ρk(κ;x)), the
first statement follows.

Turning to the second statement, first note that, summing over k′ ≤ k, we
have

‖ρ≤k(κn; ·) − ρ≤k(κ; ·)‖L1 → 0 (11)

for any fixed k. Let

∆k(κ′) := ρ(κ′) − ρ≤k(κ′) = ‖ρ(κ′;x) − ρ≤k(κ′;x)‖L1 .

From (11) and the triangle inequality, for any k we have

lim sup
n→∞

‖ρ(κn; ·) − ρ(κ; ·)‖L1 ≤ ∆k(κ) + lim sup
n→∞

∆k(κn).

With k fixed, from (11) we have ρ≤k(κn) → ρ≤k(κ), so lim supn→∞ ∆k(κn) ≤
∆k(κ) + lim supn→∞ |ρ(κn)− ρ(κ)|. Theorem 1.9 from [7] tells us that ρ(κn) →
ρ(κ), so this gives lim supn→∞ ∆k(κn) ≤ ∆k(κ), and hence

lim sup
n→∞

‖ρ(κn; ·) − ρ(κ; ·)‖L1 ≤ 2∆k(κ)

for any k. Letting k → ∞, noting that ρ≤k(κ) ր ρ(κ), we have ∆k(κ) → 0,
and the result follows.

We now turn to the random graph equivalent of Lemma 2.2, again using
methods from [7]. In the sequel we will for convenience take (S, µ) to be [0, 1]
with Lebesgue measure, but we will continue to write S and µ to emphasize
that the results easily extend to general spaces S. Let (An) be a sequence of

matrices and κ a kernel on S = [0, 1] with δ�(An, κ) → 0, and let κ′
n = κ

(τn)
An

be
a rearrangement of κAn

chosen so that ‖κ′
n − κ‖� → 0. We write

Sv = Sv,n = τ−1
n ((v − 1)/n, v/n]) (12)

for the subset of S corresponding to the vertex v under this rearrangement.
Given a sequence fn of integrable functions on S, for v ∈ V (Gn) set

fn(v) = n

∫

Sv,n

fn(x) dµ(x), (13)

so fn(v) is the average of fn over Sv. Note that if κ is finite type, fn depends
only on the type, and the rearrangement τ−1

n maps each vertex into a single
type, then fn(v) is simply fn evaluated at the type of v.

8



Lemma 2.4. With the definitions above, if the functions fn are uniformly in-
tegrable, then for each fixed k we have

∣∣∣∣∣∣
1

n

∑

v : |Cv|=k

fn(v) −

∫

S

fn(x)ρk(κ;x) dµ(x)

∣∣∣∣∣∣
p
→ 0,

where Cv is the component of Gn = G(An) containing the vertex v.

(For reader who prefers to define the cut metric via couplings, the corre-
sponding formulation of this lemma concerns functions fn defined on the spaces
on which the kernels κ and κAn

are coupled.)

Proof. We claim that it suffices to consider the case where the fn are uniformly
bounded. Indeed, given any ε > 0, we may find uniformly bounded approxi-
mations f ′

n to fn with ‖f ′
n − fn‖L1 ≤ ε for every n. Applying the uniformly

bounded case, and then letting ε → 0, the result follows. Rescaling, we may
and shall assume that ‖fn‖∞ ≤ 1 for all n.

Using Lemma 2.2 in place of [7, Theorem 2.3], the proof is now essentially
the same as that of [7, Lemma 2.11], mutatis mutandis. We only outline the
changes. Let

Xn = Xn(Gn) :=
1

n

∑

v : |Cv|=k

fn(v).

Adding or deleting an edge of Gn changes Xn by at most 2k‖fn‖∞/n ≤ 2k/n.
It follows that, arguing as in the proof of [7, Lemma 2.8], we may assume that
the matrices An are well behaved, meaning that all diagonal entries are zero,
and the maximum entry of An is o(n) as n → ∞. As in [7], we may then switch
to the Poisson multigraph version of G(An); we omit the details. Using [7,
Lemma 2.10], the contribution to Xn from components Cv that contain cycles
is then op(1). On the other hand, the contribution from components isomorphic
to some particular tree T has expectation

o(1) + (1 + o(1))
t+isol(T, fn, κ

′
n)

aut(T )
;

the argument is as for the corresponding relation (40) in [7]. Continuing as
in [7], but using Lemma 2.2, it follows that |EXn − an| → 0, where an =∫
S
fn(x)ρk(κ;x) dµ(x). Considering sums over pairs of disjoint components,

one obtains |EX2
n − a2n| → 0, giving |Xn − an|

p
→ 0 as claimed.

The corresponding result for the giant component is an immediate conse-
quence; this is the natural analogue of [5, Theorem 9.10] in the present context.

Theorem 2.5. Let (An) be a (deterministic or random) sequence of matrices

and κ an irreducible kernel on [0, 1] with δ�(An, κ)
p
→ 0, let κ′

n = κ
(τn)
An

be a

9



(random) rearrangement of κAn
chosen so that ‖κ′

n − κ‖�
p
→ 0, and let fn be a

uniformly integrable sequence of functions fn : [0, 1] → R. Then
∣∣∣∣∣∣
1

n

∑

v∈C1(Gn)

fn(v) −

∫

S

fn(x)ρ(κ;x) dµ(x)

∣∣∣∣∣∣
p
→ 0,

where Gn = G(An), and fn(v) is defined by (12) and (13).

Proof. As usual, by conditioning on the sequence (An) (and now also on the
τn), we may assume that the An are deterministic and ‖κ′

n − κ‖� → 0.
Lemma 2.4 extends immediately to a corresponding result summing over all

components of size 1 ≤ k ≤ K for any fixed K, and hence for K = K(n) →
∞ sufficiently slowly. But the results of [7] show that only op(n) vertices in
components of size more than K(n) are not in C1, and conversely, trivially, at
most K(n) = o(n) vertices of C1 are not in such components, so we obtain

∣∣∣∣∣∣
1

n

∑

v/∈C1(Gn)

fn(v) −

∫

S

fn(x)(1 − ρ(κ;x)) dµ(x)

∣∣∣∣∣∣
p
→ 0.

It remains only to note that

1

n

∑

v∈V (Gn)

fn(v) =

∫

S

fn(x) dµ(x)

by definition of fn(v).

We shall need the following simple observation concerning the cut norm. In
this we write ‖κ‖�,µ for the cut norm of κ defined with respect to a measure µ.

Lemma 2.6. Let κ be a kernel on a measure space (S, µ) with 0 < µ(S) < ∞,
and let h be a non-negative measurable function on (S, µ). Let ν be the measure
defined by dν(x) = h(x) dµ(x). Then

‖κ‖�,ν ≤ ‖h‖2∞‖κ‖�,µ.

Proof. Essentially immediate from (1). Indeed, for any f , g with ‖f‖∞, ‖g‖∞ ≤
1,

∣∣∣
∫

S2

f(x)κ(x, y)g(y) dν(x) dν(y)
∣∣∣

=
∣∣∣
∫

S2

f(x)h(x)κ(x, y)g(y)h(y) dµ(x) dµ(y)
∣∣∣

= ‖h‖2∞

∣∣∣
∫

S2

f̃(x)κ(x, y)g̃(y) dµ(x) dµ(y)
∣∣∣,

where f̃(x) = f(x)h(x)/‖h‖∞ has ‖f̃‖∞ ≤ 1, and similarly for g̃. The final
integral is bounded by ‖κ‖�,µ by definition.

10



Using Theorem 2.5, it is not hard to prove Theorem 1.1.

Proof of Theorem 1.1. Given a kernel κ and real number δ, let

mδ(κ) = sup
µ(A)≤δ

∫

A×S

κ(x, y) dµ(x) dµ(y),

so mδ(κ) is the integral of the marginal of κ over the set with measure δ where
this marginal is maximal. Note that

|mδ(κ1) −mδ(κ2)| ≤ δ�(κ1, κ2).

Also, if κ is integrable, then mδ(κ) → 0 as δ → 0.
Suppose now that κ is irreducible, and, conditioning as usual, that the An

are deterministic with δ�(An, κ) → 0. Suppose also that ρ(κ) > 0; otherwise,

κ̂′ = κ, while by (5) the matrices Ãn are obtained from An by deleting op(n)
rows and columns, and the result follows easily.

Let κ′
n = κ

(τn)
n be a rearrangement of κAn

chosen so that ‖κ′
n−κ‖� → 0. As

before, let Sv = Sv,n = τ−1
n ((v − 1)/n, v/n]) be the subset of S corresponding

to a vertex v of Gn under the rearrangement τn.
Let νn be the random measure that agrees with Lebesgue measure µ on each

Sv, v /∈ C1, and is zero otherwise. Noting that νn(S) = (1 − |C1|/n)
p
→ µ̂(S) =

1 − ρ(κ), let ν′n = νn/νn(S) be the rescaled version of νn.
Although it may appear that we have done our best to disguise this fact, the

kernel κ′
n on the measure space (S, ν′n) is simply a rearrangement of the kernel

κ eAn
, where Ãn is the submatrix of An obtained by deleting rows and columns

corresponding to vertices in C1(Gn). Since δ� is unchanged by rearrangement,
indicating now the measure on the space (always S) on which our kernels are
defined, our aim is exactly to show that

δ�((κ′
n, ν

′
n), (κ, µ̂′))

p
→ 0. (14)

Fix ε > 0. From the comments at the start of the proof there is some δ such
that mδ(κ) < ε/2, and then

mδ(κ
′
n) < ε (15)

for n large enough.
Let κf be a finite-type kernel approximating κ within ε in the L1 norm, and

hence in δ�:
‖κf − κ‖� ≤ ‖κf − κ‖L1 ≤ ε, (16)

with κf constant on the sets Ai × Aj for some partition A1, . . . , Ar of S into
measurable sets.

Fix (for the moment) 1 ≤ i ≤ r. Applying Theorem 2.5 with every fn equal
to the indicator function of Ai, we see that

∑

v∈C1

µ(Sv ∩ Ai)
p
→

∫

Ai

ρ(κ;x) dµ(x).

11



Let
νn,i =

∑

v/∈C1

µ(Sv ∩ Ai) = µ(Ai) −
∑

v∈C1

µ(Sv ∩ Ai).

Then, recalling (4), we have

νn,i
p
→

∫

Ai

(1 − ρ(κ;x)) dµ(x) = µ̂(Ai)

for each i, and hence

∆ :=

r∑

i=1

|νn,i − µ̂(Ai)|
p
→ 0.

Since our aim is to prove an ‘in probability’ result, coupling appropriately,
we may condition on the random graphs Gn, and assume that ∆ → 0. Note
that all quantities we consider are now deterministic.

Recall that ν′n = νn/νn(S) is the rescaled version of νn, and µ̂′ = µ̂/(1 −
ρ(κ)) = µ̂/µ̂(S) is the rescaled version of µ̂. Since νn(Ai) = νn,i, it follows that

∆′ :=

r∑

i=1

|ν′n(Ai) − µ̂′(Ai)| → 0.

Let ν∗n be obtained by ‘tweaking’ ν′n so that ν∗n(Ai) = µ̂′(Ai) for every i. More
precisely, recalling that the unnormalized measure νn had a 0/1-valued density
function f(x) = dνn/ dµ, we change f on a set of measure ∆ to obtain a 0/1-
valued f ′ with

∫
Ai

f ′(x) dµ(x) = µ̂′(Ai), and use f ′ to define the (normalized)

measure ν∗n. Since the normalizing factors are bounded (in the limit), it is not
hard to check that for some constant C we have

δ�((κ′
n, ν

′
n), (κ′

n, ν
∗
n)) ≤ 2mC∆(κ′

n)

for all large enough n. Indeed, we may couple the measures ν′n and ν∗n to agree
with probability at least 1−C∆. Alternatively, we may rearrange the kernels to
differ only where one or both coordinates fall into some set of measure at most
C∆. (If we had

∫
f =

∫
f ′, we could take this set to be simply the set where f

and f ′ differ.)
Since ∆ → 0, (15) shows that the right hand side above is O(ε). Using κf ,

it is now easy to complete the proof. Note that ‖κ′
n−κf‖� ≤ ‖κ′

n−κ‖� + ‖κ−
κf‖� ≤ ε + o(1), from (16) and our convergence assumption. By Lemma 2.6,
we thus have

δ�((κ′
n, ν

∗
n), (κf , ν

∗
n)) ≤ O(ε) + o(1).

Since κf is constant on each set Ai × Aj , the kernel κf ‘only cares how much
measure falls in each Ai’, and we have

δ�((κf , ν
∗
n), (κf , µ̂

′)) = 0.

But by Lemma 2.6 again,

δ�((κf , µ̂
′), (κ, µ̂′)) ≤ ‖κf − κ‖�,bµ′ ≤ ‖κf − κ‖� ≤ ε.

12



Putting the last four displayed inequalities together and using the triangle in-
equality, (14) follows.
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