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Equivalence of a random intersection graph and G(n, p)
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Abstract

We solve the conjecture of Fill, Scheinerman and Singer-Cohen posed in [7] and
show equivalence of sharp threshold functions of a random intersection graph G (n,m, p)
with m ≥ n3 and a graph G (n, p̂) with independent edges. Moreover we prove sharper
equivalence results under some additional assumptions.
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1 Introduction

In a random intersection graph there is a set of vertices V and an auxiliary set of features
W. Each vertex v ∈ V is assigned a subset of features W (v) ⊆ W according to a given
probability measure. Two vertices v1, v2 are adjacent in a random intersection graph if and
only if W (v1) ∩W (v2) 6= ∅. A general model of a random intersection graph, in which each
vertex is assigned a subset of features W (v) ⊆ W chosen uniformly at random from all
d–element subsets, where the cardinality d is determined according to the arbitrarily given
probability distribution, was introduced in [8].

We concentrate on analysing properties of a random intersection graph in which the car-
dinality d is chosen according to the binomial distribution. Namely, we investigate properties
of a random intersection graph G (n,m, p) introduced in [10, 14]. G (n,m, p) is a graph with
number of vertices |V| = n, number of features |W| = m, in which each feature w is added to
W (v) with probability p independently for all v ∈ V and w ∈ W (i.e. Pr {w ∈ W (v)} = p).
However, to some extent, the results obtained may be generalised to other random intersec-
tion graph models due to equivalence theorems proved in Section 4 in [3].

The general model of a random intersection graph has attracted lately much attention,
mainly due to its wide applications such as: ”gate matrix layout” for VLSI design (see e.g.
[10]), cluster analysis and classification (see e.g. [8]), analysis of complex networks (see e.g.
[6, 2]), secure wireless networks (see e.g. [13, 3]) and epidemics ([5]). On the wave of inter-
est many articles concerning G (n,m, p) have appeared. Therefore an important issue is to
indicate for which parameters G (n,m, p) differs significantly from well known random graph
models and as a consequence is worth studying. The first article on the topic was written by
Scheinerman, Fill and Singer–Cohen [7]. In [7] the authors described differences and similari-
ties between G (n,m, p) and random graph G(n, p̂) in which each edge appears independently
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with probability p̂ (p̂ was set to be approximately Pr {(v1, v2) ∈ E(G (n,m, p))}). The main
aim of this article is to extend results obtained by Scheinerman, Fill and Singer–Cohen and
to solve their conjecture.

The main theorem in [7] states that for m = ⌊nα⌋ and α > 6 graphs G(n, p̂) and G (n,m, p)
have asymptotically the same properties. Moreover, it is pointed out that the theorem may
be extended to smaller values of α if additional assumptions about p are made. The proof
is based on the fact that for large α and relevant values of p, with probability tending to
one as n → ∞, there are no features assigned to more than two vertices and therefore the
dependency between edges is asymptotically negligible. The authors of [7] suggest that the
equivalence theorem is true for all properties for 3 ≤ α ≤ 6, i.e. in the case where the
number of vertices assigned to each feature is still small.

The above mentioned result and conjecture are consistent with a simple observation
that the number of vertices to which a given feature w is assigned has essential impact on
dependency between edge appearance in G (n,m, p). An edge set of a random intersection
graph G (n,m, p) is a union of cliques with vertex sets V (w) := {v ∈ V : w ∈ W (v)},
w ∈ W. Therefore we may divide the set of edges of G (n,m, p) according to the size of the
clique in which the edges are contained. Let k ≥ 2. We denote by Gk (n,m, p) a graph with
vertex set V and edge set {(v1, v2) : ∃wv1, v2 ∈ V (w) and |V (w)| = k}. Alternatively we
may define Gk (n,m, p) = G(Hk (n,m, p)), where Hk (n,m, p) is a hypergraph with vertex
set V and edge set {(v1, v2, . . . , vk) : ∃wV (w) = {v1, v2, . . . , vk}} and for a hypergraph H a
graph GH is a graph with the same vertex set as H and edge set consisting of those pairs of
vertices which are contained in at least one edge of H. Under this notation E(G (n,m, p)) =
⋃m

k=2E(GHk (n,m, p)) =
⋃m

k=2E(Gk (n,m, p)). In [7] it is shown that for some m and p
graphs G (n,m, p), G2 (n,m, p), G(n, p̂) are asymptotically almost the same. To be precise
Gk (n,m, p) are empty for k ≥ 3 with probability tending to one as n → ∞ (we say with
high probability) and the edges in G2 (n,m, p) are almost independent.

The authors in [7] support the conjecture for 3 ≤ α ≤ 6 by results concerning threshold
functions for some properties of G (n,m, p). However, it should be pointed out that if there
exists C > 0 such that

(1) p ≥ C
(

1/n 3
√
m
)

,

then the expected number of edges in G3 (n,m, p) tends to a constant or even to infinity.
Therefore one may expect that the structure of G (n,m, p) and G (n, p̂) differs. Namely,
though the number of triangles in G2 (n,m, p) may make dominating contribution, the impact
of triangles contained in G3 (n,m, p) on the structure of a random intersection graph cannot
be omitted. As an example we may state the fact that for α = 3 the number of triangles in
G (n,m, p) and G(n, p̂) on the threshold of appearance (i.e. for p = c/n2 and p̂ ∼ mp2 = c2/n)
has the Poisson distribution with parameters (c3 + c6)/3! and c6/3!, respectively (see [15]).
For larger values of α the expected number of triangles in G (n,m, p) and G(n, p̂) may also
differ significantly. The same is true for cliques of size four contained in G4 (n,m, p). In
fact Gk (n,m, p) should be rather compared with GHk (n, p̂k), where p̂k is approximately the
probability that for given {v1, . . . , vk} ⊆ V there exists w such that V (w) = {v1, . . . , vk},
Hk (n, p̂k) is a k-uniform random hypergraph with each edge appearing independently with
probability p̂k and GHk (n, p̂k) is defined as above. The above observation leads us to the
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conclusion that the equivalence theorem may not be stated for 3 ≤ α ≤ 6 in such a general
form as it was for α > 6. Therefore we draw our attention to the case of monotone properties.
The concept of restriction of the equivalence theorems to the class of monotone properties
has already been developed while examining the equivalence of G(n, p̂) and G(n,M) (see
[4, 9, 12]).

The article is organised as follows. In Section 2 we state and discuss the results. Basic
definitions, auxiliary facts and lemmas are given in Section 3. Section 4 includes the proof
of a lemma which relates G (n,m, p) to G (n, p̂). The proofs of the main theorems are given
in Section 5. For completeness, the last section called Appendix is added. It includes long
proofs which have been omitted for clarity of considerations.

Throughout the article all limits are taken as n → ∞. We also use standard Landaus
notation O(·),Θ(·),Ω(·), o(·),∼ (see for example [9]) and we use the phrase ’with high prob-
ability’ to say with probability tending to one as n → ∞.

2 Result

In our considerations we draw our attention to G (n,m, p) for

(2) Ω

(

1

n 3
√
m

)

= p = O

(
√

lnn

m

)

.

For values of p significantly larger than
√

lnn
m

a graph G (n,m, p) is with high probability the

complete graph on n vertices (see [7, 14]). Moreover if

p = o

(

1

n 3
√
m

)

then with high probability Gk (n,m, p) are empty for all k ≥ 3. Therefore a slight modification
of the proof from [7] implies that G (n,m, p) and G(n, p̂) are asymptotically equivalent for
all graph properties. In fact the following equivalence theorem may be stated.

Theorem 1. Let a ∈ [0; 1], A be any graph property, p = o
(

1
n 3
√
m

)

and

p̂ = 1 − exp
(

−mp2(1 − p)n−2
)

.

Then
Pr {G (n, p̂) ∈ A} → a

if and only if
Pr {G (n,m, p) ∈ A} → a.

The main result of the article implies equivalence of the models for monotone properties.
Most important properties such as connectivity, having the largest component of size at
least k, containment of a perfect matching or containment of a given graph as a subgraph
are included in the wide family of monotone properties. Let G be a family of graphs with
vertex set V. We call A ⊆ G an increasing (decreasing) property if A is closed under
isomorphism and G ∈ A implies G′ ∈ A for all G′ such that E(G) ⊆ E(G′) (E(G′) ⊆ E(G)).
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Theorem 2. Let a ∈ [0; 1], m = nα for α ≥ 3 and A be any monotone property.

(i) Let p be as in (2) and 1/n 3
√
m = o(p) for α = 3.

If
Pr
{

G
(

n, 1 − exp(−mp2(1 − p)n−2)
)

∈ A
}

→ a

and for all ε = ε(n) → 0

Pr
{

G
(

n, (1 + ε)(1 − exp(−mp2(1 − p)n−2))
)

∈ A
}

→ a,

then
Pr {G (n,m, p) ∈ A} → a.

(ii) Let p̂ = p̂(n) = Ω(n−2m1/3) for α > 3, n−2m1/3 = o(p̂) for α = 3 and p̂ ∈ [0; 1) be a
sequence bounded away from one by a constant.
If for all ε = ε(n) → 0

Pr







G



n,m,

√

−
ln(1 − p̂

1+ε
)

m



 ∈ A







→ a

and

Pr

{

G
(

n,m,

√

− ln(1 − p̂)

(1 − ε)m

)

∈ A
}

→ a

then
Pr {G (n, p̂) ∈ A} → a.

In (i) and (ii) for α = 3 we have to exclude the case p = Θ(1/n
√
m) and p̂ = Θ(n−2m1/3),

since the thesis is not true on the threshold of triangle appearance (see [15]). In relation to
assumptions of (ii), it should be pointed out that the case p̂(n) = o(n−2m1/3) is included in
Theorem 1.

The method of the proof is strong enough to show sharper results in many cases. For
example, for α > 3 a function ε(n) may be replaced by 1/nδ, where δ is a constant depending
on α. We state here two theorems as an example of how tight the results may be, if we make
some additional assumptions.

Theorem 3. Let a ∈ [0; 1], A be any monotone property , m = nα for α > 4 and p be as in
(2). Let

p̂− = 1 − exp(−mp2(1 − p)n−2);

p̂+ = 1 − exp(−mp2(1 − p)n−2) + 30 3

√

mp3.

If
Pr{G (n, p̂−) ∈ A} → a and Pr{G (n, p̂+) ∈ A} → a

then
Pr{G (n,m, p) ∈ A} → a.
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Theorem 4. Let a ∈ [0; 1], A be any monotone property, m = nα for α > 10/3 and p be as
in (2). Let

p̂− = 1 − exp(−mp2(1 − p)n−2);

p̂+ =























1 − exp(−mp2(1 − p)n−2) + 90 3

√

mp3,

for Ω
(

n−1m−1/3
)

= p = o
(

n−1m−1/4
)

;

1 − exp(−mp2(1 − p)n−2) + 90 3

√

mp3 + 471 6

√

mp4,

for Ω
(

n−1m−1/4
)

= p = O
(

m−1/2 ln1/2 n
)

.

If
Pr{G (n, p̂−) ∈ A} → a and Pr{G (n, p̂+) ∈ A} → a

then
Pr{G (n,m, p) ∈ A} → a.

3 Auxiliary definitions, inequalities and facts

3.1 Coupling

In the proofs a coupling argument is frequently used. Let < P,≺> be a countable partially
ordered set. Usually P stands for a subset of N with relation ≤, a Cartesian product Nt with
relation (x1, . . . , xt) ≺ (y1, . . . , yt) ⇔ ∀1≤i≤txi ≤ yi or a set of hypergraphs G on a given set
of vertices with relation ⊆ of being a subhypergraph. In the article the set G is either the set
of all graphs or hypergraphs on n vertices or the set of k–partite graphs or hypergraphs with
partitions with n vertices. To omit unnecessary formalities it is not directly stated which
partially ordered set is considered, when it is obvious from the context. Let X and Y be two
random variables with values in P. We write

X 4q Y,

if there exists a coupling (X, Y ) of the random variables such that X ≺ Y with probability
q (i.e. if there exists a probability space Ω and two random variables X ′ and Y ′, such that
X ′ and Y ′ are both defined on Ω, have probability distribution as X and Y , respectively,
and X ′ ≺ Y ′ with probability q). We use the fact that such coupling exists if and only if
there exists a probability measure µ : P × P → [0; 1] such that for any set A ⊆ P we have
µ(A× P) = Pr{X ∈ A} and µ(P× A) = Pr{Y ∈ A} and µ({(x, y) ∈ P× P; x ≺ y}) = q).

Now two useful facts are stated. The simple proofs are added for completeness of con-
siderations.

Fact 1. Let P be a countable partially ordered set and X and Y be random variables with
values in P. If

(3) X 41−q1 Y and Y 41−q2 Z,

then for some q ≤ q1 + q2
X 41−q Z.
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Proof. Let µ1, µ2 : P× P → [0; 1] be probability measures associated with couplings existing
by (3). Let P∗ = {y ∈ P : Pr {Y = y} 6= 0}. Define

µ3 : P× P
∗ × P → [0; 1], µ3(x, y, z) =

µ1(x, y)µ2(y, z)

Pr {Y = y} ;

µ : P× P → [0; 1], µ(x, z) = µ3({x} × P
∗ × {z}).

Then for A1 = {(x, y, z) : x ≺ y} and A2 = {(x, y, z) : y ≺ z} we have

µ({(x, z) : x ≺ z}) = µ3({(x, y, z) : x ≺ z}) ≥
≥ µ3(A1 ∩ A2) ≥ µ3(A1) + µ3(A2) − 1 = 1 − (q1 + q2).

Fact 2. If (X1, . . . , Xt) and (Y1, . . . , Yt) are vectors of independent random variables and

(4) Xi 4qi Yi, for all 1 ≤ i ≤ t,

then
(X1, . . . , Xt) 4q (Y1, . . . , Yt)

and
t
∑

i=1

Xi 4q′

t
∑

i=1

Yi,

where q, q′ ≥∏k
i=1 qi.

Proof. For all 1 ≤ i ≤ t, let µi : P × P → [0; 1] be a probability measure associated with a
coupling existing by Xi 4qi Yi. Simple calculation shows that µ : Pt × Pt → [0; 1] such that

µ(x1, . . . , xt, y1, . . . , yt) =
t
∏

i=1

µi(xi, yi)

implies the thesis.

3.2 Total variation distance

Let X and Y be random variables with values in a countable set P. We define the total
variation distance between X and Y by

dTV (X, Y ) = max
A⊆P

|Pr{X ∈ A} − Pr{Y ∈ A}| =
1

2

∑

x∈P
|Pr{X = x} − Pr{Y = x}|.

Now let P = G be a set of hypergraphs (graphs) with a given vertex set. Let G1 and G2 be
two random variables with values in G. Since

dTV (G1,G2) =
1

2

∑

G∈G
|Pr{G1 = G} − Pr{G2 = G}|,

it is simple to construct a probability measure µ on G × G with marginal distributions as
distributions of G1 and G2 such that µ{(G,G) : G ∈ G} = 1 − 2dTV (G1,G2). This implies:
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Fact 3.

G1 4q G2 and G2 4q′ G1,

where q, q′ ≥ 1 − 2dTV (G1,G2).

The following useful facts concerning total variation distance are Facts 3 and 4 in [7].

Fact 4. Let A and A′ be random variables with values in the same set. If there exist random
variables B and B′ such that for all possible b the distribution of A under condition B = b
and the distribution of A′ under condition B′ = b are the same, then

dTV (A,A′) ≤ 2dTV (B,B′) .

Fact 5. Let A and A′ be two random variables. If there exists a probability space on which
random variables B and B′ are both defined and have probability distribution as A and A′,
respectively, then

dTV (A,A′) ≤ Pr{B 6= B′}.
We also use a standard result (see for example [1] equation (1.23)).

Fact 6. Let A be a random variable with the binomial distribution Bin(n̂, p̂) and let A′ be a
random variable with the Poisson distribution Po(n̂p̂). Then

dTV (A,A′) ≤ p̂.

3.3 Coupon collector model

We define two auxiliary random variables, which are generalised versions of random variables
defined in [7]. Let K ≥ 2 be a given constant integer, M be any random variable with
values in N, n = (n2, . . . , nK) be a vector of positive integers and P = (P2, . . . , PK) be a
vector of nonnegative reals such that

∑K
k=2 nkPk ≤ 1. Assume now that we have

∑K
k=2 nk

coupons
⋃K

k=2{c
(k)
1 , . . . , c

(k)
nk
} and one blank coupon d0. We make M independent draws, with

replacement, such that in each draw

Pr{c(k)i is chosen} = Pk, for 2 ≤ k ≤ K, 1 ≤ i ≤ nk;

Pr{d0 is chosen} = 1 −
K
∑

k=2

nkPk.

In this scheme we define R
(k)
i (M) to be a random variable denoting the number of times that

a coupon c
(k)
i was chosen and

X
(k)
i (M) =

{

1 if R
(k)
i (M) ≥ 1;

0 otherwise.

The first auxiliary random variable is

(5) X(M) = X(n, P ,M) = (X(2)(M), . . . , X(K)(M)), where

7



X(k)(M) =

nk
∑

i=1

X
(k)
i (M).

The second random variable is

(6) Y = Y (n, P ′) = (Y (2), . . . , Y (K))

where P ′ = (P ′
2, . . . , P

′
K) is a vector such that P ′

k ≤ 1 for all 2 ≤ k ≤ K and Y (k), 2 ≤ k ≤ K,
are independent random variables with the binomial distribution Bin(nk, P

′
k).

A simple observation stated below is a generalisation of a part of the proof of Claim 1 in [7]
and may be shown by careful calculation.

Fact 7. Let M be a random variable with the Poisson distribution Po(λ), then R
(k)
i (M),

2 ≤ k ≤ K and 1 ≤ i ≤ nk, are independent random variables with the Poisson distribution
Po(λPk). Moreover X(k)(M), 2 ≤ k ≤ K, are independent random variables with the bino-
mial distribution Bin(nk, 1−exp(−λPk)). Therefore X(M) and Y have the same distribution
for P ′

k = 1 − exp(−λPk).

It is also simple to show the following fact.

Fact 8. Let M and M ′ be random variables with values in N. If

M 41−o(1) M
′,

then
X(M) 41−o(1) X(M ′).

3.4 Chernoff’s bound

For the proofs of Chernoff’s bound see Theorem 2.1 in [9].

Lemma 1. Let X be a random variable with the binomial distribution and λ = EX. Let
a ≥ λ, then

Pr {X ≥ a} ≤ exp
(

−λ− a ln
a

λ
+ a
)

After careful calculation we obtain the following lemma.

Lemma 2. Let t ≥ 1 be an integer and Xn be a sequence of random variables with the
binomial distribution, such that EXn = λn. Let ε > 0 and ω(n) be any function tending to
infinity. If

(7) an = an(λn, t, ε) =











(t + ε) lnn/(ln lnn− lnλn), for λn = o(lnn);

ω(n)λn, for λn = Θ(lnn);

(1 + ε)λn, for lnn = o(λn),

then
Pr {Xn ≥ an} = o

(

n−t
)

.
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Lemma 3. Let Xn be a sequence of random variables with the binomial distribution. Then

Pr {Xn ≤ EXn − tn} ≤ exp

(

− t2n
2EXn

)

, for tn ≥ 0;

Pr {Xn ≥ EXn + tn} ≤ exp

(

− 3t2n
2(3EXn + tn)

)

, for tn ≥ 0.

(8)

It is also possible to formulate the version of Chernoff’s bound for random variables with
the Poisson distribution.

Lemma 4. Let Xn be a sequence of random variables with the Poisson distribution Po(λ)
and i > 0 be any constant, then

Pr {Xn ≤ EXn − tn} ≤ exp

(

− t2n
2EXn

)

+ o

(

1

ni

)

, for tn ≥ 0;

Pr {Xn ≥ EXn + tn} ≤ exp

(

− 3t2n
2(3EXn + tn)

)

+ o

(

1

ni

)

, for tn ≥ 0.

(9)

Proof. It follows by (8) applied to random variable with the binomial distribution Bin(λni+1, 1/ni+1),
definition of the total variation distance and Fact 6.

4 Coupling of G (n,m, p) and G (n, p̂)

4.1 Relation between Hk (n,m, p) and Hk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

As it is pointed out in Introduction, in the proof G (n,m, p) is related to G (n, p̂) trough
Gk (n,m, p) = GHk (n,m, p) and GHk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

. In the subsection a
lemma, which shows relations between Hk (n,m, p) and Hk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

, is
proved.

Lemma 5. Let K ≥ 2 be a constant integer and p = o(1/n), then

dTV

(

K
⋃

k=2

Hk (n,m, p) ,
K
⋃

k=2

Hk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

)

= o(1),

where Hk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

are independent random hypergraphs.

Let, for all 2 ≤ k ≤ K,

pk = pk(1 − p)n−k, nk =

(

n

k

)

, Pk =
pk

∑K
k=2 pknk

and P ′
k = 1 − exp(−mpk),

M have the binomial distribution Bin(m,P ) (P =
∑K

k=2 pknk), X(M) be defined as in (5)
and Y be defined as in (6). Then for all 2 ≤ k ≤ K

|E(Hk (n,m, p))| = X(k)(M) and |E(Hk (n, 1 − exp(−mpk)))| = Y (k).

9



Moreover for any two hypergraphs H and H ′, such that for all k ≥ 2 the number of edges of
cardinality k in H and H ′ is the same, we have

Pr

{

K
⋃

k=2

Hk (n,m, p) = H

}

= Pr

{

K
⋃

k=2

Hk (n,m, p) = H ′

}

and

Pr

{

K
⋃

k=2

Hk (n, 1 − exp(−mpk)) = H

}

= Pr

{

K
⋃

k=2

Hk (n, 1 − exp(−mpk)) = H ′

}

.

Therefore, by Fact 4 a following lemma implies Lemma 5.

Lemma 6. Let K ≥ 2 be a constant integer. Let p = o(1/n), M be a random variable
with the binomial distribution Bin(m,

∑K
k=2

(

n
k

)

pk), pk = pk(1 − p)n−k, X(M) be defined as

in (5) for nk =
(

n
k

)

and Pk = pk/(
∑K

k=2 pknk). Let moreover Y be defined as in (6) for
P ′
k = 1 − exp(−mpk). Then

dTV (X(M), Y ) = o(1).

In fact, Lemma 6 is a stronger and more general version of Claim 1 from [7]. In the proof
the main idea of the proof of Claim 1 from [7] is used. However, a modification of the choice
of M and M ′ enables us to extend the result for α ≤ 4.

Proof. We replace the binomial random variable M with a Poisson random variable M ′

with the same expected value m
∑K

k=2

(

n
k

)

pk. By Fact 7 the random variables X
(j)
i (M ′) are

independent and
Pr{X(k)

i (M ′) = 1} = 1 − exp(−mpk).

Therefore in X(M ′) = (X(2)(M ′), . . . , X(K)(M ′)), the random variables X(2)(M ′), . . . , X(K)(M ′)
are independent with the binomial distribution Bin(n2, 1 − exp(−mp2)), . . . ,Bin(nK , 1 −
exp(−mpK)), respectively. By definition of Y , Facts 4 and 6 we have

dTV (Y,X(M)) = dTV (X(M ′), X(M)) ≤ 2dTV (M ′,M) ≤

≤ 2

K
∑

k=2

(

n

k

)

pk = O

(

K
∑

k=2

nkpk

)

= o(1).

4.2 Couplings of GHk (n, q) and a graph with independent edges

In view of lemma shown in previous subsection there is a relation between
⋃K

k=2 Gk (n,m, p)

and
⋃K

k=2GHk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

. The second importand part of the proof of

the main theorems is to relate
⋃K

k=2GHk

(

n, 1 − exp(−mpk(1 − p)n−k)
)

to a graph with
independent edges.

10



Let

(10) an(q) =







































6 for nq2 = O(n−1/2);

3 lnn/(− lnnq2 + ln lnn) for nq2 = o(1) and o(nq2) = n−1/2;

3 lnn/ ln lnn for nq2 = Θ(1);

3 lnn/(ln lnn− 3 lnnq2) for nq2 → ∞ and nq2 = o( 3
√

lnn);

ω(n)n3q6, where ω(n) → ∞ for nq2 → ∞ and nq2 = Θ(
3
√

lnn)

cn3q6, where c > 1 for nq2 → ∞ and o(nq2) = 3
√

lnn;

In this subsection three following lemmas are proved.

Lemma 7. Let c3 > 2 · 3/ 3
√

3!, q = Ω(n−1) and q = o(n−3/7).

GH3

(

n, q3
)

41−o(1) G (n, an(c3q)c3q) ,

where an(q) is defined as in (10).

Lemma 8. Let c4 >
3
√

15 · 3 · 4/ 6
√

4!, q = Ω(n−2/3) and q = o(n−3/7).

GH4

(

n, q6
)

41−o(1) G (n, an(c4q)c4q) ,

where an(q) is defined as in (10).

Lemma 9. Let c5 >
6
√

22 · 3 · 53 · 4 · 5/ 10
√

5!, q = Ω(n−1/2) and q = o(n−3/7).

GH5

(

n, q10
)

41−o(1) G (n, an(c5q)c5q) ,

where an(q) is defined as in (10).

The following fact shows that the problem reduces to a k–partite case. First let us
introduce additional notation. Let X1, . . . ,Xk be disjoint n-element sets and r ∈ [0; 1]. We
define H(k) (n, r) to be a hypergraph with vertex set

⋃k
i=1Xk and edge set being the random

subset of E := {(x1, . . . , xk) : ∀1≤i≤k xi ∈ Xi} such that each element from E is added
to E(H(k) (n, r)) independently with probability r. Let moreover G(k) (n, r) be a random
k–partite graph with k-partition (X1, . . . ,Xk) and each edge appearing with probability r.

Fact 9. Let an = Ω(1). If

(11) GH(k)
(

n, r(k

2
)
)

41−o(1) G
(k) (n, anr) ,

then,

GHk

(

n, 1 − (1 − r(k

2))k!
)

41−o(1) G
(

n, 1 − (1 − anr)k(k−1)
)

and if anr = o(1), then for any constant c > k(k − 1)/(k!)1/(
k

2
)

GHk

(

n, r(k

2
)
)

41−o(1) G (n, c anr) .

11



Proof. Let Xi = {x(i)
1 , . . . , x

(i)
n }, for 1 ≤ i ≤ k, and V = {v1, . . . , vn}. For a given in-

stance of H(k)
(

n, r(k
2
)
)

(or G(k) (n, anr)) one may construct an instance of a hypergraph

Hk

(

n, 1 − (1 − r(k2))
)

(or a graph G
(

n, 1 − (1 − anr)k(k−1)
)

) with vertex set V by merging

all vertices x
(i)
j , 1 ≤ i ≤ k, into vj, for all 1 ≤ j ≤ n , and deleting edges with less then k (or

2) vertices.

Therefore three following lemmas imply Lemmas 7, 8 and 9.

Lemma 10. Let q = Ω(n−1) and q = o(n−1/3).

GH(3)
(

n, q3
)

41−o(1) G
(3) (n, an(q)q) ,

where an(q) is defined as in (10).

The above lemma is a generalisation of Theorem 1.7 from [11], where it was stated for
(lnn/n2)1/3 = o(q), q = o(n−3/5) and an = 17.

Lemma 11. Let q = Ω(n−2/3), c′4 >
3
√

15 and q = o(n−2/5).

GH(4)
(

n, q6
)

41−o(1) G
(4) (n, an(c′4q)c′4q) ,

where an(q) is defined as in (10).

Lemma 12. Let q = Ω(n−1/2), c′5 >
6
√

22 · 3 · 53 and q = o(n−2/5).

GH(5)
(

n, q10
)

41−o(1) G
(5) (n, an(c′5q)c′5q) ,

where an(q) is defined as in (10).

For clarity of considerations long proofs of Lemmas 10, 11 and 12 are left to Appendix.

4.3 Main coupling lemma

Lemma 13. Let an(q) be defined as in (10). Moreover let c3 > 2 ·3/ 3
√

3!, c4 >
3
√

15·3 ·4/ 6
√

4!,

c5 >
6
√

22 · 3 · 53 · 4 · 5/
10
√

5!, qk = (1 − exp(−mpk(1 − p)n−k))1/(
k

2
), for k = 2, 3, 4, 5 and

p̂− = q2(12)

p̂+ =



























































q2 + an(c3q3)c3q3, for p = Ω(n−1m−1/3) and

p = o(min{n−1m−1/4, n−3/7m−1/3});

q2 +
∑4

k=3 an(ckqk)ckqk, for p = Ω(n−1m−1/4) and

p = o(min{n−1m−1/5, n−3/7m−1/3,

n−9/14m−1/4});

q2 +
∑5

k=3 an(ckqk)ckqk, for p = Ω(n−1m−1/5) and

p = o(min{n−1m−1/6, n−3/7m−1/3,

n−9/14m−1/4, n−6/7m−1/5}).

(13)

Then
G (n, p̂−) 41−o(1) G (n,m, p) and G (n,m, p) 41−o(1) G (n, p̂+) .

12



Proof. In the statement of the lemma we have 3 different values of p̂+. They correspond
to three cases: H4 (n,m, p) is empty with high probability, H5 (n,m, p) is empty with high
probability, H6 (n,m, p) is empty with high probability. We prove Lemma 13 in all three
cases at the same time. The proof differs only by the value of K, which is 3, 4 and 5 in the
first, second and third case, respectively.

Let m = nα and qk = (1− exp(−mpk(1− p)n−k))1/(
k

2
). We prove that under assumptions

of Lemma 13 there exists a sequence of couplings

G (n, q2) 41−o(1)(14)

G2 (n,m, p) 41 G (n,m, p) 41−o(1)

K
⋃

k=2

Gk (n,m, p)(15)

41−o(1)

K
⋃

k=2

GHk

(

n, q
(k

2
)

k

)

(16)

41−o(1) G (n, q2) ∪
(

K
⋃

k=2

G (n, an(ckqk)ckqk)

)

(17)

41 G

(

n, q2 +
K
∑

k=3

an(ckqk)ckqk

)

.(18)

Here

GH2

(

n, q
(2

2
)

2

)

, . . . , GHK

(

n, q
(K

2
)

K

)

are independent random hypergraphs.
Couplings (14) and (16) follow by Lemma 5 and Fact 3. The left–hand side of (15) is

trivial. A coupling existing by the right–hand side of (15) follows by the fact that under the
assumptions of Lemma 13

Pr{∃w∈W |V (v)| > K} = O
(

mnK+1pK+1
)

= o(1).

Moreover (17) is a consequence of Lemma 7, 8 and 9 after substituting q = qk for k =
3, . . . , K. Finally coupling from (18) is standard. Therefore the lemma follows by Fact 1.

5 Proof of the theorems

The proof of Theorem 1 uses similar techniques to those of the proof presented in [7].

13



Proof of Theorem 1. For p = o(1/n 3
√
m) by Fact 5 and Lemma 5 with K = 2 we have

dTV (G (n,m, p) , G (n, p̂)) ≤
dTV (G (n,m, p) ,G2 (n,m, p)) + dTV (G2 (n,m, p) , G (n, p̂)) ≤
≤ Pr {G (n,m, p) 6= G2 (n,m, p)} + dTV (G2 (n,m, p) , G (n, p̂)) ≤
≤ Pr {∃w∈W |V (w)| > 2} + dTV (G2 (n,m, p) , G (n, p̂)) ≤

≤ m

(

n

3

)

p3 + dTV (G2 (n,m, p) , G (n, p̂)) = o(1).

The proofs of Theorems 2, 3 and 4 base on the following fact.

Fact 10. Let G−, G and G+ be random graphs such that

(19) G− 41−o(1) G and G 41−o(1) G+.

If for a ∈ [0; 1] and a monotone property A
(20) Pr {G− ∈ A} → a and Pr {G+ ∈ A} → a.

then
Pr {G ∈ A} → a.

Proof. By (19) there exists a probability space on which we may define random vectors
(G−, G) and (G,G+) such that

Pr {E−} = 1 − o(1) and Pr {E+} = 1 − o(1)),

for events
E− := {G− ⊆ G} and E+ := {G ⊆ G+}.

If (20) then on the probability space

Pr{G ∈ A} ≤ Pr{G ∈ A|E+}Pr{E+} + Pr{E c
+} ≤

≤ Pr{G+ ∈ A|E+}Pr{E+} + Pr{E c
+} ≤

≤ Pr{{G+ ∈ A} ∩ E+} + Pr{E c
+} ≤

≤ Pr{G+ ∈ A} + Pr{E c
+} =

= Pr{G+ ∈ A} + o(1) = a + o(1)

and

Pr{G ∈ A} ≥ Pr{G ∈ A|E−}Pr{E−} ≥
≥ Pr{G− ∈ A|E−}Pr{E−} =

= Pr{{G− ∈ A} ∩ E−} =

≥ Pr{G− ∈ A} + Pr{E−} − Pr {{G− ∈ A} ∪ E−} ≥
≥ Pr{G− ∈ A} + Pr{E−} − 1 =

= Pr{G− ∈ A} + o(1) = a + o(1).

Analogous equalities may be formulated for a decreasing property.

14



Proof of Theorem 2.
(i) By Lemma 13 and Fact 10 in order to prove Theorem 2(i) it remains to show that

p̂+ ≤ (1 + ε′(n))q2 for some function ε′(n) → 0,

where p̂+ and q2 are defined as in the statement of Lemma 13. For completeness it should
be pointed out that under assumptions of Theorem 2(i) p fulfils all the conditions from (13).

By (13) we are reduced to proving that for k = 3, 4, 5

(21)
an(ckqk)ckqk

q2
= o(1) for p = Ω(n−1m−1/k)

Notice that

an(ckqk)ckqk
q2

=



















O (qk) for nqk = o(n−1/2);

O (qk lnn) for nqk = o(ln−1/3 n);

O (ω(n)n3q7k) for nqk = Ω(ln−1/3 n)

and ω(n) tending slowly to 0,

q2 ∼ mp2 or q2 = Θ(1), q3 ∼ m1/3p, q4 ∼ m1/6p2/3 and q5 ∼ m1/10p1/2.

Moreover
nq23 = Ω(n−1/2) ⇔ p = Ω(n−3/4m−1/3)

and in the considered case

p = Ω(n−1m−1/k) and p = O
(

ln1/2m−1/2
)

.

If we substitute above values to
an(ckqk)ckqn

q2
after a simple calculation we arrive at (21).

(ii) Let p =
√

− ln(1 − p̂)/((1 − ε′)m) and ε′ = ε′(n) be such that (1 − p)n−2 ≥ 1 − ε′ and
ε′ = o(1). Since under assumptions of (ii) ln(1− p̂) = O(1), such ε′ exists. Then by a simple
calculation we have p̂ ≤ q2, where q2 is defined as in Lemma 13. Thus by Lemma 13 and a
standard coupling of G (n, ·)

(22) G (n, p̂) 41 G (n, q2) 41−o(1) G
(

n,m,

√

− ln(1 − p̂)

(1 − ε′)m

)

.

Let now p =
√

− ln(1 − (p̂/(1 + ε′′)))/m), then q2 ≤ p̂/(1 + ε′′), where q2 is defined as
in Lemma 13. Under assumptions of (ii) p fulfils (2), therefore by the proof of (i) p̂+ =
q2(1 + o(1)), where p̂+ is defined as in Lemma 13. A carefull insight into the proof of (i) lead
us to the conclusion that ε′′ = ε′′(n) may be chosen such that p̂+ ≤ (1 + ε′′)q2 and ε′′ = o(1).
Then p̂+ ≤ p̂ and by Lemma 13

(23) G



n,m,

√

−
ln(1 − p̂

1+ε′′
)

m



 41−o(1) G (n, p̂+) 41 G (n, p̂) .

Therefore (22) and (23) combined with Fact 10 imply the thesis of (ii).
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Proof of Theorems 3 and 4 . The proofs of Theorems 4 and 3 are basically the same as this

of Theorem 2(i). First notice that qk ∼ (k

2)
√

mpk for k = 3, 4. Moreover, if we substitute
p = O(ln1/2 n/m1/2) then an(c3q3)c3 < 30 for α > 4 and an(c3q3)c3 < 90, an(c4q4)c4 < 471
for α > 10/3. Therefore Lemma 13 and Fact 10 imply the thesis.

Notice that although the expected number of hyperedges in GHk

(

n, q(k

2)
)

and cliques

in G (n, q) is the same, the function an is necessary. There exists a coupling of two random
graph models, the existence of which contradicts the thesis that for some constant C and
for all q

GH3

(

n, q3
)

41−o(1) G (n, Cq) .

Let q = o(1). For any e, a 3–element subset of V, define Fe to be the set of bijections
assigning to the numbers from the set {1, 2, 3} the vertices of e (|Fe| = 6). Now, to each e, a
3-element subset of V, and each function f ∈ Fe we assign f to e independently of all other
functions and sets with probability

r = 1 − (1 − q3)1/6 ∼ q3

6
.

Notice that if we add each edge e to the set of edges of the hypergraph with vertex set V in
the case when at least one function from Fe is assigned to e, we get a random variable with
the same distribution as H3 (n, q3). Moreover we may construct a random subgraph G3 of
GH3 (n, q3) by adding an edge (v1, v2), v1, v2 ∈ V, if and only if at least one 3-element subset
of V containing v1 and v2 is assigned a function in which v1 and v2 are assigned 1 and 2 or 2
and 1. Notice that, from independent choice of the functions from Fe we get that each edge
appears in G3 independently with probability

r′ = 1 − (1 − r)2(n−2) ∼ 2nr ∼ 1

3
nq3.

Therefore
G (n, r′) 41 GH3

(

n, q3
)

and in the lemmas there should be an = Ω(nq2).

Appendix

We prove Lemma 10 in detail. The proof of Lemmas 11 and 12 are analogous, therefore we
only sketch them.

Proof of Lemma 10. For x ∈ X3, let H(x) be subhypergraph of H(3) (n, q3) induced on {x}∪
X1 ∪ X2 (i.e. a hypergraph with vertex set {x} ∪ X1 ∪ X2 and edge set consisting of those
edges from E(H(3) (n, q3)), which contain x). Moreover let us denote by H∗(x) a subgraph
of GH(x) induced on X1 ∪ X2. By above definitions

(24) H(3)
(

n, q3
)

=
⋃

x∈X3

H(x),

16



and edges in H(x) and H∗(x) are independent (i.e. H∗(x) and H(2) (n, q3) are the same
models).

Moreover we define T (x), x ∈ X3, to be a graph with vertex set {x} ∪ X1 ∪ X2 and edge
set constructed by the following procedure. First we add each edge (x, y), y ∈ X1 ∪ X2

independently with probability Cq to the edge set, where

(25) C = C(q) =











c, where c > 5, for nq2 = o(1);

ω(n), where ω(n) → ∞, for nq2 = Θ(1);

cnq2, where c > 1, for nq2 → ∞.

(We assume, that ω(n) tends slowly to infinity and c is close to 5 and 1, respectively.)
Then independently with probability q we add to the edge set each edge (x1, x2) ∈ X ∗

1 ×X ∗
2 ,

where, for each 1 ≤ i ≤ 2, X ∗
i is the set of vertices form Xi connected by an edge with x.

Let T ∗(x) be a subgraph of T (x) induced on X1∪X2. By definition the following statements
are equivalent:

(26) H(2)
(

n, q3
)

41−o(1/n) T
∗(x)

(27) GH(x) 41−o(1/n) T (x).

Moreover

(28)
⋃

x∈X3

T ∗(x) 41−o(1) H
(2) (n, an(q)q) ,

where H(2) (n, an(q)q) is independent of the choice of X ∗
i , implies

⋃

x∈X3

T (x) 41−o(1) G
(3) (n, an(q)q) .

Therefore by (24) we have that (26) and (28) imply the thesis.
First we concentrate on showing (26). The proof varies for q in different ranges, therefore

it is divided into 4 cases:
CASE 1: q = O(lnn/n),
CASE 2: lnn/n = o(q) and q = O(n−2/3 ln1/3 n),
CASE 3: n−2/3 ln1/3 n = o(q) and q = o(n−1/2),
CASE 4: q = Ω(n−1/2) and q = o(n−1/3).

CASE 1

For q = O(lnn/n) with probability 1 + o(1/n) a graph H(2) (n, q3) consists of at most one
edge. Namely probability that H(2) (n, q3) has more than one edge is at most

(

n2

2

)

q6 = O
(

n4q6
)

= o

(

1

n

)

17



Moreover, for large n,

Pr {∃x1∈X1,x2∈X2
(x1, x2) ∈ E(T ∗(x))} ≥

∑

x1∈X1,x2∈X2

Pr {(x1, x2) ∈ E(T ∗(x))}

−
∑

x1,x′

1
∈X1,x2,x′

2
∈X2

Pr {(x1, x2), (x
′
1, x

′
2) ∈ E(T ∗(x))}

= n2(Cq)2q −
(

n

2

)2

(Cq)4q2 − 2n

(

n

2

)

(Cq)3q2 =

= C2n2q3(1 −O(n2q3 + nq2)) ≥ n2q3 ≥
≥ Pr

{

∃x1∈X1,x2∈X2
(x1, x2) ∈ E(H(2)

(

n, q3
)

)
}

.

This gives an obvious coupling

H(2)
(

n, q3
)

41−o(1/n) T
∗(x).

CASES 2, 3 and 4

If lnn/n = o(q) then the number of vertices in X ∗
i is sharply concentrated around its

expected value. Let H
(2)
∗ (C ′nq, q) be a graph constructed by a similar procedure as T ∗(x)

but with X ∗
i replaced by X ′

i chosen uniformly at random from all subsets of cardinality

sufficiently smaller than E|X ∗
i |. Namely in H

(2)
∗ (C ′nq, r) first X ′

i is chosen uniformly at
random from all C ′nq element subsets of Xi, where

C ′ =











5, for nq2 = o(1);

ω′(n), for nq2 = Θ(1);

c′nq2, where 1 < c < c′ for nq2 → ∞,

and then each edge (x1, x2) ∈ X ′
1×X ′

2 is added to the edge set of H
(2)
∗ (C ′nq, r) independently

with probability r, r ∈ [0; 1]. By Chernoff’s bound (8)

H(2)
∗ (C ′nq, q) 41−o(1/n) T

∗(x).

Therefore
H(2)

(

n, q3
)

41−o(1/n) H
(2)
∗
(

C ′nq, q3
)

implies (26).

CASE 2

If q = O(n−2/3 ln1/3 n) then H(2) (n, q3) with high probability does not contain many edges
except a maximum matching. Therefore a coupling is constructed by comparison of the sizes
of maximum matchings in H(2) (n, q3) and H

(2)
∗ (C ′nq, q).

18



Lemma 14. Let r = o(1/(C ′nq)), lnn = o(nq) and N2(r) be a random variable denoting

the size of a maximum matching in H
(2)
∗ (C ′nq, r), then

(29) N ′
2(r) 41−o(1/n) N2(r),

where N ′
2(r) has the binomial distribution Bin(C ′nq, s2(r)) and

s2(r) = 1 − exp(−(C ′nq −
√

3C ′nq lnn)(1 − (1 − r)C
′nq)/C ′nq) ∼ C ′nqr.

Proof of Lemma 14. Let H be a hypergraph chosen according to the probability distribution
of H

(2)
∗ (C ′nq, r). Define H ′ to be a hypergraph with vertex set X1 and edge set {(x1) : x1 ∈

X1 and ∃x2∈X2
(x1, x2) ∈ E(H)}. Notice that H ′ is chosen according to the probability distri-

bution of H
(1)
∗
(

C ′nq, 1 − (1 − r)C
′nq
)

(in analogy to H
(2)
∗ (C ′nq, ·), H(1)

∗
(

C ′nq, 1 − (1 − r)C
′nq
)

is a hypergraph with vertex set X1 and edge set constructed by first choosing X ′
1 uniformly

at random from all C ′nq–element subsets of X1 and then adding to an edge set each x1 ∈ X ′
1

independently with probability 1− (1− r)C
′nq). Let H ′′ be a subhypergraph of H such that

for each edge (x1) ∈ E(H ′) we pick uniformly at random an edge from E(H) containing
x1 and add it to the edge set of H ′′. Notice that a maximum matching in H is at least of
the size of the set of non isolated vertices in X2 in H ′′. Moreover the edge set of H ′′ may
be alternatively constructed in the following way (i.e. this construction leads to the same
probability distribution). First we pick an integer according to the binomial distribution
Bin(C ′nq, 1 − (1 − r)C

′nq), then, given the value of the picked integer, we pick a subset X ′′
1

uniformly at random from all subsets of X1 of this cardinality. Independently we choose X ′
2

uniformly at random from all C ′nq–element subsets of X2. Then to each vertex x1 ∈ X ′
1,

to create an edge, we add one vertex, chosen uniformly at random from the set X ′
2. For all

x1 ∈ X ′
1 the choices of the second vertex are independent with repetition. Therefore by the

above construction, (9) and Fact 8

X(M) 41−o(1/n) X(C ′nq) 41 N2,

where X(M) and X(C ′nq) are defined as in (5) for K = 2, n2 = C ′nq, P2 = (1 − (1 −
r)C

′nq)/(C ′nq) and M with the Poisson distribution Po(C ′nq−√
3C ′nq lnn). Thus by Fact 7

X(M) has the binomial distribution Bin(C ′nq, s2(r)).

The above lemma is used to show existence of a coupling between a random variable M2

denoting the size of an edge set in H(2) (n, q3) and N2.

Lemma 15. Let C ′ = 5, M2 has the binomial distribution Bin(n2, q3) and let N2 be the size

of a maximum matching in H
(2)
∗ (C ′nq, q). Then

M2 41−o(1/n) N2.

Proof. By previous lemma and Fact 1 it is sufficient to show

(30) M2 41−o(1/n) N
′
2,
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where N ′
2 has the binomial distribution Bin(C ′nq, s2(q)) and s2(q) ∼ C ′nq2.

Notice that

M2 =

nq
∑

i=1

ξi, where ξi are independent with distribution Bin

(

n

q
, q3
)

;

N ′
2 =

nq
∑

i=1

ζi, where ζi are independent with distribution Bin (C ′, s2(q)) .

Since s2(q) ∼ C ′nq2, for large n we have

∀1≤l≤4 Pr{ξi = l} ≤ 1

l!
(nq2)l ≤ (C ′)l

l!
sl2(1 − s2)

C′−l = Pr{ζi = l}

and

Pr{ξi > 4} ≤
(n

q

5

)

q5·3 ≤
(

nq2
)5

=
1

n2q

(

nq
3

2

)7

q
1

2 = o

(

1

n2q

)

Therefore, for all 1 ≤ i ≤ nq it is simple to construct a probability measure on N× N, the
existence of which implies

ξi 41−o(1/n2p) ζi.

This by Fact 2 implies (30).

Let G be a set of 2–partite graphs with 2–partition (X1,X2). We define
M(l) - the subset of G containing all graphs with a maximum matching of cardinality l;
M1(l) - the subset of M(l) containing all graphs with the maximum degree 1;
M2(l) - the subset of M(l) containing all graphs with the maximum degree 2 and

exactly one vertex of degree 2
and

M1 =
n
⋃

l=0

M1(l), M2 =
n
⋃

l=0

M2(l).

For q = o(n−2/3)

Pr
{

H(2)
(

n, q3
)

/∈ M1

}

≤ 2n

(

n

2

)

q6 = O
(

n4q6n−1
)

= o

(

1

n

)

(31)

and for q = O
(

(n−2 lnn)1/3
)

Pr{H(2)
(

n, q3
)

/∈ M1 ∪M2} ≤

≤ 2

(

n

2

)((

n

2

)

q6
)2

+ n2

((

n− 1

2

)

q6
)2

+ n2q3
(

(n− 1) q3
)2

+ 2n

(

n

3

)

q9 =

= O
(

n6q12 + n4q9
)

= O
(

(

n2q3
)4

n−2 +
(

n2q3
)3

n−2
)

= o

(

1

n

)

(32)
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Now let
µ : N× N → [0, 1]

be a probability measure associated with a coupling of M2 and N2 existing by Lemma 15.
Starting with the probability measure µ we construct a coupling, which implies for large n

H(2)
(

n, q3
)

41−o(1/n) H
(2)
∗ (C ′nq, q) .

Let H(2)(M1) be a random graph constructed by first sampling H according to the
probability distribution of H(2) (n, q3) and replacing it by a graph chosen uniformly at random
from M1(|E(H)|) in the case where H /∈ M1. Moreover let H(2)(M1 ∪M2) be a random
graph constructed by sampling H according to the probability distribution of H(2) (n, q3)
and replacing it by a graph chosen uniformly at random from M1(|E(H)|) in the case where
H /∈ M1 ∪M2. Sizes of edge sets of H(2)(M1) and H(2)(M1 ∪M2) are random variables
M2(M1) and M2(M1 ∪M2), respectively. Obviously M2(M1) and M2(M1 ∪M2) have the
same distribution as M2. For any event A, denote by H(2)(M1)

[A], H(2)(M1 ∪M2)
[A] and

H
(2)
∗ (C ′nq, q)[A] graphs H(2)(M1), H

(2)(M1 ∪M2) and H
(2)
∗ (C ′nq, q) under condition A.

Let q = o(n−2/3). By (31)

H(2)
(

n, q3
)

41−o(1/n) H
(2)(M1),

Therefore it remains to show

H(2)(M1) 41−o(1/n) H
(2)
∗ (C ′nq, q) .

Let (l1, l2) ∈ N × N be chosen according to the probability measure µ. If l1 > l2, then we

sample H(2)(M1)
[M2=l1] and H

(2)
∗ (C ′nq, q)[N2=l2] independently. And if l1 ≤ l2, then first we

sample an instance of H
(2)
∗ (C ′nq, q)[N2=l2] and then choose its subgraph uniformly at random

from all its subgraphs contained in M1(l2). Then, from the chosen subgraph, we delete l2−l1
edges chosen uniformly at random. Thereby we get the edge set of H(2)(M1)

[M2=l1].

Let now q = Ω(n−2/3) and q = O
(

n−2/3 ln1/3 n
)

. Let also

P1(l) = Pr{H(2)(M1 ∪M2)
[M2=l] ∈ M1}; P2(l) = Pr{H(2)

∗ (C ′nq, q)
[N2=l] ∈ M1};

Q1(l) = Pr{H(2)(M1 ∪M2)
[M2=l] /∈ M1}; Q2(l) = Pr{H(2)

∗ (C ′nq, q)
[N2=l]

/∈ M1}.

By (32) we are left with showing that

H(2)(M1 ∪M2) 41−o(1/n) H
(2)
∗ (C ′nq, q) .

Let (l1, l2) ∈ N × N be chosen according to the probability measure µ. If l1 > l2 or l2 ≥
ω(n) lnn (where ω(n) is a sequence tending slowly to infinity), then we construct a pair of

graphs from G by sampling independently H(2)(M1 ∪ M2)
[M2=l1] and H

(2)
∗ (C ′nq, q)[N2=l2].

If 1 ≤ l1 ≤ l2 < ω(n) lnn, then we sample H , a second graph in a pair, according to the

probability distribution of H
(2)
∗ (C ′nq, q)[N2=l2]. If H ∈ M1, then we choose a first graph

uniformly at random from all subgraphs of H contained in M1(l1). If H /∈ M1, then with
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probability (P1(l1) − P2(l2))/Q2(l2) we choose a first graph uniformly at random from all
subgraphs of H contained in M1(l1) and with probability Q1(l1)/Q2(l2) we choose a first
graph uniformly at random from all subgraphs of H contained in M2(l1).

According to this construction the first graph is chosen according to the probability
distribution of H(2)(M1 ∪M2) and the second according to the probability distribution of

H
(2)
∗ (C ′nq, q). Moreover

µ({(l1, l2) : l1 > l2}) = o

(

1

n

)

.

In addition, the size of a maximum matching (i.e. N2) is at most the number of edges of

H
(2)
∗ (C ′nq, q), which has the binomial distribution with expected value (C ′n)2q3 = O(lnn).

Thus by Chernoff’s bound (8)

µ({(l1, l2) : l2 ≥ ω(n) lnn}) = o

(

1

n

)

Therefore this is a desired coupling and it is well defined for large n if P1(l1) ≥ P2(l2) for
large n and l1 ≤ l2. Calculations show that for a given l < ω(n) lnn and ω(n) tending slowly
to infinity

Q1(l) ≤ 1 −
(

n
l

)2
(l!)

(

n2

l

) = 1 −
l−1
∏

i=0

(

(n− i)2

n2 − i

)

=

= 1 −
l−1
∏

i=0

(

1 − 2ni− i2

n2 − i

)

≤ 1 −
l−1
∏

i=0

(

1 − 2l

n

)

≤ 2l2

n

and

Q2(l) = Pr{H(2)
∗ (C ′nq, q)

[N2=l]
/∈ M1} ≥

≥ Pr{H(2)
∗ (C ′nq, q)[N2=l] /∈ M1} − Pr{H(2)

∗ (C ′nq, q)[N2=l] /∈ M1 ∪M2}
1 − Pr{H(2)

∗ (C ′nq, q)[N2=l] /∈ M1 ∪M2}
=

=
Pr{H(2)

∗ (C ′nq, q)[N2=l] ∈ M2}
Pr{H(2)

∗ (C ′nq, q)[N2=l] ∈ M1} + Pr{H(2)
∗ (C ′nq, q)[N2=l] ∈ M2}

=

=
Pr{H(2)

∗ (C ′nq, q) ∈ M2(l)}
Pr{H(2)

∗ (C ′nq, q) ∈ M1(l)} + Pr{H(2)
∗ (C ′nq, q) ∈ M2(l)}

=

= Ω
(

nq2l
)

= Ω(n−1/3l),

since

Pr{H(2)
∗ (C ′nq, q) ∈ M2(l)} =

=

(

C ′nq

l + 1

)(

C ′nq

l

)(

l + 1

2

)

(l!)

(

q

1 − q

)l+1

(1 − q)(C
′nq)2 =

=

(

C ′nq

l

)2
(C ′nq − l)

(l + 1)
· (l + 1)l

2
(l!)

(

q

1 − q

)l
q

1 − q
(1 − q)(C

′nq)2 =

= Pr{H(2)
∗ (C ′nq, q) ∈ M1(l)}(1 + o(1))

C ′nq2l

2
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Hence Q1(l1) = o(Q2(l2)) uniformly over all 1 ≤ l1 ≤ l2 ≤ ω(n) lnn and ω(n) such that
ω(n) lnn = o(nq).

CASE 3 and 4

If n−2/3 ln1/3 n ≪ q the numbers of edges in H(2) (n, q3) and H
(2)
∗ (C ′nq, q) are sharply

concentrated around their expected values.
Let H∗∗(x) and T ∗∗(x) be random bipartite multigraphs with 2-partition (X1,X2) and

(X ′
1,X ′

2), respectively, with the numbers of edges with the Poisson distribution Po(−n2 ln(1−
q3)) and Po(−(C ′nq)2 ln(1−q)), respectively, and an edge sets constructed by independently
choosing one by one with repetition edges from {(x1, x2) : x1 ∈ X1 and x2 ∈ X2} and

{(x1, x2) : x1 ∈ X ′
1 and x2 ∈ X ′

2}, respectively. By Fact 7 H(2) (n, q3) and H
(2)
∗ (C ′nq, q) are

underlying graphs of H∗∗(x) and T ∗∗(x).
Let moreover H∗∗∗(x) and T ∗∗∗(x) be multigraphs constructed in an analogous manner

but with C1n
2q3 (C1 > 1 is a constant) and (C ′′)2n2q3 edges (where C ′/C ′′ > 1 are constants),

respectively. By Chernoff’s bound (9)

H∗∗(x) 41−o(1/n) H
∗∗∗(x) and T ∗∗∗(x) 41−o(1/n) T

∗∗(x).

Notice that choosing an edge in above defined multigraphs is equivalent to choosing its
2 vertices independently from each set of 2–partition. Therefore, instead of choosing each
edge one by one, first a degree sequence in each set Xi (X ′

i ) may be chosen and on this basis

a multigraph with a given degree sequence may be crated. Let D
(1)
j be the random variable

denoting the degree of the j-th vertex in Xi in H∗∗∗(x) and D
(5)
j be the random variable

denoting the degree of the j-th vertex in Xi in T ∗∗∗(x). By Fact 2

(D
(1)
1 , . . . ,D(1)

n ) 41−o(1/n) (D
(5)
1 , . . . ,D(5)

n ), for each Xi, 1 ≤ i ≤ 2

imply
H∗∗∗(x) 41−o(1/n) T

∗∗∗(x),

We introduce auxiliary urn models. Assume that we have n urns. Let D(i) = (D
(i)
1 , . . . ,D

(i)
n )

be the random vector in which D
(i)
j represents the number of balls in the j-th urn in the i–th

model. Let 1 < C1 < C2, C
′′′/C ′′′′ > 1, C ′′/C ′′′ > 1 and C ′/C ′′ > 1 be constants such that

C2 < C ′′′′.

• In the 1–st model we throw C1n
2q3 balls one by one independently, with repetition, to

the urn chosen uniformly at random from n urns.

• In the 2–nd model the number of thrown balls has the Poisson distribution Po(C2n
2q3),

i.e. by Fact 7 D
(2)
j has the Poisson distribution Po(C2nq

3) (for K = 2, P2 = 1
n
, n2 = n).

• In the 3–rd model D
(3)
j = Dj · D′

j, where Dj is a Bernoulli random variable with
probability of success C ′′′′q and D′

j has the Poisson distribution Po(C ′′′′nq2).
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• In the 4–th model first we select C ′′′nq urns from the set of all urns and the number of
balls thrown to the selected urns has the Poisson distribution Po((C ′′′)2n2q3), i.e. for

the urns not selected D
(4)
j = 0 and for the selected urns D

(4)
j has the Poisson distribution

Po(C ′′′nq2) (by Fact 7 for K = 2, P2 = 1
C′′′nq

, n2 = C ′′′nq).

• In the 5–th model first we select C ′′nq urns and we throw (C ′′)2n2q3 balls one by one
independently to the urn chosen uniformly at random from the set of selected urns.

By Chernoff’s bound

D
(1)

41−o(1/n) D
(2) and D

(3)
41−o(1/n) D

(4)
41−o(1/n) D

(5).

Moreover, by Fact 2, if for large n

(33) D
(2)
j 41−o(1/n2) Dj ·D′

j,

then for large n

(34) D
(2)

41−o(1/n) D
(3).

The constants may be chosen such that

C ′′′′ =











4, for nq2 = o(1);

ω′′′′(n), for nq2 = Θ(1);

c′′′′nq2, for nq2 → ∞,

where c′′′′ > 1 and ω′′′′(n) is a function tending slowly to infinity .
For large n

Pr
{

D
(2)
j ≥ 1

}

= 1 − exp(−C2nq
3) ≤

≤ C ′′′′q
(

1 − exp
(

−(C ′′′′)nq2
))

=

= Pr
{

D
(3)
j ≥ 1

}

.

Moreover, for t ≥ 2, nq2 = o(1) and large n

Pr
{

D
(2)
j ≥ t

}

∼ (C2nq
3)t

t!
= o

(

C ′′′′q
(C ′′′nq2)t

t!

)

= o
(

Pr
{

D
(3)
j ≥ t

})

This implies (33) for nq2 = o(1).
Let now nq2 = Ω(1). By Chernoff’s bound, if we estimate the number of urns with at

least one ball and compare it to the number of balls we get, with probability 1 − o(1/n) the
number of urns with at least 2 balls in the 3-rd model is o(n2q3) and Ω(n2q3) in the 2-nd
model. Therefore, since urns with at least 2 balls are uniformly distributed, a coupling is
easy to construct.

This completes the proof of (26). It remains to prove (28).
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Proof of (28)

Let C = C(q) be defined as in (25). Define Xn(x1, x2) = |{x ∈ X3 : x1 ∈ X ∗
1 (x), . . . , x2 ∈

X ∗
2 (x)}|. Xn(x1, x2) has the binomial distribution Bin(n, (Cq)2) and

EXn = C2nq2 =











cnq2, where c > 25 for nq2 = o(1);

ω2(n)nq2, for nq2 = Θ(1);

cn3q6, where c > 1, for nq2 → ∞.

Therefore by Lemma 2

Pr{∃(x1,x2)Xn(x1, x2) ≥ a′n(q)} ≤ n2 Pr {Xn(x1, x2) ≥ a′n(q)} = o(1),

where

a′n(q) =































3 lnn/(ln lnn− ln(nq2)), for nq2 = o(1);

3 lnn/ ln lnn, for nq2 = Θ(1);

3 lnn/(ln lnn− ln(n3q6), for nq2 → ∞ and nq2 = o( 3
√

lnn);

ω1(n) n3q6, where ω1(n) → ∞ for nq2 → ∞ and nq2 = Θ( 3
√

lnn);

cn3q6, where c > 1 for nq2 → ∞ and o(nq2) = 3
√

lnn,

(since ω(n) tends to infinity arbitrarily slowly).
By definition, probability that there is an edge connecting x1 and x2 in

⋃

x∈X3
T ∗(x) is at

most Xn(x1, x2) · q, thus

⋃

x∈X3

T ∗(x) 41−o(1) H
(2) (n, an(q)q) .

Proof of Lemma 11 and 12. Let k = 4 or k = 5. For x ∈ Xk, let H(x) be a hypergraph with

vertex set {x} ∪ ⋃k−1
i=1 Xi and edge set consisting of those edges from E

(

H(k)
(

n, q(k

2)
))

,

which contain x. Then

(35) H(k)
(

n, q(k

2
)
)

=
⋃

x∈Xk

H(x).

Let T (x) be an auxiliary hypergraph, with vertex set {x} ∪ ⋃k−1
i=1 Xi and edge set con-

structed by the following procedure. First we add each edge (x, y), y ∈ ⋃k−1
i=1 Xi indepen-

dently with probability Cq (C > 5) to the edge set and then independently with probability

q(k−1

2
) we add to the edge set each edge (x1, . . . , xk−1) ∈ X ∗

1 × . . . × X ∗
k−1, where, for each

1 ≤ i ≤ k− 1, X ∗
i is the set of vertices connected by an edge with x. Let moreover T ∗(x) be

a subhypergraph of T (x) induced on
⋃k−1

i=1 Xi. Recall that (26) implies (27). Similarly

(36) H(k−1)
(

n, q(k2)
)

41−o(1/n) T
∗(x)
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implies

(37) GH(x) 41−o(1/n) GT (x).

Moreover if for some constant c > 5(k − 1)

(38)
⋃

x∈Xk

T ∗(x) 41−o(1) H
(k−1)

(

n, (cq)(
k−1

2
)
)

,

where H(k−1)
(

n, (cq)(
k−1

2
)
)

is independent of choices of X ∗
i and

(39) H(k−1)
(

n, (cq)(
k−1

2 )
)

41−o(1) G
(k−1) (n, an(c′kq)c′kq)

then
⋃

x∈Xk

GT ∗(x) 41−o(1) G
(k−1) (n, an(c′kq)c′kq) .

Thus also

(40)
⋃

x∈Xk

GT (x) 41−o(1) G
(k) (n, a(c′kq)c′kq) .

Since by (35) we have that (37) and (40) imply the thesis, we are left with showing (36),
(38) and (39). Since (39) follows by Lemma 10 or 11 for k = 4 or k = 5, respectively, we
only need to prove (36) and (38).

Proof of (36)

The proof of (36) is similar to this of (26) thus we omit many details which are the same
as in the proof of (26). Under the assumptions of the lemmas lnn = o(nq). Thus in analogy
to the proof of Lemma 10 (in CASE 2, 3 and 4)

H(k−1)
∗

(

C ′nq, q(k−1

2
)
)

41−o(1/n) T
∗(x),

where 5 = C ′ < C and H
(k−1)
∗ (C ′nq, r) is an analogue of H

(2)
∗ (C ′nq, r) (i.e. is created by

first choosing X ′
i uniformly at random from C ′nq–element subsets of Xi, for all 1 ≤ i ≤ k−1,

and then adding each edge (x1, . . . , xk−1) ∈ X ′
1× . . .×X ′

k−1 independently with probability r.
Therefore it remains to show that

H(k−1)
(

n, q(k

2)
)

41−o(1/n) H
(2)
∗

(

C ′nq, q(k−1

2 )
)

.

As before the proof differ for q in different ranges, therefore we will consider two cases.

• q = O(n−2/k ln1/(k

2
)) (similar to CASE 2 in the proof of Lemma 10)

• q ≫ n−2/k ln1/(k

2
) and q = o(n−2/5) (similar to CASE 3 in the proof of Lemma 10)
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Let q = O(n−2/k ln1/(k

2
)). The lemma below is a generalisation of Lemma 14 and follow

by induction. The proof of an inductive step is similar to the proof of Lemma 14 with slight
changes.

Lemma 16. Let k ≥ 3, r = o(1/(C ′nq)k−2), lnn = o(nq) and Nk−1(r) be the random

variable denoting the size of a maximum matching in H
(k−1)
∗ (C ′nq, r), then

(41) N ′
k−1(r) 41−o(1/n) Nk−1(r),

where N ′
k−1(r) has the binomial distribution Bin(C ′nq, sk−1(r)) and

sk−1(r) =

=

{

1 − exp(−(1 − (1 − r)C
′nq)(1 −√

3C ′nq lnn/(C ′nq))) ∼ C ′nqr for k = 3

1 − exp(−sk−2((1 − (1 − r)C
′nq))(1 −√

3C ′nq lnn/(C ′nq))) ∼ (C ′nq)k−2r for k ≥ 4

Proof. The proof follow by induction on k. By Lemma 14 it remains to show an inductive
step. Let k ≥ 4. Let H be a hypergraph chosen according to the probability distribution
of H

(k−1)
∗ (C ′nq, r). Define H ′ to be a hypergraph with vertex set X1 ∪ . . . ∪ Xk−2 and edge

set {(x1, . . . , xk−2) : xi ∈ Xi and ∃x2∈X2
(x1, . . . , xk−1) ∈ E(H)}. Notice that H ′ is chosen

according to the probability distribution of H
(k−2)
∗

(

C ′nq, 1 − (1 − r)C
′nq
)

. Now let H ′
M be

its subgraph with edge set chosen uniformly at random from all maximum matchings of H ′.
Let H ′′ be a subhypergraph of H such that for each edge (x1, . . . , xk−2) ∈ E(H ′

M) we pick
uniformly at random an edge from E(H) containing (x1, . . . , xk−2) and add it to the edge set
of H ′′. A maximum matching in H is at least of the size of the set of non isolated vertices in
Xk−1 in H ′′. The edge set of H ′′ may be alternatively constructed in the following way. First
we pick an integer according to the distribution of Nk−2((1 − (1 − r)C

′nq), then, given the
value of the picked integer, we pick a matching uniformly at random from all matchings of
this cardinality with edges from X1× . . .×Xk−2. Independently we choose X ′

k−1 uniformly at
random from all C ′nq–element subsets of Xk−1. Then to each edge from the chosen matching,
in order to create an edge of H ′′, we add one vertex, chosen uniformly at random from the set
X ′

k−1. For all edges the choices of an additional vertex are independent with repetition. By
Fact 8, the above construction and inductive assumption (i.e. N ′

k−2(1− (1−r)C
′nq) 41−o(1/n)

Nk−2(1 − (1 − r)C
′nq)) we have

X(N ′
k−2(1 − (1 − r)C

′nq)) 41−o(1/n) X(Nk−2(1 − (1 − r)C
′nq)) 41 Nk−1(r),

where X(·) is defined as in (5) for K = 2, n2 = C ′nq, P2 = 1/(C ′nq). Moreover X(N ′
k−2)

for K = 2, n2 = C ′nq, P2 = 1/(C ′nq) has the same distribution as X(C ′nq) for K = 2,
n2 = C ′nq, P2 = sk−2(1 − (1 − r)C

′nq)/(C ′nq).
Therefore by (9) and Fact 8

X(M) 41−o(1/n) X(C ′nq) 41−o(1/n) Nk−1,

where X(·) is defined for K = 2, n2 = C ′nq, P2 = sk−2(1 − (1 − r)C
′nq)/(C ′nq) and M has

the Poisson distribution Po(C ′nq − √
3C ′nq lnn). Thus by Fact 7 X(M) has the binomial

distribution Bin(C ′nq, sk−1(r)).
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Let Mk−1 be a random variable denoting the size of the edge set in H(k−1)
(

n, q(k

2
)
)

.

Lemma 17. Let C ′ = 5, Mk−1 has the binomial distribution Bin
(

nk−1, q(k

2)
)

and let Nk−1

be the size of a maximum matching in H
(k−1)
∗

(

C ′nq, q(k−1

2
)
)

. Then

Mk−1 41−o(1/n) Nk−1.

Proof. The proof is similar to the proof of Lemma 15. For k ≥ 4

Mk−1 =

nq
∑

i=1

ξi, where ξi are independent with distribution Bin

(

n

q
, q(k

2
)
)

;

N ′
k−1 =

nq
∑

i=1

ζi, where ζi are independent with distribution Bin
(

C ′, sk−1

(

q(k−1

2
)
))

.

A similar calculation to this from Lemma 15 shows that

∀1≤l≤4 Pr{ξi = l} = Pr{ζi = l} and Pr{ξi > 4} = o

(

1

n2q

)

,

which imply the thesis of Lemma 17

Let G be a set of k− 1–partite graphs with k− 1–partition (X1, . . . ,Xk−1). Define M(l),
M1(l), M2(l), M1, M2 as in the proof of Lemma 10.
For q = o(n−2/k)

Pr
{

H(k−1)
(

n, q(k
2
)
)

/∈ M1

}

≤ (k − 1)n

(

nk−2

2

)

(

q(k
2
)
)2

= o

(

1

n

)

(42)

and similarly for q = O
(

n−2/k ln1/(k

2
) n
)

Pr{H(k−1)
(

n, q(k

2
)
)

/∈ M1 ∪M2} = o

(

1

n

)

.

For q = Ω(n−2/k), a given l < ω(n) lnn and ω(n) tending slowly to infinity we have

Pr{H(k−1)
∗

(

C ′nq, q(k−1

2
)
)

∈ M2(l)} =

= Pr
{

H(k−1)
∗

(

C ′nq, q(k−1

2
)
)

∈ M1(l)
}

(1 + o(1))
(C ′n)k−1q(k−2

2 )l

2
.

Therefore

Q1(l) ≤ 1 −
(

n
l

)k−1
(l!)k−1

(

nk−1

l

)
≤ (k − 1)l2

n
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and

Q2(l) ≥
Pr
{

H
(k−1)
∗

(

C ′nq, q(k−1

2 )
)

∈ M2(l)
}

Pr
{

H
(k−1)
∗

(

C ′nq, q(k−1

2
)
)

∈ M1(l)
}

+ Pr
{

H
(k−1)
∗

(

C ′nq, q(k−1

2
)
)

∈ M2(l)
} =

= Ω
(

nk−2q(k

2
)−1l

)

= Ω

(

l2

n
· l
q

)

.

Thus Q1(l) = o(Q2(l)) and the same couplings as those presented in the proof of CASE 2

of Lemma 10 but with H
(2)
∗ (C ′nq, q) and H(2) (n, q3) replaced by H

(k−1)
∗

(

C ′nq, q(k−1

2
)
)

and

H(k−1)
(

n, q(k

2)
)

imply the thesis.

Let n−2/k ln1/(k

2
) n = o(q). In this case the numbers of edges in H(k−1)

(

n, q(k−1

2
)
)

and

H
(k−1)
∗

(

C ′nq, q(k−1

2
)
)

are sharply concentrated around their expected values. In analogy to

the proof of Lemma 10 we define H∗∗(x), T ∗∗(x), H∗∗∗(x), T ∗∗∗(x) and D
(i)
j for 1 ≤ i ≤ 5, 1 ≤

j ≤ n. Therefore D
(2)
j has the Poisson distribution Po(C2n

k−2q(k

2
)) and D

(2)
j = Dj ·D′

j , where
Dj is a Bernoulli random variable with probability of success C ′′′′q and D′

j has the Poisson

distribution Po((C ′′′′n)k−2q(k
2
)−1) for C ′′′′ = 4. Thus calculation shows that for large n

Pr
{

D
(2)
j ≥ 1

}

≤ Pr
{

D
(3)
j ≥ 1

}

.

and for t ≥ 2, q = o(n−2/5) and large n

Pr
{

D
(2)
j ≥ t

}

= o
(

Pr
{

D
(3)
j ≥ t

})

This implies (33) for k = 4, 5 and proves (36) in the case: n−2/k ln1/(k

2
) n = o(q) and q =

o(n−2/5).

Proof of (38)

Define Xn = Xn(x1, . . . , xk−1) = |{x ∈ Xk : x1 ∈ X ∗
1 (x) . . . xk−1 ∈ X ∗

k−1(x)}|. It has the
binomial distribution Bin(n, (Cq)k−1) and for large n

EXn = C3nq3 ≤ n−1/5 and EXn = C4nq4 ≤ n−3/5.

Therefore, since

lnn

ln lnn− lnn−1/5
∼ 5 and

lnn

ln lnn− lnn−3/5
∼ 5

3
,

by Lemma 3 for any constant c′′4 > 15 and c′′5 > 20/3

Pr{∃(x1,...,xk−1)Xn(x1, . . . , xk−1) ≥ c′′k} ≤ nk−1 Pr {Xn(x1, . . . , xk−1) ≥ c′′k} = o(1).
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Thus in the case k = 4, for any constant c′4 >
3
√

15, we have

⋃

x∈X4

T ∗(x) 41−o(1) H
(3)
(

n, (c′4q)3
)

.

Thus, by Lemma 10,
⋃

x∈X4

T ∗(x) 41−o(1) G
(3) (n, an(c′4q)c′4q) .

This implies the thesis of Lemma 11.
Analogously, for k = 5 and c > 6

√

20/3

⋃

x∈X5

T ∗(x) 41−o(1) H
(4)
(

n, (cq)6
)

.

Therefore by Lemma 11, for c′5 >
6

√

20/3 3
√

15 =
6
√

22 · 3 · 53

⋃

x∈X5

T ∗(x) 41−o(1) G
(4) (n, an(c′5q)c′5q) ,

which implies the thesis of Lemma 12.
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