
ar
X

iv
:0

91
1.

53
39

v1
  [

m
at

h.
PR

] 
 3

0 
N

ov
 2

00
9

Persistence of Activity in Threshold Contact Processes,

an “Annealed Approximation” of Random Boolean

Networks

Shirshendu Chatterjee and Rick Durrett ∗

Cornell University

November 6, 2018

Abstract

We consider a model for gene regulatory networks that is a modification of Kauff-
mann’s (1969) random Boolean networks. There are three parameters: n = the number
of nodes, r = the number of inputs to each node, and p = the expected fraction of 1’s
in the Boolean functions at each node. Following a standard practice in the physics
literature, we use a threshold contact process on a random graph on n nodes, in which
each node has in degree r, to approximate its dynamics. We show that if r ≥ 3 and
r ·2p(1−p) > 1, then the threshold contact process persists for a long time, which cor-
respond to chaotic behavior of the Boolean network. Unfortunately, we are only able
to prove the persistence time is ≥ exp

(

cnb(p)
)

with b(p) > 0 when r · 2p(1 − p) > 1,
and b(p) = 1 when (r − 1) · 2p(1− p) > 1.

Keywords: random graphs, threshold contact process, phase transition, random Boolean
networks, gene regulatory networks
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1 Introduction

Random Boolean networks were originally developed by Kauffman (1969) as an abstraction
of genetic regulatory networks. In our version of his model, the state of each node x ∈ Vn ≡
{1, 2, . . . , n} at time t = 0, 1, 2, . . . is ηt(x) ∈ {0, 1}, and each node x receives input from r
distinct nodes y1(x), . . . , yr(x), which are chosen randomly from Vn \ {x}.

We construct our random directed graph Gn on the vertex set Vn = {1, 2, . . . , n} by
putting oriented edges to each node from its input nodes. To be precise, we define the
graph by creating a random mapping φ : Vn × {1, 2, . . . , r} → Vn, where φ(x, i) = yi(x),
such that yi(x) 6= x for 1 ≤ i ≤ r and yi(x) 6= yj(x) when i 6= j, and taking the edge set
En ≡ {(yi(x), x) : 1 ≤ i ≤ r, x ∈ Vn}. So each vertex has in-degree r in our random graph
Gn. The total number of choices for φ is [(n− 1)(n− 2) · · · (n− r)]n. However, the resulting
graph Gn will remain the same under any permutation of the vector yx ≡ (y1(x), . . . , yr(x))
for any x ∈ Vn. So if ezx ∈ {0, 1} is the number of directed edges from node z to node x in
Gn, then

∑n
z=1 ez,x = r, and the total number of permutations of the vectors yx, 1 ≤ x ≤ n,

that correspond to the same graph is (r!)n. So if P denotes the distribution of Gn, then

P(ezx, 1 ≤ z, x ≤ n) =
(r!)n

[(n− 1)(n− 2) · · · (n− r)]n
=

1
[(

n−1
r

)]n ,

if ez,x ∈ {0, 1}, ex,x = 0 and
∑n

z=1 ezx = r for all x ∈ Vn, and P(ezx, 1 ≤ x, z ≤ n) = 0
otherwise. So our random graph Gn has uniform distribution over the collection of all
directed graphs on the vertex set Vn in which each vertex has in-degree r. Once chosen the
network remains fixed through time. The rule for updating node x is

ηt+1(x) = fx(ηt(y1(x)), . . . , ηt(yr(x))),

where the values fx(v), x ∈ Vn, v ∈ {0, 1}r, chosen at the beginning and then fixed for all
time, are independent and = 1 with probability p.

A number of simulation studies have investigated the behavior of this model. See
Kadanoff, Coppersmith, and Aldana (2002) for survey. Flyvberg and Kjaer (1988) have
studied the degenerate case of r = 1 in detail. Derrida and Pommeau (1986) have argued
that for r ≥ 3 there is a phase transition in the behavior of these networks between rapid
convergence to a fixed point and exponentially long persistence of changes, and identified
the phase transition curve to be given by the equation r · 2p(1 − p) = 1. The networks
with parameters below the curve have behavior that is ‘ordered’, and those with parameters
above the curve have ‘chaotic’ behavior. Since chaos is not healthy for a biological network,
it should not be surprising that real biological networks avoid this phase. See Kauffman
(1993), Shmulevich, Kauffman, and Aldana (2005), and Nykter et al. (2008).

To explain the intuition behind the conclusion of Derrida and Pomeau (1986), we define
another process {ζt(x) : t ≥ 1} for x ∈ Vn, which they called the annealed approximation.
The idea is that ζt(x) = 1 if and only if ηt(x) 6= ηt−1(x), and ζt(x) = 0 otherwise. Now if
the state of at least one of the inputs y1(x), . . . , yr(x) into node x has changed at time t,
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then the state of node x at time t+1 will be computed by looking at a different value of fx.
If we ignore the fact that we may have used this entry before, we get the dynamics of the
threshold contact process

P (ζt+1(x) = 1| ζt(y1(x)) + · · ·+ ζt(yr(x)) > 0) = 2p(1− p),

and ζt+1(x) = 0 otherwise. Conditional on the state at time t, the decisions on the values of
ζt+1(x), x ∈ Vn, are made independently.

We content ourselves to work with the threshold contact process, since it gives an approx-
imate sense of the original model, and we can prove rigorous results about its behavior. To
simplify notation and explore the full range of threshold contact processes we let q ≡ 2p(1−p),
and suppose 0 ≤ q ≤ 1. As mentioned above, it is widely accepted that the condition for
prolonged persistence of the threshold contact process is qr > 1. To explain this, we note
that vertices in the graph Gn have average out-degree r, so a value of 1 at a vertex will, on
the average, produce qr 1’s in the next generation.

We will also write the threshold contact process as a set valued process. Let ξt ≡ {x :
ζt(x) = 1}. We will refer to the vertices x ∈ ξt as occupied at time t. So if PG is the
distribution of the threshold contact process ξ ≡ {ξt : t ≥ 0} conditioned on the graph Gn,
then

PG (x ∈ ξt+1| {y1(x), . . . , yr(x)} ∩ ξt 6= ∅) = q, and

PG (x ∈ ξt+1| {y1(x), . . . , yr(x)} ∩ ξt = ∅) = 0.

Let ξA ≡
{

ξAt : t ≥ 0
}

denote the threshold contact process starting from ξA0 = A ⊂ Vn,

and ξ1 ≡ {ξ1t : t ≥ 0} denote the special case when A = Vn. Let ρ be the survival probability
of a branching process with offspring distribution pr = q and p0 = 1 − q. By branching
process theory

ρ = 1− θ, where θ ∈ (0, 1) satisfies θ = 1− q + qθr. (1.1)

Using all the ingredients above we now present our first result.

Theorem 1. Suppose q(r − 1) > 1 and let δ > 0. Let P denote the distribution of the

threshold contact process ξ1, starting from all sites occupied, on the random graph Gn, which

has distribution P. Then there is a positive constant C(δ) so that as n → ∞

inf
t≤exp(C(δ)n)

P

(

|ξ1t |

n
≥ ρ− 2δ

)

→ 1.

To prove this result, we will consider the dual coalescing branching process ξ̂ ≡ {ξ̂t :
t ≥ 0}. In this process if x is occupied at time t, then with probability q all of the sites
y1(x), . . . , yr(x) will be occupied at time t + 1, and with probability 1 − q none of them
will be occupied at time t + 1. Birth events from different sites are independent. Let

ξ̂
A
≡ {ξ̂At : t ≥ 0} be the dual process starting from ξ̂A0 = A ⊂ Vn. The two processes can

be constructed on the same sample space so that for any choices of A and B for the initial
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sets of occupied sites, ξA and ξ̂
B

satisfies the following duality relationship, see Griffeath
(1978).

{

ξAt ∩B 6= ∅
}

=
{

ξ̂Bt ∩ A 6= ∅
}

, t = 0, 1, 2, . . . . (1.2)

Taking A = {1, 2, . . . , n} and B = {x} this says

{

x ∈ ξ1t
}

=
{

ξ̂
{x}
t 6= ∅

}

, (1.3)

or, taking probabilities of both the events above, the density of occupied sites in ξ1 at time

t is equal to the probability that ξ̂
{x}

survives until time t. Since over small distances our
graph looks like a tree in which each vertex has r descendants, the last quantity ≈ ρ.

From (1.2) it should be clear that we can prove Theorem 1 by studying the coalescing
branching process. The key to this is an “isoperimetric inequality”. Let Ĝn be the graph
obtained from our original graph Gn = (Vn, En) by reversing the edges. That is, Ĝn =
(Vn, Ên), where Ên = {(x, y) : (y, x) ∈ En}. Given a set U ⊂ Vn, let

U∗ = {y ∈ Vn : x → y for some x ∈ U}, (1.4)

where x → y means (x, y) ∈ Ên. Note that U∗ can contain vertices of U . The idea behind
this definition is that if U is occupied at time t in the coalescing branching process, then the
vertices in U∗ may be occupied at time t+ 1.

Theorem 2. Let E(m, k) be the event that there is a subset U ⊂ Vn with size |U | = m so

that |U∗| ≤ k. Given η > 0, there is an ǫ0(η) > 0 so that for m ≤ ǫ0n

P [E(m, (r − 1− η)m)] ≤ exp(−ηm log(n/m)/2).

In words, the isoperimetric constant for small sets is r− 1. It is this result that forces us to
assume q(r − 1) > 1 in Theorem 1.

Claim. There is a c > 0 so that if n is large, then, with high probability, for each m ≤ cn
there is a set Um with |Um| = m and |U∗

m| ≤ 1 + (r − 1)m.

Sketch of Proof. Define an undirected graph Hn on the vertex set Vn so that x and y are
adjacent in Hn if and only if there is a z so that x → z and y → z in Ĝn. The drawing
illustrates the case r = 3.
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The mean number of neighbors of a vertex in Hn is r2 ≥ 9, so standard arguments show
that there is a c > 0 so that, with probability tending to 1 as n → ∞, there is a connected
component Kn of Hn with |Kn| ≥ cn. If U is a connected subset of Kn with |U | = ⌊cn⌋,
then by building up U one vertex at a time and keeping it connected we get a sequence of
sets {Um, m = 1, 2, . . . , ⌊cn⌋} with |Um| = m and |U∗

m| ≤ 1 + (r − 1)m.

Since the isoperimetric constant is ≤ r − 1, it follows that when q(r − 1) < 1, then for

any ǫ > 0 there are bad sets A with |A| ≤ nǫ, so that E
∣

∣

∣
ξ̂A1

∣

∣

∣
≤ |A|. Computations from the

proof of Theorem 2 suggest that there are a large number of bad sets. We have no idea how
to bound the amount of time spent in bad sets, so we have to take a different approach to
show persistence when 1/r < q ≤ 1/(r − 1).

Theorem 3. Suppose qr > 1. If δ0 is small enough, then for any 0 < δ < δ0, there are

constants C(δ) > 0 and B(δ) = (1/8− 2δ) log(qr − δ)/ log r so that as n → ∞

inf
t≤exp(C(δ)·nB(δ))

P

(

|ξ1t |

n
≥ ρ− 2δ

)

→ 1.

To prove this, we will again investigate persistence of the dual. Let

d0(x, y) ≡ length of a shortest oriented path from x to y in Ĝn,

d(x, y) ≡ min
z∈Vn

[d0(x, z) + d0(y, z)], (1.5)

and for any subset A of vertices let

m(A,K) = max
S⊆A

{|S| : d(x, y) ≥ K for x, y ∈ S, x 6= y}. (1.6)

Let R ≡ log n/ log r be the average value of d0(1, y), let a = 1/8−δ and B = (a−δ) log(qr−

δ)/ log r. We will show that if m
(

ξ̂As , 2⌈aR⌉
)

< ⌊nB⌋1 at some time s, then with high

probability, we will later have m
(

ξ̂At , 2⌈aR⌉
)

≥ ⌊nB⌋ for some t > s. To do this we explore

the vertices in Ĝn one at a time using a breadth-first search algorithm based on the distance
function d0. We say that a collision has occurred if we encounter a vertex more than once
in the exploration process. First we show in Lemma 3.1 that, with probability tending to
1 as n → ∞, there can be at most one collision in the set {u : d0(x, u) ≤ 2⌈aR⌉} for any

x ∈ Vn. Then we argue in Lemma 3.2 that when we first have m
(

ξ̂As , 2⌈aR⌉
)

< ⌊nB⌋, there

is a subset N of occupied sites so that |N | ≥ (q − δ)⌊nB⌋, and d(z, w) ≥ 2⌈aR⌉ − 2 for any
two distinct vertices z, w ∈ N , and {u : d0(z, u) ≤ 2⌈aR⌉ − 1} has no collision. We run the
dual process starting from the vertices of N until time ⌈aR⌉ − 1, so they are independent.

With high probability there will be at least one vertex w ∈ N for which
∣

∣

∣
ξ̂
{w}
⌈aR⌉−1

∣

∣

∣
≥ ⌈nB⌉.

By the choice of N , for any two distinct vertices x, z ∈ ξ̂
{w}
⌈aR⌉−1, d(x, z) ≥ 2⌈aR⌉. It seems

foolish to pick only one vertex w, but we do not know how to guarantee that the vertices
are suitably separated if we pick more.
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2 Proof of Theorem 1

We begin with the proof of the isoperimetric inequality, Theorem 2.

Proof of Theorem 2. Let p(m, k) be the probability that there is a set U with |U | = m and
|U∗| = k. First we will estimate p(m, ℓ) where ℓ = ⌊(r − 1− η)m⌋.

p(m, ℓ) ≤
∑

{(U,U ′):|U |=m,|U ′|=ℓ}

P(U∗ = U ′) ≤
∑

{(U,U ′):|U |=m,|U ′|=ℓ}

P(U∗ ⊂ U ′).

According to the construction of Gn, for any x ∈ U the other ends of the r edges coming out
of it are distinct and they are chosen at random from Vn \ {x}. So

P(U∗ ⊂ U ′) =

[

(

|U ′|
r

)

(

n−1
r

)

]|U |

≤

(

|U ′|

n− 1

)r|U |

,

and hence

p(m, ℓ) ≤

(

n

m

)(

n

ℓ

)(

ℓ

n− 1

)rm

. (2.1)

To bound the right-hand side, we use the trivial bound
(

n

m

)

≤
nm

m!
≤
(ne

m

)m

, (2.2)

where the second inequality follows from em > mm/m!. Using (2.2) in (2.1)

p(m, ℓ) ≤ (ne/m)m(ne/ℓ)ℓ
(

ℓ

n

)rm(
n

n− 1

)rm

.

Recalling ℓ ≤ (r − 1 − η)m, and accumulating the terms involving (m/n), r − 1 − η and e
the last expression becomes

≤ em(r−η)(m/n)m[−1−(r−1−η)+r](r − 1− η)−(r−1−η)m+rm[n/(n− 1)]rm

= em(r−η)(m/n)mη(r − 1− η)m(1+η)[n/(n− 1)]rm.

Letting c(η) = r− η+ r log(n/(n−1))+ (1+ η) log(r−1− η) ≤ C for η ∈ (0, r−1), we have

p (m, ⌊(r − 1− η)m⌋) ≤ exp (−ηm log(n/m) + Cm) .

Summing over integers k = (r − 1− η′)m with η′ ≥ η, and noting that there are fewer than
rm terms in the sum, we have

P [E(m, (r − 1− η)m)] ≤ exp(−ηm log(n/m) + C ′m).

To clean up the result to the one given in Theorem 2, choose ǫ0 such that η log(1/ǫ0)/2 >
C ′. Hence for any m ≤ ǫ0n,

η log(n/m)/2 ≥ η log(1/ǫ0)/2 > C ′,

which gives the desired result.
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Our next goal is to show that the graph Ĝn locally looks like a tree with high probability.
For that we explore all the vertices in Vn one at a time, starting from a vertex x, and using
a breadth-first search algorithm based on the distance function d0 of (1.5). More precisely,
for each x ∈ Vn, we define the sets Ak

x, which we call the active set at the kth step, and Rk
x,

which we call the removed set at kth step, for k = 0, 1, . . . , βx, where βx ≡ min{l : Al
x = ∅},

sequentially as follows. R0
x ≡ ∅ and A0

x ≡ {x}. Let D(x, l) = {y : d0(x, y) ≤ l}. For
0 ≤ k < βx, we get k0 = min{l : 0 ≤ l ≤ k, Ak

x ∩D(x, l) 6= ∅}, and choose xk ∈ Ak
x ∩D(x, k0)

with the minimum index.

If xk ∈ Rk
x, then Ak+1

x ≡ Ak
x \ {xk}, R

k+1
x ≡ Rk

x and

if xk 6∈ Rk
x, then Ak+1

x ≡ Ak
x ∪ {y1(xk), . . . , yr(xk)} \ {xk}, R

k+1
x ≡ Rk

x ∪ {xk}.

If xk ∈ Rk
x, we say that a collision has occurred while exploring Ĝn starting from x. The

choice of xk ensures that while exploring the graph starting from x, for any j ≥ 1, we consider
the vertices, which are at d0 distance j from x, prior to those, which are at d0 distance j+1
from x.

The next Lemma shows that with high probability Rk
x will have k vertices, and for x 6= z,

Rk
x and Rk

z do not intersect each other, when k ≤ n1/2−δ. For the lemma we need the
following stopping times.

π1
x ≡ min

{

l ≥ 1 : |Rl
x| < l

}

,

πx,z ≡ min
{

l ≥ 1 : Rl
x ∩ Rl

z 6= ∅
}

, x 6= z,

αn,δ
x ≡ min

{

l ≥ 1 : |Rl
x| ≥ ⌈n1/2−δ⌉

}

, δ < 1/2, (2.3)

βx = min
{

l ≥ 1 : Al
x = ∅

}

So π1
x is the time of first collision while exploring Ĝn starting from x, and πx,z is the time of

first collision while exploring Ĝn simultaneously from x and z.

Lemma 2.1. Suppose 0 < δ < 1/2. Let I1x, x ∈ Vn, and Ix,z, x, z ∈ Vn, x 6= z, be the events

I1x ≡
{

π1
x ∧ βx ≥ αn,δ

x

}

, Ix,z ≡ I1x ∩ I1z ∩
{

πx,z ≥ αn,δ
x ∨ αn,δ

z

}

,

where π1
x, πx,z, α

n,δ
x and βx are the stopping times defined in (2.3). Then

P
[(

I1x
)c]

≤ n−2δ, P(Icx,z) ≤ 5n−2δ (2.4)

for large enough n.

Note that the randomness, which determines whether the events I1x and Ix,z occur or
not, arises only from the construction of the random graph Gn, and does not involve the
threshold contact process ξ1 on Gn.
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Proof. Let δ′ = 1/2− δ. Since in the construction of the random graph Gn the input nodes
yi(z), 1 ≤ i ≤ r, for any vertex z are distinct and different from z, there are at least n − r
choices for each yi(z). Also

∣

∣Rl
x

∣

∣ ≤ l for any l. So

P(|Rk
x| = |Rk−1

x |) ≤ (k − 1)/(n− r). (2.5)

It is easy to check that π1
x ∧ βx ≥ αn,δ

x if |Rk
x| 6= |Rk−1

x | for k = 1, 2, . . . , ⌈nδ′⌉. So

P
[(

I1x
)c]

≤ P

[

∪
⌈nδ′⌉
k=1

(
∣

∣Rk
x

∣

∣ =
∣

∣Rk−1
x

∣

∣

)

]

≤

⌈nδ′⌉
∑

k=1

P
(

|Rk
x| = |Rk−1

x |
)

≤

⌈nδ′⌉
∑

k=1

(k − 1)/(n− r) ≤ n2δ′/n = n−2δ

for large enough n. For the other assertion, note that Ix,z occurs if |Rk
x| 6= |Rk−1

x |, |Rk
z | 6=

|Rk−1
z | and Rk

x ∩ Rk
z = ∅ for k = 1, 2, . . . , ⌈nδ′⌉. Also if for some k ≥ 1 Rk

x ∩ Rk
z 6= ∅ and

Rl
x ∩ Rl

z = ∅ for all 1 ≤ l < k, then either Rk
x = Rk−1

x ∪ {xk−1} and xk−1 ∈ Rk−1
z , or

Rk
z = Rk−1

z ∪ {zk−1} and zk−1 ∈ Rk
x. Now since each of the input nodes in the construction

of Gn has at least n− r choices, and |Rl
x|, |R

l
z| ≤ l for any l,

P
(

Rk
x ∩ Rk

z 6= ∅, Rl
x ∩Rl

z = ∅, 1 ≤ l < k
)

≤ P
(

xk−1 ∈ Rk−1
z

)

+P
(

zk−1 ∈ Rk
x

)

≤ (2k−1)/(n−r).
(2.6)

Combining the error probabilities of (2.5) and (2.6)

P
(

Icx,z
)

≤ P

[

∪⌈nδ′⌉
k=1

(
∣

∣Rk
x

∣

∣ =
∣

∣Rk−1
x

∣

∣

)

∪⌈nδ′⌉
k=1

(
∣

∣Rk
z

∣

∣ =
∣

∣Rk−1
z

∣

∣

)

∪⌈nδ′⌉
k=1

(

Rk
x ∩Rk

z 6= ∅
)

]

≤

⌈nδ′⌉
∑

k=1

[

P
(
∣

∣Rk
x

∣

∣ =
∣

∣Rk−1
x

∣

∣

)

+ P
(

|Rk
z | = |Rk−1

z |
)

+ P
(

Rk
x ∩ Rk

z 6= ∅, Rl
x ∩ Rl

z = ∅, 1 ≤ l < k
)]

≤

⌈nδ′⌉
∑

k=1

(4k − 3)/(n− r) ≤ 5n2δ′−1 = 5n−2δ

for large n.

Lemma 2.1 shows that Ĝn is locally tree-like. The number of vertices in the induced
subgraph Ĝx,M with vertex set Gn ∩ {u : d0(x, u) ≤ M} is at most 1 + r + · · ·+ rM ≤ 2rM .

So if I1x occurs, then, for any M satisfying 2rM ≤ n1/2−δ, the subgraph Ĝx,M is an oriented
finite r−tree, where each vertex except the leaves has out-degree r. Similarly if Ix,z occurs,

then for any such M , Ĝx,M ∩ Ĝz,M = ∅.
In the next lemma, we will use this to get a bound on the survival of the dual process

for small times. Let ρ be the branching process survival probability defined in (1.1).
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Lemma 2.2. If q > 1/r, δ ∈ (0, qr− 1), γ = (20 log r)−1, and b = γ log(qr− δ) then for any

x ∈ Vn, if n is large,

P
(
∣

∣

∣
ξ̂
{x}
⌈2γ logn⌉

∣

∣

∣
≥ ⌈nb⌉

)

≥ ρ− δ.

Proof. Let I1x be the event
I1x =

{

π1
x ∧ βx ≥ αn,1/4

x

}

,

where π1
x, βx, α

n,1/4
x are as in (2.3). Let PZx be the distribution of a branching process

Zx ≡ {Zx
t : t = 0, 1, 2, . . .} with Zx

0 = 1 and offspring distribution p0 = 1 − q and pr = q.
Since q > 1/r, this is a supercritical branching process. Let Bx be the event that the
branching process survives. Then

PZx(Bx) = ρ,

where ρ is as in (1.1). If we condition on Bx, then, using a large deviation result for branching
processes from Athreya (1994),

PZx

(
∣

∣

∣

∣

Zx
t+1

Zx
t

− qr

∣

∣

∣

∣

> δ

∣

∣

∣

∣

Bx

)

≤ e−c(δ)t (2.7)

for some constant c(δ) > 0 and for large enough t. So if Fx = {Zx
t+1 ≥ (qr−δ)Zx

t for ⌊γ log n⌋ ≤
t < ⌈2γ log n⌉}, then

PZx(F c
x |Bx) ≤

(⌈2γ logn⌉)−1
∑

t=⌊γ logn⌋

e−c(δ)t ≤ Cδn
−c(δ)γ/2 (2.8)

for some constant Cδ > 0 and for large enough n. On the event Bx ∩ Fx,

Zx
⌈2γ logn⌉ ≥ (qr − δ)⌈2γ logn⌉−⌊γ logn⌋ ≥ (qr − δ)γ logn = nγ log(qr−δ),

since Zx
⌊γ logn⌋ ≥ 1 on Bx.

Now coming back to the dual process ξ̂
{x}

, let PI1x denotes the conditional distribution of

ξ̂
{x}

given I1x. This does not specify the entire graph but we will only use the conditional law
for events that involve the process on the subtree whose existence is guaranteed by I1x. By
the choice of γ, the number of vertices in the subgraph induced by {u : d0(x, u) ≤ ⌈2γ log n⌉}
is at most 2r⌈2γ logn⌉ < n1/4. Then it is easy to see that we can couple PI1x with PZx so that

PI1x

[(
∣

∣

∣
ξ̂
{x}
t

∣

∣

∣
, 0 ≤ t ≤ ⌈2γ log n⌉

)

∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ ⌈2γ log n⌉) ∈ ·] .

Combining the error probabilities of (2.4) and (2.8)

P
(
∣

∣

∣
ξ̂
{x}
⌈2γ logn⌉

∣

∣

∣
≥ ⌈nb⌉

)

≥ PI1x

(
∣

∣

∣
ξ̂
{x}
⌈2γ logn⌉

∣

∣

∣
≥ ⌈nb⌉

)

P(I1x)

= PZx

(

Zx
⌈2γ logn⌉ ≥ ⌈nb⌉

)

P(I1x)

≥ PZx(Bx ∩ Fx)P(I
1
x)

= PZx(Bx)PZx(Fx|Bx)P(I
1
x)

≥ ρ
(

1− Cδn
−c(δ)γ/2

) (

1− n−1/2
)

≥ ρ− δ

9



for large enough n.

Lemma 2.2 shows that the dual process starting from one vertex will with probability
≥ ρ− δ survive until there are ⌈nb⌉ many occupied sites. The next lemma will show that if
the dual starts with ⌈nb⌉ many occupied sites, then for some ǫ > 0 it will have ⌈ǫn⌉ many
occupied sites with high probability.

Lemma 2.3. If q(r − 1) > 1, then there exists ǫ1 > 0 such that for any A with |A| ≥ ⌈nb⌉

the dual process ξ̂
A
satisfies

P

(

max
t≤⌈ǫ1n−nb⌉

∣

∣

∣
ξ̂At

∣

∣

∣
< ǫ1n

)

≤ exp
(

−nb/4
)

.

Proof. Choose η > 0 such that (q − η)(r − 1 − η) > 1, and let ǫ0(η) be the constant in

Theorem 2. Take ǫ1 ≡ ǫ0(η). Let ν ≡ min
{

t :
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈ǫ1n⌉

}

. Let Ft ≡
{
∣

∣

∣
ξ̂At

∣

∣

∣
≥
∣

∣

∣
ξ̂At−1

∣

∣

∣
+ 1
}

,

and

Bt ≡
{

at least (q − η)
∣

∣

∣
ξ̂At

∣

∣

∣
occupied sites of ξ̂At give birth

}

,

Ct ≡ {|U∗
t | ≥ (r − 1− η)|Ut|} , where Ut =

{

x ∈ ξ̂At : x gives birth
}

.

Now if Bt and Ct occur, then
∣

∣

∣
ξ̂At+1

∣

∣

∣
= |U∗

t | ≥ (r − 1− η)|Ut| ≥ (r − 1− η)(q − η)
∣

∣

∣
ξ̂At

∣

∣

∣
>
∣

∣

∣
ξ̂At

∣

∣

∣
, (2.9)

i.e. Ft+1 occurs. So Ft+1 ⊇ Bt ∩ Ct for all t ≥ 0. Using the binomial large deviations, see
Lemma 2.3.3 on page 40 in Durrett (2007),

PG

(

Bt| ξ̂
A
t

)

≥ 1− exp
(

−Γ((q − η)/q)q
∣

∣

∣
ξ̂At

∣

∣

∣

)

, (2.10)

where Γ(x) = x log x−x+1 > 0 for x 6= 1. If we take H0 ≡
{
∣

∣

∣
ξ̂A0

∣

∣

∣
≥ ⌈nb⌉

}

and Ht ≡ ∩t
s=1Fs,

then
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈nb⌉ on the event Ht for all t ≥ 0. Keeping that in mind we can replace

∣

∣

∣
ξ̂At

∣

∣

∣
in

the right side of (2.10) by nb to have

PG(B
c
t ∩Ht) ≤ PG

(

Bc
t ∩
{
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈nb⌉

})

≤ exp
(

−Γ((q − η)/q)qnb
)

∀t ≥ 0. (2.11)

The same bound also works for the unconditional probability distribution P. Next we see
that PG(Ct|Ut) ≥ 1Ec, where E = E(|Ut|, (r − 1− η)|Ut|), as defined in Theorem 2. Taking
expectation with respect to the distribution of Gn, P(Ct|Ut) ≥ P(Ec). Since for t < ν,
|Ut| < ǫ0(η)n, and |Ut| ≥ (q − η)nb ≥ nb/(r − 1) on Ht ∩ Bt, using Theorem 2

P(Cc
t ∩Bt ∩Ht ∩ {t < ν}) ≤ P[Cc

t ∩ {(nb/(r − 1)) ≤ |Ut| < ǫ1n}]

≤ exp

(

−
η

2

nb

r − 1
log

n(r − 1)

nb

)

. (2.12)
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Combining these two bounds of (2.11) and (2.12) we get

P(F c
t+1 ∩Ht ∩ {t < ν}) ≤ P((Bt ∩ Ct)

c ∩Ht ∩ {t < ν})

≤ P(Bc
t ∩Ht) +P(Cc

t ∩ Bt ∩Ht ∩ {t < ν}) ≤ exp
(

−nb/2
)

for large n. Since ν ≤ ⌈ǫ1n− nb⌉ on H⌈ǫ1n−nb⌉,

P
(

ν > ⌈ǫ1n− nb⌉
)

≤ P
[

(

ν > ⌈ǫ1n− nb⌉
)

∩
(

∪
⌈ǫ1n−nb⌉
t=1 F c

t

)]

≤

⌈ǫ1n−nb⌉
∑

t=1

P(F c
t ∩Ht−1 ∩ {ν > t− 1})

≤ (⌈ǫ1n− nb⌉) exp
(

−nb/2
)

≤ exp
(

−nb/4
)

for large n and we get the result.

The next result shows that if there are ⌈ǫn⌉ many occupied sites at some time for some
ǫ > 0, then the dual process survives for at least exp(cn) units of time for some constant c.

Lemma 2.4. If q(r − 1) > 1, then there exist constants c > 0 and ǫ1 > 0 as in Lemma 2.3

such that for T = exp(cn) and any A with |A| ≥ ⌈ǫ1n⌉,

P

(

inf
t≤T

∣

∣

∣
ξ̂At

∣

∣

∣
< ǫ1n

)

≤ 2 exp(−cn).

Proof. Choose η > 0 so that (q−η)(r−1−η) > 1, and then choose ǫ0(η) > 0 as in Theorem 2.

Take ǫ1 = ǫ0(η). For any A with |A| ≥ ⌈ǫ1n⌉, let U
′
t =

{

x ∈ ξ̂At : x gives birth
}

, t = 0, 1, . . ..

If |U ′
t | ≤ ⌊ǫ1n⌋, then take Ut = U ′

t . If |U
′
t| > ǫ1n, we have too many vertices to use Theorem

2, so we let Ut be the subset of U ′
t consisting of the ⌊ǫ1n⌋ vertices with smallest indices. Let

Ft =
{
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈ǫ1n⌉

}

, Ht = ∩t
s=0Fs,

Bt =
{

at least (q − η)
∣

∣

∣
ξ̂At

∣

∣

∣
many occupied sites of ξ̂At give birth

}

,

Ct = {|U∗
t | ≥ (r − 1− η)|Ut|}.

Now using an argument similar for the one for (2.9), Ft+1∩Ht ⊃ Bt∩Ct∩Ht for any t ≥ 0. Us-

ing our binomial large deviations result (2.10) again, PG

(

Bt| ξ̂
A
t

)

≥ 1−exp
(

−Γ((q − η)/q)q
∣

∣

∣
ξ̂At

∣

∣

∣

)

.

On the event Ft,
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈ǫ1n⌉, and so

PG(B
c
t ∩Ht) ≤ PG

(

Bc
t ∩
{
∣

∣

∣
ξ̂At

∣

∣

∣
≥ ⌈ǫ1n⌉

})

≤ exp (−Γ((q − η)/q)qǫ1n) .

The same bound works for the unconditional probability distribution P.
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Since |Ut| ≤ ǫ1n, and on the event Ht∩Bt |Ut| ≥ (q−η)ǫ1n ≥ ǫ1n/(r−1), using Theorem
2 and similar argument which leads to (2.12) we have

P(Cc
t ∩Ht ∩Bt) ≤ exp

(

−
η

2

ǫ1n

r − 1
log

r − 1

ǫ1

)

.

Combining these two bounds

P(F c
t+1 ∩Ht) ≤ P[(Bt ∩ Ct)

c ∩Ht]

≤ P(Bc
t ∩Ht) + P(Cc

t ∩Bt ∩Ht) ≤ 2 exp(−2c(η)n),

where

c(η) =
1

2
min

{

Γ

(

q − η

q

)

qǫ1,
η

2

ǫ1
r − 1

log
r − 1

ǫ1

}

.

Hence for T ≡ exp(c(η)n)

P

(

inf
t≤T

∣

∣

∣
ξ̂At

∣

∣

∣
< ǫ1n

)

≤ P
(

∪
⌊T ⌋
t=1F

c
t

)

≤

⌊T ⌋−1
∑

t=0

P(F c
t+1 ∩Gt) ≤ 2T exp(−2c(η)n) = 2 exp(−c(η)n).

which completes the proof.

Lemma 2.4 confirms prolonged persistence for the dual. We will now give the

Proof of Theorem 1. Choose δ ∈ (0, qr−1) and γ = (20 log r)−1. Define the random variables

Yx, 1 ≤ x ≤ n, so that Yx = 1 if the dual process ξ̂
{x}

starting at x satisfies
∣

∣

∣
ξ̂
{x}
⌈2γ logn⌉

∣

∣

∣
≥ ⌈nb⌉

for b = γ log(qr − δ), and Yx = 0 otherwise. By Lemma 2.2, if n is large, then

EYx ≥ ρ− δ for any x.

Let π1
x, πx,z and α

n,3/10
x be the stopping times as in (2.3), and I1x, Ix,z be the corresponding

events as in Lemma 2.1. Recall that Ĝx,M is teh subgraph with vertex set Vn∩{u : d0(x, u) ≤

M}. On the event Ix,z, Ĝx,⌈2γ logn⌉ and Ĝz,⌈2γ logn⌉ are oriented finite r−trees consisting of
disjoint sets of vertices, since 2r⌈2γ logn⌉ ≤ n1/5 by the choice of γ. Hence if PIx,z is the

conditional distribution of
(

ξ̂
{x}

, ξ̂
{z}
)

given Ix,z, then

PIx,z

[(

ξ̂
{x}
t , 0 ≤ t ≤ ⌈2γ logn⌉

)

∈ ·,
(

ξ̂
{z}
t , 0 ≤ t ≤ ⌈2γ logn⌉

)

∈ ·
]

= PIx,z

[(

ξ̂
{x}
t , 0 ≤ t ≤ ⌈2γ logn⌉

)

∈ ·
]

PIx,z

[(

ξ̂
{z}
t , 0 ≤ t ≤ ⌈2γ logn⌉

)

∈ ·
]

.
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Having all the ingredients ready we will now estimate the covariance between the events
{Yx = 1} and {Yz = 1} for x 6= z. Standard probability arguments give the inequalities

P(Yx = 1, Yz = 1) ≤ P[(Yx = 1, Yz = 1) ∩ Ix,z] + P(Icx,z)

= PIx,z(Yx = 1, Yz = 1)P(Ix,z) + P(Icx,z)

= PIx,z(Yx = 1)PIx,z(Yz = 1)P(Ix,z) + P(Icx,z)

= P[(Yx = 1) ∩ Ix,z]P[(Yz = 1) ∩ Ix,z]/P(Ix,z) + P(Icx,z)

≤ P(Yx = 1)P(Yz = 1)/P(Ix,z) + P(Icx,z).

Subtracting P(Yx = 1)P(Yz = 1) from both sides gives

P(Yx = 1, Yz = 1)−P(Yx = 1)P(Yz = 1)

≤ P(Yx = 1)P(Yz = 1)

(

1

P(Ix,z)
− 1

)

+ P(Icx,z)

≤ P(Icx,z)[1 + 1/P(Ix,z)], (2.13)

where in the last inequality we replaced the two probabilities by 1. Now from Lemma 2.1
P(Icx,z) ≤ 5n−3/5, and so

P(Yx = 1, Yz = 1)−P(Yx = 1)P(Yz = 1) ≤ 5n−3/5
(

1 + 1/
(

1− 5n−3/5
))

≤ 15n−3/5

for large enough n. Using this bound,

var

(

n
∑

x=1

Yx

)

≤ n+ 15n(n− 1)n−3/5,

and Chebyshev’s inequality shows that as n → ∞

P

(
∣

∣

∣

∣

∣

n
∑

x=1

(Yx − EYx)

∣

∣

∣

∣

∣

≥ nδ

)

≤
n+ 15n(n− 1)n−3/5

n2δ2
→ 0.

Since EYx ≥ ρ− δ, this implies

lim
n→∞

P

(

n
∑

x=1

Yx ≥ n(ρ− 2δ)

)

= 1. (2.14)

Our next goal is to show that ξ1T contains the random setD ≡ {x : Yx = 1} at T = T1+T2,
a time that grows exponentially fast in n. We choose η > 0 so that (q − η)(r − 1 − η) >

1. Let ǫ1 and c(η) be the constants in Lemma 2.4. If Yx = 1, then
∣

∣

∣
ξ̂
{x}
T1

∣

∣

∣
≥ ⌈nb⌉ for

T1 = ⌈2γ log n⌉. Combining the error probabilities of Lemmas 2.3 and 2.4 shows that for
T2 = ⌊exp(c(η)n)⌋+

⌈

ǫ1n− nb
⌉

, and for any subset A of vertices with |A| ≥ ⌈nb⌉

P
(
∣

∣

∣
ξ̂AT2

∣

∣

∣
≥ ⌈ǫ1n⌉

)

≥ 1− 3 exp
(

−nb/4
)

(2.15)
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for large n.
Let C be the set of all subsets of Vn of size at least ⌈nb⌉, and denote Cx ≡ ξ̂

{x}
T1

. Using
the duality relationship of (1.3) for the conditional probability distribution

P(·) = P
(

·
∣

∣

∣
ξ̂
{x}
t , 0 ≤ t ≤ T1, x ∈ Vn

)

,

we see that

P
(

ξ1T1+T2
⊇ D

)

= P
[

∩x∈D

(

x ∈ ξ1T1+T2

)]

= P
[

∩x∈D

(

ξ̂
{x}
T1+T2

6= ∅
)]

.

Since D = {x : Yx = 1}, it follows from the definition of Yx that Cx ∈ C for all x ∈ D. So by
the Markov property of the dual process the above is

=
∑

Cx∈C,x∈D

P
[

∩x∈D

(

ξ̂
{x}
T1+T2

6= ∅, ξ̂
{x}
T1

= Cx

)]

=
∑

Cx∈C,x∈D

P
[

∩x∈D

(

ξ̂Cx

T2
6= ∅
)]

P
[

∩x∈D

(

ξ̂
{x}
T1

= Cx

)]

.

Using (2.15) P
(

ξ̂Cx

T2
6= ∅
)

≥ P
(
∣

∣

∣
ξ̂Cx

T2

∣

∣

∣
≥ ⌈ǫ1n⌉

)

≥ 1− 3 exp
(

−nb/4
)

. So the above is

≥
(

1− 3|D| exp
(

−nb/4
))

∑

Cx∈C,x∈D

P
[

∩x∈D

(

ξ̂
{x}
T1

= Cx

)]

≥ 1− 3n exp
(

−nb/4
)

.

For the last inequality we use |D| ≤ n and P(Yx = 1∀x ∈ D) = 1. Since the lower bound
only depends on n, the unconditional probability

P
(

ξ1T1+T2
⊇ {x : Yx = 1}

)

≥ 1− 3n exp
(

−nb/4
)

.

Hence for T = T1+T2 using the attractiveness property of the threshold contact process,
and combining the last calculation with (2.14) we conclude that as n → ∞

inf
t≤T

P

(

|ξ1t |

n
> ρ− 2δ

)

= P

(

|ξ1T |

n
> ρ− 2δ

)

≥ P

(

ξ1T ⊇ {x : Yx = 1},
n
∑

x=1

Yx ≥ n(ρ− 2δ)

)

→ 1.

This completes the proof of Theorem 1.
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3 Proof of Theorem 3

Recall the definition of the active sets Ak
x, k = 0, 1, . . . , βx, and the removed sets Rk

x, k =
0, 1, . . . , βx, introduced before Lemma 2.1. Also recall the stopping times π1

x and αn,δ
x in (2.3)

and define
π2
x ≡ min

{

l > π1
x :
∣

∣Rl
x

∣

∣ < l − 1
}

.

This is the time of second collision while exploring Ĝn starting from x. First we show that
with high probability for every vertex x ∈ Vn the second collision occurs after ⌈n1/4−δ⌉ many
steps for any δ ∈ (0, 1/4).

Lemma 3.1. Let δ ∈ (0, 1/4) and I2x be the event

I2x ≡
{

π2
x ∧ βx ≥ αn,1/4+δ

x

}

.

Then for I ≡ ∩x∈Vn
I2x, P(I

c) ≤ 2n−4δ for large enough n.

Proof. Let δ′ = (1/4)−δ. Since in the construction of the random graph Gn the input nodes
yi(z), 1 ≤ i ≤ r, for any vertex z are distinct and different from z, there are at least n − r
choices for each yi(z). Also

∣

∣Rl
x

∣

∣ ≤ l for any l. So P(|Rk
x| = |Rk−1

x |) ≤ (k − 1)/(n − r).

Now if I2x fails to occur, then there will be k1 and k2 such that 1 ≤ k1 < k2 ≤ ⌈nδ′⌉ and
|Rki

x | = |Rki−1
x | for i = 1, 2. So

P
[(

I2x
)c]

≤
∑

1≤k1<k2≤⌈nδ′⌉

P
(
∣

∣Rk1
x

∣

∣ =
∣

∣Rk1−1
x

∣

∣ ,
∣

∣Rk2
x

∣

∣ =
∣

∣Rk2−1
x

∣

∣

)

≤
∑

1≤k1<k2≤⌈nδ′⌉

(k1 − 1)(k2 − 1)

(n− r)2
≤

∑

1≤k1,k2≤⌈nδ′⌉

2
(k1 − 1)(k2 − 1)

n2
≤ 2n4δ′−2

for large enough n. The second inequality holds because the choices of the input nodes are
independent. Hence P(Ic) ≤

∑

x∈Vn
P
[

(I2x)
c]

≤ 2n4δ′−1 = 2n−4δ.

Lemma 3.1 shows that with high probability for all vertices there will be at most one
collision until we have explored ⌈n1/4−δ⌉ many vertices starting from any vertex of Ĝn. Now
recall the definition of the distance functions d0 and d from (1.5), and m(A,K) given in (1.6).
Let R = log n/ log r, a = (1/8 − δ) and let ρ be the branching process survival probability
defined in (1.1).

Lemma 3.2. Let PI denote the conditional distribution of ξ̂
{x}

, x ∈ Vn given I, where I is

the event defined in Lemma 3.1. If qr > 1 and δ0 is small enough, then for any 0 < δ < δ0
there are constants C(δ) > 0, B(δ) = (1/8 − 2δ) log(qr − δ)/ log r and a stopping time T
satisfying

PI

(

T < 2 exp
(

C(δ)nB(δ)
))

≤ 2 exp
[

−C(δ)nB(δ)
]

,

such that for any A with m(A, 2⌈aR⌉) ≥ ⌊nB(δ)⌋,
∣

∣

∣
ξ̂AT

∣

∣

∣
≥ ⌊nB(δ)⌋.
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Proof. Let mt ≡ m
(

ξ̂At , 2⌈aR⌉
)

. We define the stopping times σi and τi as follows. σ0 ≡ 0,

and for i ≥ 0

τi+1 ≡ min
{

t > σi : mt < ⌊nB⌋
}

,

σi+1 ≡ min
{

t > τi+1 : mt ≥ ⌊nB⌋
}

.

Since τi > σi−1 for i ≥ 1, mτi−1 ≥ ⌊nB⌋, and hence there is a set Xi ⊂ ξ̂Aτi−1 of size at
least ⌊nB⌋ such that d(u, v) ≥ 2⌈aR⌉ for any two distinct vertices u, v ∈ Xi. Let Ei be the
event that at least (q − δ)|Xi| many vertices of Xi give birth at time τi. Using the binomial
large deviation estimate (2.10)

PG(Ei) ≥ 1− exp
(

−Γ((q − δ)/q)q⌊nB⌋
)

, (3.1)

where Γ(x) = x log x− x+ 1.
Now let I be the event defined in Lemma 3.1. Since |{z : d0(x, z) ≤ 2⌈aR⌉}| is at

most 2r2⌈aR⌉ ≤ 2rn2a ≤ n1/4−δ, so if I occurs, then for any vertex x ∈ Vn there is at
most one collision in {z : d0(x, z) ≤ 2⌈aR⌉}, and hence there are at least r − 1 input nodes
u1(x), . . . , ur−1(x) of x such that {z : d0(ui(x), z) ≤ 2⌈aR⌉ − 1} is a finite oriented r−tree
for each 1 ≤ i ≤ r − 1. Since the right side of 3.1 depends only on n,

PI(I ∩ Ei) = PI(Ei) ≥ 1− exp
(

−c1(δ)n
B
)

,

where c1(δ) = Γ((q − δ)/q)q/2. If I ∩ Ei occurs, then we can choose one suitable offspring
of each of the vertices in Xi, which give birth, to form a subset Ni ⊂ ξ̂Aτi such that |Ni| ≥
(q − δ)⌊nB⌋, d(u, v) ≥ 2⌈aR⌉ − 2 for any two distinct vertices u, v ∈ Ni, and {z : d0(u, z) ≤
2⌈aR⌉ − 1} is a finite oriented r−tree for each u ∈ Ni.

By the definition of Ni it is easy to see that for each x ∈ Ni

PI

[(
∣

∣

∣
ξ̂
{x}
t

∣

∣

∣
, 0 ≤ t ≤ 2⌈aR⌉ − 1

)

∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ 2⌈aR⌉ − 1) ∈ ·] ,

where Zx is a supercritical branching process, as introduced in Lemma 2.2, with distribution
PZx and mean offspring number qr. Let Bx be the event of survival for Zx, and Fx =
∩⌈aR⌉−2
t=⌊δR⌋−1

{

Zx
t+1 ≥ (qr − δ)Zx

t

}

. So PZx(Bx) = ρ > 0 as in (1.1). Using the error probability

of (2.7)

PZx(F c
x |Bx) ≤

⌈aR⌉−2
∑

t=⌊δR⌋−1

e−c′(δ)t ≤ Cδe
−c′(δ)δ logn/(2 log r) = Cδn

−c′(δ)δ/(2 log r) (3.2)

for some constants Cδ, c
′(δ) > 0. On the event Bx ∩ Fx,

Zx
⌈aR⌉−1 ≥ (qr − δ)(⌈aR⌉−1)−(⌊δR⌋−1) ≥ (qr − δ)(a−δ)R = n(a−δ) log(qr−δ)/ log r = nB.
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Hence for Qx ≡
{
∣

∣

∣
ξ̂
{x}
⌈aR⌉−1

∣

∣

∣
≥ ⌈nB⌉

}

for x ∈ Ni, we use standard probability arguments and

(3.2) to have

PI(Qx) = PI

(
∣

∣

∣
ξ̂
{x}
⌈aR⌉−1

∣

∣

∣
≥ ⌈nB⌉

)

= PZx

(

Zx
⌈aR⌉−1 ≥ ⌈nB⌉

)

≥ PZx(Bx ∩ Fx) ≥ PZx(Bx)PZx(Fx|Bx) ≥ ρ− δ (3.3)

for large enough n.
Since d(u, v) ≥ 2⌈aR⌉ − 2 for any two distinct vertices u, v ∈ Ni, ξ̂

Ni
t is a disjoint union

of ξ̂
{x}
t over x ∈ Ni for t ≤ ⌈aR⌉ − 1. Let Hi be the event that there is at least one x ∈ Ni

for which Qx occurs. Then recalling that |Ni| ≥ (q − δ)⌊nB⌋ on Ei,

PI(H
c
i |Ei) ≤ (1− ρ+ δ)(q−δ)⌊nB⌋ = exp

(

−c2(δ)n
B
)

, (3.4)

where c2(δ) = (q − δ) log(1/(1− ρ+ δ))/2.

If Hi ∩ Ei occurs, choose any vertex wi ∈ Ni such that Qwi
occurs and let Si ≡ ξ̂

{wi}
⌈aR⌉−1.

By the choice of wi, |Si| ≥ ⌊nB⌋. Since (⌈aR⌉ − 1) + ⌈aR⌉ = 2⌈aR⌉ − 1, for any two distinct
vertices x, z ∈ Si the subgraphs induced by {u : d0(x, u) ≤ ⌈aR⌉} and {u : d0(z, u) ≤ ⌈aR⌉}
are finite r−trees consisting of disjoint sets of vertices, and hence d(x, z) ≥ 2⌈aR⌉. Hence
using monotonicity of the dual process σi ≤ τi + ⌈aR⌉ − 1 on this event Hi ∩ Ei. So

PI(σi > τi + ⌈aR⌉ − 1) ≤ PI(E
c
i ) + PI(H

c
i |Ei) ≤ 2 exp(−2C(δ)nB),

where C(δ) ≡ min{c1(δ), c2(δ)}/2. Let L = inf{i ≥ 1 : σi > τi + ⌈aR⌉ − 1}. Then

PI

[

L > exp
(

C(δ)nB
)]

≥
[

1− 2 exp(−2C(δ)nB)
]exp(C(δ)nB)

≥ 1− 2 exp
(

−C(δ)nB
)

.

Since σi > τi > σi−1, σL−1 ≥ 2(L − 1). As
∣

∣

∣
ξ̂AσL−1

∣

∣

∣
≥ ⌊nB⌋, we get our result if we take

T = σL−1.

As in the proof of Theorem 1, survival of the dual process gives persistence of the threshold
contact process.

Proof of Theorem 3. Let 0 < δ < δ0, ρ, a = (1/8− δ) and B = (1/8 − 2δ) log(qr − δ)/ log r
be the constants from the previous proof. Define the random variables Yx, 1 ≤ x ≤ n, as

Yx = 1 if the dual process ξ̂
{x}

starting at x satisfies
∣

∣

∣
ξ̂
{x}
⌈aR⌉−1

∣

∣

∣
> ⌊nB⌋ and Yx = 0 otherwise.

Consider the event I1x =
{

π1
x ∧ βx ≥ α

n,1/4+δ
x

}

, where π1
x, βx and α

n,1/4+δ
x are stopping

times defined as in (2.3). Using Lemma 2.1 and 3.1

PI

[(

I1x
)c]

≤
P
[

(I1x)
c]

P(I)
≤

n−2(1/4+δ)

1− 2n−4δ
≤ 2n−(1/2+2δ). (3.5)
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Let Jx ≡ I ∩ I1x and PJx be the conditional distribution of ξ̂
{x}

given Jx. Since the number
of vertices in the set {u : d0(x, u) ≤ ⌈aR⌉ − 1} is at most 2r⌈aR⌉−1 ≤ 2raR < n1/4−δ by the
choice of a,

PJx

[(
∣

∣

∣
ξ̂
{x}
t

∣

∣

∣
, 0 ≤ t ≤ ⌈aR⌉ − 1

)

∈ ·
]

= PZx [(Zx
t , 0 ≤ t ≤ ⌈aR⌉ − 1) ∈ ·] ,

where Zx is a supercritical branching process, as introduced in Lemma 2.2, with distribution
PZx and mean offspring number qr. Let Bx and Fx = ∩

⌈aR⌉−2
t=⌊δR⌋−2

{

Zx
t+1 ≥ (qr − δ)Zx

t

}

. So

PZx(Bx) = ρ > 0 as in (1.1), and similar to (3.2)

PZx(F c
x |Bx) ≤

⌈aR⌉−2
∑

t=⌊δR⌋−2

e−c′(δ)t ≤ Cδn
−c′(δ)δ/(2 log r)

for some constants Cδ, c
′(δ) > 0. On the event Bx ∩Fx, Z

x
⌈aR⌉−1 ≥ (qr− δ)(⌈aR⌉−1)−(⌊δR⌋−2) >

(qr − δ)(a−δ)R ≥ ⌊nB⌋. Hence using (3.5)

PI(Yx = 1) ≥ PI

(

I1x ∩
{
∣

∣

∣
ξ̂
{x}
⌈aR⌉−1

∣

∣

∣
> ⌊nB⌋

})

= PJx

(
∣

∣

∣
ξ̂
{x}
⌈aR⌉−1

∣

∣

∣
> ⌊nB⌋

)

PI(I
1
x)

= PZx

(

Zx
⌈aR⌉−1 > ⌊nB⌋

)

PI(I
1
x)

≥ PZx(Bx ∩ Fx)PI(I
1
x) = PZx(Bx)PZx(Fx|Bx)PI(I

1
x) ≥ ρ− δ

for large enough n.
Next we estimate the covariance between the events {Yx = 1} and {Yz = 1}. We

consider the stopping times π1
x, βx, πx,z, α

n,1/4+δ
x as in (2.3) and the corresponding event Ix,z

as in Lemma 2.1. We can use similar argument, which leads to (2.13), to conclude

PI(Yx = 1, Yz = 1)− PI(Yx = 1)PI(Yz = 1) ≤ PI(I
c
x,z)(1 + 1/PI(Ix,z)).

From Lemma 2.1 and 3.1,

PI(I
c
x,z) ≤

P(Icx,z)

P(I)
≤

5n−2(1/4+δ)

1− 2N−4δ
≤ 10n−(1/2+2δ)

for large enough n, and so

PI(Yx = 1, Yz = 1)− PI(Yx = 1)PI(Yz = 1) ≤ 30n−(1/2+2δ)

for large n. Using the bound on the covariances,

varI

(

n
∑

x=1

Yx

)

≤ n + 30n(n− 1)n−2δ,

18



and Chebyshev’s inequality gives that as n → ∞

PI

(
∣

∣

∣

∣

∣

n
∑

x=1

(Yx −EYx)

∣

∣

∣

∣

∣

≥ nδ

)

≤
n + 30n(n− 1)n−2δ

n2δ2
→ 0.

Since EYx ≥ ρ− δ for all x ∈ Vn, this implies

lim
n→∞

PI

(

n
∑

x=1

Yx ≥ n(ρ− 2δ)

)

= 1. (3.6)

Our next goal is to show that ξ1T contains the random set D ≡ {x : Yx = 1} with high

probability for a suitable choice of T . If Yx = 1, then
∣

∣

∣
ξ̂
{x}
T1

∣

∣

∣
> ⌊nB⌋, where T1 = ⌈aR⌉ − 1.

Note that ⌈aR⌉ − 1 + ⌈aR⌉ ≤ 2⌈aR⌉, and on the event I there can be at most one collision
in {u : d0(x, u) ≤ 2⌈aR⌉}. Even though the first collision occurs between descendants of two

vertices in ξ̂
{x}
T1

, still we can exclude one vertex from ξ̂
{x}
T1

to have a set Wx ⊂ ξ̂
{x}
T1

of size at
least ⌊nB⌋ such that for any two distinct vertices z, w ∈ Wx, the subgraphs induced by {u :
d0(z, u) ≤ ⌈aR⌉} and {v : d0(w, v) ≤ ⌈aR⌉} are finite oriented r−trees consisting of disjoint

sets of vertices, i.e. d(z, w) ≥ 2⌈aR⌉. So if Yx = 1, thenm
(

ξ̂
{x}
T1

, 2⌈aR⌉
)

≥ ⌊nB⌋ on the event

I. Using Lemma 3.2, after an additional T2 ≥ 2 exp
(

C(δ)nB
)

units of time, the dual process
contains at least ⌊nB⌋ many occupied sites with PI probability ≥ 1− 2 exp

(

−C(δ)nB
)

.

Let F be the set of all subsets of Vn of size > ⌊nB⌋, and denote Fx ≡ ξ̂
{x}
T1

. Using the
duality relationship of (1.3) for the conditional probability PI(·) ≡ P(·|I), where

P(·) = P
(

·
∣

∣

∣
ξ̂
{x}
t , 0 ≤ t ≤ T1, x ∈ Vn

)

,

we see that

PI

(

ξ1T1+T2
⊇ D

)

= PI

[

∩x∈D

(

x ∈ ξ1T1+T2

)]

= PI

[

∩x∈D

(

ξ̂
{x}
T1+T2

6= ∅
)]

.

Since D = {x : Yx = 1}, Fx ∈ F for all x ∈ D. So by the Markov property of the dual
process the above is

=
∑

Fx∈F ,x∈D

PI

[

∩x∈D

(

ξ̂
{x}
T1+T2

6= ∅, ξ̂
{x}
T1

= Fx

)]

=
∑

Fx∈F ,x∈D

PI

[

∩x∈D

(

ξ̂Fx

T2
6= ∅
)]

PI

[

∩x∈D

(

ξ̂
{x}
T1

= Fx

)]

.

Now since Wx ⊂ Fx, using monotonicity of the dual process, PI

(

ξ̂Fx

T2
6= ∅
)

≥ PI

(

ξ̂Wx

T2
6= ∅
)

.

Also using Lemma 3.2, PI

(
∣

∣

∣
ξ̂Wx

T2

∣

∣

∣
≥ ⌊nB⌋

)

≥ 1 − 2 exp
(

−C(δ)nB
)

for any Fx ∈ F . So the
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above is

≥
(

1− 2|D| exp
(

−C(δ)nB
))

∑

Fx∈F ,x∈D

PI

[

∩x∈D

(

ξ̂
{x}
T1

= Fx

)]

≥ 1− 2n exp
(

−C(δ)nB
)

.

For the last inequality we use |D| ≤ n and PI(Yx = 1∀x ∈ D) = 1. Since the lower bound
only depends on n,

PI

(

ξ1T1+T2
⊇ {x : Yx = 1}

)

≥ 1− 2n exp
(

−C(δ)nB
)

⇒ P
(

ξ1T1+T2
⊇ {x : Yx = 1}

)

≥ P(I)
[

1− 3n exp
(

−C(δ)nB
)]

→ 1,

as n → ∞, since P(I) ≥ 1− 2n−4δ by Lemma 3.1.
Hence for T = T1+T2 using the attractiveness property of the threshold contact process,

and combining the last calculation with (3.6) we conclude that as n → ∞

inf
t≤T

P

(

|ξ1t |

n
> ρ− 2δ

)

= P

(

|ξ1T |

n
> ρ− 2δ

)

≥ P

(

ξ1T ⊇ {x : Yx = 1},
n
∑

x=1

Yx ≥ n(ρ− 2δ)

)

→ 1,

which completes the proof of Theorem 3.
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