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SINGULAR VECTORS UNDER RANDOM PERTURBATION

VAN VU

Abstract. Computing the first few singular vectors of a large matrix is a
problem that frequently comes up in statistics and numerical analysis. Given
the presence of noise, exact calculation is hard to achieve, and the following
problem is of importance:

How much a small perturbation to the matrix changes the singular vectors ?

Answering this question, classical theorems, such as those of Davis-Kahan
and Wedin, give tight estimates for the worst-case scenario. In this paper, we
show that if the perturbation (noise) is random and our matrix has low rank,
then better estimates can be obtained. Our method relies on high dimensional
geometry and is different from those used an earlier papers.

MSC indices: 65F15, 15A42, 62H30

1. Introduction

An important problem that appears in various areas of applied mathematics (in
particular statistics, computer science and numerical analysis) is to compute the
first few singular vectors of a large matrix. Among others, this problem lies at
the heart of PCA (Principal Component Analysis), which has a very wide range of
applications (for many examples, see [3, 5] and the references therein).

The basic setting of the problem is as follows:

Problem 1. Given a matrix A of size n×n with singular values σ1 ≥ · · · ≥ σn ≥ 0.
Let v1, . . . , vn be the corresponding (unit) singular vectors. Compute v1, . . . , vk, for
some k ≤ n.

Typically n is large and k is relatively small. As a matter of fact, in many ap-
plications k is a constant independent of n. For example, to obtain a visualization
of a large set of data, one often sets k = 2 or 3. The assumption that A is a
square matrix is for convenience and our analysis can be carried out with nominal
modification for rectangular matrices.

We use asymptotic notation such as Θ,Ω, O under the assumption that n → ∞.
The vectors v1, . . . , vk are not unique. However, if σ1, . . . , σk are different, then
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they are determined up to the sign. We assume this is the case in all discussions.
(In fact, as the reader will see, the gap δi := σi − σi+1 plays a crucial role.) For
a vector v, ‖v‖ denotes its L2 norm. For a matrix A, ‖A‖ = σ1(A) denotes its
spectral norm.

1.1. Classical perturbation bounds. The matrix A, which represents some sort
of data, is often perturbed by noise. Thus, one typically works with A+E, where E
represents the noise. A natural and important problem is to estimate the influence
of noise on the vectors v1, . . . , vk. We denote by v′1, . . . , v

′
k the first k singular

vectors of A+ E.

For sake of presentation, we restrict ourselves to the case k = 1 (the first singular
vector). Our analysis extends easily in the general case, discussed in Section 5.

The following question is of importance

Question 2. When is v′1 a good approximation of v1 ?

A convenient way to measure the distance between two unit vectors v and v′ is to
look at sin∠(v, v′), where ∠(v, v′) is the angle between the vectors, taken in [0, π/2].
To make the problem more quantitative, let us fix a small parameter ε > 0, which
represents a desired accuracy. Our question now is to find a sufficient condition for
the matrix A which guarantees that sin∠(v1, v

′
1) ≤ ǫ. It has turned out that the

key parameter to look at is the gap (or separation)

δ := σ1 − σ2,

between the first and second singular values of A. Classical results in numerical
linear algebra yield

Corollary 3. For any given ε > 0, there is C = C(ε) > 0 such that if δ ≥ C‖E‖,
then

sin∠(v1, v
′
1) ≤ ǫ.

This follows from a well known result of Wedin

Theorem 4. (Wedin sin theorem) There is a positive constant C such that

(1) sin∠(v1, v
′
1) ≤ C

‖E‖
δ

.

In the case when A and A + E are hermitian, this statement is a special case of
the famous Davis-Kahan sin θ theorem. Wedin [7] extended Davis-Kahan theorem
to non-hermitian matrices, resulting in a general theorem that contains Theorem 4
as a special case (see [8, Chapter 8] for more discussion and history).
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Let us consider the following simple, but illustrative example [2]. Let A be the
matrix

(

1 + ǫ 0
0 1− ǫ

)

.

Apparently, the singular values of A are 1+ǫ and 1−ǫ, with corresponding singular
vectors (1, 0) and (0, 1). Let E be

(

−ǫ ǫ
ǫ ǫ

)

,

where ǫ is a small positive number. The perturbed matrix A+ E has the form

(

1 ǫ
ǫ 1

)

.

Obviously, the singular values A + E are also 1 + ǫ and 1 − ǫ. However, the
corresponding singular vectors now are ( 1√

2
, 1√

2
) and ( 1√

2
,− 1√

2
), no matter how

small ǫ is. This example shows that the consideration of the gap δ is necessary, and
also that Theorem 4 is sharp, up to a constant factor.

1.2. Random perturbation. Noise (or perturbation) represents errors that come
from various sources which are frequently of entirely different nature, such as errors
occurring in measurements, errors occurring in recording and transmitting data,
errors occurring by rounding etc. It is usually too complicated to model noise
deterministically, so in practice, one often assumes that it is random. In particular,
a popular model is that the entries of E are independent random variables with
mean 0 and variance 1 (the value 1 is, of course, just matter of normalization).

For simplicity, we restrict ourselves to a representative case when all entries of E
are iid Bernoulli random variables, taking values ±1 with probability half. For the
treatment of more general models, see Section 5.

Remark 5. We prefer the Bernoulli model over the gaussian one for two reasons.
First, we believe that in many real-life applications, noise must have discrete nature
(after all, data are finite). So it seems reasonable to use random variables with
discrete support to model noise, and Bernoulli is the simplest such a variable.
Second, as the reader will see, the analysis for the Bernoulli model easily extends
to many other models of random matrices (including the gaussian one). On the
other hand, the analysis for gaussian matrices often relies on special properties of
the gaussian measure which are not available in other cases.

We say that an event E holds almost surely if P(E) = 1− o(1); in other words, the
probability that E holds tends to one as n tends to infinity. It is well-known that
the norm of a random Bernoulli matrix is of order

√
n, almost surely (see Lemma

12). Thus, Theorem 4 implies the following variant of Corollary 3.
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Corollary 6. For any given ε > 0, there is C = C(ε) > 0 such that if δ ≥ C
√
n,

then with probability 1− o(1)

sin∠(v1, v
′
1) ≤ ǫ.

1.3. Low dimensional data and improved bounds. In a large variety of prob-
lems, the data is of small dimension, namely, r := rankA ≪ n. The main point
that we would like to make in this paper is that in this setting, the lower bound
on δ can be significantly improved. Let us first present the following (improved)
variant of Corollary 6.

Corollary 7. For any positive constant ǫ there is a positive constant C = C(ǫ)
such that the following holds. Assume that A has rank r ≤ n.99 and n√

r logn
≤ σ1

and δ ≥ C
√
r logn. Then with probability 1− o(1)

(2) sin∠(v1, v
′
1) ≤ ǫ.

This result shows that (under the given circumstances) we can approximate v1
closely (by v′1) provided δ ≥ C

√
r logn, improving the previous assumption δ ≥

C
√
n. Furthermore, the appearance of σ1 in the statement is necessary. If σ1 ≪ √

n,
then the noise dominates and we could not expect to recover any good information
about A from A+ E.

Corollary 7 is an easy consequence of the following theorem.

Theorem 8. (Probabilistic sin-theorem) For any positive constants α1, α2 there
is a positive constant C such that the following holds. Assume that A has rank
r ≤ n1−α1 and σ1 := σ1(A) ≤ nα2 . Let E be a random Bernoulli matrix. Then
with probabilty 1− o(1)

(3) sin2 ∠(v1, v
′
1) ≤ Cmax

(

√
r logn

δ
,

n

δσ1
,

√
n

σ1

)

.

Furthermore, one can remove the term
√
n

σ1

if δ ≤ 1
2σ1.

Let us know consider the general case when we try to approximate the first k
singular vectors. Set εk := sin∠(vk, v

′
k) and sk := (ε21+ · · ·+ ε2k)

1/2. We can bound
εk recursively as follows.

Theorem 9. For any positive constants α1, α2, k there is a positive constant C such
that the following holds. Assume that A has rank r ≤ n1−α1 and σ1 := σ1(A) ≤ nα2 .
Let E be a random Bernoulli matrix. Then with probabilty 1− o(1)
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(4) ε2k ≤ Cmax
(

√
r logn

δk
,

n

σkδk
,

√
n

σk
,
σ2
1s

2
k−1

σkδk
,
(σ1 +

√
n)(σk +

√
n)sk−1

σkδk

)

.

The first three terms in the RHS of (4) mirror those in (3). The last two terms
represent the recursive effect.

To give the reader a feeling about this bound, let us consider the following example.
Take A such that r = no(1), σ1 = 2nα, σ2 = nα, δ2 = nβ, where α > 1/2 > β > 1−α

are positive constants. Then δ1 = nα and ǫ21 ≤ max
(

n−α+o(1), n1−2α+o(1)
)

, almost

surely.

Assume that we want to bound sin∠(v2, v
′
2). The gap δ2 = nβ = o(n1/2), so

Wedin theorem (in the general form) does not apply. On the other hand, Theorem
9 implies that almost surely

ε22 ≤ max
(

n−β+o(1), n1/2−α+o(1), n−α−β+1
)

.

Thus, we have almost surely

sin∠(v2, v
′
2) = n−Ω(1) = o(1).

The angle between two subspaces. Let us mention that if sin∠(vj , v
′
j) ≤ ε for

all 1 ≤ j ≤ k, then sin∠(Vk, V
′
k) ≤ ε, where Vk (V ′

k) is the subspace spanned by
v1, . . . , vk (v′1, . . . , v

′
k, respectively). The formal (and a bit technical) definition of

∠(Vk, V
′
k) can be seen in [8, 2]. It is important to know that for two subspaces V, V ′

of the same dimension

sin∠(V, V ′) = ‖P − P ′‖

where P (P ′) denotes the orthogonal projection onto V (V ′). Moreover ‖P − P ′‖
is frequently used as the distance between V and V ′.

The rest of the paper is organized as follows. In the next section, we present
tools from linear algebra and probability. The proofs of Theorems 8 and 9 follow
in Sections 3 and 4, respectively. In Section 5, we extend these theorems for other
models of random noise, including the gaussian one, and also to matrices A which
do not necessarily have low rank.
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2. Preliminaries: Linear Algebra and Probability

2.1. Linear Algebra. Fix a system v1, . . . , vn of unit singular vectors of A. It is
well-known that v1, . . . , vn form an orthonormal basis. (If A has rank r, the choice
of vr+1, . . . , vn will turn out to be irrelevant.)

For a vector v, if we decompose it as

v := α1v1 + · · ·+ αnvn,

then

(5) ‖Av‖2 = v · A∗Av =

n
∑

i=1

α2
i σ

2
i .

We will use the Courant-Fisher minimax principle for singular values, which asserts
that

(6) σk(M) = max
dimH=k

min
v∈H,‖v‖=1

‖Mv‖,

where σk(M) is the kth largest singular value of M .

2.2. ǫ-net lemma. Let ǫ be a positive number. A set X is an ǫ-net of a set Y if
for any y ∈ Y , there is x ∈ X such that ‖x− y‖ ≤ ǫ.

Lemma 10. Let H be a subspace and S := {v|‖v‖ = 1, v ∈ H}. Let 0 < ε ≤ 1 be
a number and M a linear map. Let N ⊂ S be an ǫ-net N of S. Then there is a
vector w ∈ N such that

‖Mw‖ ≥ (1− ǫ) max
‖v‖∈S

‖Mv‖.

Proof. Let v be the vector where the maximum is attained and let w be a vector in
the net closest to v (tights are broken arbitrarily). Then by the triangle inequality

‖Mw‖ ≥ ‖Mv‖ − ‖M(v − w)‖.

As ‖v − w‖ ≤ ǫ, ‖M(v − w)‖ ≤ ǫmax‖v‖∈S ‖Mv‖, concluding the proof. �

The following estimate for the minimum size of an ǫ of a sphere is well-known.

Lemma 11. A unit sphere in d dimension admits an ǫ-net of size at most (3ǫ−1)d.
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Proof. Let S be the sphere in question, centered at O, and N ⊂ S be a finite subset
of S such that the distance between any two points is at least ǫ. If N is maximal
with respect to this property then N is an ǫ-net. On the other hand, the balls of
radius ǫ/2 centered at the points in N are disjoint subsets of the the ball of radius
(1 + ε/2), centered at O. Since

1 + ε/2

ε/2
≤ 3ε−1

the claim follows by a volume argument. �

2.3. Probability. We need the following estimate on ‖E‖ (see [1, 6]).

Lemma 12. There is a constant C0 > 0 such that the following holds. Let E be a
random Bernoulli matrix of size n. Then

P(‖E‖ ≤ 3
√
n) ≤ exp(−C0n).

Next, we present a lemma which roughly asserts that for any two vectors given
u and v, u and Ev are, with high probability, almost orthogonal. We present the
proof of this lemma in ??.

Lemma 13. Let E be a random Bernoulli matrix of size n. For any fixed unit
vectors u, v and positive number t

P(|uTEv| ≥ t) ≤ 2 exp(−t2/16).

Now we are ready to state our key lemma.

Lemma 14. For any constants 0 < β1, 0 < β2 < 1 there is a constant C such
that the following holds. Assume that A is such that σ1 ≤ nβ1 and let V :=
Span{v1, . . . , vd} for some d ≥ n1−β2 . Then the following holds almost surely. For
any unit vector v ∈ V

‖(A+ E)v‖2 ≤
n
∑

i=1

(v · vi)2σ2
i + C(n+ σ1

√

d logn).

Proof. It suffices to prove for v belonging to an ε-net N of the unit sphere S in
V , with ε := 1

n+σ1

. With such small ε, the error coming from the term (1− ε) (in

Lemma 10) is swallowed into the error term O(n+ σ1

√
d logn).

By Lemma 10, |N | ≤ (3ε )
d ≤ exp(C1d logn), for some constant C1 (which depends

on the exponent β1 in the upper bound of σ1). Thus, using the union bound, it
suffices to show that if C is large enough, then for any v ∈ N
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P(‖(A+ E)v‖2 ≥
n
∑

i=1

(v · vi)2 + C(n+ σ1

√

d logn)) ≤ exp(−2C1d logn)

for any fixed v ∈ N .

Fix v ∈ N . By (5),

‖(A+E)v‖2 = ‖Av‖2+‖Ev‖2+2(Av)·(Ev) =

n
∑

i=1

(v ·vi)2σ2
i +‖Ev‖2+2(Av)·(Ev).

Since ‖Av‖ ≤ σ1, we have, by Lemma 13, that with probability at least 1 −
exp(−C2d logn)

|(Av) · (Ev)| ≤ Cσ1

√

d logn,

where C2 increases with C. Thus, by choosing C sufficiently large, we can assume
that C2 > 3C1.

Furthermore, by Lemma 12, ‖Ev‖ ≤ 3
√
n with probability at least 1−exp(−Ω(n)).

Combining this with the above bounds, we conclude that for a sufficiently large
constant C

P(‖(A+ E)v‖2 ≥
n
∑

i=1

(v · vi)2 + C(n+ σ1)) ≤ exp(−3C1d log n) + exp(−Ω(n))

≤ exp(−2C1d log n),

completing the proof. �

3. Proof of Theorem 8

Let H be the subspace spanned by {v1, v2} and ui(1 ≤ i ≤ n) be the singular
vectors of the matrix A∗.

First, we give a lower bound for σ′
1 := ‖A + E‖. By the minimax principle, we

have

σ′
1 = ‖A+ E‖ ≥ |uT

1 (A+ E)v1| = |σ1 + uT
1 Ev1|.

By Lemma 13, we have, with probability 1−o(1), |uT
1 Ev1| ≤ log logn. (The choice

of log logn is not important. One can replace it by any function that tends slowly
to infinity with n.)

Thus, we have, with probability 1− o(1), that
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(7) ‖A+ E‖ ≥ σ1 − log logn.

Our main observation is that, with high probability, any v that is far from v1
would yield ‖(A+ E)v‖ < σ1 − log logn. Therefore, the first singular vector v′1 of
A+ E must be close to v1.

Consider a unit vector v and write it as

v = c1v1 + c2v2 + · · ·+ crvr + c0u

where u is a unit vector orthogonal to H := Span{v1, . . . , vr} and c21+ · · ·+c2r+c20 =
1. Recall that r is the rank of A, so Au = 0. Setting w := c1v1 + · · · + crvr and
using Cauchy-Schwartz, we have

‖(A+ E)v‖2 = ‖(A+ E)w + c0Eu‖2 ≤ ‖(A+ E)w‖2 + 2c0‖(A+ E)w‖‖Eu‖+ c20‖Eu‖2

≤ (1 +
c20
4
)‖(A+ E)w‖2 + (4 + c20)‖Eu‖2.

By Lemma 12, we have, with probability 1 − o(1), that ‖Eu‖ ≤ 3
√
n) for every

unit vector u. Furthermore, by Lemma 14, we have, with probability 1− o(1),

‖(A+ E)w‖2 ≤
r

∑

i=1

(w · vi)2 +O(σ1

√

r logn+ n)

for every vector w ∈ H of length at most 1.

Since

r
∑

i=1

(w · vi)2 =

r
∑

i=1

c2iσ
2
i ≤ (1− c20)σ

2
1 − (1− c20 − c21)(σ

2
1 − σ2

2),

we can conclude that with probability 1− o(1), the first singular vector of A + E,
written in the form v = c1v1 + · · ·+ crvr + c0u, satisfies

(8)
1

1 + c20/4
‖(A+E)v‖2 ≤ (1−c20)σ

2
1−(1−c20−c21)(σ

2
1−σ2

2)+O(σ1

√

r log n+n).

Notice that c0 ≤ 1, so the term c0n is swallowed into O(n). By (7) and the fact

that 1
1+c2

0

≥ 1− c2
0

4 , we have
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1

1 + c20/4
‖(A+ E)v‖2 ≥ (1− c20

4
)(σ1 − log logn)2.

Comparing this with (8) and noticing that both σ1 log logn and (log logn)2 are
o(σ1

√
r logn), we obtain, for some properly chosen constant C, that

(1− c21)σ1δ −
c20
4
σ2
1 ≤ −c20σ

2
2 + C(σ1

√

r logn+ n).

Before concluding the proof, let us derive a bound on c0. We can show that with
probability 1− o(1)

(9) c20 = O(

√
n

σ1
).

To verify this, we again used the bound ‖(A+E)v‖ ≥ σ1− log logn. Oh the other
hand, by the triangle inequality and Lemma 12, we have with probability 1− o(1)

‖(A+ E)v‖ ≤ ‖Av‖+ ‖Ev‖ ≤
√

1− c2σ1 + 3
√
n,

from which (9) follows by a simple computation.

Without loss of generality, we can assume that C ≥ 1. If σ2 ≤ 1
2σ1, then δ ≥ 1

2σ1

and

(10) 1− c21 ≤ C(σ1

√
r log n+ n)

σ2
1/2

+
c20
2

= O(

√
r logn

σ1
) +O(

n

σ2
1

) +O(

√
n

σ1
).

In the case σ2 ≥ 1
2σ1, c

2
0σ

2
2 ≥ c2

0

4 σ
2
1 , so

(1− c21)σ1δ ≤ C(σ1

√

r logn+ n)

which implies

(11) (1− c21) ≤ C(

√
r logn

δ
+

n

σ1δ
).

Notice that sin∠(v1, v
′
1)

2 = sin∠(v1, v)
2 = 1− c21. The desired claim follows from

(10) and (11).

Remark 15. One can improve the error term
√
n

σ1

to (
√
n

σ1

)3/2. However, this proof
is more technical and harder to generalize.
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4. Proof of Theorem 9

Similar to the previous proof, we start with a lower bound for σ′
k, the kth largest

singular value of A+ E. Using the minimax principle, we have

σ′
k ≥ |uT

k (A+ E)vk| ≥ σk − log logn

with probability 1− o(1).

We need to consider ‖(A + E)v‖ for a unit vector v orthogonal to v′1, . . . , v
′
k−1.

We write (as before)

v := c1v1 + · · ·+ crvr + c0u = w + c0u.

If v is the kth singular vector of A+ E, then v · v′j = 0 for 1 ≤ j ≤ k − 1, and we
obtain

|cj | = |v · vj | = |v · (vj − v′j)| ≤ |vj − v′j | ≤ 2 sin∠(vj .v
′
j) = 2εj.

As in the previous proof, we consider the inequality

‖(A+ E)v‖2 = ‖(A+ E)w + c0Eu‖2 ≤ ‖(A+ E)w‖2 + 2c0‖(A+ E)w‖‖Eu‖+ c20‖Eu‖2

≤ (1 +
c20
4
)‖(A+ E)w‖2 + (4 + c20)‖Eu‖2.

We split w = w̄k+wk, where w̄k := c1v1+ · · ·+ck−1vk−1 and wk := ckvk+ . . . vrcr.
We have

‖(A+E)w‖2 = ‖(A+E)(w̄k+wk)‖2 ≤ ‖(A+E)wk‖2+‖(A+E)w̄k‖2+2‖(A+E)wk‖‖(A+E)w̄k‖.

Using Lemma 14, we have

(12) ‖(A+ E)wk‖2 ≤ c2kv
2
k + · · ·+ c2rv

2
r +O(σk

√

r logn+ n).

The term ‖(A+ E)w̄k‖2 can be bounded, rather generously, by

(13) O((σ1 +
√
n)2(c21 + · · ·+ c2k−1) = O(σ2

1 + n)s2k−1).

Moreover,
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(14)
‖(A+E)wk‖‖(A+E)w̄k‖ = O((σk+

√
n)(σ1+

√
n)‖wk‖‖barwk‖ = O((σ1+

√
n)(σk+

√
n)sk−1.

Repeating the calculations in the previous proof, we have, with probability 1−o(1)

(1−c2k)(σ
2
k−σ2

k+1)−
c20
4
σ2
k ≤

k−1
∑

j=1

c2j(σ
2
j−σ2

k+1)−c20σ
2
k+1+O(σk

√

r logn+n)+O(σ2
1s

2
k−1+(σ1+

√
n)(σk+

√
n)sk−1).

We can bound c0 as follows

(15) c20 + s2k−1 = O(

√
n

σk
+

σ1sk−1

σk
).

By considering the two cases σk+1 ≥ 1
2σk and σk+1 < 1

2σk, the desired bound
follows.

5. Extensions

In this section, we extend our results to other models of random matrices. It is
easy to see that we did not rely ver heavily on properties of the Bernoulli random
variable. All we need is a model of random matrices so that Lemmas 12 and 13 (or
sufficiently strong variants) hold.

Both of these lemmas hold for the case where the noise is gaussian (instead of
Bernoulli). In fact, Lemma 13 is trivial as uTEv has distribution N(0, 1).

Both lemmas hold in the case the entries of E is bounded by a universal constant
K. For the proof of Lemma 12, see [1, 6]. For the proof of Lemma 13, see Remark
17.

Quite often, the boundedness condition can be replaced by the condition of having
a rapidly decaying tail (such as sub-gaussian), using either more advanced concen-
tration tools (see [9]) or a truncation argument (see [10]). We do not pursuit these
matters here.

We can also extend our results for a matrix A which does not have low rank, but
can be well approximate by one. In this case, we consider A = A′ + B, where A′

has small rank (say r) and B is very small. In this case, we can apply, say, Theorem
8 to bound ‖v1(A′) − v1(A

′ + E)‖ and Theorem 4 to bound ‖v1(A′)− v1(A)‖ and
then use the triangle inequality. As a result, the RHS of (3) will have an extra term
‖B‖
δ . The reader is invited to work out the details.
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Finally, our analysis also extends fairly easily to the case when E is a hermitian
random matrix (either Wigner or Wishart model) and A is hermitian. The details
and few applications will appear elsewhere.

Appendix A. Proof of Lemma 13

As uTEv =
∑

i,j ujvjξij where u = (ui)
n
i=1, v = (vj)

n
j=1 and the ξij are the entries

of E, Lemma 13 follows from

Lemma 16. Let S := c1ξ1+ · · ·+ cnξn where ξi are iid Bernoulli random variables
and ci are real numbers such as

∑n
i=1 c

2
i = 1. Then for any number t > 0

P(|S| ≥ t) ≤ 2 exp(−t2/16).

Proof. Without loss of generality, we can assume that |ci| decreases and l is the
last index such that |ci| ≥ 2

T . As
∑n

i=1 c
2
i = 1, l ≤ t2/4. By Cauchy-Schwartz,

|c1ξ1 + · · ·+ clξl|2 ≤ l2
n
∑

i=1

c2i ≤ t2

4
,

which implies that with probability one |c1ξ1 + . . . clξl| ≤ t
2 . Therefore,

P(|S| ≥ t) ≤ P(|S′| ≤ t

2
),

where S′ :=
∑n

i=l+1 ciξi.

We can bound P(|S′| ≤ t
2 ) by the standard Laplace-transform argument. Set

z := t/4. Thanks to independence, we have

P(S′ ≥ t

2
) = P(exp(zS′) ≥ etz/2) ≤ e−tz/2E(exp(zS′)) = e−tz/2

n
∏

i=l+1

E exp(zciξi).

On the other hand, as |zci| ≤ 1, it is easy to show that

E exp(zciξi) ≤ 1 + (zci)
2 ≤ exp(z2c2i ).

Together, we obtain

P(S′ ≥ tz/2) ≤ e−tz/2 exp(

n
∑

i=l+1

z2c2i ) ≤ exp(z2 − tz

2
) = exp(− t2

16
).
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Similarly

P(S′ ≤ −tz/2) = P(−S′ ≥ tz/2) ≤ exp(− t2

16
),

concluding the proof. �

Remark 17. The same proof works for ξ being arbitrary independent random
variable with mean 0 and variance 1, uniformly bounded by a constant K. In this
case, the constant 16 is replaced by a constant depending on K.
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