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Abstract

We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some

1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge

consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C

(in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We define a class of

(ε, p)-regular hypergraphs, that includes random hypergraphs, for which we can prove

the existence of a decomposition of almost all edges into type ` Hamilton cycles, where

` < k/2.

1 Introduction

This paper follows a line of work initiated by Frieze and Krivelevich [3] and continued by

Frieze, Krivelevich and Loh [5]. We are given a k-uniform hypergraph H (k-graph) with

certain pseudo-random properties and we show that almost all of the edges of H can be

packed into edge disjoint Hamilton cycles of a particular type.

The paper [5] begins with a good survey of this question which we will only give a sketch

here. When k = 2 we are dealing with graphs. Frieze and Krivelevich [4] showed that the

edge set of dense graphs with a certain pseudo-random structure typified by random graphs

could be almost decomposed into edge disjoint Hamilton cycles. Knox, Kühn and Osthus

[8] tightened the implied result when restricted to random graphs. Most recently, Knox,

Kühn and Osthus [9] and Krivelevich and Samotij [11] have given best possible results for

random graphs. I.e. it is possible to pack bδ/2c Hamilton cycles, where δ denotes minimum

degree. Random regular graphs are also known to have perfect packings of Hamilton cycles,

see e.g. Kim and Wormald [10]. Christofides, Kühn and Osthus [2] proved strong results for

decompositions of dense graphs.

The paper [3] discussed packing Hamilton cycles in pseudo-random hypergraphs. There

are various definitions of a Hamilton cycle in a hypergraph. We will use the following: Let
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H = (V = [n], E) be a k-graph i.e. E = {e1, e2, . . . , em} where ej is a k-subset of V for

j = 1, 2, . . . ,m. and let ` < k be given where ` | n. A Hamilton cycle of type ` is a sequence

f1, f2, . . . , fν` , ν` = n/` of edges where |gi = fi+1 \ fi| = ` for i = 1, 2, . . . , ν` (fν`+1 = f1)

and V =
⋃ν`
i=1 gi. The paper [3] deals with the case ` ≥ k/2 and described conditions under

which almost all of the edges of a hypergraph could be partitioned into Hamilton cycles.

The case ` < k/2 could not be handled by the methods in [3], but [5] shows how to deal

with the case k = 3, ` = 1. The purpose of this paper is to extend the analysis of [5] to the

case where k ≥ 4 and ` < k/2.

We first give our notion of pseudo-randomness: It is somewhat technical and is what is

needed for our proof. On the other hand, Hn,p;k (the random k-uniform hypergraph on n

vertices with edge probability p) will satisfy the definition for p not too small, see Section

2.0.1. We use the following notation throughout.

2 ≤ z =

⌈
k − `
`

⌉
and q = `z satisfies k/2 < k − ` ≤ q < k.

Definition 1. We say that an n-vertex k-graph H, is (ε, p)-regular if the following holds. Let

d ∈ {1, 2, . . . , `} and let s ∈ {1, 2, . . . , 2z + 2}. Given any s distinct (k− d)-sets, A1, . . . , As,

such that |
⋃
iAi| ≤ k + 2q, there are (1 ± ε)n

d

d!
ps sets of d vertices, D, such that all of

A1 ∪D, . . . , As ∪D are edges of H. 1

This definition basically says that in an (ε, p)-regular k-graph, the “generalized co-

degrees” should approximately equal their expected values in Hn,p;k. Taking s = 1 and

A1 = {x1, . . . , xk−1} (so that d = 1), the definition says that x1, . . . xk−1 are contained to-

gether in (1± ε)np edges. In Hn,p;k, the expected degree number of egdes containing a fixed

(k − 1)-set is np.

As a slightly more complicated example, suppose k = 5, ` = 2, d = 2 and s = 2 with

A1 = {x1, x2, x3} , A2 = {x3, x4, x5}. Then the definition says there are (1 ± ε)n2

2
p2 pairs of

vertices {y, z} such that both {x1, x2, x3, y, z} and {x3, x4, x5, y, z} are present. In Hn,p;k,

the expected number of such pairs would be
(
n
2

)
p2 which is asymptotically n2

2
p2.

The values `, 2z + 2 and k + 2q which appear in the restrictions of d, s and |
⋃
iAi| are

not particularly important; they are merely the minimal values which we need for our proof.

The fact that they are constants is all that really matters.

We now give our main theorem: 2

Theorem 1. Let k and ` < k/2 be given. Let α = 1
9+7z3

. Suppose that n is a sufficiently

large multiple of 2q and that ε, n and p satisfy

ε16z+12np8z � log8z+5 n.

Let H be an (ε, p)-regular k-graph with n vertices. Then H contains a collection of edge

disjoint Hamilton cycles of type ` that contains all but at most εα-fraction of its edges.

1A = (1± ε)B if (1− ε)B ≤ A ≤ (1 + ε)B
2The notation an � bn is short for an/bn →∞ as n→∞.
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Figure 1: An example with k = 5, ` = 2, d = 2 and s = 2 with A1 = {x1, x2, x3} , A2 =

{x3, x4, x5}

Our bounds on parameters ε, p are unlikely to be tight and it would be interesting to

sharpen our bounds. In which case, we will not fight too hard for our bounds. In particular,

we will replace products (1± aε)(1± bε) and (1± aε)(1± bε)−1 by (1± (a+ b+ 1)ε) without

further comment. Furthermore, we are really only interested in the case where ε is small and

so we will always assume that ε is sufficiently small for all such simplifications.

2 Proof overview and organization

The key insight in the proof of Theorem 1 is the following connection between type ` Hamilton

cycles in H and Hamilton cycles in an associated digraph.

Definition 2. Given two ordered q-tuples of vertices v1 = (v1, . . . , vq),v2 = (vq+1, . . . , v2q)

of a k-uniform hypergraph H, we define

ei = ei(v1,v2) = {vi`+1, vi`+2, . . . , vi`+k} for all i = 0, . . . , z − 1. (1)

We say that v1 precedes v2 if the edges e0, e1, . . . , ez−1 are all present in H. We say that

(v1,v2) owns these edges.

Notice that the edges e0, . . . , ez−1 are all contained in {v1, v2, . . . , v2q}. e0 consists of the

first k vertices of v1v2. We shift ` places to the right to get e1. We continue shifting by `

places until a further shift would take us outside v1v2.

For a permutation σ = (v1 = σ(1), . . . , vi = σ(i), . . . , vn = σ(n)) of the vertices of H, de-

fine a νq = n/q-vertex digraph Dσ with vertex set Vσ = {vi = (v(i−1)q+1, . . . , viq) : i =

1, 2, . . . , νq}. Place an arc (directed edge) from vi to vj if and only if vi precedes vj. In

this construction, Hamilton cycles in Dσ give rise to type ` Hamilton cycles in H. Indeed

the Hamilton cycle (w1,w2, . . . ,wn/q) of Dσ where wi = (w(i−1)q+1, . . . , wiq) yields a Hamil-

ton cycle in H made up from the edges owned by the arcs (wi,wi+1), i = 1, . . . , νq. This
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cycle is (e1, e2, . . . , eν`) where eaz+b = {w((a−1)z+b)`+1, . . . , w((a−1)z+b)`+k} for a ∈ [νq] and

b ∈ {0, . . . , z − 1}.
We want disjoint Hamilton cycles in Dσ to yield disjoint cycles in H. This follows from the

fact that the sets of edges owned by distinct arcs (va,vb) and (vc,vd) are disjoint. Suppose

then that some edge e of H is owned by both pairs. It follows from the definition of precedes

that the first element of e (in the order defined by σ) is in va and vc and so a = c. The

q + 1st element of e is in vb and vd and so b = d, contradiction.

The basic idea of the proof is to take a large number of random permutations σ1, σ2, . . . , σr
and construct the digraphs Dσ1 , Dσ2 , . . . , Dσr . Then take subgraphs D′σi ⊆ Dσi for i =

1, 2, . . . , r so that the edges of H owned by D′σi , D
′
σj

are disjoint for i 6= j. It will be argued

that each D′σi has certain regularity properties implying that its arc set can be almost

decomposed into edge disjoint Hamilton cycles. We then take the edges owned by the arcs

of all the Hamilton cycles in all the D′σi and remove them to create a new hypergraph H ′.

We then argue that whp H ′ is (ε′, p′)-regular. We repeat this process until we have covered

almost all of the edges of H by Hamilton cycles.

We now give the regularity properties that we require of our digraphs Dσ:

Definition 3. We say that a ν-vertex digraph is (ε, p)-regular if it satisfies the following

properties:

(i) Every vertex a has out-degree d+(a) = (1± ε)νp and in-degree d−(a) = (1± ε)νp.

(ii) For every pair of distinct vertices a, b, all three of the following quantities are (1±ε)νp2:
the number of common out neighbors d+(a, b), the number of common in neighbors

d−(a, b), and the number d+−(a, b) of out-neighbors of a which are also in-neighbors of

b.

(iii) Given any four vertices a, b, c, d, which are all distinct except for the possibility b = c,

there are (1± ε)νp4 vertices x such that −→ax,
−→
xb,−→cx,

−→
xd are all directed edges.

a

b

x

a

b

x

a

b

x

a

b

c

d

x

(ii) (iii)

Figure 2: Properties (ii) and (iii) of digraph (ε, p)-regularity. The number of such vertices,

x, should be approximately what it is in the random digraph Dν,p.

In this context, we have the following Theorem of Frieze, Krivelevich and Loh [5]:
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Theorem 2. Suppose that ε11np8 � log5 n, and n is a sufficiently large even integer. Then

every (ε, p)-regular digraph can have its edges partitioned into a disjoint union of directed

Hamilton cycles, except for a set of at most ε1/8-fraction of its edges.

We next describe our procedure for generating the D′σi :

Procedure 1. This takes as input an (ε, p)-regular k-graph H with number of vertices

divisible by 2q. Let

κ =
6(k + 1) log n

ε2
and r =

`qnk−2

k!pz−1
· κ. (2)

(1) Generate permutations σ1, σ2, . . . , σr of [n] independently from the uniform distribution

on Sn

(2) Let Hi be the k-graph made up of the edges of H that are owned by the arcs of Dσi .

(3) For each edge e ∈ H, let Ie = {i : e ∈ Hi}. If Ie 6= ∅, independently select a uniformly

random index in Ie to label e with.

(4) For each i, define the subgraph D′σi as follows: For each arc e = (v,v′) of Dσi , keep the

arc e if and only if all z of the edges owned by e are labeled with i.

(5) For each i, let H ′i be the k-graph containing all hyperedges which are owned by the arcs

of D′σi .

Our main task is to prove

Lemma 1. Suppose that n, p, and ε satisfy

ε8z+2np8z � log4z+1 n.

Let H be an (ε, p)-regular k-graph on n vertices (n divisible by 2q). Suppose that we carry

out Procedure 1. Then, with probability 1− o(n−1):

(a) Every D′σi is (12z2ε, (p/κ)z)-regular.

(b) H ′ is an (ε′, p′)-regular k-graph where H ′ = H \
⋃r
i=1H

′
i is the subgraph of H obtained

by deleting the edges of the H ′is. Here

ε′ = ε

(
1 +

7z3

κz−1

)
and p′ = p

(
1− 1

κz−1

)
Part (a) enables us to find many edge disjoint Hamilton cycles and it is proved in Section

3. Part (b) enables us to repeat the construction many times and is proved in Section 4.

Section 5 shows how to use the above lemma to prove the main theorem.
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2.0.1 Random k-graphs

We now check that random k-graphs are (ε, p)-regular for suitable ε, p.

P [Hn,p;k is not (ε, p)-regular] = O(nk+2q)
∑̀
d=1

2z+2∑
s=1

P
[
Bin

[(
n

d

)
, ps
]
6= (1± ε)n

d

d!
ps
]

= o(1)

as long as ε2np2z+2 � log n. (The hidden constant in O(nk+2q) allows us to use
(
n
d

)
in place

of
(
n−O(1)

d

)
).

So, from Theorem 1, if p�
(

log8z+5 n
ε16z+12n

)1/(8z)
then whp Hn,p,k has a packing of edge disjoint

type ` Hamilton cycles that covers all but ε1/(9+7z3) proportion of edges.

2.1 Concentration bounds

Fact 1. For any ε > 0, there exists cε > 0 such that any binomial random variable X with

mean µ satisfies

P [|X − µ| > εµ] < ecεµ,

where cε is a constant determined by ε. When ε < 1, we may take cε = ε2

3
.

For a proof see Alon and Spencer [1] or Janson,  Luczak and Ruciński [7].

Fact 2. Let X be a random variable on the uniformly distributed space of permutations on

n elements, and let C be a real number. Suppose that whenever σ, σ′ ∈ Sn differ by a single

transposition, |X(σ)−X(σ′)| ≤ C. Then,

P [|X − E [X]| ≥ t] ≤ 2 exp

{
− 2t2

C2n

}
.

For a proof see Frieze and Pittel [6] or McDiarmid [12].

2.2 Properties of (ε, p)-regular k-graphs

In Lemma 4, we will confirm that each digrpah, Dσ is (ε̂, p̂)-regular for some ε̂ and p̂. In

order to do this we will need to confirm the properties of digraph (ε̂, p̂)-regularity one by

one. This means showing that the correct amount of certain types of directed edges exist.

Directed edges in Dσ arise from the existence of certain hyperedges in H. The following

lemma is a list of properties which we will use to this end.

Lemma 2. Every n-vertex (ε, p)-regular k-graph H has the following properties:

(L1) Given any sequence of q distinct vertices, x1, . . . , xq, there are (1± ε)nk−qp sequences

of vertices, y1, . . . , yk−q, such that {x1, . . . , xq, y1, . . . , yk−q} is an edge of H.

In terms of Definition 1 we have d = k − q, s = 1, A1 = {x1, x2, . . . , xq}. We multiply

by (k − q)! because we apply these properties to ordered sequences of vertices.
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(L2) Given any sequence of k−` distinct vertices, x1, . . . , xk−`, there are (1±ε)n`p sequences

of vertices, y1, . . . , y`, such that {x1, . . . , xk−`, y1, . . . , y`} is an edge of H.

In terms of Definition 1 we have d = `, s = 1, A1 = {x1, . . . , xk−`}.

(L3) Given any sequence of 2q distinct vertices x1, . . . , xq, y1, . . . , yq, there are (1± ε)nk−qp2
sequences of vertices z1, . . . , zk−q vertices such that {x1, . . . , xq, z1, . . . , zk−q} and

{y1, . . . , yq, z1, . . . , zk−q} are both edges of H.

In terms of Definition 1 we have d = k−q, s = 2, A1 = {x1, . . . , xq} , A2 = {y1 . . . , yq}.

(L4) Given any sequence of 2(k − `) vertices x1, . . . , xk−`, y1, . . . , yk−` (where we demand

only that x1 6= y1), there are (1 ± ε)n`p2 sequences of vertices z1, . . . , z` vertices such

that {x1, . . . , xk−`, z1, . . . , z`} and {y1, . . . , yk−`, z1, . . . , z`} are both edges of H.

In terms of Definition 1 we have d = `, s = 2, A1 = {x1, . . . , xk−`} , A2 = {y1 . . . , yk−`}.
Note that if ` | k, this is identical to property (L3) since in this case, q = k − l.

(L5) Given any sequence of `+ (k−2`) + q vertices x1, . . . , x`, a1, . . . , ak−2`, z1, . . . , zq, there

are (1± ε)n`pz+1 sequences of vertices b1, . . . , b` such that all of the following edges are

present in H:

{x1, . . . , x`, a1, . . . , ak−2`, b1, . . . , b`}

and {
ai`+1, . . . , ak−2`, b1, . . . , b`, z1, . . . , z(i+1)`

}
for all i = 0, . . . , z − 1.

In terms of Definition 1 we have d = `, s = z + 1 and the sets A1, . . . , Az+1 are the

edges listed minus the set {b1, . . . , bl}.

(L6) Suppose ` - k. Given any sequence of k− `+ q distinct vertices a1, . . . , ak−`, z1, . . . , zq,

there are

(1± ε)nq−k+`pz sequences of vertices b1, . . . , bq−k+` such that all of the following edges

are present in H:

{ai`+1, . . . , ak−`, b1, . . . , bq−k+`, z1, . . . , zk−q+i`} ,

for all i = 0, . . . , z − 1.

In terms of Definition 1 we have d = q − k + `, s = z, and the sets A1, . . . , Az are

the edges listed minus the set {b1, . . . , bq−k+`}. We require that ` - k since otherwise

q − k + ` = 0

(L7) Given any sequence of 2`+ (k − 2`) + 2q distinct vertices,

x1, . . . , x`, y1, . . . , y`, a1, . . . , ak−2`, z1, . . . , zq, w1, . . . , wq,

there are (1 ± ε)n`p2z+2 sequences of vertices b1, . . . , b` such that all of the following

edges are present in H:
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{x1, . . . , x`, a1, . . . , ak−2`, b1, . . . , b`} , {y1, . . . , y`, a1, . . . , ak−2`, b1, . . . , b`}
and{
ai`+1, . . . , ak−2`, b1, . . . , b`, z1, . . . , z(i+1)`

}
,
{
ai`+1, . . . , ak−2`, b1, . . . , b`, w1, . . . , w(i+1)`

}
for all i = 0, . . . , z − 1.

In terms of Definition 1 we have d = `, s = 2z + 2 and the sets A1, . . . , A2z+2 are the

edges listed minus the set {b1, . . . , bl}.

(L8) Suppose ` - k. Given any sequence of k− `+ 2q distinct vertices a1, . . . , ak−`, z1, . . . , zq,

w1, . . . , wq, there are (1± ε)nq−k+`p2z sequences of vertices b1, . . . , bq−k+` such that all

of the following edges are present in H:

{ai`+1, . . . , ak−`, b1, . . . , bq−k+`, z1, . . . , zk−q+i`} ,
{ai`+1, . . . , ak−`, b1, . . . , bq−k+`, w1, . . . , wk−q+i`}

for all i = 0, . . . , z − 1.

In terms of Definition 1 we have d = q − k + `, s = 2z, and the sets A1, . . . , A2z are

the sets listed minus the set {b1, . . . , bq−k+l}.

3 Proof of Lemma 1(a)

We will follow the convention that a factor 1 + o(1) will be absorbed into the 1 ± ε factors

when the o(1) term is clearly small enough. This will simplify several expressions.

Lemma 3. Let S be a set of ordered q-tuples of distinct vertices with ε2 |S|2 /n2q−1 � log n.

Let σ be a random permutation of [n]. Let N = |S ∩ V (Dσ)|. Then N = (1± ε) |S|
qnq−1 qs3.

Proof. If v = (v1, . . . , vq) then

Pr(v ∈ V (Dσ)) =
1

q
· 1

n− 1
· 1

n− 2
· · · 1

n− q + 1
=

(
1± q2

2n

)
1

qnq−1
,

So

E [N ] =

(
1± q2

2n

)
|S|
qnq−1

.

Suppose the permutation σ is converted to σ′ by a single transposition. Then this changes

at most 2 of the vertices of Dσ. So N can change by at most 2. Then Fact 2 implies that

the probability that N deviates from its mean by more than ε
2
|S|

qnq−1 is at most

2 exp

−
2
(
ε
2
|S|

qnq−1

)2
22n

 = O(n−K)

3A sequence of events En, n ≥ 0 is said to occur quite surely (qs) if Pr(En) = 1−O(n−K) for any positive

constant K

8



for any positive constant K. The lemma follows since q2/n = O(1/n)� ε.

Lemma 4. Suppose n, p, and ε satisfy ε2np8z � log n. Let H be an (ε, p)-regular k-graph

on n vertices (n divisible by q). Let σ be a random permutation of [n]. Then D = Dσ is

((2z + 5)ε, pz)-regular, qs.

Proof. We verify the properties of D one at a time, starting with out-degrees. Fix any q

vertices, v1, . . . , vq. Let v = (v1, . . . , vq). Let Nv be the number of q-tuples w such that (a)

w ∈ V (D) and (b) v precedes w. It suffices to show that with probability 1 − o(n−(q+1)),

Nv = (1± (2z + 5)ε) pzνq. Let Sv be the set of q-tuples w, such that v precedes w.

Apply property (L1) of Lemma 2 to {v1, . . . vq} and fix one of the (1± ε)nk−qp sequences

(vq+1, . . . , vk) such that {v1, . . . , vk} ∈ H. Let u = (v1, . . . , vk) and do the following z − 1

times:

1. Apply property (L2) of Lemma 2 to the trailing k − ` elements of u.

2. Fix one of the (1± ε)n`p sequences of ` vertices.

3. Append this sequence of ` vertices to the end of u.

At the end of this process, k − q + (z − 1)` = k − ` distinct vertices, (vq+1, . . . , vq+k−`),

have been fixed and appear at the trailing end of u. Fix any q − k + ` ≥ 0 distinct vertices

to give the q tuple w = (vq+1, . . . , v2q).

Combining our estimates from each step tells us that

|Sv| = (1± ε)nk−qp ·
(
(1± ε)n`p

)z−1 · nq−k+`
= (1± (2z + 3)ε)nqpz

and so

E [Nv] =
E [|Sv|]

q(n− 1) · · · (n− q + 1)
=

(1± (2z + 4)ε)nqpz

qnq−1
= (1± (2z + 4)ε) pzνq.

Since ε2pzn� log n, we can apply Lemma 3 to Sv to conclude that qs

Nv = (1± (2z + 5)ε) pzνq.

For in-degrees, fix a q-tuple

u = v = (vq+1, . . . , v2q).

do the following z times:

1. Apply property (L2) of Lemma 2 to the leading k − ` elements of u.

2. Fix one of the (1± ε)n`p sequences of ` vertices.

3. Prepend this sequence to the beginning of u.
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At the end of this process, q vertices have been fixed and appear in the first q positions of

u. Call this q-tuple w. Combining estimates from each step of the process tells us that the

number of such w that precede v is(
(1± ε)n`p

)z
= (1± (2z + 1)ε)nqpz.

Applying Lemma 3 as before gives us that qs the in-degree of v in D is

(1± (2z + 3)ε) pzνq.

The remaining properties are dealt with in a similar manner. For each, we will state what

properties from Lemma 2 to apply and compute the number of satisfying q-tuples. In all

cases, an application of Lemma 3 completes the argument.

For d+(x,y) in D, fix 2 q-tuples of distinct vertices, x = (x1, . . . , xq) and y = (y1, . . . , yq)

and apply property (L3) to obtain (z1, z2, . . . , zk−q) in (1 ± ε)nk−qp2 ways. Follow by z − 1

applications of property (L4). Our first iteration applies (L4) to x`+1, . . . , xq, z1, . . . , zk−q
and y`+1, . . . , yq, z1, . . . , zk−q to obtain (zk−q+1, . . . , zk−q+`) in (1 ± ε)nk−qp2 ways. We then

shift right ` terms along both sequences and apply (L4) again. In our last application we

feed sequences that begin with x(z−1)`+1 6= y(z−1)`+1 using the fact that (z − 1)`+ 1 < q + 1.

Arbitrarily choose q− k+ ` ≥ 0 more vertices to fill out z1, . . . , zq. The estimate in this case

is

(1± ε)nk−qp2 ·
(
(1± ε)n`p2

)z−1 · (n− (k − `)) · · · (n− (q − 1))

Simplifying and applying Lemma 3 gives that d+(x,y) in D is qs

(1± (2z + 5)ε) p2zνq.

Similarly d−(x,y) is qs

(1± (2z + 5)ε) p2zνq.

For d+−(x,y) in D, fix 2q distinct vertices arranged in 2 q-tuples, x = (x1, . . . , xq) and

y = (y1, . . . , yq). If ` divides k, (so that q = k − `), apply property (L2) z − 1 times starting

with x. After the first iteration, we obtain (z1, . . . , z`) in (1± ε)nlp ways. We shift right by `

in the sequence for each subsequent application of property (L2) to obtain (z1, . . . , zq−`). Note

here that q−` = k−2`. Property (L5) is then applied to xq−`+1, . . . , xq, z1, . . . , zq−`, y1, . . . , yq.

The estimate in this case is (
(1± ε)n`p

)z−1 · (1± ε)n`pz+1

If ` does not divide k, then apply (L1) to x to obtain (z1, . . . , zk−q) in (1± ε)nk−qp ways.

Follow this by z−1 applications of (L2), shifting right by ` in the sequence for each application

to obtain (z1, . . . , zk−`). Follow by an application of (L6) to z1, . . . , zk−`, y1, . . . , yq to fill out

(z1, . . . , zq). The estimate in this case is

(1± ε)nk−qp ·
(
(1± ε)n`p

)z−1 · (1± ε)nq−k+`pz
10



Simplifying and applying Lemma 3 in both cases gives that d+−(x,y) is qs

(1± (2z + 5)ε) p2zνq

For the third property of digraph uniformity, fix 4q distinct vertices arranged in 4 q-tuples,

x = (x1, . . . , xq), y = (y1, . . . , yq), z = (z1, . . . , zq), and w = (w1, . . . , wq). If ` divides k, do

z − 1 applications of property (L4). Our first iteration applies (L4) to x1, . . . , xq, y1, . . . , yq
to obtain (a1, . . . , a`) in (1± ε)n`p2 ways. We then shift right ` terms along both sequences

and apply (L4) to x`+1, . . . , xq, a1, . . . , a` and y`+1, . . . , yq, a1, . . . , a` and so on until we have

obtained (a1, . . . , ak−2`). We then apply property (L7) to

xq−`+1, . . . , xq, yq−`+1, . . . , yq, a1, . . . , ak−2`, z1, . . . , zq, w1, . . . , wq

to find (ak−2`+1, . . . , aq). The estimate in this case is(
(1± ε)n`p2

)z−1 · (1± ε)n`p2z+2.

If ` does not divide k, apply property (L3) to x1, . . . , xq, y1, . . . , yq to obtain (a1, . . . , ak−q)

in (1± ε)nk−qp2. Follow by z − 1 applications of (L4) as in the proof of d+(x,y) to ob-

tain (a1, a2, . . . , ak−`). Then apply (L8) to a1, . . . , ak−`, z1, . . . , zq, w1, . . . , wq in order to find

(ak−`+1, . . . , aq). The estimate in this case is

(1± ε)nk−qp2 ·
(
(1± ε)n`p2

)z−1 · (1± ε)nq−k+`p2z.
Simplifying and applying Lemma 3 in both cases gives qs

(1± (2z + 5)ε) p4zνq

for property (iii) of digraph uniformity.

Lemma 5. Suppose n, p, and ε satisfy εn � 1. Let H be an (ε, p)-regular k-graph on n

vertices (n divisible by q), and randomly and independently construct digraphs D1, . . . , Dr

according to Procedure 1. Let Hi be their corresponding k-graphs. Then with probability

1− o(n−1), every edge of H is an edge in (1± (z + 2)ε)κ of the Hi. Here κ, r are as defined

in (2).

Proof. We must first calculate the probability that an edge of H appears in an Hi after

Procedure 1. This probability is

p1 =
k!(1± zε)pz−1

`qnk−2
.

To see this, first fix an edge e = {x1, . . . , xk} of H. We want the probability that this is

an edge of H1, say. For this to happen, there must be two vertices v1 = (v1, . . . , vq),v2 =

(vq+1, . . . , v2q) of D1 and 0 ≤ i ≤ z − 1 such that e = ei(v1,v2). Fix such an i. We now

11



have to consider the number of choices for v1, . . . , vi`, vi`+k+1, . . . , v(z−1)`+k+1, . . . , v2q. The

(ε, p)-regularity of H implies that there will be

((1± ε)n`p)z−1n2q−(z−1)`−k = (1± (z − .5)ε)pz−1n2q−k

choices for this sequence.

The probability that v1,v2 are vertices of H1 is

p2 =

(
1

q
·

(
q−1∏
i=1

1

n− i

))2

.

Now there are z choices for i and k! choices for the ordering of e and so the probability that

e is an edge of H1 is

zk!(1± (z − .5)ε)pz−1n2q−kp2 = p1.

Since the r random constructions are independent, the number Ze of Hi that contain e

is distributed as Bin[r, p1]. So,

E [Ze] = rp1 = (1± zε)κ.

So the Chernoff bound tells us the probability that this Binomial deviates from its mean by

more than a factor of 1± ε is at most

2 exp

{
−ε

2

3
· (1− zε)κ

}
= o(n−k−1).

So taking a union bound over all O(nk) choices for e gives the result.

Proof of Lemma 1(a): Our conditions on n, p and ε allow us to apply Lemmas 4 and 5.

So with probability 1− o(n−1), after Step 1 of Procedure 1,

(a) Every Di is ((2z + 5)ε, pz)-regular.

(b) Every edge in H is covered (1± (z + 2)ε)κ times by the Hi.

Condition on the above outcome of Steps 1 and 2, and consider an arbitrary D′i (as defined

in Step 4 of Procedure 1. r = o(nk−1) (since ε2npz−1 � log n), so it suffices to show that

with probability 1− o(n−k), D′1 has the desired properties.

For out-degrees: A vertex v ∈ D′1 corresponds to a q-tuple of vertices in H. An edge e

of D1 remains in D′1 if and only if all the z hyperedges of H owned by e receive label 1 in

Step 3. This happens with probability

1

[(1± (z + 2)ε)κ]z
=
(
1± (z2 + 2z + 1)ε

) 1

κz

There are (1± (2z + 5)ε) νqp
z neighbors of v in D1, so the expected out-degree of v in

D′1 is

(1± (2z + 5)ε)
(
1± (z2 + 2z + 1)ε

)
νq

(p
κ

)z
=
(
1± (z2 + 4z + 7)ε

) n
q

(p
κ

)z
.

12



For concentration, the Chernoff inequality tells us that the probability that the out-degree

of vertex v in D′1 deviates from its expectation by more than a factor of 1± ε is at most

2 exp

{
ε2

3
·
(
1− (z2 + 4z + 7)ε

) n
q

(p
κ

)z}
≤ o(n−k−1)

as long as
ε2npz

κz
= Θ

(
ε2z+2npz

logz n

)
� log n.

This is true by our assumptions on n, p and ε. Therefore with probability 1− o(n−k−1), the

out degree of v in D′i is (1± (z2 + 4z + 9)ε) νq
(
p
κ

)z
. Taking a union bound over all O(n)

vertices in D′1 establishes uniformity for out-degrees.

The other properties follow from a similar argument. The smallest mean we deal with is

in property (iii) of digraph regularity:

n(1± (2z + 5)ε)p4z

q((1± (z + 2)ε)κ)4z
=
(
1± (4z2 + 10z + 7)ε

) n
q

(p
κ

)4z
.

So the error in concentration is at most

2 exp

{
ε2

3
·
(
1− (4z2 + 10z + 7)ε

) n
q

(p
κ

)4z}
≤ o(n−k−4)

as long as ε8z+2np4z/ log4z n� log n which it is by assumption. Taking a union bound over

all O(n4) choices for vertices in D′1 gives the result.

4 Proof of Lemma 1(b)

We will be applying the principle of inclusion-exclusion to get an estimate on the regularity

of H ′. So we use the next two Lemmas to compute a first order estimate and a second order

upper bound on several quantities.

Given a hyperedge e and a digraph Di from Procedure 1, edge e is owned by at most

one directed edge in Di. If this edge exists, let it be denoted ui(e). Now ui(e) owns exactly

z hyperedges in Hi. If e is is an edge of Hi, let φi(e) be the set of z hyperedges owned by

ui(e). Note that φi(e) includes the edge e. We call φi(e)\ {e} the partner edges of e in Hi.

Lemma 6. Condition on |Ie| = (1± (z + 2)ε)κ for each edge of H. Fix d ∈ {1, . . . , `} and

any set of k − d vertices, A = {a1, . . . , ak−d} ⊂ V (H). Fix a family B of d-sets of vertices

such that A∪B is a hyperedge of H for all B ∈ B. Suppose ε2 |B| /κ2z−1 � log n. Then with

probability 1− o(n−(k+2q)−1), the number NB of B ∈ B such that A ∪ B ∈
⋃
iE(H ′i) satifies

NB = (1± (z2 + z)ε) |B|
κz−1

Proof. Let B = {B1, . . . , Bt} . Because we are conditioning on |Ie|, e ∈ E(H), the relevant

probability space is the choice of labels in Step 3 of Procedure 1. Define F = F (A), the set

13



of relevant edges, as follows: For each j such that A ∪ Bi ∈ E(Hj) there are exactly z − 1

partner edges Fi,j such that A∪Bi ∈ E(H ′j) if and only if all of these edges as well as A∪Bi

receive label j. Let F =
⋃
i,j Fi,j. Since we assume that each edge is in (1± (z + 2)ε)κ of

the Hj, we have that |F | ≤ 2zκ |B|. The labels outside of F do not affect the count N , so

we may condition on an arbitrary setting of those labels leaving only the labels of F to be

exposed.

Now

Pr

[
A ∪Bi ∈

⋃
j

E(H ′j)

]
= [(1± (z + 2)ε)κ]−(z−1) .

To see this, expose the label of an edge A ∪ Bi. Suppose that it receives label j. Then all

of its partner edges must also receive label j. Each of them is an edge of (1± (z + 2)ε)κ of

the Hk, and since their labelings are independent, the probability that each of them receive

label j is as claimed above. So

E [NB] = |B| [(1± (z + 2)ε)κ]−(z−1) =
(
1± (z2 + z − 1)ε

) |B|
κz−1

Our probability space is a product space of dimension |F |. We use the Hoeffding-Azuma

inequality to show that NB is concentrated. Suppose the label of an edge e ∈ F is changed

from i to j. Suppose that e is owned by the edge (v1 = (v1, . . . , vq),v2 = (vq+1, . . . , v2q)) of

Di. Let S = {v1, . . . , v2q}. The definition of F implies that S ⊇ A. So at most
(
2q−(k−d)

d

)
sets from B will be removed from the count NB by this switch in labels. Similarly, at most(
2q−(k−d)

d

)
sets from B will be added to the count NB. Hence NB is

(
2q−(k−d)

d

)
-Lipschitz and

the Hoeffding-Azuma inequality implies that the probability that NB deviates from its mean

by more than ε |B| /κz−1 is at most

2 exp

{
− (ε |B| /κz−1)2

2
(
2q−(k−d)

d

)2 |F |
}
≤ 2 exp

{
− ε2 |B|

4z
(
2q−(k−d)

d

)2
κ2z−1

}
≤ o(n−(k+2q)−1)

as long as ε2 |B| /κ2z−1 � log n, which we assumed. Therefore N = (1± (z2 + z)ε) |B|
κz−1 with

the desired probability.

Let 1 ≤ t ≤ 2q − k. Let Di be a digraph constructed from Procedure 1. Say that a set

S of k + t vertices is condensed in Di if there exist edges e1 6= e2 of H such that S = e1 ∪ e2
and φi(e1) ∩ φi(e2) 6= ∅.

Lemma 7. Suppose r � nk−
3
2 Construct r independent Di according to Procedure 1. Then

with probability 1− o(n−1), every set of S of k + t vertices, 1 ≤ t ≤ 2q − k, is condensed in

at most 4q + 1 of the Di.

Proof. Fix a set of k + t vertices S = {x1, x2, . . . , xk+t} = e1 ∪ e2 where e1, e2 are edges of

H. The probability that S is condensed in D1 is at most

(k + t)! · 1

q
· (z − 1) ·

(
q+t−1∏
i=1

1

n− i

)
<

(2q)!

`nk+t−1

14



This calculation is very similar to the one in Lemma 5.

Since the Di are independent, the number of them which have the above property with

respect to S is stochastically dominated by Bin
[
r, (2q)!

`nk+t−1

]
. Since we assumed that r � nk−

3
2 ,

the probability that this exceeds 4q + 1 is at most(
r

4q + 2

)(
(2q)!

`nk+t−1

)4q+2

= o(n(k− 3
2
−k−t+1)(4q+2)) = o(n−2q−1)

Now taking a union bound over all O(n2q) choices for S gives the result.

Lemma 8. Condition on |Ie| = (1± (z + 2)ε)κ for each edge of H. Also condition on the

property that every set of k+ t vertices, 1 ≤ t ≤ 2q−k, is condensed in at most 4q+ 1 of the

Di. Fix d ∈ {1, . . . `} and any 2 sets, A1 and A2 of k − d vertices. Fix a family B of d-sets

of vertices such that A1 ∪ B and A2 ∪ B are both hyperedges of H for all B ∈ B. Suppose

|B| /κ2z+1 � log n. Then with probability o(n−(k+2q)−1), the number NB of B ∈ B such that

A1 ∪B ∈
⋃
iH
′
i and A2 ∪B ∈

⋃
iH
′
i is at most 7q |B| /κz

Proof. Let B = {B1, . . . , Bt} and let F ∗ = F (A1) ∪ F (A2) where F is as defined in Lemma

6. Then |F ∗| ≤ 3zκ |B|. We would like an upper bound on the probability that a particular

B ∈ B contributes to NB. Let e1 = A1 ∪ B and e2 = A2 ∪ B. First, expose the label of e1
and suppose it is j.

Case 1: e2 receives label j.

If φk(e1) ∩ φk(e2) = ∅, then the probability that e1, e2 ∈ H ′j is at most

q1 := [(1− (z + 2)ε)κ]−(2z−1) .

To see this, note that the probability that e2 receives label j is ((1± (z + 2)ε)κ)−1, and since

their 2(z − 1) partner edges are distinct and labelings are independent, we get the desired

probability.

If φj(e1) ∩ φj(e2) 6= ∅ then the vertices of e1 ∪ e2 are condensed in Dj. We have k + 1 ≤
|e1 ∪ e2| ≤ 2q, so by assumption, these vertices are condensed in at most 4q + 1 of the Di.

So the probability that e1 and e2 are both in E(H ′j) is bounded above by

q2 =
4q + 1

(1− (z + 2)ε)κ
· 1

[(1− (z + 2) ε)κ]z−1
=

4q + 1

[(1− (z + 2) ε)κ]z

since all of the partner edges of e1 must also receive label j.

Case 2: e2 receives label l 6= j.

If φj(e1) ∩ φl(e2) = ∅ then the probability that everything receives the appropriate label

is at most

q3 = [(1− (z + 2)ε)κ]−(2z−2) .

If φj(e1) ∩ φl(e2) 6= ∅, then the probability that B contributes to NB is 0 since an edge

in the intersection must receive both labels j and l.
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Summing up these upper bounds, we get that the probability that B contributes to NB
is bounded above by

q1 + q2 + q3 ≤
4q + 3

[(1− (z + 2) ε)κ]z
≤ 6q

κz
.

So E [NB] ≤ 6q
κz
|B|. By a similar argument as in Lemma 6, we can see that NB is

(
2q−(k−d)

d

)
-

Lipschitz in the product space of dimension |F ∗| ≤ 3zκ |B|. So the probability that NB
exceeds its expectation by more than |B| /κz is at most

2 exp

{
− (|B| /κz)2

2 ·
(
2q−(k−d)

d

)2 |F ∗|
}
≤ 2 exp

{
− |B|

6z ·
(
2q−(k−d)

d

)2 · κ2z+1

}
≤ o(n−(k+2q)−1)

since we assumed that |B| /κ2z+1 � log n. Therefore NB ≤ 7q
κz
|B| with the desired probabil-

ity.

Proof of Lemma 1(b): By applying Lemma 5 and Lemma 7, the conditions of which hold

by our requirements on n, p and ε, the outcome of Steps 1 and 2 of Procedure 1 satisfies the

following with probability 1− o(n−1).

• Every edge of H is covered (1± (z + 2)ε) by the Hi.

• Every set of k + t, 1 ≤ t ≤ 2q − k vertices is condensed in at most 4q + 1 of the Di.

Condition on this outcome. We will show that in the context of the choices in Step 3,

(ε′, p′)-regularity is satisfied with probability 1− o(n−1).
Fix d ∈ {1, . . . , `}, s ∈ {1, . . . , 2z + 2} and a family of s distinct (k − d)-sets Γ =

{A1, . . . , As} with |∪iAi| ≤ k + 2q. Let X be the number of d-sets, B, such that Ai ∪ B is

an edge of H ′ for all i = 1, . . . , s. It suffices to show that X = (1± ε′)nd
d!
p′s with probability

1 − o(n−(k+2q)−1). Then we can use the union bound over all O(nk+2q) choices for vertices

|∪iAi| and all O(1) choices of set families on those vertices.

Let B be the family of all d-sets B such that Ai ∪ B are edges of H for all i = 1, . . . , s

and B ∈ B. H is (ε, p)-regular, so |B| = (1± ε) nd

d!
ps.

For each i ∈ {1, . . . , s}, let Xi be the number of elements B of B with Ai ∪ B ∈
⋃
lH
′
l .

For every i, j ∈ {1, . . . , s} , i 6= j, let Xij be the number of elements, B, of B with both

Ai ∪B ∈
⋃
lH
′
l and Aj ∪B ∈

⋃
lH
′
l .

Then

|B| −
s∑
i=1

Xi ≤ X ≤ |B| −
s∑
i=1

Xi +
∑
i<j

Xij.

Note that since d ≥ 1 and s ≤ 2z + 2, we have

|B| = Θ
(
ndps

)
= Ω

(
np2z+2

)
.

We apply Lemmas 6 and 8. Indeed, by our requirements on n, p and ε we have both

ε2 |B|
κ2z−1

= Ω

(
ε4znp2z+2

log2z−1 n

)
� log n
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and
|B|
κ2z+1

= Ω

(
ε4z+2np2z+2

log2z+1 n

)
� log n.

So we may apply Lemmas 6 and 8 to get

X = |B| − s
(
1± (z2 + z)ε

) |B|
κz−1

± s27q

κz
|B|

= |B|
(

1− s (1± (z2 + z + 1)ε)

κz−1

)
where in the second line we use the fact that 1

κ
� ε.

Note that (
1− 1

κz−1

)s
= 1− s

κz−1
+O

(
1

κ2z−2

)
.

Then by using 1
κ
� ε we get that

X = (1± ε) n
d

d!
ps
((

1− 1

κz−1

)s
± (2z + 2)(z2 + z + 2)

κz−1
· ε
)

=
nd

d!

(
p

(
1− 1

κz−1

))s
· (1± ε)

(
1± (2z + 2)(z2 + z + 2)

κz−1
(
1− 1

κz−1

)s · ε

)

=
nd

d!

(
p

(
1− 1

κz−1

))s(
1±

(
1 +

h(z)

κz−1

)
ε

)
where h(z) = (2z + 2)(z2 + z + 3). Now z ≥ 2 and so h(z) ≤ 7z3 which gives us the result

X = (1± ε′)n
d

d!
p′s

with the desired probability.

5 Finishing the proof of Theorem 1

Let H0 = H, ε0 = ε and p0 = p. Define εt and pt recursively using the following recursion:

εt+1 = εt

(
1 + 7z3

(
ε2t

6(k + 1) log n

)z−1)

and

pt+1 = pt

(
1−

(
ε2t

6(k + 1) log n

)z−1)
.
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Let T be the smallest index such that pT ≤ 1
2
εαp where α = 1

9+7z3
. For t = 0, . . . , T , let

xt =
(

ε2t
6(k+1) logn

)z−1
. Then since (εt) is an increasing sequence, we have

1

2
pεα ≤ pT−1 =

pT−1
pT−2

· pT−2
pT−3

· · · p2
p1
· p1
p
· p

≤ p (1− x0)T−1

≤ pe−x0(T−1).

From this we can see that

T ≤ O

(
logz−1 n

ε2z−1

)
= o(n).

Also note that since (
1 + 7z3x

)
(1− x)7z

3 ≤ e7z
3x
(
e−x
)7z3

= 1,

we have in general that

εt+1

εt
= (1 + 7z3xt) ≤

1

(1− xt)7z3
=

(
pt
pt+1

)7z3

.

Hence

εT−1 =
εT−1
εT−2

· εT−2
εT−3

· · · ε2
ε1
· ε1
ε
· ε

≤ ε ·
(
pT−2
pT−1

· pT−3
pT−2

· · · p
p1

)7z3

= ε

(
p

pT−1

)7z3

< ε ·
(
2ε−α

)7z3
= Θ

(
ε1−7z

3α
)

So we have that

ε
1/8
T−1 = Θ

(
ε
9
8
α
)
� εα.

We now construct H1, . . . , HT such that each Ht is (εt, pt)-regular. Let κt = 6(k+1) logn

ε2t
and

r = nk−2q`

k!pz−1
t

κt and consider Procedure 1 applied to Ht with these parameters. This produces

digraphs D′t,i and k-graphs H ′t,i with all H ′t,i disjoint. Let Ht+1 be the k-graph which results

from the deletion of all H ′t,i from Ht. In order to apply Lemma 1 at each step, we must

check that ε8z+2
t np8zt � log4z+1 n. This condition follows from our assumptions on ε, n, p

since εt ≥ ε and pt ≥ 1
2
εαp. So we may apply Lemma 1 to conclude that with probability

1− o(n−1), an application of Procedure 1 satisfies

• Every D′t,i is (12z2εt, (pt/κt)
z)-regular.
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• Ht+1 is (εt+1, pt+1)-regular.

Since T = o(n), we may condition on this holding at each step. In order to apply the

result on packing cycles in digraphs to each D′t,i, we must verify that ε11t νq (pzt/κ
z
t )

8 � log5 n.

We have

ε11t νq

(
pt
κt

)8z

≥ Θ

(
ε11+8zα+16znp8z

log8z n

)
� log5 n

by our assumption that ε16z+12np8z � log8z+5 n since 8zα ≤ 1. So every D′t,i can be packed

with Hamilton cycles missing only (12z2εt)
1/8-fraction of its edges. As observed already,

these edge-disjoint Hamilton cycles in D′t,i correspond to edge disjoint Hamilton cycles in

H ′t,i. Hence the packing in D′t,i gives a packing in H ′t,i missing the same fraction of edges

since there is a z-to-1 correspondence between edges in H ′t,i and D′t,i.

The above procedure is carried out until HT is created. Then Hamilton cycles have been

packed in H\HT , up to an error of (12z2εT−1)
1/8-fraction. Let us estimate the fraction of

edges present in HT itself. By applying (ε, p)-regularity to H, we see that H had at least

(1− ε)n
k

k!
p ≥ nk

k! + 1
p

edges to begin with.

Similarly, we see that HT has at most

(1 + εT )
nk

k!
pT ≤ (1 + εT )

nk

2 · k!
εαp ≤ nk

2 · k!− 1
pεα

edges. Since k ≥ 3, we have that
|HT |
|H|

≤ cεα

where c < 1 is some constant.

Hence the fraction of edges of H not covered is at most

(12z2εT−1)
1/8 · (1− cεα) + cεα ≤ (12z2εT−1)

1/8 + cεα ≤ εα,

since ε
1/8
T−1 � εα.
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