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Abstract

In this paper we prove the semi-circular law for the eigenvalues of regular random graph Gn,d in the case
d→∞, complementing a previous result of McKay for fixed d. We also obtain a upper bound on the infinity norm
of eigenvectors of Erdős-Rényi random graph G(n, p), answering a question raised by Dekel-Lee-Linial.

1 Introduction

1.1 Overview

In this paper, we consider two models of random graphs, the Erdős-Rényi random graph G(n, p)
and the random regular graph Gn,d. Given a real number p = p(n),0 ≤ p ≤ 1, the Erdős-Rényi
graph on a vertex set of size n is obtained by drawing an edge between each pair of vertices,
randomly and independently, with probability p. On the other hand, Gn,d, where d = d(n)
denotes the degree, is a random graph chosen uniformly from the set of all simple d-regular
graphs on n vertices. These are basic models in the theory of random graphs. For further
information, we refer the readers to the excellent monographs [4], [19] and survey [33].

Given a graph G on n vertices, the adjacency matrix A of G is an n×n matrix whose entry aij
equals one if there is an edge between the vertices i and j and zero otherwise. All diagonal entries
aii are defined to be zero. The eigenvalues and eigenvectors of A carry valuable information
about the structure of the graph and have been studied by many researchers for quite some time,
with both theoretical and practical motivations (see, for example, [2], [3], [12], [25] [16], [13], [15],
[14], [30], [10], [27], [24]).

The goal of this paper is to study the eigenvalues and eigenvectors of G(n, p) and Gn,d. We
are going to consider:
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• The global law for the limit of the empirical spectral distribution (ESD) of adjacency
matrices of G(n, p) and Gn,d. For p = ω(1/n), it is well-known that eigenvalues of G(n, p)
(after a proper scaling) follows Wigner’s semicircle law (we include a short proof in the
Appendix A for completeness). Our main new result shows that the same law holds for
random regular graph with d → ∞ with n. This complements the well known result of
McKay for the case when d is an absolute constant (McKay’s law) and extends recent
results of Dumitriu and Pal [9] (see Section 1.2 for more discussion).

• Bound on the infinity norm of the eigenvectors. We first prove that the infinity norm
of any (unit) eigenvector v of G(n, p) is almost surely o(1) for p = ω(log n/n). This
gives a positive answer to a question raised by Dekel, Lee and Linial [7]. Further-

more, we can show that v satisfies the bound ‖v‖∞ = O

(√
log2.2 g(n)log n/np

)
for

p = ω(log n/n) = g(n) log n/n, as long as the corresponding eigenvalue is bounded away
from the (normalized) extremal values −2 and 2.

We finish this section with some notation and conventions.

Given an n× n symmetric matrix M , we denote its n eigenvalues as

λ1(M) ≤ λ2(M) ≤ . . . ≤ λn(M),

and let u1(M), . . . , un(M) ∈ Rn be an orthonormal basis of eigenvectors of M with

Mui(M) = λiui(M).

The empirical spectral distribution (ESD) of the matrix M is a one-dimensional function

FM
n (x) =

1

n
|{1 ≤ j ≤ n : λj(M) ≤ x}|,

where we use |I| to denote the cardinality of a set I.

Let An be the adjacency matrix of G(n, p). Thus An is a random symmetric n×n matrix whose
upper triangular entries are iid copies of a real random variable ξ and diagonal entries are 0.
ξ is a Bernoulli random variable that takes values 1 with probability p and 0 with probability
1− p.

Eξ = p,Varξ = p(1− p) = σ2.

Usually it is more convenient to study the normalized matrix

Mn =
1

σ
(An − pJn)
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where Jn is the n × n matrix all of whose entries are 1. Mn has entries with mean zero and
variance one. The global properties of the eigenvalues of An and Mn are essentially the same
(after proper scaling), thanks to the following lemma

Lemma 1.1. (Lemma 36, [30]) Let A,B be symmetric matrices of the same size where B has
rank one. Then for any interval I,

|NI(A+B)−NI(A)| ≤ 1,

where NI(M) is the number of eigenvalues of M in I.

Definition 1.2. Let E be an event depending on n. Then E holds with overwhelming probability
if P(E) ≥ 1− exp(−ω(log n)).

The main advantage of this definition is that if we have a polynomial number of events, each of
which holds with overwhelming probability, then their intersection also holds with overwhelming
probability.

Asymptotic notation is used under the assumption that n → ∞. For functions f and g of
parameter n, we use the following notation as n → ∞: f = O(g) if |f |/|g| is bounded from
above; f = o(g) if f/g → 0; f = ω(g) if |f |/|g| → ∞, or equivalently, g = o(f); f = Ω(g) if
g = O(f); f = Θ(g) if f = O(g) and g = O(f).

1.2 The semicircle law

In 1950s, Wigner [32] discovered the famous semi-circle for the limiting distribution of the
eigenvalues of random matrices. His proof extends, without difficulty, to the adjacency matrix
of G(n, p), given that np→∞ with n. (See Figure 1 for a numerical simulation)

Theorem 1.3. For p = ω( 1
n
), the empirical spectral distribution (ESD) of the matrix 1√

nσ
An

converges in distribution to the semicircle distribution which has a density ρsc(x) with support
on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

If np = O(1), the semicircle law no longer holds. In this case, the graph almost surely has
Θ(n) isolated vertices, so in the limiting distribution, the point 0 will have positive constant
mass.

The case of random regular graph, Gn,d, was considered by McKay [21] about 30 years ago.
He proved that if d is fixed, and n→∞, then the limiting density function is

3
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Figure 1: The probability density function of the ESD of G(2000, 0.2)

fd(x) =


d
√

4(d−1)−x2
2π(d2−x2)

, if |x| ≤ 2
√
d− 1;

0 otherwise.

This is usually referred to as McKay or Kesten-McKay law.

It is easy to verify that as d → ∞, if we normalize the variable x by
√
d− 1, then the above

density converges to the semicircle distribution on [−2, 2]. In fact, a numerical simulation shows
the convergence is quite fast(see Figure 2).

It is thus natural to conjecture that Theorem 1.3 holds for Gn,d with d → ∞. Let A′n be the
adjacency matrix of Gn,d, and set

M ′
n =

1√
d
n
(1− d

n
)
(A′n −

d

n
J).

Conjecture 1.4. If d → ∞ then the ESD of 1√
n
M ′

n converges to the standard semicircle
distribution.

Nothing has been proved about this conjecture, until recently. In [9], Dimitriu and Pal showed
that the conjecture holds for d tending to infinity slowly, d = no(1). Their method does not
extend to larger d.
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Figure 2: The probability density function of the ESD of
Random d-regular graphs with 1000 vertices

We are going to establish Conjecture 1.4 in full generality. Our method is very different from
that of [9].

Without loss of generality we may assume d ≤ n/2, since the adjacency matrix of the com-
plement graph of Gn,d may be written as Jn − A′n, thus by Lemma 1.1 will have the spectrum
interlacing between the set {−λn(A′n), . . . ,−λ1(A′n)}. Since the semi-circular distribution is
symmetric, the ESD of Gn,d will converges to semi-circular law if and only if the ESD of its
complement does.

Theorem 1.5. If d tends to infinity with n, then the empirical spectral distribution of 1√
n
M ′

n

converges in distribution to the semicircle distribution.

Theorem 1.5 is a direct consequence of the following stronger result, which shows convergence
at small scales. For an interval I let N ′I be the number of eigenvalues of M ′

n in I.

Theorem 1.6. (Concentration for ESD of Gn,d). Let δ > 0 and consider the model Gn,d. If d

tends to ∞ as n→∞ then for any interval I ⊂ [−2, 2] with length at least δ−4/5d−1/10 log1/5 d,
we have

|N ′I − n
∫
I

ρsc(x)dx| < δn

∫
I

ρsc(x)dx

with probability at least 1−O(exp(−cn
√
d log d)).

Remark 1.7. Theorem 1.6 implies that with probability 1 − o(1), for d = nΘ(1), the rank of
Gn,d is at least n− nc for some constant 0 < c < 1 (which can be computed explicitly from the
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lemmas). This is a partial result toward the conjecture by the second author that Gn,d almost
surely has full rank (see [31]).

1.3 Infinity norm of the eigenvectors

Relatively little is known for eigenvectors in both random graph models under study. In [7],
Dekel, Lee and Linial, motivated by the study of nodal domains, raised the following question.

Question 1.8. Is it true that almost surely every eigenvector u of G(n, p) has ||u||∞ = o(1)?

Later, in their journal paper [8], the authors added one sharper question.

Question 1.9. Is it true that almost surely every eigenvector u of G(n, p) has ||u||∞ =
n−1/2+o(1)?

The bound n−1/2+o(1) was also conjectured by the second author of this paper in an NSF pro-
posal (submitted Oct 2008). He and Tao [30] proved this bound for eigenvectors corresponding
to the eigenvalues in the bulk of the spectrum for the case p = 1/2. If one defines the adjacency
matrix by writting −1 for non-edges, then this bound holds for all eigenvectors [30, 29].

The above two questions were raised under the assumption that p is a constant in the interval
(0, 1). For p depending on n, the statements may fail. If p ≤ (1−ε) logn

n
, then the graph has

(with high probability) isolated vertices and so one cannot expect that ‖u‖∞ = o(1) for every
eigenvector u. We raise the following questions:

Question 1.10. Assume p ≥ (1+ε) logn
n

for some constant ε > 0. Is it true that almost surely
every eigenvector u of G(n, p) has ||u||∞ = o(1)?

Question 1.11. Assume p ≥ (1+ε) logn
n

for some constant ε > 0. Is it true that almost surely
every eigenvector u of G(n, p) has ||u||∞ = n−1/2+o(1)?

Similarly, we can ask the above questions for Gn,d:

Question 1.12. Assume d ≥ (1+ ε) log n for some constant ε > 0. Is it true that almost surely
every eigenvector u of Gn,d has ||u||∞ = o(1)?

Question 1.13. Assume d ≥ (1+ ε) log n for some constant ε > 0. Is it true that almost surely
every eigenvector u of Gn,d has ||u||∞ = n−1/2+o(1)?
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As far as random regular graphs is concerned, Dumitriu and Pal [9] and Brook and Linden-
strauss [5] showed that for any normalized eigenvector of a sparse random regular graph is
delocalized in the sense that one can not have too much mass on a small set of coordinates.
The readers may want to consult their papers for explicit statements.

We generalize our questions by the following conjectures:

Conjecture 1.14. Assume p ≥ (1+ε) logn
n

for some constant ε > 0. Let v be a random unit
vector whose distribution is uniform in the (n − 1)-dimensional unit sphere. Let u be a unit
eigenvector of G(n, p) and w be any fixed n-dimensional vector. Then for any δ > 0

P(|w · u− w · v| > δ) = o(1).

Conjecture 1.15. Assume d ≥ (1 + ε) log n for some constant ε > 0. Let v be a random unit
vector whose distribution is uniform in the (n − 1)-dimensional unit sphere. Let u be a unit
eigenvector of Gn,d and w be any fixed n-dimensional vector. Then for any δ > 0

P(|w · u− w · v| > δ) = o(1).

In this paper, we focus on G(n, p). Our main result settles (positively) Question 1.8 and almost
Question 1.10 . This result follows from Corollary 2.3 obtained in Section 2.

Theorem 1.16. (Infinity norm of eigenvectors) Let p = ω(log n/n) and let An be the adjacency
matrix of G(n, p). Then there exists an orthonormal basis of eigenvectors of An, {u1, . . . , un},
such that for every 1 ≤ i ≤ n, ||ui||∞ = o(1) almost surely.

For Questions 1.9 and 1.11, we obtain a good quantitative bound for those eigenvectors which
correspond to eigenvalues bounded away from the edge of the spectrum.

For convenience, in the case when p = ω(log n/n) ∈ (0, 1), we write

p =
g(n) log n

n
,

where g(n) is a positive function such that g(n)→∞ as n→∞ (g(n) can tend to∞ arbitrarily
slowly).

Theorem 1.17. Assume p = g(n) log n/n ∈ (0, 1), where g(n) is defined as above. Let
Bn = 1√

nσ
An. For any κ > 0, and any 1 ≤ i ≤ n with λi(Bn) ∈ [−2 + κ, 2 − κ], there

exists a corresponding eigenvector ui such that ||ui||∞ = Oκ(
√

log2.2 g(n) logn
np

)with overwhelming

probability.

The proofs are adaptations of a recent approach developed in random matrix theory (as in
[30],[29],[10], [11]). The main technical lemma is a concentration theorem about the number of
eigenvalues on a finer scale for p = ω(log n/n).
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2 Semicircle law for regular random graphs

2.1 Proof of Theorem 1.6

We use the method of comparison. An important lemma is the following

Lemma 2.1. If np→∞ then G(n, p) is np-regular with probability at least exp(−O(n(np)1/2).

For the range p ≥ log2 n/n, Lemma 2.1 is a consequence of a result of Shamir and Upfal [26]
(see also [20]). For smaller values of np, McKay and Wormald [23] calculated precisely the
probability that G(n, p) is np-regular, using the fact that the joint distribution of the degree
sequence of G(n, p) can be approximated by a simple model derived from independent random
variables with binomial distribution. Alternatively, one may calculate the same probability
directly using the asymptotic formula for the number of d-regular graphs on n vertices (again
by McKay and Wormald [22]). Either way, for p = o(1/

√
n), we know that

P(G(n, p) is np-regular) ≥ Θ(exp(−n log(
√
np)).

which is better than claimed in Lemma 2.1.

Another key ingredient is the following concentration lemma, which may be of independent
interest.

Lemma 2.2. Let M be a n×n Hermitian random matrix whose off-diagonal entries ξij are i.i.d.
random variables with mean zero, variance 1 and |ξij| < K for some common constant K. Fix
δ > 0 and assume that the forth moment M4 := supi,j E(|ωij|4) = o(n). Then for any interval

I ⊂ [−2, 2] whose length is at least Ω(δ−2/3(M4/n)1/3), the number NI of the eigenvalues of
1√
n
M which belong to I satisfies the following concentration inequality

P(|NI − n
∫
I

ρsc(t)dt| > δn

∫
I

ρsc(t)dt) ≤ 4 exp(−cδ
4n2|I|5

K2
).

Apply Lemma 2.2 for the normalized adjacency matrix Mn of G(n, p) with K = 1/
√
p we

obtain

Corollary 2.3. Consider the model G(n, p) with np→∞ as n→∞ and let δ > 0. Then for

any interval I ⊂ [−2, 2] with length at least
( log(np)

δ4(np)1/2

)1/5
, we have

|NI − n
∫
I

ρsc(x)dx| ≥ δn

∫
I

ρsc(x)dx

with probability at most exp(−cn(np)1/2 log(np)).
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Remark 2.4. If one only needs the result for the bulk case I ⊂ [−2 + ε, 2− ε] for an absolute

constant ε > 0 then the minimum length of I can be improved to
( log(np)

δ4(np)1/2

)1/4
.

By Corollary 2.3 and Lemma 2.1, the probability that NI fails to be close to the expected value
in the model G(n, p) is much smaller than the probability that G(n, p) is np-regular. Thus the
probability that NI fails to be close to the expected value in the model Gn,d where d = np is the
ratio of the two former probabilities, which is O(exp(−cn√np log np)) for some small positive
constant c. Thus, Theorem 1.6 is proved, depending on Lemma 2.2 which we turn to next.

2.2 Proof of Lemma 2.2

Assume I = [a, b] and a− (−2) < 2− b.

We will use the approach of Guionnet and Zeitouni in [18]. Consider a random Hermitian
matrix Wn with independent entries wij with support in a compact region S. Let f be a real
convex L-Lipschitz function and define

Z :=
n∑
i=1

f(λi)

where λi’s are the eigenvalues of 1√
n
Wn. We are going to view Z as the function of the atom

variables wij. For our application we need wij to be random variables with mean zero and
variance 1, whose absolute values are bounded by a common constant K.

The following concentration inequality is from [18]

Lemma 2.5. Let Wn, f, Z be as above. Then there is a constant c > 0 such that for any T > 0

P(|Z − E(Z)| ≥ T ) ≤ 4 exp(−c T 2

K2L2
).

In order to apply Lemma 2.5 for NI and M , it is natural to consider

Z := NI =
n∑
i=1

χI(λi)

where χI is the indicator function of I and λi are the eigenvalues of 1√
n
Mn. However, this

function is neither convex nor Lipschitz. As suggested in [18], one can overcome this problem
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by a proper approximation. Define Il = [a − |I|
C
, a], Ir = [b, b + |I|

C
] and construct two real

functions f1, f2 as follows(see Figure 3):

f1(x) =

{ − C
|I|(x− a)− 1 if x ∈ (−∞, a− |I|

C
)

0 if x ∈ I ∪ Il ∪ Ir
C
|I|(x− b)− 1 if x ∈ (b+ |I|

C
,∞)

f2(x) =

{ − C
|I|(x− a)− 1 if x ∈ (−∞, a)

−1 if x ∈ I
C
|I|(x− b)− 1 if x ∈ (b,∞)

where C is a constant to be chosen later. Note that fj’s are convex and C
|I| -Lipschitz. Define

X1 =
n∑
i=1

f1(λi), X2 =
n∑
i=1

f2(λi)

and apply Lemma 2.5 with T = δ
8
n
∫
I
ρsc(t)dt for X1 and X2. Thus, we have

P(|Xj − E(Xj)| ≥
δ

8
n

∫
I

ρsc(t)dt) ≤ 4 exp(−c
δ2n2|I|2(

∫
I
ρsc(t)dt)

2

K2C2
).

At this point we need to estimate the value of
∫
I
ρsc(t)dt. There are two cases: if I is in the

“bulk” i.e. I ⊂ [−2+ε, 2−ε] for some positive absolute constant ε, then
∫
I
ρsc(t)dt = α|I| where

α is a constant depending on ε. But if I is very near the edge of [−2, 2] i.e. a−(−2) < |I| = o(1),
then

∫
I
ρsc(t)dt = α′|I|3/2 for some absolute constant α′. Thus in both case we have

P(|Xj − E(Xj)| ≥
δ

8
n

∫
I

ρsc(t)dt) ≤ 4 exp(−c1
δ2n2|I|5

K2C2
)

Let X = X1 −X2, then

P(|X − E(X)| ≥ δ

4
n

∫
I

ρsc(t)dt) ≤ O(exp(−c1
δ2n2|I|5

K2C2
)).

Now we compare X to Z, making use of a result of Götze and Tikhomirov [17]. We have
E(X−Z) ≤ E(NIl +NIr). In [17], Götze and Tikhomirov obtained a convergence rate for ESD
of Hermitian random matrices whose entries have mean zero and variance one, which implies
that for any I ⊂ [−2, 2]

|E(NI)− n
∫
I

ρsc(t)dt| < βn

√
M4

n
,

10



where β is an absolute constant, M4 = supi,j E(|ωij|4). Thus

E(X) ≤ E(Z) + n

∫
Il∪Ir

ρsc(t)dt+ βn

√
M4

n
.

In the “edge” case we can choose C = (4/δ)2/3, then because |I| ≥ Ω(δ−2/3(M4/n)1/3), we have

n

∫
Il∪Ir

ρsc(t)dt = Θ(n(
|I|
C

)3/2) > Ω(n

√
M4

n
)

and

n

∫
Il∪Ir

ρsc(t)dt+ βn

√
M4

n
= Θ(n(

|I|
C

)3/2) = Θ(
δ

4
n

∫
I

ρsc(t)dt).

In the “bulk” case we choose C = 4/δ, then

n

∫
Il∪Ir

ρsc(t)dt+ βn

√
M4

n
= Θ(n

|I|
C

) = Θ(
δ

4
n

∫
I

ρsc(t)dt).

Therefore in both cases, with probability at least 1−O(exp(−c1
δ4n2|I|5
K2 )), we have

Z ≤ X ≤ E(X) +
δ

4
n

∫
I

ρsc(t)dt < E(Z) +
δ

2
n

∫
I

ρsc(t)dt.

The convergence rate result of Götze and Tikhomirov again gives

E(NI) < n

∫
I

ρsc(t)dt+ βn

√
M4

n
< (1 +

δ

2
)n

∫
I

ρsc(t)dt,

hence with probability at least 1−O(exp(−c1
δ4n2|I|5
K2 ))

Z < (1 + δ)n

∫
I

ρsc(t)dt,

which is the desires upper bound.

The lower bound is proved using a similar argument. Let I ′ = [a+ |I|
C
, b− |I|

C
], I ′l = [a, a+ |I|

C
],

I ′r = [b − |I|
C
, b] where C is to be chosen later and define two functions g1, g2 as follows (see

Figure 3):

g1(x) =

{ − C
|I|(x− a) if x ∈ (−∞, a)

0 if x ∈ I ′ ∪ I ′l ∪ I ′r
C
|I|(x− b) if x ∈ (b,∞)

11



g2(x) =

{ − C
|I|(x− a) if x ∈ (−∞, a+ |I|

C
)

−1 if x ∈ I ′
C
|I|(x− b) if x ∈ (b− |I|

C
,∞)

Define
Y1 =

∑
i=1

g1(λi), Y2 =
∑
i=1

g2(λi).

Applying Lemma 2.5 with T = δ
8
n
∫
I
ρsc(t)dt for Yj and using the estimation for

∫
I
ρ(t)dt as

above, we have

P(|Yj − E(Yj)| ≥
δ

8
n

∫
I

ρsc(t)dt) ≤ 4 exp(−c2
δ2n2|I|5

K2C2
).

Let Y = Y1 − Y2, then

P(|Y − E(Y )| ≥ δ

4
n

∫
I

ρsc(t)dt) ≤ O(exp(−c2
δ2n2|I|5

K2C2
)).

We have E(Z − Y ) ≤ E(NI′l
+ NI′r). A similar argument as in the proof of the upper bound

(using the convergence rate of Götze and Tikhomirov) shows

E(Y ) ≥ E(Z)− n
∫
I′l∪I′r

ρsc(t)dt− βn
√
M4

n
> E(Z)− δ

4
n

∫
I

ρsc(t)dt.

Therefore with probability at least 1−O(exp(−c2
δ2n2|I|5
K2C2 )), we have

Z ≥ Y ≥ E(Y )− δ

4
n

∫
I

ρsc(t)dt > E(Z)− δ

2
n

∫
I

ρsc(t)dt,

and by the convergence rate, with probability at least 1−O(exp(−c2 δ
2n2|I|5
K2C2 ))

Z > (1− δ)n
∫
I

ρsc(t)dt.

Thus, Theorem 2.2 is proved.

12



         a-|I|/C a    b b+|I|/C          

f_1

f_2

f_1-f_2

I_l I_r

I=[a,b]
            a a+|I|/C b-|I|/C b          

g_1-g_2

g_1

g_2

I'_l I'_r

I'=[a+|I|/C,b-|I|/C]

Figure 3: Auxiliary functions used in the proof

3 Infinity norm of the eigenvectors

3.1 Small perturbation lemma

An is the adjacency matrix of G(n, p). In the proofs of Theorem 1.16 and Theorem 1.17, we
actually work with the eigenvectors of a perturbed matrix

An + εNn,

where ε = ε(n) > 0 can be arbitrarily small and Nn is a symmetric random matrix whose upper
triangular elements are independent with a standard Gaussian distribution.

The entries of An+εNn are continuous and thus with probability 1, the eigenvalues of An+εNn

are simple. Let
µ1 < . . . < µn

be the ordered eigenvalues of An+εNn, which have a unique orthonormal system of eigenvectors
{w1, . . . , wn}. By the Cauchy interlacing principle, the eigenvalues of An + εNn are different
from those of its principle minors, which satisfies a condition of Lemma 3.2.

Let λi’s be the eigenvalue of An with multiplicity ki defined as follows:

. . . λi−1 < λi = λi+1 = . . . = λi+ki < λi+ki+1 . . .

By Weyl’s theorem, one has for every 1 ≤ j ≤ n,

|λj − µj| ≤ ε||Nn||op = O(ε
√
n) (3.1)

13



Thus the behaviors of eigenvalues of An and An + εNn are essentially the same by choosing ε
sufficiently small. And everything (except Lemma 3.2) we used in the proofs of Theorem 1.16
and Theorem 1.17 for An also applies for An + εNn by a continuity argument. We will not
distinguish An from An + εNn in the proofs.

The following lemma will allow us to transfer the eigenvector delocaliztion results of An + εNn

to those of An at some expense.

Lemma 3.1. In the notations of above, there exists an orthonormal basis of eigenvectors of
An, denoted by {u1, . . . , un}, such that for every 1 ≤ j ≤ n,

||uj||∞ ≤ ||wj||∞ + α(n),

where α(n) can be arbitrarily small provided ε(n) is small enough.

Proof. First, since the coefficients of the characteristic polynomial of An are integers, there
exists a positive function l(n) such that either |λs − λt| = 0 or |λs − λt| ≥ l(n) for any
1 ≤ s, t ≤ n.

By (3.1) and choosing ε sufficiently small, one can get

|µi − λi−1| > l(n) and |µi+ki − λi+ki+1| > l(n)

For a fixed index i, let E be the eigenspace corresponding to the eigenvalue λi and F be the
subspace spanned by {wi, . . . , wi+ki}. Both of E and F have dimension ki. Let PE and PF be
the orthogonal projection matrices onto E and F separately.

Applying the well-known Davis-Kahan theorem (see [28] Section IV, Theorem 3.6) to An and
An + εNn, one gets

||PE − PF ||op ≤
ε||Nn||op

l(n)
:= α(n),

where α(n) can be arbitrarily small depending on ε.

Define vj = PFwj ∈ E for i ≤ j ≤ i + ki, then we have ||vj − wj||2 ≤ α(n). It is clear that
{vi, . . . , vki} are eigenvectors of An and

||vj||∞ ≤ ||wj||∞ + ||vj − wj||2 ≤ ||wj||∞ + α(n).

By choosing ε small enough such that nα(n) < 1/2, {vi, . . . , vki} are linearly independent.
Indeed, if

∑ki
j=i cjvj = 0, one has for every i ≤ s ≤ i+ ki,

∑ki
j=i cj〈PFwj, ws〉 = 0, which implies

cs = −
∑ki

j=i cj〈PFwj − wj, ws〉. Thus |cs| ≤ α(n)
∑ki

j=i |cj|, summing over all s, we can get∑ki
j=i |cj| ≤ kα(n)

∑ki
j=i |cj| and therefore cj = 0.

14



Furthermore the set {vi, . . . , vki} is ’almost’ an orthonormal basis of E in the sense that

| ||vs||2 − 1 | ≤ ||vs − ws||2 ≤ α(n) for any i ≤ s ≤ i+ ki

|〈vs, vt〉| = |〈PFws, PFwt〉|
= |〈PFws − ws, PFwt〉+ 〈ws, PFwt − wt〉|
= O(α(n)) for any i ≤ s 6= t ≤ i+ ki

We can perform a Gram-Schmidt process on {vi, . . . , vki} to get an orthonormal system of
eigenvectors {ui, . . . , uki} on E such that

||uj||∞ ≤ ||wj||∞ + α(n),

for every i ≤ j ≤ i+ ki.

We iterate the above argument for every distinct eigenvalue of An to obtain an orthonormal
basis of eigenvectors of An.

3.2 Auxiliary lemmas

Lemma 3.2. (Lemma 41, [30]) Let

Bn =

(
a X∗

X Bn−1

)
be a n×n symmetric matrix for some a ∈ C and X ∈ Cn−1, and let

(
x
v

)
be a eigenvector of

Bn with eigenvalue λi(Bn), where x ∈ C and v ∈ Cn−1. Suppose that none of the eigenvalues
of Bn−1 are equal to λi(Bn). Then

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗X|2
,

where uj(Bn−1) is a unit eigenvector corresponding to the eigenvalue λj(Bn−1).

The Stieltjes transform sn(z) of a symmetric matrix W is defined for z ∈ C by the formula

sn(z) :=
1

n

n∑
i=1

1

λi(W )− z
.

15



It has the following alternate representation:

Lemma 3.3. (Lemma 39, [30]) Let W = (ζij)1≤i,j≤n be a symmetrix matrix, and let z be a
complex number not in the spectrum of W . Then we have

sn(z) =
1

n

n∑
k=1

1

ζkk − z − a∗k(Wk − zI)−1ak

where Wk is the (n − 1) × (n − 1) matrix with the kth row and column of W removed, and
ak ∈ Cn−1 is the kth column of W with the kth entry removed.

We begin with two lemmas that will be needed to prove the main results. The first lemma,
following the paper [30] in Appendix B, uses Talagrand’s inequality. Its proof is presented in
the Appendix B.

Lemma 3.4. Let Y = (ζ1, . . . , ζn) ∈ Cn be a random vector whose entries are i.i.d. copies of
the random variable ζ = ξ−p (with mean 0 and variance σ2). Let H be a subspace of dimension
d and πH the orthogonal projection onto H. Then

P(| ‖ πH(Y ) ‖ −σ
√
d| ≥ t) ≤ 10 exp(−t

2

4
).

In particular,
‖ πH(Y ) ‖= σ

√
d+O(ω(

√
log n)) (3.2)

with overwhelming probability.

The following concentration lemma for G(n, p) will be a key input to prove Theorem 1.17. Let
Bn = 1√

nσ
An

Lemma 3.5 (Concentration for ESD in the bulk). (Concentration for ESD in the bulk) Assume
p = g(n) log n/n. For any constants ε, δ > 0 and any interval I in [−2 + ε, 2 − ε] of width
|I| = Ω(log2.2 g(n) log n/np), the number of eigenvalues NI of Bn in I obeys the concentration
estimate

|NI(Bn)− n
∫
I

ρsc(x) dx| ≤ δn|I|

with overwhelming probability.

The above lemma is a variant of Corollary 2.3. This lemma allows us to control the ESD on
a smaller interval and the proof, relying on a projection lemma (Lemma 3.4), is a different
approach. The proof is presented in Appendix C.
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3.3 Proof of Theorem 1.16:

Let λn(An) be the largest eigenvalue of An and u = (u1, . . . , un) be the corresponding unit
eigenvector. We have the lower bound λn(An) ≥ np. And if np = ω(log n), then the maximum
degree ∆ = (1 + o(1))np almost surely (See Corollary 3.14, [4]).

For every 1 ≤ i ≤ n,

λn(An)ui =
∑
j∈N(i)

uj,

where N(i) is the neighborhood of vertex i. Thus, by Cauchy-Schwarz inequality,

||u||∞ = maxi
|
∑

j∈N(i) uj|
λn(An)

≤
√

∆

λn(An)
= O(

1
√
np

).

Let Bn = 1√
nσ
An. Since the eigenvalues of Wn = 1√

nσ
(An − pJn) are on the interval [−2, 2], by

Lemma 1.1, {λ1(Bn), . . . , λn−1(Bn)} ⊂ [−2, 2].

Recall that np = g(n) log n. By Corollary 2.3, for any interval I with length at least ( log(np)

δ4(np)1/2
)1/5(say

δ = 0.5),with overwhelming probability, if I ⊂ [−2 +κ, 2−κ] for some positive constant κ, one
has NI(Bn) = Θ(n

∫
I
ρsc(x)dx) = Θ(n|I|); if I is at the edge of [−2, 2], with length o(1), one

has NI(Bn) = Θ(n
∫
I
ρsc(x)dx) = Θ(n|I|3/2). Thus we can find a set J ⊂ {1, . . . , n − 1} with

|J | = Ω(n|I0|) or |J | = Ω(n|I0|3/2) such that |λj(Bn−1) − λi(Bn)| � |I0| for all j ∈ J , where
Bn−1 is the bottom right (n− 1)× (n− 1) minor of Bn. Here we take |I0| = (1/g(n)1/20)2/3. It

is easy to check that |I0| ≥ ( log(np)

δ4(np)1/2
)1/5.

By the formula in Lemma 3.2, the entry of the eigenvector of Bn can be expressed as

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗ 1√
nσ
X|2

≤ 1

1 +
∑

j∈J(λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗ 1√
nσ
X|2

≤ 1

1 +
∑

j∈J n
−1|I0|−2|uj(Bn−1)∗ 1

σ
X|2

=
1

1 + n−1|I0|−2||πH(X
σ

)||2

≤ 1

1 + n−1|I0|−2|J |

(3.3)

with overwhelming probability, where H is the span of all the eigenvectors associated to J
with dimension dim(H) = Θ(|J |), πH is the orthogonal projection onto H and X ∈ Cn−1 has
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entries that are iid copies of ξ. The last inequality in (3.3) follows from Lemma 3.4 (by taking
t = g(n)1/10

√
log n) and the relations

||πH(X)|| = ||πH(Y + p1n)|| ≥ ||πH1(Y + p1n)|| ≥ ||πH1(Y )||.

Here Y = X − p1n and H1 = H ∩H2, where H2 is the space orthogonal to the all 1 vector 1n.
For the dimension of H1, dim(H1) ≥ dim(H)− 1 .

Since either |J | = Ω(n|I0|) or |J | = Ω(n|I0|3/2), we have n−1|I0|−2|J | = Ω(|I0|−1) or n−1|I0|−2|J | =
Ω(|I0|−1/2). Thus |x|2 = O(|I0|) or |x|2 = O(

√
|I0|). In both cases, since |I0| → 0, it follows

that |x| = o(1). �

3.4 Proof of Theorem 1.17

With the formula in Lemma 3.2, it suffices to show the following lower bound

n−1∑
j=1

(λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗
1√
nσ

X|2 � np

log2.2 g(n) log n
(3.4)

with overwhelming probability, where Bn−1 is the bottom right n− 1× n− 1 minor of Bn and
X ∈ Cn−1 has entries that are iid copies of ξ. Recall that ξ takes values 1 with probability p
and 0 with probability 1− p, thus Eξ = p,Varξ = p(1− p) = σ2.

By Theorem 3.5, we can find a set J ⊂ {1, . . . , n − 1} with |J | � log2.2 g(n) logn
p

such that

|λj(Bn−1)− λi(Bn)| = O(log2.2 g(n) log n/np) for all j ∈ J . Thus in (3.4), it is enough to prove∑
j∈J

|uj(Bn−1)T
1

σ
X|2 = ||πH(

X

σ
)||2 � |J |

or equivalently
||πH(X)||2 � σ2|J | (3.5)

with overwhelming probability, where H is the span of all the eigenvectors associated to J with
dimension dim(H) = Θ(|J |).

Let H1 = H ∩ H2, where H2 is the space orthogonal to 1n. The dimension of H1 is at least
dim(H)− 1. Denote Y = X − p1n. Then the entries of Y are iid copies of ζ. By Lemma 3.4,

||πH1(Y )||2 � σ2|J |
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with overwhelming probability.

Hence, our claim follows from the relations

||πH(X)|| = ||πH(Y + p1n)|| ≥ ||πH1(Y + p1n)|| = ||πH1(Y )||.

�

Appendices

In this appendix, we complete the proofs of Theorem 1.3, Lemma 3.4 and Lemma 3.5.

A Proof of Theorem 1.3

We will show that the semicircle law holds for Mn. With Lemma 1.1, it is clear that Theorem
1.3 follows Lemma A.1 directly. The claim actually follows as a special case discussed in the
paper [6]. Our proof here uses a standard moment method.

Lemma A.1. For p = ω( 1
n
), the empirical spectral distribution (ESD) of the matrix Wn =

1√
n
Mn converges in distribution to the semicircle law which has a density ρsc(x) with support

on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

Let ηij be the entries of Mn = σ−1(An − pJn). For i = j, ηij = −p/σ; and for i 6= j, ηij are
iid copies of random variable η, which takes value (1− p)/σ with probability p and takes value
−p/σ with probability 1− p.

Eη = 0,Eη2 = 1,Eηs = O

(
1

(
√
p)s−2

)
for s ≥ 2.

For a positive integer k, the kth moment of ESD of the matrix Wn is∫
xkdFW

n (x) =
1

n
E(Trace(Wn

k)),
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and the kth moment of the semicircle distribution is∫ 2

−2

xkρsc(x)dx.

On a compact set, convergence in distribution is the same as convergence of moments. To
prove the theorem, we need to show, for every fixed number k,

1

n
E(Trace(Wn

k))→
∫ 2

−2

xkρsc(x)dx, as n→∞. (A.1)

For k = 2m+ 1, by symmetry,

∫ 2

−2

xkρsc(x)dx = 0.

For k = 2m, ∫ 2

−2

xkρsc(x)dx =
1

π

∫ 2

0

xk
√

4− x2dx =
2k+2

π

∫ π/2

0

sink θcos2 θdx

=
2k+2

π

Γ(k+1
2

)Γ(3
2
)

Γ(k+4
2

)
=

1

m+ 1

(
2m

m

)

Thus our claim (A.1) follows by showing that

1

n
E(Trace(Wn

k)) =


O( 1√

np
) if k = 2m+ 1;

1
m+1

(
2m
m

)
+O( 1

np
) if k = 2m.

(A.2)

We have the expansion for the trace of Wn
k,

1

n
E(Trace(Wn

k)) =
1

n1+k/2
E(Trace(σ−1Mn)k)

=
1

n1+k/2

∑
1≤i1,...,ik≤n

Eηi1i2ηi2i3 · · · ηiki1
(A.3)

Each term in the above sum corresponds to a closed walk of length k on the complete graph
Kn on {1, 2, . . . , n}. On the other hand, ηij are independent with mean 0. Thus the term is
nonzero if and only if every edge in this closed walk appears at least twice. And we call such a
walk a good walk. Consider a good walk that uses l different edges e1, . . . , el with corresponding
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multiplicities m1, . . . ,ml, where l ≤ m, each mh ≥ 2 and m1 + . . . + ml = k. Now the
corresponding term to this good walk has form

Eηm1
e1
· · · ηml

el
.

Since such a walk uses at most l + 1 vertices, a naive upper bound for the number of good
walks of this type is nl+1 × lk.

When k = 2m+ 1, recall Eηs = Θ
(
(
√
p)2−s) for s ≥ 2, and so

1

n
E(Trace(Wn

k)) =
1

n1+k/2

m∑
l=1

∑
good walk of l edges

Eηm1
e1
· · · ηml

el

≤ 1

nm+3/2

m∑
l=1

nl+1lk(
1
√
p

)m1−2 . . . (
1
√
p

)ml−2

= O(
1
√
np

).

When k = 2m, we classify the good walks into two types. The first kind uses l ≤ m−1 different
edges. The contribution of these terms will be

1

n1+k/2

m−1∑
l=1

∑
1st kind of good walk of l edges

Eηm1
e1
· · · ηml

el
≤ 1

n1+m

m∑
l=1

nl+1lk(
1
√
p

)m1−2 . . . (
1
√
p

)ml−2

= O(
1

np
).

The second kind of good walk uses exactly l = m different edges and thus m + 1 different
vertices. And the corresponding term for each walk has form

Eη2
e1
· · · η2

el
= 1.

The number of this kind of good walk is given by the following result in the paper ([1], Page
617–618):

Lemma A.2. The number of the second kind of good walk is

nm+1(1 +O(n−1))

m+ 1

(
2m

m

)
.
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Then the second conclusion of (A.1) follows.

B Proof of Lemma 3.4:

The coordinates of Y are bounded in magnitude by 1. Apply Talagrand’s inequality to the map
Y → ||πH(Y )||, which is convex and 1-Lipschitz. We can conclude

P(| ‖ πH(Y ) ‖ −M(‖ πH(Y ) ‖)| ≥ t) ≤ 4 exp(− t
2

16
) (B.1)

where M(‖ πH(Y ) ‖) is the median of ‖ πH(Y ) ‖.

Let P = (pij)1≤i,j≤n be the orthogonal projection matrix onto H. One has traceP 2 =traceP =∑
i pii = d and |pii| ≤ 1, as well as,

‖ πH(Y ) ‖2 =
∑

1≤i,j≤n

pijζiζj =
n∑
i=1

piiζ
2
i +

∑
i 6=j

pijζiζj

and

E‖ πH(Y ) ‖2 = E(
n∑
i=1

piiζ
2
i ) + E(

∑
i 6=j

pijζiζj) = σ2d.

Take L = 4/σ. To complete the proof, it suffices to show

|M(‖ πH(Y ) ‖)− σ
√
d| ≤ Lσ. (B.2)

Consider the event E+ that ‖ πH(Y ) ‖≥ σL+ σ
√
d, which implies that ‖ πH(Y ) ‖2 ≥ σ2(L2 +

2L
√
d+ d2).

Let S1 =
∑n

i=1 pii(ζ
2
i − σ2) and S2 =

∑
i 6=j pijζiζj.

Now we have

P(E+) ≤ P(
n∑
i=1

piiζ
2
i ≥ σ2d+ L

√
dσ2) + P(

∑
i 6=j

pijζiζj ≥ σ2L
√
d).
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By Chebyshev’s inequality,

P(
n∑
i=1

piiζ
2
i ≥ σ2d+ L

√
dσ2) = P(S1 ≥ L

√
dσ2)) ≤ E(|S1|2)

L2dσ4
,

where E(|S1|2) = E(
∑

i pii(ζ
2
i − σ2))2 =

∑
i p

2
iiE(ζ4

i − σ4) ≤ dσ2(1− 2σ2).

Therefore, P(S1 ≥ L
√
dσ4) ≤ dσ2(1− 2σ2)

L2dσ4
<

1

16
.

On the other hand, we have E(|S2|2) = E(
∑

i 6=j p
2
ijζ

2
i ζ

2
j ) ≤ σ4d and

P(
∑
i 6=j

pijζiζj ≥ σ2L
√
d) = P(S2 ≥ L

√
dσ2) ≤ E(|S2|2)

L2dσ4
<

1

10

It follows that E(E+) < 1/4 and hence M(‖ πH(Y ) ‖) ≤ Lσ +
√
dσ.

For the lower bound, consider the event E− that ‖ πH(Y ) ‖≤
√
dσ − Lσ and notice that

P(E−) ≤ P(S1 ≤ −L
√
dσ2) + P(S2 ≤ −L

√
dσ2).

The same argument applies to get M(‖ πH(Y ) ‖) ≥
√
dσ − Lσ. Now the relations (B.1) and

(B.2) together imply (3.2).

C Proof of Lemma 3.5:

Recall the normalized adjacency matrix

Mn =
1

σ
(An − pJn),

where Jn = 1n1
T
n is the n× n matrix of all 1’s, and let Wn = 1√

n
Mn.

Lemma C.1. For all intervals I ⊂ R with |I| = ω(log n)/np, one has

NI(Wn) = O(n|I|)

with overwhelming probability.
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The proof of Lemma C.1 uses the same proof as in the paper [30] with the relation (3.2).

Actually we will prove the following concentration theorem for Mn. By Lemma 1.1, |NI(Wn)−
NI(Bn)| ≤ 1, therefore Lemma C.2 implies Lemma 3.5.

Lemma C.2. (Concentration for ESD in the bulk) Assume p = g(n) log n/n. For any constants
ε, δ > 0 and any interval I in [−2 + ε, 2− ε] of width |I| = Ω(g(n)0.6 log n/np), the number of
eigenvalues NI of Wn = 1√

n
Mn in I obeys the concentration estimate

|NI(Wn)− n
∫
I

ρsc(x) dx| ≤ δn|I|

with overwhelming probability.

To prove Theorem C.2, following the proof in [30], we consider the Stieltjes transform

sn(z) :=
1

n

n∑
i=1

1

λi(Wn)− z
,

whose imaginary part

Imsn(x+
√
−1η) =

1

n

n∑
i=1

η

η2 + (λi(Wn)− x)2
> 0

in the upper half-plane η > 0.

The semicircle counterpart

s(z) :=

∫ 2

−2

1

x− z
ρsc(x) dx =

1

2π

∫ 2

−2

1

x− z
√

4− x2 dx,

is the unique solution to the equation

s(z) +
1

s(z) + z
= 0

with Ims(z) > 0.

The next proposition gives control of ESD through control of Stieltjes transform (we will take
L = 2 in the proof):
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Proposition C.3. (Lemma 60, [30]) Let L, ε, δ > 0. Suppose that one has the bound

|sn(z)− s(z)| ≤ δ

with (uniformly) overwhelming probability for all z with |Re(z)| ≤ L and Im(z) ≥ η. Then for
any interval I in [−L+ ε, L− ε] with |I| ≥ max(2η, η

δ
log 1

δ
), one has

|NI − n
∫
I

ρsc(x) dx| ≤ δn|I|

with overwhelming probability.

By Proposition C.3, our objective is to show

|sn(z)− s(z)| ≤ δ (C.1)

with (uniformly) overwhelming probability for all z with |Re(z)| ≤ 2 and Im(z) ≥ η, where

η =
log2 g(n) log n

np
.

In Lemma 3.3, we write

sn(z) =
1

n

n∑
k=1

1

− ζkk√
nσ
− z − Yk

(C.2)

where
Yk = a∗k(Wn,k − zI)−1ak,

Wn,k is the matrix Wn with the kth row and column removed, and ak is the kth row of Wn with
the kth element removed.

The entries of ak are independent of each other and of Wn,k, and have mean zero and variance
1/n. By linearity of expectation we have

E(Yk|Wn,k) =
1

n
Trace(Wn,k − zI)−1 = (1− 1

n
)sn,k(z)

where

sn,k(z) =
1

n− 1

n−1∑
i=1

1

λi(Wn,k)− z
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is the Stieltjes transform of Wn,k. From the Cauchy interlacing law, we get

|sn(z)− (1− 1

n
)sn,k(z)| = O(

1

n

∫
R

1

|x− z|2
dx) = O(

1

nη
) = o(1),

and thus
E(Yk|Wn,k) = sn(z) + o(1).

In fact a similar estimate holds for Yk itself:

Proposition C.4. For 1 ≤ k ≤ n, Yk = E(Yk|Wn,k)+o(1) holds with (uniformly) overwhelming
probability for all z with |Re(z)| ≤ 2 and Im(z) ≥ η.

Assume this proposition for the moment. By hypothesis, | ζkk√
nσ
| = | −p√

nσ
| = o(1). Thus in (C.2),

we actually get

sn(z) +
1

n

n∑
k=1

1

sn(z) + z + o(1)
= 0 (C.3)

with overwhelming probability. This implies that with overwhelming probability either sn(z) =
s(z) + o(1) or that sn(z) = −z + o(1). On the other hand, as Imsn(z) is necessarily positive,
the second possibility can only occur when Imz = o(1). A continuity argument (as in [11]) then
shows that the second possibility cannot occur at all and the claim follows.

Now it remains to prove Proposition C.4.

Proof of Proposition C.4. Decompose

Yk =
n−1∑
j=1

|uj(Wn,k)
∗ak|2

λj(Wn,k)− z

and evaluate

Yk − E(Yk|Wn,k) = Yk − (1− 1

n
)sn,k(z) + o(1)

=
n−1∑
j=1

|uj(Wn,k)
∗ak|2 − 1

n

λj(Wn,k)− z
+ o(1)

=
n−1∑
j=1

Rj

λj(Wn,k)− z
+ o(1),

(C.4)

26



where we denote Rj = |uj(Wn,k)
∗ak|2 −

1

n
, {uj(Wn,k)} are orthonormal eigenvectors of Wn,k.

Let J ⊂ {1, . . . , n− 1}, then

∑
j∈J

Rj = ||PH(ak)||2 −
dim(H)

n

where H is the space spanned by {uj(Wn,k)} for j ∈ J and PH is the orthogonal projection
onto H.

In Lemma 3.4, by taking t = h(n)
√

log n, where h(n) = log0.001 g(n), one can conclude with
overwhelming probability

|
∑
j∈J

Rj| �
1

n

(
h(n)

√
|J | log n
√
p

+
h(n)2 log n

p

)
. (C.5)

Using the triangle inequality,

∑
j∈J

|Rj| �
1

n

(
|J |+ h(n)2 log n

p

)
(C.6)

with overwhelming probability.

Let z = x+
√
−1η, where η = log2 g(n) log n/np and |x| ≤ 2− ε, define two parameters

α =
1

log4/3 g(n)
and β =

1

log1/3 g(n)
.

First, for those j ∈ J such that |λj(Wn,k)−x| ≤ βη, the function 1
λj(Wn,k)−x−

√
−1η

has magnitude

O( 1
η
). From Lemma C.1, |J | � nβη, and so the contribution for these j ∈ J is,

|
∑
j∈J

Rj

λj(Wn,k)− z
| � 1

nη

(
nβη +

h(n)2

log2 g(n)

)
= O(

1

log1/3 g(n)
) = o(1).

For the contribution of the remaining j ∈ J , we subdivide the indices as
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a ≤ |λj(Wn,k)− x| ≤ (1 + α)a

where a = (1 + α)lβη, for 0 ≤ l ≤ L, and then sum over l.

For each such interval, the function 1
λj(Wn,k)−x−

√
−1η

has magnitude O( 1
a
) and fluctuates by at

most O(α
a
). Say J is the set of all j’s in this interval, thus by Lemma C.1, |J | = O(nαa).

Together with bounds (C.5), (C.6), the contribution for these j on such an interval,

|
∑
j∈J

Rj

λj(Wn,k)− z
| � 1

an

(
h(n)

√
|J | log n
√
p

+
h(n)2 log n

p

)
+

α

an

(
|J |+ h(n)2 log n

p

)

= O

( √
α√

(1 + α)l
h(n)√

β log g(n)
+

h2(n)

(1 + α)lβ log2 g(n)
+ α2

)

= O

(
1√
αβ

h(n)

log g(n)
+ α log

1

βη

)

Summing over l and noticing that (1 + α)Lη/g(n)1/4 ≤ 3, we get

|
∑

j∈J,allJ

Rj

λj(Wn,k)− z
| = O

(
1√
αβ

h(n)

log g(n)
+ α log

1

βη

)
= O

(
h(n)

log1/6 g(n)

)
= o(1).

�
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