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GRAPH CLASSES WITH GIVEN 3-CONNECTED COMPONENTS:

ASYMPTOTIC ENUMERATION AND RANDOM GRAPHS

OMER GIMÉNEZ, MARC NOY, AND JUANJO RUÉ

Abstract. Consider a family T of 3-connected graphs of moderate growth, and let G be the
class of graphs whose 3-connected components are graphs in T . We present a general framework
for analyzing such graphs classes based on singularity analysis of generating functions, which
generalizes previously studied cases such as planar graphs and series-parallel graphs. We provide
a general result for the asymptotic number of graphs in G, based on the singularities of the
exponential generating function associated to T . We derive limit laws, which are either normal
or Poisson, for several basic parameters, including the number of edges, number of blocks and
number of components. For the size of the largest block we find a fundamental dichotomy:
classes similar to planar graphs have almost surely a unique block of linear size, while classes
similar to series-parallel graphs have only sublinear blocks. This dichotomy also applies to the
size of the largest 3-connected component. For some classes under study both regimes occur,
because of a critical phenomenon as the edge density in the class varies.

1. Introduction

Several enumeration problems on planar graphs have been solved recently. It has been shown [13]
that the number of labelled planar graphs with n vertices is asymptotically equal to

(1) c · n−7/2 · γnn!,
for suitable constants c and γ. For series-parallel graphs [4], the asymptotic estimate is of the
form, again for suitable constants d and δ,

(2) d · n−5/2 · δnn!.
As can be seen from the proofs in [4, 13], the difference in the subexponential term comes from a
different behaviour of the counting generating functions near their dominant singularities. Related
families of labelled graphs have been studied, like outerplanar graphs [4], graphs not containing
K3,3 as a minor [12], and, more generally, classes of graphs closed under minors [3]. In all cases
where asymptotic estimates have been obtained, the subexponential term is systematically either
n−7/2 or n−5/2. The present chapter grew up as an attempt to understand this dichotomy.

A class of graphs is a family of labelled graphs which is closed under isomorphism. A class G
is closed if the following condition holds: a graph is in G if and only if its connected, 2-connected
and 3-connected components are in G. A closed class is completely determined by its 3-connected
members. The basic example is the class of planar graphs, but there are others, specially minor-
closed classes whose excluded minors are 3-connected.

In this paper we present a general framework for enumerating closed classes of graphs. Let
T (x, z) be the generating function associated to the family of 3-connected graphs in a closed
class G, where x marks vertices and z marks edges, and let gn be the number of graphs in G
with n vertices. Our first result shows that the asymptotic estimates for gn depend crucially on
the singular behaviour of T (x, z). For a fixed value of x, let r(x) be the dominant singularity

of T (x, z). If T (x, z) has an expansion at r(x) in powers of Z =
√
1− z/r(x) with dominant

term Z5, then the estimate for gn is as in Equation (1); if T (x, z) is either analytic everywhere
or the dominant term is Z3, then the pattern is that of Equation (2). Our analysis gives a clear
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explanation of these facts in term of the vanishing of certain coefficients in singular expansions
(Propositions 3.5, 3.8, and 3.10).

There also mixed cases, where 2-connected and connected graphs in G get different exponents.
And there are critical cases too, due to the confluence of two sources for the dominant singularity,
where a subexponential term n−8/3 appears. This is the content of Theorem 3.1, whose proof is
based on a careful analysis of singularities.

Section 2 presents technical preliminaries needed in the paper, and Section 3 contains the main
results. In Section 4, extending the analytic techniques developed for asymptotic enumeration,
we analyze random graphs from closed classes of graphs. We show that several basic parameters
converge in distribution either to a normal law or to a Poisson law. In particular, the number of
edges, number of blocks and number of cut vertices are asymptotically normal with linear mean
and variance. This is also the case for the number of special copies of a fixed graph or a fixed
block in the class. On the other hand, the number of connected components converges to a discrete
Poisson law.

In Section 5 we study a key extremal parameter: the size of the largest block, or the largest
2-connected component. And in this case we find a striking difference depending on the class of
graphs. For planar graphs there is asymptotically almost surely a block of linear size, and the
remaining blocks are of order O(n2/3). For series-parallel graphs there is no block of linear size.
This also applies more generally to the classes considered in Theorem 3.1. A similar dichotomy
occurs when considering the size of the largest 3-connected component. This is proved using the
techniques developed by Banderier et al. [1] for analyzing largest components in random maps.
For planar graphs we prove the following precise result in Theorem 5.4. If Xn is the size of the
largest block in random planar graphs with n vertices, then

P
(
Xn = αn+ xn2/3

)
∼ n−2/3cg(cx),

where α ≈ 0.95982 and c ≈ 128.35169 are well-defined analytic constants, and g(x) is the so called
Airy distribution of the map type, which is a particular instance of a stable law of index 3/2.
Moreover, the size of the second largest block is O(n2/3). The giant block is uniformly distributed
among the planar 2-connected graphs with the same number of vertices, hence according to the
results in [2] it has about 2.2629 · 0.95982n = 2.172n edges, again with deviations of order
O(n2/3) (the deviations for the normal law are of order n1/2, but the n2/3 term coming from the
Airy distribution dominates). We remark that the size of the largest block has been analyzed too
in [17] using different techniques. The main improvement with respect to [17] is that we are able
to obtain a precise limit distribution.

With respect to the largest 3-connected component in a random planar graph, we show that it
follows an Airy distribution and has ηn vertices and ζn edges, where η ≈ 0.7346 and ζ ≈ 1.7921
are again well-defined. This is technically more involved since we have to analyze the composition
of two Airy laws and different probability distributions in 2-connected graphs.

The picture that emerges for random planar graphs is the following. Start with a large 3-
connected planar graph M (or the skeleton of a polytope in the space if one prefers a more
geometric view), and perform the following operations. First edges of M are substituted by small
blocks with a distinguished oriented edge, giving rise to the giant block L; then small connected
graphs are attached to some of the vertices of L, which become cut vertices, giving rise to the
largest connected component C. As we show later, C has size n−O(1). This model can be made
more precise and will be the subject of future research.

An interesting open question is whether there are other parameters besides the size of the largest
block (or largest 3-connected component) for which planar graphs and series-parallel graphs differ
in a qualitative way. We remark that with respect to the largest component there is no qualitative
difference. This is also true for the degree distribution [8]. If dk is the probability that a given
vertex has degree k > 0, then in both cases it can be shown that the dk decay as c · nαqk, where
c, α and q depend on the class under consideration [8].
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In Section 7 we apply the previous machinery to the analysis of several classes of graphs closed
under minors, including planar graphs and series-parallel graphs. Whenever the generating func-
tion T (x, z) can be computed explicitly, we obtain precise asymptotic estimates for the number
of graphs gn, and limit laws for the main parameters. In particular we determine the asymptotic
probability of a random graph being connected, the constant κ such that the expected number of
edges is asymptotically κn, and other fundamental constants.

Our techniques allow also to study graphs with a given density, or average degree. To fix ideas,
let gn,⌊µn⌋ be the number of planar graphs with n vertices and ⌊µn⌋ edges: µ is the edge density
and 2µ is the average degree. For µ ∈ (1, 3), a precise estimate for gn,⌊µn⌋ can be obtained using a
local limit theorem [13]. And parameters like the number of components or the number of blocks
can be analyzed too when the edge density varies. It turns out that the family of planar graphs
with density µ ∈ (1, 3) shares the main characteristics of planar graphs. This is also the case
for series-parallel graphs, where µ ∈ (1, 2) since maximal graphs in this class have only 2n − 3
edges. In Section 8 we show examples of critical phenomena by a suitable choice of the family T
of 3-connected graphs. In the associated closed class G, graphs below a critical density µ0 behave
like series-parallel graphs, and above µ0 they behave like planar graphs, or conversely. We even
have examples with more than one critical value.

We remark that graph classes with given 3-connected components are analyzed also in [5] and
[10], where the emphasis is on combinatorial decompositions rather than asymptotic analysis.

2. Preliminaries

Generating functions are of the exponential type, unless we say explicitly the contrary. The
partial derivatives of A(x, y) are written Ax(x, y) and Ay(x, y). In some cases the derivative with
respect to x is written A′(x, y). The second derivatives are written Axx(x, y), and so on. By a.a.s.
we mean asymptotically almost surely, which in our case means a property of random graphs
whose probability tends to 1 as n goes to infinity.

The decomposition of a graph into connected components, and of a connected graph into blocks
(2-connected components) are well known. We also need the decomposition of a 2-connected graph
decomposes into 3-connected components [21]. A 2-connected graph is built by series and parallel
compositions and 3-connected graphs in which each edge has been substituted by a block; see
below the definition of networks.

A class of labelled graphs G is closed if a graph G is in G if and only if the connected, 2-
connected and 3-connected components of G are in G. A closed class is completely determined by
the family T of its 3-connected members. Let gn be the number of graphs in G with n vertices,
and let gn,k be the number of graphs with n vertices and k edges. We define similarly cn, bn, tn
for the number of connected, 2-connected and 3-connected graphs, respectively, as well as the
corresponding cn,k, bn,k, tn,k. We introduce the EGFs

G(x, y) =
∑

n,k

gn,k y
k x

n

n!
,

and similarly for C(x, y) and B(x, y). When y = 1 we recover the univariate EGFs

B(x) =
∑

bn
xn

n!
, C(x) =

∑
cn
xn

n!
, G(x) =

∑
gn
xn

n!
.

The following equations reflect the decomposition into connected components and 2-connected
components:

(3) G(x, y) = exp(C(x, y)), xC′(x, y) = x exp (B′(xC′(x, y), y)) ,

In the first decomposition, one must notice that a general graph is simply a set of labelled connected
graphs, hence the equation G(x, y) = exp(C(x, y)). The second decomposition is a bit more
involved. The EGF xC′(x, y) is associated to the family of connected graphs with rooted at a
vertex. Then, the second equation in (3) says that a connected graph with a rooted vertex is
obtained from a set of rooted 2-connected graphs (where the root bears no label), in which we
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substitute each vertex by a connected graph with a rooted vertex (the roots allow us to recover
the graph from its constituents). We also define

T (x, z) =
∑

n,k

tn,k z
nx

n

n!
,

where the only difference is that the variable for marking edges is now z. This convention is useful
and will be maintained throughout the paper.

A network is a graph with two distinguished vertices, called poles, such that the graph obtained
by adding an edge between the two poles is 2-connected. Moreover, the two poles are not labelled.
Networks are the key technical device for encoding the decomposition of 2-connected graphs into
3-connected components. We distinguish between three kinds of networks. A network is series
if it is obtained from a cycle C with a distinguished edge e, whose endpoints become the poles,
and every edge different from e is replaced by a network. Equivalently, when removing the root
edge if present, the resulting graph is not 2-connected. A network is parallel if it is obtained by
gluing two or more networks, none of them containing the root edge, along the common poles.
Equivalently, when the two poles are a 2-cut of the network. Finally, an h-network is obtained
from a 3-connected graph H rooted at an oriented edge, by replacing every edge of H (other
than the root) by an arbitrary network. Trakhtenbrot [19] showed that a network is either series,
parallel or an h-network, and Walsh [22] translated this fact into generating functions as we show
next.

Let D(x, y) be the GF associated to networks, where again x and y mark vertices and edges.
Then D = D(x, y) satisfies (see [2], who draws on [19, 22])

(4)
2

x2
Tz(x,D)− log

(
1 +D

1 + y

)
+

xD2

1 + xD
= 0,

and B(x, y) is related to D(x, y) through

(5) By(x, y) =
x2

2

(
1 +D(x, y)

1 + y

)
.

For future reference, we set

(6) Φ(x, z) =
2

x2
Tz(x, z)− log

(
1 + z

1 + y

)
+

xz2

1 + xz
,

so that Equation (4) is written in the form Φ(x,D) = 0, for a given value of y. By integrating
(5) using the techniques developed in [13], we obtain an explicit expression for B(x, y) in terms of
D(x, y) and T (x, z) (see the first part of the proof of Lemma 5 in [13]):

B(x, y) = T (x,D(x, y))− 1

2
xD(x, y) +

1

2
log(1 + xD(x, y)) +(7)

x2

2

(
D(x, y) +

1

2
D(x, y)2 + (1 +D(x, y)) log

(
1 + y

1 +D(x, y)

))
.

This relation is valid for every closed defined in terms of 3-connected graphs, and can be proved
in a more combinatorial way [5] (see also [10]).

We use singularity analysis for obtaining asymptotic estimates; the main reference here is [9].
The singular expansions we encounter in this paper are always of the form

f(x) = f0 + f2X
2 + f4X

4 + · · ·+ f2kX
2k + f2k+1X2k+1 +O(X2k+2),

where X =
√
1− x/ρ. That is, 2k + 1 is the smallest odd integer i such that fi 6= 0. The even

powers of X are analytic functions and do not contribute to the asymptotics of [xn]f(x). The
number α = (2k + 1)/2 is called the singular exponent, and by the transfer theorem [9] we obtain
the estimate

[xn]f(x) ∼ c · nα−1ρ−n,
where c = f2k+1/Γ(−α).
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We assume that, for a fixed value of x, T (x, z) has a unique dominant singularity r(x), and
that there is a singular expansion near r(x) of the form

(8) T (x, z) =
∑

n≥n0

Tn(x)

(
1− z

r(x)

)n/κ

,

where n0 is an integer, possibly negative, and the functions tn(x) and r(x) are analytic. This is
a rather general assumption, as it includes singularities coming from algebraic and meromorphic
functions.

The case when T is empty (there are no 3-connected graphs) gives rise to the class of series-
parallel graphs. It is shown in [4] that, for a fixed value y = y0, D(x, y0) has a unique dominant
singularity R(y0). This is also true for arbitrary T , since adding 3-connected graphs can only
increase the number of networks.

3. Asymptotic enumeration

Throughout the rest of the chapter we assume that T is a family of 3-connected graphs whose
GF T (x, z) satisfies the requirements described in Section 2. We assume that a singular expansion
like (8) holds, and we let r(x) be the dominant singularity of T (x, z), and α the singular exponent.

Our main result gives precise asymptotic estimates for gn, cn, bn depending on the singularities
of T (x, z). Cases (1) and (2) in the next statement can be considered as generic, whereas (1) and
(2.1) are those encountered in ‘natural’ classes of graphs. The two situations in case (3) come from
critical conditions, when two possible sources of singularities coincide. This is the reason for the
unusual exponent −8/3, which comes from a singularity of cubic-root type instead of the familiar
square-root type.

Theorem 3.1. Let G be a closed family of graphs, and let T (x, z) be the GF of the family of
3-connected graphs in G. In all cases b, c, g, R, ρ are explicit positive constants and ρ < R.

(1) If Tz(x, z) is either analytic or has singular exponent α < 1, then

bn ∼ b n−5/2R−nn!, cn ∼ c n−5/2ρ−nn!, gn ∼ g n−5/2ρ−nn!

(2) If Tz(x, z) has singular exponent α = 3/2, then one of the following holds:

(2.1) bn ∼ b n−7/2R−nn!, cn ∼ c n−7/2ρ−nn!, gn ∼ g n−7/2ρ−nn!

(2.2) bn ∼ b n−7/2R−nn!, cn ∼ c n−5/2ρ−nn!, gn ∼ g n−5/2ρ−nn!

(2.3) bn ∼ b n−5/2R−nn!, cn ∼ c n−5/2ρ−nn!, gn ∼ g n−5/2ρ−nn!

(3) If Tz(x, z) has singular exponent α = 3/2, and in addition a critical condition is satisfied,
one of the following holds:

(3.1) bn ∼ b n−8/3R−nn!, cn ∼ c n−5/2ρ−nn!, gn ∼ g n−5/2ρ−nn!

(3.2) bn ∼ b n−7/2R−nn!, cn ∼ c n−8/3ρ−nn!, gn ∼ g n−8/3ρ−nn!

Using the Transfer Theorems [9], the previous theorem is a direct application of the following
analytic result for y = 1. We prove it for arbitrary values of y = y0, since this has important
consequences later on.

Theorem 3.2. Let G be a closed family of graphs, and let T (x, z) be the GF of the family of
3-connected graphs in G.

For a fixed value y = y0, let R = R(y0) be the dominant singularity of D(x, y0), and let
D0 = D(R, y0).

(1) If Tz(x, z) is either analytic or has singular exponent α < 1 at (R,D0), then B(x, y0),
C(x, y0) and G(x, y0) have singular exponent 3/2.

(2) If Tz(x, z) has singular exponent α = 3/2 at (R,D0), then one of the following holds:

(2.1) B(x, y0), C(x, y0) and G(x, y0) have singular exponent 5/2.
(2.2) B(x, y0) has singular exponent 5/2, and C(x, y0), G(x, y0) have singular exponent 3/2.
(2.3) B(x, y0), C(x, y0) and G(x, y0) have singular exponent 3/2.
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(3) If Tz(x, z) has singular exponent α = 3/2 at (R,D0), and in addition a critical condition is
satisfied for the singularities of either B(x, y) or C(x, y), then one of the following holds:

(3.1) B(x, y0) has singular exponent 5/3, and C(x, y0), G(x, y0) have singular exponent 3/2.
(3.2) B(x, y0) has singular exponent 5/2, and C(x, y0), G(x, y0) have singular exponent 5/3.

The rest of the section is devoted to the proof of Theorem 3.2, which implies Theorem 3.1. First
we study the singularities of B(x, y), which is the most technical part. Then we study the singu-
larities of C(x, y) and G(x, y), which are always of the same type since G(x, y) = exp (C(x, y)).

3.1. Singularity analysis of B(x, y). From now on, we assume that y = y0 is a fixed value, and
let D(x) = D(x, y0). Recall from Equation (6) that D(x) satisfies Φ(x,D(x)) = 0, where

Φ(x, z) =
2

x2
Tz(x, z)− log

(
1 + z

1 + y0

)
+

xz2

1 + xz
.

Since a 3-connected graph has at least four vertices, T (x, z) is O(x4). If follows that D(0) = y0
and Φz(0, 0) = −1/(1+y0) < 0. It follows from the implicit function theorem that D(x) is analytic
at x = 0.

The next result shows that D(x) has a positive singularity R and that D(x) is finite at R.

Lemma 3.3. With the previous assumptions, D(x) has a positive singularity R = R(y), and D(R)
is also finite.

Proof. We first show that D(x) has a finite singularity. Consider the family of networks without
3-connected components, which corresponds to series-parallel networks, and let D∅(x, y) be the
associated GF. It is shown in [4] that the radius of convergence R∅(y0) of D∅(x, y0) is finite
for all y > 0. Since the set of networks enumerated by D(x, y0) contains the networks without
three-connected components, it follows that D∅(x, y) ≤ D(x, y) and D(x) has a finite singularity
R(y0) ≤ R∅(y0).

Next we show that D(x) is finite at its dominant singularity R = R(y0). Since R is the
smallest singularity and Φz(0, 0) < 0, we have Φz(x,D(x)) < 0 for 0 ≤ x < R. We also have
Φzz(x, z) > 0 for x, z > 0. Indeed, the first summand in Φ is a series with positive coefficients, and
all its derivatives are positive; the other two terms have with second derivatives 1/(1 + z)2 and
2x/(1+xz)3, which are also positive. As a consequence, Φz(x,D(x)) is an increasing function and
limx→R− Φ(x,D(x)) exists and is finite. It follows that D(R) cannot go to infinity, as claimed. �

Since R is the smallest singularity of D(x), Φ(x, z) is analytic for all x < R along the curve
defined by Φ(x,D(x)) = 0. For x, z > 0 it is clear that Φ is analytic at (x, z) if and only if T (x, z)
is also analytic. Thus T (x, z) is also analytic along the curve Φ(x,D(x)) = 0 for x < R. As a
consequence, the singularity R can only have two possible sources:

(a) A branch-point (R,D0) when solving Φ(x, z) = 0, that is, Φ and Φz vanish at (R,D0).
(b) T (x, z) becomes singular at (R,D0), so that Φ(x, z) is also singular.

Case (a) corresponds to case (1) in Theorem 3.2. For case (b) we assume that the singular
exponent of T (x, z) at the dominant singularity is 5/2, which corresponds to families of 3-connected
graphs coming for 3-connected planar maps, and related families of graphs. We could allow more
general types of singular exponents but they do not appear in the main examples we have analyzed.

The typical situation is case (2.1) in Theorem 3.2, but (2.2) and (2.3) are also possible. It is
also possible to have a critical situation, where (a) and (b) both hold, and this leads to case (3.1):
this is treated at the end of this subsection. Finally, a confluence of singularities may also arise
when solving equation

xC′(x, y) = x exp (B′(xC′(x, y), y)) .

Indeed the singularity may come from: (a) a branch point when solving the previous equation; or
(b) B(x, y) becomes singular at ρ(y)C′(ρ(y), y), where ρ(y) is the singularity of C(x, y). When
the two sources (a) and (b) for the singularity coincide, we are in case (3.2). This is treated at
the end of Section 3.2.
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3.1.1. Φ has a branch-point at (R,D0). We assume that Φz(R,D0) = 0 and that Φ is analytic at
(R,D0). We have seen that Φzz(x, z) > 0 for x, z > 0. Under these conditions, D(x) admits a
singular expansion near R of the form

(9) D(x) = D0 +D1X +D2X
2 +D3X

3 +O(X4),

where X =
√
1− x/R, and D1 = −

√
2RΦx(R,D0)/Φzz(R,D0) (see [9]). We remark that R and

the Di’s depend implicitly on y0.
In the next result we find an explicit expression for D1, which is the dominant term in (9).

This puts into perspective the result found in [4] for series-parallel graphs, where it was shown
that D1 < 0 for that class.

Proposition 3.4. Consider the singular expansion (9). Then D1 < 0 is given by

D1 = −




2RTxz − 4Tz +
R3D2

0

(1 +RD0)2

R2

2(1 +D0)2
+

R3

(1 +RD0)
3 + Tzzz




1/2

,

where the partial derivatives of T are evaluated at (R,D0).

Proof. We plug the expansion (9) inside (6) and extract work out the undetermined coefficients
Di. The expression for D1 follows from a direct computation of Φx and Φzz, and evaluating at
(R,D0). To show that D1 does not vanish, notice that

2RTxz − 4Tz = R3 ∂

∂x

(
2

x2
Tz(x, z)

)
.

This is positive since 2/x2Tz is a series with positive coefficients. Since R,D0 > 0, the remaining
term in the numerator inside the square root is clearly positive, and so is the denominator. Hence
D1 < 0. �

From the singular expansion of D(x) and the explicit expression (7) of B(x, y0) in terms of
D(x, y0), it is clear that B(x) = B(x, y0) also admits a singular expansion at the same singularity
R of the form

(10) B(x) = B0 +B1X +B2X
2 +B3X

3 +O(X4).

The next result shows that the singular exponent of B(x) is 3/2, as claimed. Again, the fact that
B1 = 0 and B3 > 0 explains the results found in [4] for series-parallel graphs.

Proposition 3.5. Consider the singular expansion (10). Then B1 = 0 and B3 > 0 is given by

(11) B3 =
1

3

(
4Tz − 2RTxz −

R3D2
0

(1 +RD0)
2

)
D1,

where the partial derivatives of T are evaluated in (R,D0).

Proof. We plug the singular expansion (9) of D(x) into Equation (7) and work out the unde-
termined coefficients Bi. One can check that B1 = 2R2Φ(R,D0)D1, which vanishes because
Φ(x,D(x)) = 0.

When computing B3, it turns out that the values D2 and D3 are irrelevant because they appear
in a term which contains a factor Φz, which by definition vanishes at (R,D0). This observation
gives directly Equation (11). The fact B3 6= 0 follows from applying the same argument as in the
proof of Proposition 3.4, that is, 4Tz − 2RTxz < 0. Then B3 > 0 since it is the product of two
negative numbers. �
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3.1.2. Φ is singular at (R,D0). In this case we assume that T (x, z) is singular at (R,D0) and that
Φz(R,D0) < 0. The situation where both T (x, z) is singular and Φz(R,D0) = 0 is treated in the
next subsection. We start with a technical lemma.

Lemma 3.6. The function Tzz is bounded at the singular point (R,D0).

Proof. By differentiating Equation (6) with respect to z we obtain

Φz(x, z) =
2

x2
Tzz(x, z)−

1

1 + z
− 1

(1 + xz)2
+ 1.

Since Φz(R,D0) < 0, we have

2

R2
Tzz(R,D0) <

1

1 +D0
+

1

(1 +RD0)2
− 1 < 1.

Hence Tzz(R,D0) < R2/2. �

Let us consider now the singular expansions of Φ and T in terms of Z =
√
1− z/r(x), where

r(x) is the dominant singularity. Note that, by Equation (6), Φ and Tz have the same singular
behaviour. By Lemma 3.6, the singular exponent α of the dominant singular term Zα of Tzz
must be greater than 0 and, consequently, the singular exponent of Tz and Φ is greater than 1. As
discussed above, we only study the case where the singular exponent of T (x, z) is 5/2 (equivalently,
the singular exponent of Φ(x, z) is 3/2), which corresponds to several families of three-connected
graphs arising from maps. That is, we assume that T has a singular expansion of the form

T (x, z) = T0(x) + T2(x)Z
2 + T4(x)Z

4 + T5(x)Z
5 +O(Z6),

where Z =
√
1− z/r(x), and the functions r(x) and Ti(x) are analytic in a neighborhood of R.

Notice that r(R) = D0. Since we are assuming that the singular exponent is 5/2, we have that
T5(R) 6= 0.

We introduce now the Taylor expansion of the coefficients Ti(x) at R. However, since we
aim at computing the singular expansions of D(x) and B(x) at R, we expand in even powers of

X =
√
1− x/R:

T (x, z) = T0,0 + T0,2X
2 +O(X4)(12)

+
(
T2,0 + T2,2X

2 +O(X4)
)
· Z2

+
(
T4,0 + T4,2X

2 +O(X4)
)
· Z4

+
(
T5,0 + T5,2X

2 +O(X4)
)
· Z5 +O(Z6).

Notice that T5,0 = T5(R) 6= 0. Similarly, we also consider the expansion of Φ given by

Φ(x, z) = Φ0,0 +Φ0,2X
2 +O(X4)(13)

+
(
Φ2,0 +Φ2,2X

2 +O(X4)
)
· Z2

+
(
Φ3,0 +Φ3,2X

2 +O(X4)
)
· Z3 +O(Z4),

where Φ2,0 6= 0 because Φz(R,D0) < 0.
The next result shows that D1 = 0 and D3 > 0. This was proved in [2] for the class of planar

graphs, but there was no obvious reason explaining this fact. Now we see it follows directly from
our general assumptions on T (x, z), which are satisfied when T (x, z) is the GF of 3-connected
planar graphs.

Proposition 3.7. The function D(x) admits the following singular expansion

D(x) = D0 +D2X
2 +D3X

3 +O(X4),

where X =
√
1− x/R. Moreover,

D2 = D0
P

Q
−Rr′, D3 = −5T5,0(−P )3/2

R2Q5/2
> 0,
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where r′ is the evaluation of the derivative r′(x) at x = R, and P < 0 and Q > 0 are given by

P = Φ0,2 =− 4T2,0 + 2T2,2
R2D0

− 2T2,0r
′

RD2
0

+
Rr′

1 +D0
− RD0(D0 + (2 +RD0)Rr

′)

(1 +RD0)2
,

Q = Φ2,0 =− 4T4,0
R2D0

+
D0

1 +D0
− 2RD2

0

1 +RD0
+

R2D3
0

(1 +RD0)2
.

Proof. We consider Equation (13) as a power series Φ(X,Z), where X =
√

1− x/R and Z =√
1− z/D0. We look for a solution Z(X) such that Φ(X,Z(X)) = 0; we also impose Z(0) = 0,

since Φ0,0 = Φ(R,D0) = 0. Define D(x) as

D(x) = r(x)(1 − Z(X)2),

which satisfies Φ(x,D(x)) = 0 and D(R) = D0. By indeterminate coefficients we obtain

Z(X) = ±
√

−Φ0,2

Φ2,0
X +

Φ3,0Φ0,2

2Φ2,0
2 X2 +O(X3),

where the sign of the coefficient in X is determined later. Now we use this expression and the
Taylor series of the analytic function r(x) at x = R to obtain the following singular expansion for
D(x):

D(x) = D0 +

(
D0

Φ0,2

Φ2,0
−Rr′

)
X2 ±D0

(−Φ0,2)
3/2 Φ3,0

Φ2,0
5/2

X3 +O(X4).

Observe in particular that the coefficient of X vanishes. We define P = Φ0,2 and Q = Φ2,0. The
fact that P < 0 and Q > 0 follows from the relations

Φz =
−1

D0
Φ2,0, Φx =

−1

R
Φ0,2 +

r′

D2
0

Φ2,0,

that are obtained by differentiating Equation (13). We have Φz < 0 by assumption, and Φx > 0
following the proof of Proposition 3.4.

The coefficient D3 must have positive sign, since D′′(x) is a positive function and its singular
expansion is Dxx(x) = 3D3(4R

2)−1X−1 +O(1). The coefficients Φi,j in Equation (13) are easily
expressed in term of the Ti,j , and a simple computation gives the result as claimed. �

Proposition 3.8. The function B(x) admits the following singular expansion

B(x) = B0 +B2X
2 +B4X

4 +B5X
5 +O(X6),

where X =
√
1− x/R. Moreover,

B0 =
R2

2

(
D0 +

1

2
D2

0

)
− 1

2
RD0 +

1

2
log (1 +RD0)−

1

2
(1 +D0)

R3D2
0

1 +RD0

+T0,0 +
1 +D0

D0
T2,0,

B2 =
R2D0(D

2
0R− 2)

2(1 +RD0)
+ T0,2 −

(
2
1 +D0

D0
+
Rr′

D0

)
T2,0,

B4 =

(
T0,4 +

2R3D2
0 −R4D4

0 + 2R2D0

4(1 +RD0)2

)
+

(
1 +D0 + r′′

D0

)
T2,0 +

P 2

Q

R2D0

4

+

(
2R

D0
T2,0 +

R4D2
0

2(1 +RD0)2

)
r′ +

R4

4

(
D0

1 +D0
− 1

(1 +RD0)2

)
(r′)2,

B5 = T5,0

(
−P
Q

)5/2

< 0,

where P and Q are as in Proposition 3.7, and r′ and r′′ are the derivatives of r(x) evaluated at
x = R.
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Proof. Our starting point is Equation (7) relating functions D, B and T . We replace T by the
singular expansion in Equation (12), D by the singular expansion given in Proposition 3.7, and
we set x = X2(1−R). The expressions for Bi follow by indeterminate coefficients.

When performing these computations we observe that the coefficients B1 and B3 vanish iden-
tically, and that several simplifications occur in the remaining expressions. �

3.1.3. Φ has a branch-point and T (x, z) is singular at (R,D0). This is the first critical situation,
and corresponds to case (3.1) in Theorem 3.1. To study this case we proceed exactly as in the
case where Φ is singular at (R,D0) (Section 3.1.2), except that now Φz(R,D0) = 0. It is easy to
check that Lemma 3.6 still applies (with the bound Tzz(R,D0) ≤ R2/2). As done in the previous
section, we only take into consideration families of graphs where the singular exponent of T (x, z)
is 5/2 (equivalently, the singular exponent of Φ(x, z) is 3/2). Equations (12) and (13) still hold,
except that now Φ2,0 = 0 because of the branch point at (R,D0). This missing term is crucial, as
we make clear in the following analogous of Proposition 3.7. Notice that Φ3,0 6= 0 because of our
assumptions on T (x, z).

Proposition 3.9. The function D(x) admits the following singular expansion

D(x) = D0 +D4/3X
4/3 +O(X2),

where X =
√
1− x/R and

D4/3 = −D0

(−Φ0,2

Φ3,0

)2/3

.

Proof. As in the proof of Proposition 3.7, we consider a solution Z(X) of the functional equation
Φ(X,Z(X)) = 0, and define D(x) as r(x)(1 − Z(X)2). However, the singular development of
Φ(x, z) is now

Φ(x, z) = Φ0,2X
2 +O(X4)

+
(
Φ2,2X

2 +O(X4)
)
· Z2

+
(
Φ3,0 +Φ3,2X

2 +O(X4)
)
· Z3 +O(Z4).

since Φ2,0 6= 0, the only way to get the necessary cancelations in Φ(X,Z(X)) =, is that the

expansion of Z(X) starts with a Z2/3 term. By indeterminate coefficients we get

Z(X) =

(−Φ0,2

Φ3,0

)2/3

X2/3 +O(X4/3).

To obtain the actual development of D(x) we use the equalities D(x) = r(x)(1 − Z(X)2) and
r(R) = D0. �

Note that X =
√
1− x/R. Consequently the previous result implies that the singular exponent

of D(x) is 2/3. By using the explicit integration of By(x, y) of Equation (7), one can check that
the singular exponent of B(x) is 5/3 (the first non-analytic term of B(x) that does not vanish is
X10/3). This implies that the subexponential term in the asymptotic of bn is n−8/3, as claimed.

3.2. Singularity analysis of C(x, y) and G(x, y). The results in this section follow the same
lines as those in the previous section. They are technically simpler, since the analysis applies to
functions of one variable, whereas the second variable y behaves only as a parameter. It generalizes
the analysis in Section 4 of [13] and Section 3 of [4].

Let F (x) = xC′(x), which is the GF of rooted connected graphs. We know that F (x) =
x exp(B′(F (x)). Then ψ(u) = u exp(−B′(u)) is the functional inverse of F (x). Denote by ρ the
dominant singularity of F . As for 2-connected graphs, there are two possible sources for the
singularity:

(1) There exists τ ∈ (0, R) (necessarily unique) such that ψ′(τ) = 0. We have a branch point
and by the inverse function theorem ψ ceases to be invertible at τ . We have ρ = ψ(τ).

(2) We have ψ′(u) 6= 0 for all u ∈ (0, R), and there is no obstacle to the analyticity of the
inverse function. Then ρ = ψ(R).
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The critical case where both sources for singularity coincide is discussed at the end of this
subsection. Notice that this happens precisely when ψ′(R) = 0.

Condition ψ′(τ) = 0 is equivalent to B′′(τ) = 1/τ . Since B′′(u) is increasing (the series B(u)
has positive coefficients) and 1/u is decreasing, we are in case (1) if B′′(R) > 1/R, and in case
(2) if B′′(R) < 1/R. As we have already discussed, series-parallel graphs correspond to case (1)
and planar graphs to case (2). In particular, if B has singular exponent 3/2, like for series-parallel
graphs, the function B′′(u) goes to infinity when u tends to R, so there is always a solution
τ < R satisfying B′′(τ) = 1/τ . This explains why in Theorem 3.1 there is no case where bn has
sub-exponential growth n−5/2 and cn has n−7/2.

Proposition 3.10. The value S = RB′′(R) determines the singular exponent of C(x) and G(x)
as follows:

(1) If S > 1, then C(x) and G(x) admit the singular expansions

C(x) = C0 + C2X
2 + C3X

3 +O(X4),

G(x) = G0 +G2X
2 +G3X

3 +O(X4),

where X =
√
1− x/ρ, ρ = ψ(τ), and τ is the unique solution to τB′′(τ) = 1. We have

C0 = τ(1 + log ρ− log τ) +B(τ), C2 = −τ,

C3 =
3

2

√
2ρ exp (B′(ρ))

τB′′′(τ) − τB′′(τ)2 + 2B′′(τ)
,

G0 = eC0 , G2 = C2e
C0 , G3 = C3e

C0 .

(2) If S < 1, then C(x) and G(x) admit the singular expansions

C(x) = C0 + C2X
2 + C4X

4 + C5X
5 +O(X6),

G(x) = G0 +G2X
2 +G4X

4 +G5X
5 +O(X6),

where X =
√
1− x/ρ, ρ = ψ(R). We have

C0 = τ(1 + log ρ− logR) +B0, C2 = −R,

C4 = − RB4

2B4 −R
, C5 = B5

(
1− 2B4

R

)−5/2

,

G0 = eC0 , G2 = C2e
C0 ,

G4 =

(
C4 +

1

2
C2

2

)
eC0 , G5 = C5e

C0 ,

where B0, B4 and B5 are as in Proposition 3.8.

Proof. The two cases S > 1 and S < 1 arise from the previous discussion. In case (1) we follow
the proof of Theorem 3.6 from [4], and in case (2) the proof of Theorem 1 from [13].

First, we obtain the singular expansion of F (x) = xC′(x) near x = ρ. This can be done by

indeterminate coefficients in the equality ψ(F (x)) = x = ρ(1 − X2), with X =
√
1− x/ρ. The

expansion of ψ can be either at τ = F (ρ) where it is analytic, or at R = F (ρ) where it is singular.
From the singular expansion of F (x) we obtain C2 and C3 in case (1), and C2, C4 and C5 in

case (2) by direct computation. To obtain C0, however, it is necessary to compute

C(x) =

∫ x

0

F (t)

t
dt,

and this is done using the integration techniques developed in [4] and [13]. Finally, the coefficients
for G(x) are obtained directly from the general relation G(x) = exp(C(x)). �

To conclude this section we consider the critical case where both sources of the dominant
singularity ρ coincide, that is, when ψ′(R) = 0. In this case ψ is singular at R because R is the
singularity of B(x), and at the same time the inverse F (x) is singular at ρ = ψ(R) because of the
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inverse function theorem. As we have shown before, this can only happen if B(x) has singular
exponent 5/2.

The argument is now as in the proof of Proposition 3.9. The singular development of ψ(z) in

terms of Z =
√
1− z/R must be of the form

ψ(z) = ψ0 + ψ2Z
2 + ψ3Z

3 +O(Z4),

where in addition ψ2 vanishes due to ψ′(R) = 0. A similar analysis as that in Proposition 3.9
shows that the singular exponent of C(x) is 5/3. Indeed, since ψ(F (x)) = x = ρ(1 − X2), we

deduce that the development of F (x) in terms of X =
√
1− x/ρ is

F (x) = ρ+

(
−ρ5/3

ψ
2/3
3

)
X4/3 +O(X2).

Thus we obtain, by integration of F (x) = xC′(x), that the singular exponent of C(x) is 5/3, so
that the subexponential term in the asymptotic of cn is n−8/3. Since G(x) = exp(C(x)), the same
exponents hold for G(x) and gn.

4. Limit laws

In this section we discuss parameters of random graphs from a closed family whose limit laws
do not depend on the singular behaviour of the GFs involved. As we are going to see, only the
constants associated to the first two moments depend on the singular exponents.

The parameters we consider are asymptotically either normal or Poisson distributed. The
number of edges, number of blocks, number of cut vertices, number of copies of a fixed block,
and number of special copies of a fixed subgraph are all normal. On the other hand, the number
of connected components is Poisson. The size of the largest connected component (rather, the
number of vertices not in the largest component) also follows a discrete limit law. A fundamental
extremal parameter, the size of the largest block, is treated in the next section, where it is shown
that the asymptotic limit law depends very strongly on the family under consideration.

As in the previous section, let G be a closed family of graphs. For a fixed value of y, let ρ(y)
be the dominant singularity of C(x, y), and let R(y) be that of B(x, y). We write ρ = ρ(1) and
R = R(1). Recall that B′(x, y) denotes the derivative with respect to x.

When we speak of cases (1) and (2), we refer to the statement of Proposition 3.10, which are
exemplified, respectively, by series-parallel and planar graphs. That is, in case (1) the singular
dominant term in C(x) and G(x) is (1−x/ρ)3/2, whereas in case (2) it is (1−x/ρ)5/2. Recall from
the previous section that in case (1) we have ρ(y) = τ(y) exp (−B′(τ(y), y)), where τ(y)B′′(τ(y)) =
1. In case (2) we have ρ(y) = R(y) exp (−B′(R(y), y)).

4.1. Number of edges. The number of edges obeys a limit normal law, and the asymptotic
expression for the first two moments is always given in terms of the function ρ(y) for connected
graphs, and in terms of R(y) for 2-connected graphs.

Theorem 4.1. The number of edges in a random graph from G with n vertices is asymptotically
normal, and the mean µn and variance σ2

n satisfy

µn ∼ κn, σ2
n ∼ λn,

where

κ = −ρ
′(1)

ρ(1)
, λ = −ρ

′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2

.

The same is true, with the same constants, for connected random graphs.
The number of edges in a random 2-connected graph from G with n vertices is asymptotically

normal, and the mean µn and variance σ2
n satisfy

µn ∼ κ2n, σ2
n ∼ λ2n,

where

κ2 = −R
′(1)

R(1)
, λ2 = −R

′′(1)

R(1)
− R′(1)

R(1)
+

(
R′(1)

R(1)

)2

.
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Proof. The proof is as in [13] and [4]. In all cases the derivatives of ρ(y) and R(y) are readily
computed, and for a given family of graphs we can compute the constants exactly. �

4.2. Number of blocks and cut vertices. Again we have normal limit laws but the asymptotic
for the first two moments depends on which case we are. In the next statements we set τ = τ(1).

Theorem 4.2. The number of blocks in a random connected graph from G with n vertices is
asymptotically normal, and the mean µn and variance σ2

n are linear in n. In case (1) we have

µn ∼ log(τ/ρ)n, σ2
n ∼

(
log(τ/ρ)− 1

1 + τ2B′′′(τ)

)
n.

In case (2) we have
µn ∼ log(R/ρ)n, σ2

n ∼ log(R/ρ)n.

The same is true, with the same constants, for arbitrary random graphs.

Proof. The proof for case (2) is as in [13], and is based in an application of the Quasi-Powers
Theorem. If C(x, u) is the generating function of connected graphs where now u marks blocks,
then we have

(14) xC′(x, u) = x exp (uB′(xC′(x, u))) ,

where derivatives are as usual with respect to x. For fixed u, ψ(t) = t exp(−uB′(t)) is the functional
inverse of xC′(x, u). We know that for u = 1, ψ′(t) does not vanish, and the same is true for u close
to 1 by continuity. The dominant singularity of C(x, u) is at σ(u) = ψ(R) = R exp(−uB′(R)),
and it is easy to compute the derivatives σ′(1) and σ′′(1) (see [13] for details).

In case (1), Equation (14) holds as well, but now the dominant singularity is at ψ(τ). A routine
(but longer) computation gives the constants as claimed. �

Theorem 4.3. The number of cut vertices in a random connected graph from G with n vertices
is asymptotically normal, and the mean µn and variance σ2

n are linear in n. In case (1) we have

µn ∼
(
1− ρ

τ

)
n, σ2

n ∼
(
(τ − ρ)(τ − 2τρ2 − τρ− ρ+ 2ρ3)

τ2ρ2(1 + τ2B′′′(τ))
−
(ρ
τ

)2)
n.

In case (2) we have

µn ∼
(
1− ρ

R

)
n, σ2

n ∼ ρ

R

(
1− ρ

R

)
n.

The same is true, with the same constants, for arbitrary random graphs.

Proof. If u marks cut vertices in C(x, u), then we have

xC′(x, u) = xu(exp (B′(xC′(x, u))) − 1) + x.

It follows that, for given u,

ψ(t) =
t

u(exp (B′(t))− 1) + 1

is the inverse function of xC′(x, u). In case (2) the dominant singularity σ(u) is at ψ(R). Taking
into account that ρ = R exp(B′(R)), the derivatives of σ are easily computed. In case (1) the
singularity is at ψ(τ(u)), where τ(u) is given by ψ′(τ(u)) = 0. In order to compute derivatives, we
differentiate ψ(τ(u)) = 0 with respect to u and solve for τ ′(u), and once more in order to get τ ′′(u).
After several computations and simplifications using Maple, we get the values as claimed. �

4.3. Number of copies of a subgraph. Let H be a fixed rooted graph from the class G, with
vertex set {1, . . . , h} and root r. Following [15], we say that H appears in G at W ⊂ V (G) if (a)
there is an increasing bijection from {1, . . . , h} to W giving an isomorphism between H and the
induced subgraph G[W ] of G; and (b) there is exactly one edge in G between W and the rest of
G, and this edge is incident with the root r.

Thus an appearance of H gives a copy of H in G of a very particular type, since the copy is
joined to the rest of the graph through a unique pendant edge. We do not know how to count the
number of subgraphs isomorphic to H in a random graph, but we can count very precisely the
number of appearances.
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Theorem 4.4. Let H be a fixed rooted connected graph in G with h vertices. Let Xn denote the
number of appearances of H in a random rooted connected graph from G with n vertices. Then Xn

is asymptotically normal and the mean µn and variance σ2
n satisfy

µn ∼ ρh

h!
n, σ2

n ∼ ρ n,

Proof. The proof is as in [13], and is based on the Quasi-Powers Theorem. If f(x, u) is the
generating function of rooted connected graphs and u counts appearances of H then, up to a
simple term that does not affect the asymptotic estimates, we have

f(x, u) = x exp

(
B′(f(x, u)) + (u− 1)

xh

h!

)
.

The dominant singularity is computed through a change of variable, and the rest of the computa-
tion is standard; see the proof of Theorem 5 in [13] for details. For this parameter is no difference
between cases (1) and (2). �

Now we study appearances of a fixed 2-connected subgraph L from G in rooted connected
graphs. An appearance of L in this case corresponds to a block with a labelling order isomorphic
to L. Notice in this case that an appearance can be anywhere in the tree of blocks, not only as a
terminal block.

Theorem 4.5. Let L be a fixed rooted 2-connected graph in G with ℓ+ 1 vertices. Let Xn denote
the number of appearances of L in a random connected graph from G with n vertices. Then Xn is
asymptotically normal and the mean µn and variance σ2

n satisfy

µn ∼ Rℓ

ℓ!
n, σ2

n ∼ Rℓ

ℓ!
n,

Proof. If f(x, u) is the generating function of rooted connected graphs and u counts appearances
of L, then we have

f(x, u) = x exp

(
B′(f(x, u)) + (u− 1)

f(x, u)ℓ

ℓ!

)
.

The reason as that each occurrence of L is single out by multiplying by u. Notice that L has ℓ+1
vertices by the root bears no label. It follows that the inverse of f(x, u) is given by (for a given
value of u) is

φ(t) = t exp
(
−B′(t)− (u− 1)tℓ/ℓ!

)
.

The singularity of φ(t) is equal to R, independently of t. Since for u = 1 we know that φ′(t) does
not vanish, the same is true for u close to 1. Then the dominant singularity of f(x, u) is given by

σ(u) = φ(R) = ρ · exp(−(u− 1)Rℓ/ℓ!),

since ρ = R exp(−B′(R)). A simple calculation gives

σ′(1) = −ρR
ℓ

ℓ!
, σ′′(1) = ρ

R2ℓ

ℓ!2

and the results follows easily as in the proof of Theorem 4.1. Again, for this parameter is no
difference between cases (1) and (2). �

4.4. Number of connected components. Our next parameter, as opposed to the previous one,
follows a discrete limit law.

Theorem 4.6. Let Xn denote the number of connected components in a random graph G with
n vertices. Then Xn − 1 is distributed asymptotically as a Poisson law of parameter ν, where
ν = C(ρ).

As a consequence, the probability that a random graph G is connected is asymptotically equal to
e−ν .
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Proof. The proof is as in [13]. The generating function of graphs with exactly k connected
components is C(x)k/k!. Taking the k-th power of the singular expansion of C(x), we have
[xn]C(x)k ∼ kνk−1[xn]C(x). Hence the probability that a random graphs has exactly k compo-
nents is asymptotically

[xn]C(x)k/k!

[xn]G(x)
∼ kνk−1

k!
e−ν =

νk−1

(k − 1)!
e−ν

as was to be proved. �

4.5. Size of the largest connected component. Extremal parameters are treated in the next
two sections. However, the size of the largest component is easy to analyze and we include it
here. The notation Mn in the next statement, suggesting vertices missed by the largest compo-
nent, is borrowed from [14]. Recall that gn, cn are the numbers of graphs and connected graphs,
respectively, R is the radius of convergence of B(x), and Ci are the singular coefficients of C(x).

Theorem 4.7. Let Ln denote the size of the largest connected component in a random graph G
with n vertices, and let Mn = Ln − n. Then

P (Mn = k) ∼ pk = p · gk
ρk

k!
,

where p is the probability of a random graph being connected. Asymptotically, either pk ∼ c k−5/2

or pk ∼ c k−7/2 as k → ∞, depending on the subexponential term in the estimate of gk.
In addition, we have

∑
pk = 1 and E [Mn] ∼ τ in case (1) and E [Mn] ∼ R in case (2). In case

(1) the variance σ2(Mn) does not exist and in case (2) we have σ2(Mn) ∼ R+ 2C4.

Proof. The proof is essentially the same as in [14]. For fixed k, the probability that Mn = k is
equal to

(
n

k

)
cn−kgk
gn

,

since there are
(
n
k

)
ways of choosing the labels of the vertices not in the largest component, cn−k

ways of choosing the largest component, and gk ways of choosing the complement. In case (1),
given the estimates

gn ∼ g · n−5/2ρ−nn!, cn ∼ c · n−5/2ρ−nn!,

the estimate for pk follows at once (we argue similarly in each subcase of (2)). Observe that
p = lim cn/gn = c/g.

For the second part of the statement notice that,

∑
pk = p

∑
gk
ρk

k!
= pG(ρ) = 1,

since from Theorem 4.6 it follows that p = e−C(ρ) = 1/G(ρ). To compute the moments notice
that the probability GF is f(u) =

∑
pku

k = pG(ρu). Then the expectation is estimated as

f ′(1) = p ρG′(ρ) = pG(ρ)ρC′(ρ),

which correspond with τ in case (1) and R in case (2), since G(x) = expC(x). For the variance
we compute

f ′′(1) + f ′(1)− f ′(1)2 = ρC′(ρ) + ρ2C′′(ρ).

In case (1) limx→ρC
′′(x) = ∞, so that the variance does not exist. In case (2) we have ρC′(ρ) = R

and ρ2C′′(ρ) = 2C4. �
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5. Largest block and 2-connected core

The problem of estimating the largest block in random maps has been well studied. We recall
that a map is a connected planar graph together with a specific embedding in the plane. Moreover,
an edge has been oriented and marked as the root edge. Gao and Wormald [11] proved that the
largest block in a random map with n edges has almost surely n/3 edges, with deviations of
order n2/3. More precisely, if Xn is the size of the largest block, then

P
(
|Xn − n/3| < λ(n)n2/3

)
→ 1, as n→ ∞,

where λ(n) is any function going to infinity with n. The picture was further clarified by Banderier
et al. [1]. They found that the largest block in random maps obeys a continuous limit law, which is
called by the authors the ‘Airy distribution of the map type’, and is closely related to a stable law
of index 3/2. As we will see shortly, the Airy distribution also appears in random planar graphs.

A useful technical device is to work with the 2-connected core, which in the case of maps is the
(unique) block containing the root edge. For graphs it is a bit more delicate. Consider a connected
graph R rooted at a vertex v. We would like to say that the core of R is the block containing the
root, but if v is a cut vertex then there are several blocks containing v and there is no clear way
to single out one of them. Another possibility is to say that the 2-connected core is the union
of 2-connected components the blocks containing the root, but then the core is not in general a
2-connected graph.

The definition we adopt is the following. If the root is not a cut vertex, then the core is the
unique block containing the root. Otherwise, we say that the rooted graph is coreless. Let C•(x, u)
be the generating function of rooted connected graphs, where the root bears no label, and u marks
the size of the 2-connected core. Then we have

C•(x, u) = B′(uxC′(x)) + exp(B′(xC′(x)) −B′(xC′(x)),

where C(x) and B(x) are the GFs for connected and 2-connected graphs, respectively. The first
summand corresponds to graphs which have a core, whose size is recorded through variable u, and
the second one to coreless graphs. We rewrite the former equation as

C•(x, u) = Q(uH(x)) +QL(x),

where

H(x) = xC′(x), Q(x) = B′(x), QL(x) = exp(B′(xC′(x)) −B′(xC′(x)).

With this notation, QL(x) enumerates coreless graphs, and Q(uH(x)) enumerates graphs with
core. The asymptotic probability that a graph is coreless is

pL = lim
n→∞

[xn]QL(x)

[xn]C′(x)
= 1− lim

n→∞

[xn]Q(H(x))

[xn]C′(x)
.

The key point is that graphs with core fit into a composition scheme

Q(uH(x)).

This has to be understood as follows. A rooted connected graph whose root is not a cut vertex
is obtained from a 2-connected graph (the core), replacing each vertex of the core by a rooted
connected graph. It is shown in [1] that such a composition scheme leads either to a discrete law
or to a continuous law, depending on the nature of the singularities of Q(x) and H(x).

Our analysis for a closed class G is divided into two cases. If we are in case (1) of Proposi-
tion 3.10, we say that the class G is series-parallel-like; in this situation the size of the core follows
invariably a discrete law which can be determined precisely in terms of Q(x) and H(x). If we are
in case (2) we say that the class G is planar-like. In this situation the size of the core has two
modes, a discrete law when the core is small, and a continuous Airy distribution when the core
has linear size. Moreover, for planar-like classes, the size of the largest block follows the same
Airy distribution and is concentrated around αn for a computable constant α. The critical case,
discussed at the end of Section 3, is not treated here.
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5.1. Core of series-parallel-like classes. Recall that in case (1) of Proposition 3.10 we have
H(ρ) = ρC′(ρ) = τ , where τ is the solution to the equation τB′′(τ) = 1. Since RB′′(R) > 1 and
uB′′(u) is an increasing function, we conclude that H(ρ) < R. This gives rise to the so called
subcritical composition scheme. We refer to the exposition in section IX.3 of [9]. The main result
we use is Proposition IX.1 from [9], which is the following.

Proposition 5.1. Consider the composition scheme Q(uH(x)). Let R, ρ be the radius of con-
vergence of Q and H, respectively. Assume that Q and H satisfy the subcritical condition τ =
H(ρ) ≤ R, and that H(x) has a unique singularity at ρ on its disk of convergence with a singular
expansion

H(x) = τ − cλ(1− z/ρ)λ + o((1 − z/ρ)λ),

where τ, cλ > 0 and 0 < λ < 1. Then the size of the Q-core follows a discrete limit law,

lim
n→∞

[xnuk]Q(uH(x))

[xn]Q(H(x))
= qk.

The probability generating function q(u) =
∑
qku

k of the limit distribution is

q(u) =
uQ′(τu)

Q′(τ)
.

The previous result applies to our composition scheme Q(uH(x)), that is, to the family of
rooted connected graphs that have core.

Theorem 5.2. Let G be a series-parallel-like class, and let Yn be the size of the 2-connected core
in a random rooted connected graph G with core and n vertices. Then P (Yn = k) tends to a limit
qk as n goes to infinity. The probability generating function q(u) =

∑
qku

k is given by

q(u) = τuB′′(uτ).

The estimates of qk for large k depend on the singular behaviour of B(x) near R as follows, where

X =
√
1− x/R:

(a) If B(x) = B0 +B2X
2 +B3X

3 +O(X4), then qk ∼ 3B3

4R
√
π
k−1/2

( τ
R

)k
.

(b) If B(x) = B0 +B2X
2 +B4X

4 +B5X
5 +O(X6), then qk ∼ − 5B5

2R
√
π
k−3/2

( τ
R

)k
.

Finally, the probability of a graph being coreless is asymptotically equal to 1− ρ/τ .

Proof. We apply Proposition 5.1 with Q(x) = B′(x) and H(x) = xC′(x). Since τB′′(τ) = 1, we
have

q(u) =
uB′′(uτ)

B′′(τ)
= τuB′′(uτ),

as claimed. The dominant singularity of q(u) is at u = R/τ . The asymptotic for the tail of the
distribution follow by the corresponding singular expansions. In case (a) we have

B′′(X) =
3B3

4R2
X−1 +O(1).

In case (b) we have

B′′(X) =
2B4

R2
+

5B5

R2
X +O(X2).

By applying singularity analysis to q(u), the result follows. We remark that B3 > 0 and B5 < 0,
so that the multiplicative constants are in each case positive. �

It is shown in [17] that the largest block in series-parallel classes is of order O(log n). This is
to be expected given the exponential tails of the distributions in the previous theorem.
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5.2. Largest block of planar-like classes. In order to state our main result, we need to intro-
duce the Airy distribution. Its density is given by

(15) g(x) = 2e−2x3/3(xAi(x2)−Ai′(x2)),

where Ai(x) is the Airy function, a particular solution of the differential equation y′′ − xy = 0.
An explicit series expansion is (see equation (2) in [1])

g(x) =
1

πx

∑

n≥1

(−32/3x)n
Γ(1 + 2n/3)

n!
sin(−2nπ/3).

A plot of g(x) is shown in Figure 1. We remark that the left tail (as x→ −∞) decays polynomially
while the right tail (as x→ +∞) decays exponentially. We are in case (2) of Proposition 3.10. In

K4 K3 K2 K1 0 1 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. The Airy distribution.

this situation we have ρ = ψ(R) and H(ρ) = R, which is a critical composition scheme. We need
Theorem 5 of [1] and the discussion preceding it, which we rephrase in the following proposition.

Proposition 5.3. Consider the composition scheme Q(uH(x)). Let R, ρ be the radius of conver-
gence of Q and H respectively. Assume that Q and H satisfy the critical condition H(ρ) = R, and
that H(x) and Q(z) have a unique singularity at ρ and R in their respective discs of convergence.
Moreover, the singularities of H(x) and Q(z) are of type 3/2, that is,

H(x) = H0 +H2X
2 +H3X

3 +O(X4),

Q(z) = Q0 +Q2Z
2 +Q3Z

3 + O(Z4),

where X =
√
1− x/ρ, Z =

√
1− z/R. Let α0 and M3 be

α0 = −H0

H2
, M3 = −Q2H3

R
+Q3α

−3/2
0 .

Then the asymptotic distribution of the size of the Q-core in Q(uH(z)) has two different modes.
With probability ps = −Q2H3/(RM3) the core has size O(1), and with probability 1 − ps the core
follows a continuous limit Airy distribution concentrated at α0n. More precisely, let Yn be the size
of the Q-core of a random element of size n of Q(uH(z)).

(a) For fixed k,

P (Yn = k) ∼ H3

M3
kRk−1[zk]Q(z).
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(b) For k = α0n+ xn2/3 with x = O(1),

n2/3P (Yn = k) ∼ Q3α
−3/2
0

M3
cg(cx), c =

1

α0

(−H2

3H3

)2/3

,

where cg(cx) is the Airy distribution of parameter c.

In particular, we have E [Xn] ∼ αn. The parameter c quantifies in some sense the dispersion
of the distribution (not the variance, since the second moment does not exist). Note that the
asymptotic probability that the core has size O(1) is

ps =

∞∑

k=0

P (Xn = k) ∼ H3

M3

∞∑

k=0

kRk−1[zk]Q(z) =
H3

M3
Q′(R) =

H3

M3

(−Q2

R

)
,

and that the asymptotic probability that the core has size Θ(n) is

Q3α
−3/2
0

M3
= 1− ps.

Now we state the main result in this section. Recall that for a planar-like class of graphs we have

B(X) = B0 +B2X
2 +B4X

4 +B5X
5 +O(X6),

where R is the dominant singularity of B(x) and X =
√
1− x/R.

Theorem 5.4. Let G be a planar-like class, and let Xn be the size of the largest block in a random
connected graph G with n vertices. Then

P
(
Xn = αn+ xn2/3

)
∼ n−2/3cg(cx),

where

α =
R− 2B4

R
, c =

(−2R

15B5

)2/3

,

and g(x) is as in (15). Moreover, the size of the second largest block is O(n2/3). In particular, for
the class of planar graphs we have α ≈ 0.95982 and c ≈ 128.35169.

Proof. The composition scheme in our case is B′(uxC′(x)). In the notation of the previous propo-
sition, we have Q(x) = B′(x) and H(x) = xC(x).

The size of the core is obtained as a direct application of Proposition 5.3. The exact values for
planar graphs have been computed using the known singular expansions for B(x) and C(x) given
in the appendix of [13].

For the size of the largest block, one can adapt an argument from [1], implying that the
probability that the core has linear size while not being the largest block tends to 0 exponentially
fast. It follows that the distribution of the size of the largest block is exactly the same as the
distribution of the core in the linear range. �

The main conclusion is that for planar-like classes of graphs (and in particular for planar graphs)
there exists a unique largest block of linear size, whose expected value is asymptotically αn for
some computable constant α. The remaining block are of size O(n2/3). This is in complete contrast
with series-parallel graphs, where we have seen that there are only blocks of sublinear size.

Remark. An observation that we need later, is that if the largest block L has N vertices, the it is
uniformly distributed among all the 2-connected graphs in the class. This is because the number
of graphs of given size whose largest block is L depends only on the number of vertices of L, and
not on its isomorphism type.

We can also analyze the size of the largest block for graphs with a given edge density, or average
degree. We state a precise result for planar graphs, which is probably the most interesting one.

Theorem 5.5. For µ ∈ (1, 3), the largest block in random planar graphs with n vertices and ⌊µn⌋
edges follows asymptotically an Airy law with computable parameters α(µ) and c(µ).
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Proof. As discussed in [13], we choose a value y0 > 0 depending on µ such that, if we give weight
yk0 to a graph with k edges, then only graphs with n vertices and µn edges have non negligible
weight. If ρ(y) is the radius of convergence of C(x, y) as usual, the right choice is the unique
positive solution y0 of

(16) − yρ′(y)/ρ(y) = µ,

Then we work with the generating function xC(x, y0) instead of xC′(x). Again we have a critical
composition scheme, and as in the proof of Theorem 5.4, the size of the largest block follows
asymptotically an Airy law. �

Figure 2 shows a plot of the main parameter α(µ) for planar graphs and µ ∈ (1, 3). When
µ → 3− we see that α(µ) approaches 1; the explanation is that a planar triangulation is 3-
connected and hence has a unique block. When µ→ 1+, α(µ) tends to 0, in this case because the
largest block in a tree is just an edge.

1.0 1.5 2.0 2.5 3.0
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Figure 2. Size of largest block for planar graphs with µn edges, µ ∈ (1, 3). The
ordinate gives the value α(µ) such that the largest block has size ∼ α(µ)n. The
value at κ is 0.9598 as in Theorem 5.4.

6. Largest 3-connected component

Let us recall that, given a 2-connected graph G, the 3-connected components of G are those
3-connected graphs that are the support of h-networks in the network decomposition of G.

We have seen in Theorem 5.4 that the largest block in a random graph from a planar-like class
is almost surely of linear size, and it is unique. In this section we prove a similar result for the
largest 3-connected component in random connected graphs with n vertices. Again we obtain a
limit Airy law, but the proof is more involved. There are three main technical issues we need to
address:

(1) We start with a connected graph G. We know from Theorem 5.4 that the largest block
L of G is distributed according to an Airy law. We show that the largest 3-connected
component T of L is again Airy distributed. Thus we have to concatenate two Airy laws,
and we show that we obtain another Airy law with computable parameters. Our proof
is based on the fact that the sum of two independent stable laws of the same index α
(recall that the Airy law corresponds to a particular stable law of index 3/2) is again an
Airy law with computable parameters. In order to illustrate this step, we prove a result
of independent interest: given a random planar map with m edges, the size of the largest
3-component is Airy distributed with expected value n/9.
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(2) We also need to analyze the number of edges in the largest block L of a connected graph.
The number of vertices of L is Airy distributed with known parameters 5.4. On the
other hand, the number of edges in 2-connected graphs with N vertices is asymptotically
normally distributed with expected value κ2N (see Theorem 4.1). Thus we have to study
a parameter normally distributed (number of edges) within the largest block, whose size
(number of vertices) follows an Airy law. We show that the composition of these two limit
laws gives rise to an Airy law for the number of edges in the largest block, again with
computable parameters.

(3) The analysis of the largest block in random connected graphs is in terms of the number of
vertices, but the analysis for the largest 3-connected component of a 2-connected graph is
necessarily in terms of the number of edges. Thus we need a way to relate both models.
This is done through a technical lemma that shows that two probability distributions on
2-connected graphs with m edges are asymptotically equivalent. This is the content of
Lemma 6.6.

Our main result is the following. We state it for planar graphs, since this is the most interesting
case and we can give explicitly the parameters, but it holds more generally for planar-like classes
of graphs.

Theorem 6.1. Let Xn be the number of vertices in the largest 3-connected component of a random
connected planar graph with n vertices. Then

P
(
Xn = α2n+ xn2/3

)
∼ n−2/3c2g(c2x),

where α2 ≈ 0.7346 and c2 ≈ 3.14596 are computable constants. Additionally, the number of edges
in the largest 3-connected component of a random connected planar graph with n vertices also
follows asymptotically an Airy law with parameters α3 ≈ 1.7921 and c3 ≈ 1.28956.

The rest of the section is devoted to the proof of the theorem. The next three subsections
address the technical points discussed above. We remark that for series-parallel-like classes there
is no linear 3-connected component, just as for 2-connected components.

6.1. Largest 3-connected component in random planar maps. Recall that a planar map
(we say just a map) is a connected planar graph together with a specific embedding in the plane.
The size of largest k-components in several families of maps was thoroughly studied in [1]. Denote
byM(z), B(z) and C(z) the ordinary GFs associated to maps, 2-connected maps and 3-connected
maps, respectively; in all cases, z marks edges. Let Ln be the random variable, defined over the
set of maps with n edges, equal to the size of the largest 2-connected component. Let Tm be the
random variable, defined over the set of 2-connected maps with n edges, equal to the size of the
largest 3-connected component.

In [1] it is shown the following result:

Theorem 6.2. The distribution of both Ln and Tm follows asymptotically an Airy law, namely

P
(
Ln = a1n+ xn2/3

)
∼ n−2/3c1g(c1x),(17)

P
(
Tm = a2m+ ym2/3

)
∼ m−2/3c2g(c2y),

where g(z) is the map Airy distribution, a1 = 1/3, c1 = 3/42/3, a2 = 1/3, and c2 = 34/3/4.

Proof. Here is a sketch of the proof. In both cases, the distribution arises from a critical composi-
tion scheme of the form 3

2 ◦ 3
2 . The distribution of Ln is given by the scheme B

(
z(1 +M(z))2

)
,

which reflects the fact that a map is obtained by gluing a map at each corner of a 2-connected
map. In the second case, the result is obtained from the composition scheme C (B(z)/z − 2),
which reflects the fact that a 2-connected map is obtained by replacing each edge of a 3-connected
map by a non-trivial 2-connected map (to complete the picture one must take also into account
series and parallel compositions, but these play no role in the analysis of the largest 3-connected
component, see [20] for details). �
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Let Xn be the random variable equal to the size of the largest 3-connected component in maps
of n vertices. In order to get a a limit law for Xn, we need a more detailed study of stable laws.
In particular, Airy laws are particular examples of stable laws of index 3/2. Our main reference is
the forthcoming book [16]. The result we need is Proposition 1.17, which appears in [16, Section
1.6]. We rephrase it here in a form convenient for us.

Proposition 6.3. Let Y1 and Y2 be independent Airy distributions, with density probability func-
tions c1g(c1x) and c2g(c2x). Then Y1 + Y2 follows an Airy distribution with density probability

function cg(cx), with c =
(
c
−3/2
1 + c

−3/2
2

)−2/3

.

Proof. We use the notation as in [16]. A stable law is characterized by its stability factor α ∈ [0, 2),
its skewness β ∈ [−1, 1], its factor scale γ > 0, and its location parameter δ ∈ R. A stable random
variable with this parameters is written in the form S(α, β, γ, δ; 1) (the constant 1 refers to the
type of the parametrization; we only deal with this type). Proposition 1.17 in [16] states that
if S1 = S(α, β1, γ1, δ1; 1) and S2 = S(α, β2, γ2, δ2; 1) are independent random variables, then
S1 + S2 = S(α, β, γ, δ, 1), with

(18) β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γα = γα1 + γα2 , δ = δ1 + δ2.

Let us identify the Airy distribution with density probability function cg(cx) within the family
of stable laws as defined. By definition, the stability factor is equal to 3/2. Additionally, β = −1:
this is the unique value that makes that a stable law decreases exponentially fast (see Section
1.5 of [16]). The value of the location parameter δ coincides with the expectation of the random
variable, hence δ = 0 (see Proposition 1.13). Finally, the factor scale can be written in the form
γ0/c, for a suitable value of γ0, the one which corresponds with the normalized Airy distribution
with density g(x). Since Y1 = S(3/2,−1, γ0/c1, 0; 1) and Y2 = S(3/2,−1, γ0/c2, 0; 1), the result
follows from (18). �

Theorem 6.4. The size Xn of the largest 3-connected component in a random map with n edges
follows asymptotically an Airy law of the form

P
(
Xn = an+ zn2/3

)
∼ n−2/3cg(cz),

where g(z) is the Airy distribution and

(19) a = a1a2 = 1/9, c =

((
c1
a2

)−3/2

+ c
−3/2
2 a1

)−2/3

≈ 1.71707.

Proof. Let us estimate n2/3P
(
Xn = an+ zn2/3

)
for large n. Considering the possible values size

of the largest 2-connected component, we obtain

n2/3P
(
Xn = an+ zn2/3

)
= n2/3

∞∑

m=1

P (Ln = m)P
(
Tm = an+ zn2/3

)
.

In the previous equation we have used the fact that the largest 2-connected component is dis-
tributed uniformly among all 2-connected maps with the same number of edges; this is because
the number of ways a 2-connected map M can be completed to a map of given size depends only
on the size of M .

Notice that Xn and Tm are integer random variables, hence the previous equation should be
written in fact as

n2/3P
(
Xn = ⌊an+ zn2/3⌋

)
= n2/3

∞∑

m=1

P (Ln = m)P
(
Tm = ⌊an+ zn2/3⌋

)
.

Let us writem = a1n+xn
2/3. Then an+zn2/3 = a2m+ym2/3+o

(
m2/3

)
, where y = a

−2/3
1 (z−a2x).

Observe that when we vary m in one unit, we vary x in n−2/3 units. Let x0 = (1− a1n)n
−2/3, so
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that a1n+x0n
2/3 = 1 is the initial term in the sum. The previous sum can be written in the form

n2/3
∑

x=x0+ℓn−2/3

P
(
Ln = a1n+ xn2/3

)
P
(
Tm = a2m+ α

−2/3
1 (z − a2x)m

2/3
)
.

where the sum is for all values ℓ ≥ 0. From Theorem 6.2 it follows that

n2/3
∑

x=x0+ℓn−2/3

P
(
Ln = a1n+ xn2/3

)
P
(
Tm = a2m+ α

−2/3
1 (z − a2x)m

2/3
)

∼ n2/3
∑

x=x0+ℓn−2/3

n−2/3c1g(c1x) m
−2/3c2g

(
c2a

−2/3
1 (z − a2x)

)

∼ 1

n2/3

∑

x=x0+ℓn−2/3

c1g(c1x) c2a
−2/3
1 g

(
c2a

−2/3
1 (z − a2x)

)
.

In the last equality we have used that m−2/3 = (a1n)
−2/3(1 + o(1)). Now we approximate by an

integral:

n−2/3
∑

x=x0+ℓn−2/3

c1g(c1x) c2a
−2/3
1 g

(
c2a

−2/3
1 (z − a2x)

)

∼
∫ ∞

−∞

c1g(c1x) c2a
−2/3
1 g

(
c2a

−2/3
1 (z − a2x)

)
dx

The previous estimate holds uniformly for x in a bounded interval. Now we set a2x = u, and with
this change of variables we get

∫ ∞

−∞

c1
a2
g

(
c1
a2
u

)
c2a

−2/3
1 g

(
c2a

−2/3
1 (z − u)

)
du.

This convolution can be interpreted as a sum of stable laws with parameter 3/2 in the fol-

lowing way. Let Y1 and Y2 be independent random variables with densities c1
a2

g
(

c1
a2

u
)

and

c2a
−2/3
1 g

(
c2a

−2/3
1 (z − u)

)
, respectively. Then, the previous integral is precisely P (Y1 + Y2 = z),

and the result follows from Proposition 6.3. �

Remark. The previous theorem can be obtained, alternatively, using the machinery developed
in [1]. The two composition schemes B(zM(z)2) and C(B(z)/z−2) can be composed algebraically
into a single composition scheme C(B(zM(z)2)/z − 2. This is again a critical scheme with expo-
nents 3/2 and an Airy law follows from the general scheme in [1]. The parameters can be computed
using the singular expansions of M(z), B(z), C(z) at their dominant singularities which are, re-
spectively, equal to 1/12, 4/27 and 1/4. We have performed the corresponding computations in
complete agreement with values obtained in Theorem 6.4. We have chosen the present proof since
the same ideas are used later in the case of graphs, where no algebraic composition seems available.

6.2. Number of edges in the largest block of a connected graph. As discussed above, we
have a limit Airy law Xn for the number of vertices in the largest block L in a random connected
planar graph. In order to analyze the largest 3-connected component of L, we need to express Xn

in terms of the number of edges. This amounts to combine the limit Airy law with a normal limit
law, leading to slightly modified Airy law. The precise result is the following.

Theorem 6.5. Let Zn be the number of edges in the largest block of a random connected planar
graph with n vertices. Then

P
(
Zn = κ2αn+ zn2/3

)
∼ n−2/3 c

κ2
g

(
c

κ2
z

)
,

here α and c are as in Theorem 5.4, and κ2 ≈ 2.26288 is the constant for the expected number of
edges in random 2-connected planar graphs, as in Theorem 4.1.
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Proof. Let Xn be, as in Theorem 5.4, the number of vertices in the largest block. In addition, let
YN be the number of edges in a random 2-connected planar graph with N vertices. Then
(20)

P
(
Zn = κ2αn+ zn2/3

)
=

∑

x=x0+ℓn−2/3

P
(
Xn = αn+ xn2/3

)
P
(
Yαn+xn2/3 = κ2αn+ zn2/3

)
,

with the same convention for the index of summation as in the previous section.
Since YN is asymptotically normal (Theorem 4.1)

P
(
YN = κ2N + yN1/2

)
∼ N−1/2h(y),

here h(y) is the density of normal law suitably scaled. If we take N = αn+ xn2/3, then

κ2N = κ2αN + κ2xn
2/3.

As a consequence, the significant terms in the sum in (20) are concentrated around αn+(z/κ2)n
2/3,

within a window of size N1/2 = Θ(n1/2). Thus we can conclude that

P
(
Zn = κ2αn+ zn2/3

)
∼ 1

κ2
P
(
Xn = ⌊αn+ (z/κ2)n

2/3⌋
)
∼ n−2/3 c

κ2
g

(
c

κ2
z

)
,

where c is the constant in Theorem 5.4. The factor 1
κ2

in the middle arises since in ⌊κ2αn+zn2/3⌋
we have steps of length n−2/3, whereas in ⌊αn+ (z/κ2)n

2/3⌋ they are of length n−2/3/κ2. �

6.3. Probability distributions for 2-connected graphs. In this section we study several
probability distributions defined on the set of 2-connected graphs ofm edges. The first distribution
Xm

n (in fact, a family of probability distributions, one for each n) models the appearance of largest
blocks with m edges in random connected graphs with n vertices. The second one is a weighted
distribution where each 2-connected graph with m edges receives a weight according to the number
of vertices, and for which it is easy to obtain an Airy law for the size of the largest 3-connected
component. We show that these two distributions are asymptotically equivalent in a suitable
range. In particular, it follows that the Airy law of the latter distribution also occurs in the
former one. We start by defining precisely both distributions. We use capital letters like Xm

n and
Ym to denote random variables whose output is a graph in the corresponding universe of graphs,
so that our distributions are associated to these random variables. We find this convention more
transparent than defining the associated probability measures.

Let n,m be fixed numbers, and let Cm
n denote the set of connected graphs on n vertices such

that their largest block L has m edges. The first probability distribution Xm
n is the distribution

of L in a graph of Cm
n chosen uniformly at random. That is, if B is a 2-connected graph with m

edges, and CB
n ⊆ Cm

n denotes the set of connected graphs that have L = B as the largest block,
then

P (Xm
n = B) =

|CB
n |

|Cm
n | .

Let m be a fixed number. The second probability distribution Ym assigns to a 2-connected graph
B of m edges and k vertices the probability

(21) P (Ym = B) =
Rk

k!

1

[ym]B(R, y)
,

where R is the radius of convergence of the exponential generating function B(x) = B(x, 1)
enumerating 2-connected graphs. It is clear that [ym]B(R, y) is the right normalization factor.

Now we state precisely what we mean when we say that these two distributions are asymptoti-
cally equivalent in a suitable range. In what follows, α and κ2 are the multiplicative constants of
the expected size of the largest block and the expected number of edges in a random connected
graph (see Theorems 5.4 and 4.1). We denote by V (G) and E(G) the set of vertices and edges of
a graph G.



GRAPH CLASSES WITH GIVEN 3-CONNECTED COMPONENTS 25

Lemma 6.6. Fix positive values ȳ, z̄ ∈ R
+. For fixed m, let In and Ik denote the intervals

Ik =

[
1

κ2
m− z̄m1/2,

1

κ2
m+ z̄m1/2

]
,

In =

[
1

ακ2
m− ȳm2/3,

1

ακ2
m+ ȳm2/3

]
.

Then the probability distributions Ym and Xm
n , for n ∈ In, are asymptotically equal on graphs with

k ∈ Ik vertices, with uniform convergence for both k and n. That is, there exists a function ǫ(m)
with limm→∞ ǫ(m) = 0 such that, for every 2-connected graph B with m edges and k ∈ Ik vertices,
and for every n ∈ In, it holds that

∣∣∣∣
P (Xm

n = B)

P (Ym = B)
− 1

∣∣∣∣ < ǫ(m).

Proof. Fix y ∈ [−ȳ, ȳ], and let n = ⌊ 1
ακ2

m + ym2/3⌋ ∈ In. First, we prove that Xm
n and Ym are

concentrated on graphs with k = 1
κ2

m+O(m1/2) vertices, that is,

P

(
1

κ2
m− zm1/2 ≤ |V (Xm

n )| ≤ 1

κ2
m+ zm1/2

)

goes to 1 when z,m → ∞, and the same is true for Ym. Then, we show that Xm
n and Ym are

asymptotically proportional for graphs on k ∈ Ik vertices. A direct consequence of both facts is
that Xm

n and Ym are asymptotically equal in Ik, since the previous results are valid for arbitrarily
large z̄.

We start by considering the probability distribution Ym. If we add (21) over all the bk,m
2-connected graphs with k vertices and m edges, we get

P (|V (Ym)| = k) = bk,m
Rk

k!

1

[ym]B(R, y)
.

On the one hand, the value [ym]B(R, y) is a constant that does not depend on k. On the other
hand, since the numbers bk,m satisfy a local limit theorem (the proof is the same as in [13]), it
follows that the numbers bk,mR

k/k! follow a normal distribution concentrated at k = 1/κ2 on a

scale m1/2, as desired.
We show the same result for Xm

n . Let B be a 2-connected graph with k vertices and m edges.
We write the probability that a graph drawn according to Xm

n is B as a conditional probability
on the largest block Ln of a random connected graph of n vertices. In what follows, v (Ln) and
e (Ln) denote, respectively, the number of vertices and edges of Ln.

P (Xm
n = B) = P (Ln = B | e(Ln) = m)

=
P (Ln = B, e(Ln) = m)

P (e(Ln) = m)
=

P (Ln = B)

P (e(Ln) = m)
.

Note that in the last equality we drop the condition e (Ln) = m because it is subsumed by Ln = B.
The probability that the largest block Ln is B is the same for all 2-connected graphs on k

vertices. Hence, if bk denotes the number of 2-connected graphs on k vertices, we have

P (Xm
n = B) =

1

bk

P (v(Ln) = k)

P (e(Ln) = m)
,

If we sum over all the bk,m 2-connected graphs B with k vertices and m edges, we finally get the
probability of Xm

n having k vertices,

P (|V (Xm
n )| = k) =

bk,m
bk

P (v(Ln) = k)

P (e(Ln) = m)
.

For fixed n,m, the numbers P (V (Ln) = k) follow an Airy distribution of scale n2/3 concentrated
at k1 = αn (see Section 5.2), and the numbers bk,m/bk are normally distributed around k2 = m/κ2
on a scale m1/2. The choice of n makes k1 and k2 coincide but for a lower-order term O(m2/3);
hence, it follows that P (|V (Xm

n )| = k) is concentrated at k2 = m/κ2 on a scale m1/2, as desired.
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Now that we have established concentration for both probability distributions, we just need to
show that they are asymptotically proportional in the range k = m/κ2 + O(m1/2). This is easy
to establish by considering asymptotic estimates. Indeed, we have

P (Xm
n = B) =

1

bk

P (v(Ln) = k)

P (e(Ln) = m)
,

and since P (v(Ln) = k) is Airy distributed in the range k = m/κ2 + O(m2/3) and bk ∼ b ·
k−7/2R−kk!, it follows that

P (Xm
n = B) ∼ b · k7/2R

k

k!

g(x)

P (e(Ln) = m)
,

where x is defined as (k − αn)n−2/3 and g(x) is the Airy distribution of the appropriate scale
factor. Let us compare it with the exact expression for the probability distribution Ym, that is,

P (Ym = B) =
Rk

k!

1

[ym]B(R, y)
.

Clearly, both expressions coincide in the high order terms Rk and 1/k!. The remaining terms
are either constants like b, P (e(Ln) = m) and [ym]B(R, y), or expressions that are asymptotically
constant in the range of interest. This is the case for k7/2, which is asymptotically equal to
((1/κ2)m)7/2. And also for g(x), which is asymptotically equal to g(y(ακ2)

2/3), since x = (k −
αn)n−2/3 and n = 1

αk2

m+ ym2/3 implies that

x =

(
1

k2
m+O(m1/2)− α

αk2
m+ ym2/3

)
n−2/3

=
(
ym2/3

)( m

ακ2

)−2/3

+ o(1)

= y(ακ2)
2/3 + o(1)

in the given range. Hence, both distributions are asymptotically proportional in the given range.
Thus, we have shown the result when n is linked to m by n = 1

ακ2

m+ym2/3, for any y. Clearly,

uniformity holds when y is restricted to a compact set of R, like [−ȳ, ȳ]. �

6.4. Proof of the main result. In order to prove Theorem 6.1, we have to concatenate two
Airy laws. The first one is the number of edges in the largest block, given by Theorem 6.5. The
second is the number of edges in the largest 3-connected component of a random 2-connected
planar graph with a given number of edges. This is a gain an Airy law produced by the com-
position scheme Tz(x,D(x, y)), which encodes the combinatorial operation of substituting each
edge of a 3-connected graph by a network (which is essentially a 2-connected graph rooted at an
edge). However, this scheme is relative to the variable y marking edges. In order to have a legal
composition scheme we need to take a fixed value of x. The right value is x = R, as shown by
Lemma 6.6 Indeed, taking x = R amounts to weight a 2-connected graph G with m edges with
Rk/k!, where k is the number of vertices in G. Thus the relevant composition scheme is precisely
Tz(R, uD(R, y)), where u marks the size of the 3-connected core. Formally, we can write it as the
scheme

C(uH(y)), H(y) = D(R, y), C(y) = Tz(R, y).

The composition scheme Tz(R,D(R, y)) is critical with exponents 3/2, and an Airy law appears.
In order to compute the parameters we need the expansion of D(R, y) at the dominant singularity
y = 1, which is of the form

(22) D(R, y) = D̃0 + D̃2Y
2 + D̃3Y

3 +O(Y 4),

and Y =
√
1− y. The different D̃i can be obtained in the same way as in Proposition 3.7.
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Proposition 6.7. Let Wm be the number of edges in the largest 3-connected component of a
2-connected planar graph with m edges, weighted with Rk/k!, where k is the number of vertices.
Then

P
(
Wm = βn+ zn2/3

)
∼ n−2/3c2g (c2z) ,

where β = −D̃0/D̃2 ≈ 0.82513 and c2 = −D̃2/D̃0

(
−D̃2/3D̃3

)2/3
≈ 2.16648, and the D̃i are as

in Equation (22).

Proof. The proof is a direct application of the methods in Theorem 5.4. �

Proof of Theorem 6.1. Recall that Xn is the number of vertices in the largest 3-connected compo-
nent of a random connected planar graph with n vertices. This variables aries as the composition
of two random variables we have already studied. First we consider Zn as in Theorem 6.5, which
is the number of edges in the largest block, and then Wm as in Proposition 6.7.

The main parameter turns out to be α2 = µβ(κ2α), where

(1) α is for the expected number of vertices in the largest block;
(2) κ2 is for the expected number of edges in 2-connected graphs;
(3) β is for the expected number of edges in the largest 3-connected component;
(4) µ is for the expected number of vertices in 3-connected graphs weighted according to Rk/k!

if k is the number of vertices.

The constant in 1. and 3. correspond to Airy laws, and the constants in 2. and 4. to normal laws.
Let Yn be the number of edges in the largest 3-connected component of a random connected

planar graph with n vertices (observe that our main random variable Xn is linked directly to Yn
after extracting a parameter normally distributed like the number of vertices). Then

P
(
Yn = βκ2αn+ zn2/3

)
=

∞∑

m=1

P (Zn = m)P
(
Wm = βκ2αn+ zn2/3

)
.

This convolution can be analyzed in exactly the same way as in the proof of Theorem 6.4, giving
rise to a limit Airy law with the parameters as claimed.

Finally, in order to go from Yn to Xn we need only to multiply the main parameter by µ and
adjust the scale factor. To compute µ we need the dominant singularity τ(x) of the generating
function T (x, z) of 3-connected planar graphs, for a given value of x (see Section 6 in [8]). Then

µ = −Rτ ′(R)/τ(R).
Given that the inverse function r(z) is explicit (see Equation (25) in [8]), the computation is
straightforward.

7. Minor-closed classes

In this section we apply the machinery developed so far to analyse families of graphs closed
under minors. A class of graphs G is minor-closed if whenever a graph is in G all its minors are also
in G. Given a minor-closed class G, a graph H is an excluded minor for G if H is not in G but every
proper minor is in G. It is an easy fact that a graph is in G if and only if it does not contain as a
minor any of the excluded minors from G. According to the fundamental theorem of Robertson
and Seymour, for every minor-closed class the number of excluded minors is finite [18]. We use
the notation G = Ex(H1, · · · , Hk) if H1, . . . , Hk are the excluded minors of G. If all the Hi are
3-connected, then Ex(H1, · · · , Hk) is a closed family. This is because if none of the 3-connected
components of a graph G contains a forbidden, the same is true for G itself.

In order to apply our results we must know which connected graphs are in the set Ex(H1, · · · , Hk).
There are several results in the literature of this kind. The easiest one is Ex(K4), which is the class
of series-parallel graphs. Since a graph in this class always contains a vertex of degree at most two,
there are no 3-connected graphs. Table 1 contains several such results, due to Wagner, Halin and
others (see Chapter X in [6]). The proofs make systematic use of Tutte’s wheels theorem (consult
Chapter 3 of [7], for instance): a 3-connected graph can be reduced to a wheel by a sequence of
deletions and contractions of edges, while keeping it 3-connected.
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Ex. minors 3-connected graphs Generating function T (x, z)

K4 ∅ 0

W4 K4 z6x4/4!

K5 − e K3,K3,3,K3 ×K2, {Wn}n≥3 70z9x6/6!− 1
2x(log(1 − z2x) + 2z2x+ z4x2)

K5,K3,3 Planar 3-connected Tp(x, z)

K3,3 Planar 3-connected, K5 Tp(x, z) + z10x5/5!

K+
3,3 Planar 3-connected, K5,K3,3 Tp(x, z) + z10x5/5! + 10z9x6/6!

Table 1. Classes of graphs defined from one excluded minor. Tp(x, z) is the GF
of planar 3-connected graphs.

The 3-connected graphs when excluding W5 and the triangular prism take longer to describe.
For K3 × K2 they are: K5,K

−
5 , {Wn}n≥3, and the family G∆ of graphs obtained from K3,n by

adding any number of edges to the part of the bipartition having 3 vertices. For W5 they are:
K4,K5, the family G∆, the graphs of the octahedron and the cube Q, the graph obtained from
Q by contracting one edge, the graph L obtained from K3,3 by adding two edge in one of the
parts of the bipartition, plus all the 3-connected subgraphs of the former list. Care is needed here
for checking that all 3-connected graphs are included and for counting how many labellings each
graph has.

Once we have the full collection of 3-connected graphs, we have T (x, z) at our disposal. For the
family of wheels we have a logarithmic term (see the previous table) and for the family G∆ it is a
simple expression involving exp(z3x). We can then apply the machinery developed in this paper
and compute the generating functions B(x, y) and C(x, y). For the last three entries in Table 1,
the main problem is computing B(x, y) and this was done in [13] and [12]; these correspond to
the planar-like case. In the remaining cases T (x, z) is either analytic or has a simple singularity
coming from the term log(1− xz2), and they correspond to the series-parallel-like case.

In Table 2 we present the fundamental constants for the classes under study. For a given class
G they are: the growth constants ρ−1 of graphs in G; the growth constant R−1 of 2-connected
graphs in G; the asymptotic probability p that a random graph in G is connected; the constant
κ such that κn is the asymptotic expected number of edges for graphs in G with n vertices; the
analogous constant κ2 for 2-connected graphs in G; the constant β such that βn is the asymptotic
expected number of blocks for graphs in G with n vertices; and the constant δ such that δn is the
asymptotic expected number of cut vertices for graphs in G with n vertices. The values in Table 2
have been computed with Maple using the results in sections 3 and 4.

8. Critical phenomena

We have seen that the estimates for the number of planar graphs with µn edges have the same
shape for all values µ ∈ (1, 3). This is also the case for series-parallel graphs, where µ ∈ (1, 2) since
maximal graphs in this class have only 2n − 3 edges. It is natural to ask if there are classes in
which there is a critical phenomenon, that is, a different behaviour depending on the edge density.
We have not found such phenomenon for ‘natural’ classes of graphs, in particular those defined in
terms of forbidden minors. But we have been able to construct examples of critical phenomena
by a suitable choice of the family T of 3-connected graphs, as we now explain.

Let T a family of 3-connected graphs whose function T (x, z) has a singularity on z of exponent
5/2. We have seen that the singular exponents of the associated functions B(x), C(x) and G(x)
depend on the existence of branch-points before T becomes singular. We have obtained families of
graphs for which the singular exponents of B(x), C(x) and G(x) depend on the particular value
of y0.

Now we have two sources for the main singularity of B(x, y) for a given value of y: either (a)
it comes from the singularities of T (x, z); or (b) it comes from a branch point of the equation
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Class ρ−1 R−1 κ κ2 β δ p

Ex(K4) 9.0733 7.8123 1.61673 1.71891 0.149374 0.138753 0.88904

Ex(W4) 11.5437 10.3712 1.76427 1.85432 0.107065 0.101533 0.91305

Ex(W5) 14.6667 13.5508 1.90239 1.97981 0.0791307 0.0760808 0.93167

Ex(K−

5 ) 15.6471 14.5275 1.88351 1.95360 0.0742327 0.0715444 0.93597

Ex(K3 ×K2) 16.2404 15.1284 1.92832 1.9989 0.0709204 0.0684639 0.93832

Planar 27.2269 26.1841 2.21327 2.2629 0.0390518 0.0382991 0.96325

Ex(K3,3) 27.2293 26.1866 2.21338 2.26299 0.0390483 0.0382957 0.963262

Ex(K+

3,3) 27.2295 26.1867 2.21337 2.26298 0.0390481 0.0382956 0.963263

Table 2. Constants for a given class of graphs: ρ and R are the radius of con-
vergence of C(x) and G(x), respectively; constants κ, κ2, β, δ give, respectively,
the first moment of the number of: edges, edges in 2-connected graphs, blocks
and cut vertices; p is the probability of connectedness.

defining D(x, y). For planar graphs the singularity always comes from case (a), and for series-
parallel graphs always from case (b). If there is a value y0 for which the two sources coalesce, then
we get a different singular exponent depending on whether y < y0 or y > y0. The most important
consequence in this situation is that there is a critical edge density µ0, such that below µ0 the
largest block has linear size, and above µ0 it has sublinear size, or conversely.

Here are some examples.

• If T is the family of 3-connected cubic planar graphs, then B(x, y) has singular exponent
5/2 when y < y0 ≈ 0.07422, and 3/2 when y > y0. The corresponding critical value for
the number of edges is µ0 ≈ 1.3172.

• If T is the family of planar triangulations (maximal planar graphs), then B(x, y) exponent
3/2 when y < y0 ≈ 0.4468, and 5/2 when y > y0. The corresponding critical value for the
number of edges is µ0 ≈ 1.8755.

• This example shows that more than one critical value may occur. This is done by adding a
single dense graph to the family T in the last example. Let T be the family of triangulations
plus the exceptional graph K6. Then there are two critical values y0 ≈ 0.4469 and y1 ≈
108.88, and the corresponding critical edge densities are µ0 ≈ 1.8756 and µ1 ≈ 3.4921.
This last value is close to 7/2; this is the maximal edge density, which is approached by
taking many copies of K6 glued along a common edge. It turns out that B(x, y) has
exponent 3/2 when y < y0, 5/2 when y0 < y < y1, and again 3/2 for y1 < y.
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O. Giménez: Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
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