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RUMOR SPREADING ON RANDOM REGULAR GRAPHS AND

EXPANDERS

NIKOLAOS FOUNTOULAKIS AND KONSTANTINOS PANAGIOTOU

Abstract. Broadcasting algorithms are important building blocks of distributed systems.
In this work we investigate the typical performance of the classical and well-studied push
model. Assume that initially one node in a given network holds some piece of information.
In each round, every one of the informed nodes chooses independently a neighbor uniformly
at random and transmits the message to it.

In this paper we consider random networks where each vertex has degree d ≥ 3, i.e., the
underlying graph is drawn uniformly at random from the set of all d-regular graphs with n

vertices. We show that with probability 1 − o(1) the push model broadcasts the message
to all nodes within (1 + o(1))Cd lnn rounds, where

Cd =
1

ln(2(1 − 1
d
))

−
1

d ln(1 − 1
d
)
.

Particularly, we can characterize precisely the effect of the node degree to the typical
broadcast time of the push model. Moreover, we consider pseudo-random regular networks,
where we assume that the degree of each node is very large. There we show that the
broadcast time is (1+o(1))C lnn with probability 1−o(1), where C = limd→∞ Cd = 1

ln 2
+1.

1. Introduction

1.1. Rumor Spreading and the Push Model. In this work we consider the classical
and well-studied push model (or push protocol) for disseminating information in networks.
Initially, one of the nodes obtains some piece of information. In each succeeding round, every
node who has the information passes it another node, which it chooses independently and
uniformly at random among its neighbors. The important question is: how many rounds
are typically needed until all nodes are informed?

The push model has been the topic of many theoretical works, and its performance was
evaluated on several types of networks. In the case where the underlying network is the
complete graph, Frieze and Grimmett [16] proved that with high probability (whp.) (i.e.,
with probability 1 − o(1)) the broadcasting is completed within (1 + o(1))(log2 n + lnn)
rounds, where n denotes the total number of nodes. Recently, this result was extended by
the two authors and Huber [14] to the classical Erdős-Rényi graph Gn,p, which is obtained
by including each of the possible

(n
2

)
edges with probability p, independently of all other

edges. Among other results, they showed that if p = ω( lnn
n ), then the typical broadcast time

essentially coincides with the broadcast time on the complete graph. In other words, as long
as the average degree of the underlying graph is significantly larger than lnn, the number
of rounds needed is not affected. However, prior to this work, there was no result describing
the performance of the push model on significantly sparser networks.

The typical broadcast time of the push model was also investigated for other types of
networks, albeit not as precisely. Feige et al. derived in [13] bounds that hold for arbitrary
graphs. Moreover, they proved a logarithmic upper bound for the number of rounds needed
to broadcast the information if the underlying network is a hypercube. This result was
generalized by Elsässer and Sauerwald, who determined in [12] similar bounds for several
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classes of Cayley graphs. Bradonjic et al. [4] considered random geometric graphs as under-
lying networks, and proved that whp. the broadcast time is essentially proportional to the
diameter of these graphs.

1.2. Our Contribution. The main contribution of this paper is the precise analysis of the
push model on sparse random networks. Note that in this context the study of the Gn,p

distribution is not appropriate, as we would have to set p = c/n for some constant c > 0.
However, for such p the random graph Gn,p is typically not connected. In fact, if we took

any p = o
(
lnn
n

)
, we would face the same problem, as such a p is below the connectivity

threshold for Gn,p (see for example [19]).
A candidate class of random graphs that combines the feature of constant average degree

with that of connectivity is the class of random d-regular graphs G(n, d) for d ≥ 3. It
is well-known that a random d-regular graph on n vertices is connected with probability
1 − o(1). Thus, a typical member of this class of graphs is suitable for the analysis of the
push protocol as far as the effect of density is concerned. Let T = T (G(n, d)) denote the
broadcast time of the push model on G(n, d). Note that in this case the choice of the vertex
where the information is placed initially does not matter.

Theorem 1. With probability 1− o(1)

|T (G(n, d)) − Cd lnn| = O((ln lnn)2),

where Cd = 1
ln(2(1− 1

d
))
− 1

d ln(1− 1
d
)
.

The above theorem is interpreted as follows: for almost all d-regular graphs on n vertices,
with probability 1 − o(1) the push protocol broadcasts the information within the claimed
number of rounds. It is easy to see that as d grows Cd converges to 1

ln 2 + 1, which is
the constant factor of the broadcast time of the push protocol on the complete graph, as
shown by Frieze and Grimmett [16]. Thus our result reveals the essential insensitivity of
the performance of the push protocol regarding the density of the underlying network and
shows that the crucial factor is the “uniformity” of its structure.

We explore further this aspect and we consider regular graphs whose structural charac-
teristics resemble those of a regular random graph. In particular, we consider expanding
graphs whose “geometry” is determined by the spectrum of their adjacency matrix.

In Subsection 1.3 below we give an intuitive description of the evolution of the randomized
protocol, thus explaining also how do the two summands involved in Cd come up.

1.2.1. Regular expanding graphs. Expanding graphs have found numerous applications in
modern theoretical computer science as well as in pure mathematics. Their properties to-
gether with the theory of finite Markov chains have led to the solution of central problems
such as the approximation of the volume of a convex body, approximate counting or the ap-
proximate uniform sampling from a class of combinatorial objects. The latter applications
have had further impact outside computer science such as in the field of statistical physics.
We refer the reader to the excellent survey of Hoory et al. [17] for a detailed exploration of
the properties and the numerous applications of expanding graphs.

The main feature of an expanding graph is that every set of vertices is connected to the
rest of the graph by a large number of edges. This key property makes random walks on
such graphs rapidly mixing and has led to the above mentioned applications. Moreover,
this property makes expanding graphs an attractive candidate for communication networks.
Intuitively, the high expansion of a graph implies that information that is initially located
on a small part of the graph can be spread quickly on the rest of the graph. This becomes
possible as the high expansion of a graph ensures the lack of “bottlenecks”, that is, local
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obstructions on which a broadcast protocol would need a significant amount of time in order
to bypass them.

We focus on a spectral characterization of expanding graphs, which is related to the
spectral gap of their adjacency matrix. Let G = (V,E) be a connected d-regular graph and
let A be its adjacency matrix. The Perron-Frobenius Theorem implies (see Proposition 2.10
in [20]) that the largest eigenvalue of A equals d and that the corresponding eigenvector is
proportional to the all-ones vector [1, . . . , 1]T . Let λ1, . . . , λn be the eigenvalues of A ordered
according to their value (note that since A is symmetric, these are all real). Set

λ := λ(A) := max
2≤i≤n

|λi|.

If G has n vertices we say that G is an (n, d, λ) graph. One can show (see for example p.

19 in [20]) that λ = Ω(
√
d). In particular, Alon and Boppana, Nilli [23] and Friedman [15]

have shown that for every d-regular graph on n vertices we have λ2 ≥ 2
√
d− 1(1− o(1)).

We are interested in the class of d-regular graphs for which λ almost attains this lower
bound. In particular, we are concerned with the broadcast time of the randomized pro-
tocol on expanding d-regular graphs on n vertices with λ = O(

√
d). Such graphs can be

explicitly constructed through number-theoretic or group theoretic methods (see the survey
of Krivelevich and Sudakov [20] where numerous examples are presented). Informally, we
show that if d = ω(

√
n), then the broadcast time is essentially the broadcast time on the

complete graph with n vertices.

Theorem 2. Let G be a connected (n, d, λ) graph with λ ≤ C
√
d and d ≥ 2C

√
n ln1/9 n.

Then for any v ∈ V , with probability 1− o(1)

|T (G, v) − (log2 n+ lnn)| = o(ln n).

Again, this theorem shows the insensitivity of the broadcast time on the density of the
underlying network. In fact, the assumption that λ = O(

√
d) does not merely yield the high

expansion of the graph, but it also implies that the edges of the graph are distributed in
a uniform way among each subset of vertices. As we shall see in the proof of Theorem 2,
this assumption implies that the structure of the graph is not very different from that of a
random graph on n vertices and edge probability equal to d/n. For example, the number
of edges between a subset S and its complement is close to d

n |S|(n − |S|), which is the
expected value in the random graph with edge probability d/n. In this sense, such graphs
are pseudorandom. This notion was introduced by Thomason [26] and was explored further
by Chung, Graham and Wilson [5], especially regarding its spectral characterization.

1.3. The evolution of the randomized protocol in a nutshell. Roughly speaking,
the evolution of the protocol consists of three phases, which have different characteristics
regarding the rate in which the information is spread.

Let us consider the first phase, which ends when there are at least εn informed vertices,
for some very small ε > 0. Let us denote by It the set of informed vertices (i.e., those who
possess the information), and by Ut the set of uninformed vertices at the beginning of round
t + 1 of the push model. Moreover, let e be some edge that is incident to a vertex in It
that has not been used up to now to transmit a message, and let Et be the set of such edges.
Then we show that the subgraph of G(n, d) induced by It is essentially a tree, and moreover,
that Et contains ≈ 2t(1 − 1

d )
t edges. To see this, note that as every vertex informs some

specific neighbor with probability 1/d, the expected number of edges from Et that are going
to be used is |Et|/d. This means that ≈ |Et|/d new vertices are going to be informed (as the
set of informed vertices induces a tree), implying that |Et+1| ≈ |Et| − |Et|/d + (d− 1)|Et|/d,
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as for every vertex that becomes informed in this round the number of edges counted in Et
increases by d − 1. So, |Et+1| ≈ 2(1 − 1

d)|Et|. Note that in this calculation we worked only
with expected values. In the actual proof we have to show that all the relevant quantities are
sharply concentrated around their expectations. To this end, we use a variant of Talagrand’s
inequality by McDiarmid [22] (Theorem 4), which has not been used very frequently in
the analysis of distributed algorithms. We believe that it could be widely applicable to
the analysis of existing or future randomized protocols with several different degrees of
dependency.

As soon as the number of informed vertices is ≥ εn, then after very few rounds the number
of informed vertices is already (1 − ε)n. Here it is essentially the expansion properties of
G(n, d), which guarantee that every large set of vertices has linearly many neighbors and,
thus, with high probability a certain fraction of those become informed in each round.

During the final phase, the number of remaining uninformed vertices shrinks by a factor
of (1 − 1

d)
d. Indeed, suppose that there are o(n) uninformed vertices. Then we expect that

almost all of them have the property that the number of their neighbors in It is d, implying
that the probability that any one of the remains uninformed is precisely (1 − 1

d )
d. An easy

calculation shows that a “typical” subset of G(n, d) has this property. However, the set of
uninformed vertices might not be typical at all, implying that we need additional effort to
guarantee the desired properties.

2. Concentration inequalities

In this section we will state two concentration inequalities that will serve as the backbone
of our proofs. The first one is a Chernoff-type bound for sums of negatively correlated
random variables, see e.g. [8].

Theorem 3. Let I1, . . . , In be a family of indicator random variables on a common prob-

ability space, which are identically distributed and negatively correlated, i.e., E(IiIj) ≤
E(Ii)E(Ij) for all 1 ≤ i, j ≤ n. Let X :=

∑n
i=1 Ii. Then, for any t > 0

P (|X − E(X)| > t) < 2 exp

(
− t2

2 (E(X) + t/3)

)
.

The next concentration inequality that we will need is due to McDiarmid [22], and it
is based on the work of Talagrand [25]. We give first a few necessary definitions. Let B
be a finite set and let Sym(B) be the set of all permutations on B. Assume that π is an
element of Sym(B), drawn uniformly at random. Also, let X = (X1, . . . ,Xn) be a finite
family of independent random variables, where Xj takes values in a set Ωj. Finally, set
Ω = Sym(B)×∏n

j=1Ωj.

Theorem 4. Let c and r be positive constants. Suppose that h : Ω → R+ satisfies the

following conditions. For each (σ,x) ∈ Ω we have

• if x′ differs from x in only one coordinate, then |h(σ,x) − h(σ,x′)| ≤ 2c;
• if σ′ can be obtained from σ by swapping two elements, then |h(σ,x)− h(σ′,x)| ≤ c;
• if h(σ,x) = s, then there is a set of at most rs coordinates such that h(σ′,x′) ≥ s
for any (σ′,x′) ∈ Ω that agrees with (σ,x) on these coordinates.

Let Z = h(π,X) and let m be the median of Z. Then, for any t > 0

P (|Z −m| > t) ≤ 4 exp

(
− t2

16rc2(m+ t)

)
.
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3. Properties of random regular graphs and the configuration model

3.1. The configuration model. We perform the analysis of the randomized protocol us-
ing the configuration model introduced by Bender and Canfield [1] and independently by
Bollobás [2]. For n ≥ 1 let Vn := {1, . . . , n}. Also for those n for which dn is even, we
let P := Vn × [d]. We call the elements of P clones. A configuration is a perfect matching
on P . If we project a configuration onto Vn, then we obtain a d-regular multigraph on Vn.

Let G̃(n, d) denote the multigraph that is obtained by choosing the configuration on P uni-

formly at random. It can be shown (see e.g. [19, p. 236]) that if we condition on G̃(n, d)
being simple (i.e. it does not have loops or multiple edges), then this is distributed uniformly

among all d-regular graphs on Vn. In other words, G̃(n, d) conditional on being simple has
the same distribution as G(n, d). Moreover, Corollary 9.7 in [19] guarantees that

(3.1) lim
n→∞

P(G̃(n, d) is simple) > 0.

(Of course the above limit is taken over those n for which dn is even.) Let An be a subset of

the set of d-regular multigraphs on Vn. Altogether the above facts imply that if P(G̃(n, d) ∈
An) → 0 as n → ∞ then also P(G(n, d) ∈ An) → 0. This allows us to work with G̃(n, d)
instead of G(n, d) itself.

3.2. Some useful facts. We continue by introducing some notation. Let G be a graph,
and let S, S′ be subsets of its vertices. Then we denote by eG(S) the number of edges in G
joining vertices only in S, and by eG(S, S

′) the number of edges in G joining a vertex in S
to a vertex in S′. Moreover, we denote by ΓG(v) the set of neighbors of a vertex v in G.

Lemma 5. Let A,B ⊆ Vn × [d] be two disjoint sets of clones, and let C ⊆ Vn be a set of

vertices such that (C × [d])∩ (A∪B) = ∅. Let M be a matching drawn uniformly at random

from the set of perfect matchings on the union of the clones in A,B and C × [d], and set

N := |A|+ |B|+ d|C| − 1. Then

(3.2) E(eM (A)) =

(|A|
2

)
1

N
, E(eM (A,B)) = |A||B| 1

N
, and E(eM (A, C)) = d|A||C| 1

N
.

Moreover, let Hℓ denote the number of vertices in C that are adjacent to exactly ℓ clones

in A in M , where 0 ≤ ℓ ≤ d. Then, if |B| ≥ |A| = ω(ln n)

(3.3) E(Hℓ) =

(
1 + o

( 1

lnn

))
· |C|

(
d

ℓ

)( |A|
N

)ℓ(
1− |A|

N

)d−ℓ

.

Finally, let Q =
∑

ℓ≥2Hℓ. Then, if N ≥ 4

(3.4) E(Q) ≤ d2|A|2|C|N−2.

Let X be any of eM (A), eM (A,B), eM (A, C) or Hℓ, and let µ = E(X). Then, if µ = ω(ln2 n),

for any ε = ω(µ−1/2)

(3.5) P(|X − µ| ≥ εµ) ≤ 4e
− ε2

64d(1+ε)
µ
.

Proof. Let e, e′ be edges whose endpoints are in the union of the clones in A,B and C, and
let Ie, Ie′ be the indicator variables for the events that e ∈ M and e′ ∈ M . As the number
of matchings with e is equal to the number of matchings with e′ we have E(Ie) = E(Ie′).
Hence, as

∑
e Ie = N+1

2 always, we infer that E(Ie) =
1
N . By linearity of expectation this

proves (3.2).
To see (3.4) let Ie,e′ be the event that both e and e′ are in M . Note that if e∩ e′ 6= ∅ and

also e 6= e′, then E(Ie,e′) = 0. Otherwise, let f, f ′ be any two edges satisfying f ∩ f ′ = ∅ and
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f 6= f ′. Then, as the number of matchings with e, e′ is equal to the number of matchings
with f, f ′ we infer that E(Ie,e′) = E(If,f ′). As

∑
e 6=e′ Ie,e′ =

N+1
2

N−1
2 always and as there

are 3
(N+1

4

)
ways to choose e, e′ such that e ∩ e′ = ∅ and e 6= e′ we obtain that

E(Ie,e′) =





0 , if e ∩ e′ 6= ∅ and e 6= e′

1
N , if e = e′

2
N(N−2) , otherwise

.

Let v = {v1, . . . , vd} be any vertex in C. Moreover, let now e, e′ be distinct edges with one

endpoint in A and the other in v, and note that there are
(|A|

2

)
· |C|

(
d
2

)
ways to choose e

and e′. If N ≥ 4, then E(Ie,e′) ≤ 4N−2, and this completes the proof of (3.4).
To see (3.3) let v ∈ C and denote by Lv the event that there is an edge in M connecting

two clones of v. Moreover, let Hℓ(v) denote the event that v is adjacent to exactly ℓ clones
in A. Then

(3.6) P(Hℓ(v)) = P(Hℓ(v) ∩ Lv) + P(Hℓ(v) | Lv)P(Lv).

We estimate the above probabilities one by one. We shall begin with P(Lv). Note that there
are at most d2 choices for an edge that connects two clones of v, and that the probability
that such an edge is in M is 1

N . Hence,

(3.7) P(Lv) ≤ d2N−1 = o(ln−1 n).

Next we estimate P(Hℓ(v) ∩ Lv). Let us for the moment fix ℓ clones c1, . . . , cℓ in A, and ℓ

clones c′1, . . . , c
′
ℓ of v. Note that there are

(|A|
ℓ

)
choices for the ci’s and

(d
ℓ

)
choices for the c′i’s.

Then the number of matchings where the ci’s are matched to the c′i’s, and no one of the
remaining clones of v is matched to a clone in A, and there is no edge connecting two of the

clones of v, is ℓ! ·
(|B|+d(|C|−1)

d−ℓ

)
(d − ℓ)! ·M|A|+|B|+d(|C|−2), where Mn = n!

(n/2)!2n/2 denotes the

number of perfect matchings on n vertices. Stirling’s formula yields the approximation

(3.8) Mn = (1 + Θ(n−1)) ·
√
2nn/2e−n/2.

Moreover, our assumption |B| ≥ |A| = ω(lnn) implies that
(|A|

ℓ

)
=

(
1 + o

( 1

lnn

))
· |A|ℓ

ℓ!
and

(|B|+ d(|C| − 1)

d− ℓ

)
=

(
1 + o

( 1

lnn

))
· (N − |A|)d−ℓ

(d− ℓ)!
.

All the above facts together yield that

P(Hℓ(v) ∩ Lv) =

(
1 + o

( 1

lnn

))
·
(
d

ℓ

)
|A|ℓ(N − |A|)d−ℓ · MN+1−2d

MN+1
.

By applying the estimate for Mn we infer that the last fraction equals

(
1 + o

( 1

lnn

))
· ed (N + 1− 2d)

N+1−2d
2

(N + 1)
N+1

2

=

(
1 + o

( 1

lnn

))
·N−d.

So,

(3.9) P(Hℓ(v) ∩ Lv) =

(
1 + o

( 1

lnn

))
·
(
d

ℓ

)( |A|
N

)ℓ (
1− |A|

N

)d−ℓ

.

Finally, we estimate P(Hℓ(v) | Lv). Note that the event Hℓ(v), given Lv, implies that there
are ℓ clones of v that are matched to some clones in A. By a similar reasoning as above we
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infer that

P(Hℓ(v) | Lv) ≤
(d
ℓ

)(|A|
ℓ

)
ℓ! ·MN+1−2ℓ

MN+1
≤

(
1 + o

( 1

lnn

))(
d

ℓ

)( |A|
N

)ℓ

.

Note that our assumption |B| ≥ |A| implies that |A|
N ≤ |A|

|A|+|B| ≤ 1
2 . So, 1−

|A|
N ≥ 1

2 , and (3.7)

together with (3.6) imply that

P(Hℓ(v) | Lv)P(Lv) = o

(
P(Hℓ(v) ∩ Lv)

lnn

)
.

By plugging this into (3.6) we thus complete the proof of (3.3).
We finally prove the concentration of X by applying Theorem 4 as follows. We will first

specify the families X and π. Here, X = ∅. The random permutation π corresponds to the
random perfect matching on the union of the vertices inA,B and C. More precisely, assuming
that this union consists of 2k clones, which are labeled 1, . . . , 2k, we consider a uniformly
random permutation of these clones π := (i1i2 . . . i2k−1i2k). Then we match the clones that
are in consecutive pairs, that is, we choose the matching {(i1, i2), (i3, i4), . . . , (i2k−1, i2k)}.
This is a uniform perfect matching on these clones. Note that the pair (X, π) determines
the value of X. Moreover,

• if we swap two elements of π, then X can change by at most 2;
• if X = ℓ, then we need to specify at most dℓ elements of π in order to certify this.

Thus, we may take c = 2 and r = d in Theorem 4. Moreover, let MX be the median of X.
An easy calculation shows that |MX − E(X)| = O(

√
E(X)) (cf. Example 2.33 in [19]). The

proof completes by applying Theorem 4 with, say, t = 1.1εMX . �

4. Analysis of the Randomized Broadcasting Algorithm

4.1. The preliminary phase. Let T0 be the first round in which the number of informed
vertices exceeds ln7 n. We will show the following statement; it is not best possible, but it
suffices for our purposes.

Lemma 6. With probability 1−o(1) we have that T0 = O(ln lnn). Moreover, for sufficiently

large n the subgraph induced by the vertices in IT0 is with probability 1− o(1) a tree.

Proof. Let Di denote the number of vertices at distance i from vertex 1. We will first show
that whp. we have |Di| = d(d− 1)i−1 for all 1 ≤ i ≤

√
lnn, which implies that the subgraph

induced by ∪
√
lnn

i=1 Di is whp. a tree. To see the claim, we work in the configuration model
and expose the sets Di one after the other, i.e., we first expose the edges in the random
matching that contain the clones of vertex 1, then the edges that contain the (remaining)
clones of the vertices in D1, and so on.

Suppose that |Di| = d(d − 1)i−1 for all i ≤ j <
√
lnn. This implies that all edges in the

matching incident to the clones corresponding to the vertices in D1, . . .Dj−1 are exposed.
Moreover, for every vertex in Dj there is precisely one clone whose neighbor is exposed,
and for all other d − 1 it is not. Let us denote by Fj this set of unexposed clones. We

have |Fj | = d(d−1)j , and let us note for future reference that with room to spare |Fj | ≤ n1/3.
Clearly, Dj+1 consists of all vertices in C = Vn \ (D1 ∪ · · · ∪ Dj) for which at least one of

their clones is connected in the matching to some clone in Fj . Let Q denote the number of
such vertices with the property that they are matched to at least two clones in Fj , and let
M be a random perfect matching on the union of the clones in Fj and C. Then

|Dj+1| = |Fj | − 2eM (Fj)−Q.
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By applying Lemma 5 with A = Fj , B = ∅ and C as above we obtain for large n that

E(eM (Fj)) ≤ n−1/3 and E(Q) ≤ 2d2n−1/3.

So, with probability at least 1− 3d2n−1/3 we have that eM (Fj) = Q = 0. The proof of the

claim completes by applying the above argument for i = 1 . . .
√
lnn.

With the above fact we can prove the lemma as follows. Let v be a vertex in Di, for
some 1 ≤ i ≤ 10 ln lnn := ℓ, and denote by Tv the time until v gets informed. Let v′ be
the unique neighbor of v in Di−1. Then Tv = Tv′ + Xv,v′ , where Xv,v′ is a geometrically
distributed random variable with success probability d−1. Moreover, Xv,v′ is independent

of Tv′ . In other words, we have that Tv =
∑i

j=1Xj , where the Xj ’s are iid. variables as

above. So, E(Tv) = di, and by Theorem 3

P(Tv ≥ 20d2i) = P(Bin(20d2i, d−1) < i) ≤ 2e−
(19di)2

4·20di ≤ 2e−4di.

In particular, for i = ℓ, this probability is at most 2 ln−40d n. Moreover, the total number of

vertices in ∪ℓ
i=1Di is at most ddℓ−1

d−2 ≤ ln20d n. So, by Markov’s inequality, there is no vertex

at distance at most ℓ from vertex 1 that will not be informed in the first 20d2ℓ = O(ln lnn)

rounds. Moreover, ddℓ−1
d−2 = ω(ln7 n), and the proof is completed. �

4.2. The Exposure Strategy. In this section we will describe our general strategy for
determining the probable broadcast time of the randomized rumor spreading protocol. We
will denote by It the set of informed vertices and by Ut the set consisting of the uninformed
vertices, i.e., Ut = [n] \ It, at the beginning of round t. We have that I1 = {1}. We can
simulate the execution of the rumor spreading protocol as follows in two steps. First, we
choose one of the clones of vertex 1 uniformly at random, say c1. Then, we expose the
edge in the random matching whose one endpoint is c1, and pass the message to the other
endpoint, say c2. Note that this is equivalent to selecting uniformly at random a clone c′

different from c1, and joining c1 and c′ by an edge. Clearly, c2 is a clone that corresponds
to some vertex in the original graph, which now becomes informed. This completes the first
round, and I2 consists of vertex 1 and the vertex corresponding to c2.

This gradual exposure of the graph can be generalized to any other round in the following
manner. Suppose that we are in the beginning of round t + 1 ≥ 0. We will simulate the
execution of the protocol as follows in two steps.

Step 1. For each v ∈ It we choose one of its clones uniformly at random, independently for
every such vertex. We shall denote the selected clone by cv = cv(t).

Step 2. Set It+1 = It and let v ∈ It. If cv belongs to an edge in the random matching that
was exposed in one of the previous rounds, do nothing. Otherwise, choose uniformly
at random one of the remaining unmatched clones, say c, and connect it to cv by an
edge. Add the vertex corresponding to c to It+1, if it isn’t already contained in It+1.

If a clone of a vertex in Ut is matched to cv, for some v ∈ It, then that vertex becomes
informed – we denote by Nt+1 the set of those vertices. In short, Nt+1 is the set of newly
informed vertices in the t+1st round. Let us introduce some further notation regarding the
two exposure steps. At the beginning of round t+1, we denote by Pt the set of clones of the
vertices in It whose neighbors have not been exposed yet (i.e., in none of the previous rounds
the edges in the matching containing those clones were exposed). Among those, during Step 1
we choose a set At+1 ⊆ Pt of clones. Informally, At+1 contains the clones through which new
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vertices might get informed. Finally, we write Nt+1 = |Nt+1|, At+1 = |At+1| and Pt = |Pt|,
and note that P0 consists of the d clones of vertex 1.

The two steps of our exposure strategy can be also viewed as follows. In the first step we
choose according to the rule described above a random subset At+1 of Pt. Then, in Step 2,
the clones in At+1 are matched to the union of the clones in Pt and the clones corresponding
to the vertices in Ut (as, per definition, all other clones are already matched). In other words,
we consider a random perfect matching Mt+1 on the set of clones in Pt and Ut, and we will
study its combinatorial properties. In particular, the following claim relates the random
quantities in question.

Proposition 7. Let Hi,t+1 denote the number of vertices in Ut that were informed i times

in round t + 1, i.e., a vertex v is counted in Hi,t+1, if there are i clones in At+1 that are

matched to the clones of v in Mt+1. Then

Nt+1 =
d∑

i=1

Hi,t+1 ≤ eMt+1(At+1,Ut),(4.1)

It+1 = It +Nt+1 and Ut+1 = Ut −Nt+1,(4.2)

Pt+1 = Pt −At+1 − eMt+1(At+1,Pt \ At+1) +

d∑

i=1

(d− i)Hi,t+1.(4.3)

Proof. The first equality in Equation (4.1) follows directly from the definition of Hi,t+1, as
every vertex in Ut has d unmatched clones, and it becomes informed as soon as at least one
of them gets matched in Step 2 to a clone in At+1. The upper bound is also easy to see, as
the number of newly informed vertices is at most the number of edges in Mt+1 that have
one endpoint in At+1 and the other in the set of clones corresponding to the vertices in Ut.
Equation (4.2) follows immediately from the definition of It and Nt+1. Finally, to see (4.3),
note first that all clones in At+1 are excluded from Pt+1, as they are matched to other clones
in Pt or Ut; this accounts for the “−At+1” term. Moreover, all clones in Pt \ At+1 that are
contained in edges of Mt+1 with the other endpoint in At+1 are excluded from Pt+1 as well,
as the edge including them was exposed; this accounts for the the “−eMt+1(At,Pt \ At+1)”
term. Finally, for each newly informed vertex counted in Hi,t+1, i.e., which was informed i
times in round t, the number of clones counted in Pt increases by d− i. �

For future reference we prove already here a lemma that addresses the concentration
properties of At+1.

Lemma 8. For any t ≥ 1 and n ≥ 5

P

(∣∣∣At −
Pt

d

∣∣∣ ≥ Pt

d ln2 n

∣∣∣ Pt

)
≤ 2e−

Pt
3d ln4 n .

Proof. For each clone c ∈ Pt let Ic be the indicator variable for the event that c is selected
in the first step of the tth round, i.e., “Ic = 1” iff the random decisions in Step 1 are such
that c ∈ At+1 . Since each clone has probability 1/d to be selected we have E(Ic) = 1/d.
Moreover, for two distinct clones c, c′ we have that

E(IcIc′) =

{
0 , if c, c′ are clones belonging to the same v ∈ Vn

1/d2 , otherwise
≤ 1

d2
= E(Ic)E(Ic′),
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i.e., the Ic’s are negatively correlated. We infer that µ := E(At+1 | Pt) =
Pt
d , and Theorem 3

implies that the sought probability is at most

P(|At+1 − µ| ≥ µ/ ln2 n | Pt) ≤ 2 exp

(
− µ2 ln−4 n

2(µ + µ/(3 ln2 n))

)
≤ 2 exp

(
− µ

3 ln4 n

)
.

�

4.3. The Middle Phases. Let T1 be the first round where the number of informed vertices
is at least n − ln7 n, or equivalently, where UT1 ≤ ln7 n. The main accomplishment of this
section is the proof of the following lemma, which describes the likely evolution of the number
of (un)informed vertices and of Pt until t = T1.

Lemma 9. Suppose that Pt, Ut ≥ ln7 n. Abbreviate Ft = 1 − Pt
d(Pt+dUt)

. Then, uniformly

with probability at least 1− o( 1
lnn),

Pt+1 =

(
1− o

( 1

lnn

))
·
((

1− 1

d

)
Ft · Pt + dUt(Ft − F d

t )

)
,(4.4)

Ut+1 =

(
1− o

( 1

lnn

))
· F d

t · Ut.(4.5)

Proof. Let Hi,t+1 denote the number of vertices in Ut that were informed i times in round
t + 1, and recall that Proposition 7 describes the relation of the quantities Pt+1 and Ut+1

to Pt, Ut and Hi,t+1. We will show that uniformly for all t such that Pt, Ut ≥ ln7 n, with

probability 1− o( 1
ln2 n

) we have

(4.6) At+1 =

(
1 + o

( 1

lnn

)) Pt

d
,

and

(4.7) eMt+1(At+1,Pt \ At+1) =

(
1 + o

( 1

lnn

))(
1− 1

d

)
Pt(1− Ft)± ln5 n,

and that for all 1 ≤ i ≤ d

(4.8) Hi,t+1 =

(
1 + o

( 1

lnn

))
Ut ·

(
d

i

)
(1− Ft)

iF d−i
t ± ln5 n.

This proves (4.4) and (4.5) as follows. First, by using (4.1) we infer that with probability
1− o( 1

lnn) the number of informed vertices in round t+ 1 is

Nt+1 =

d∑

i=1

Hi,t+1 =

(
1 + o

( 1

lnn

))
Ut · (1− F d

t )± d ln5 n.

So, as Ut ≥ ln7 n, with probability 1− o( 1
lnn) the number of uninformed vertices at the end

of round t+ 1 is

Ut+1 = Ut −Nt+1 = Ut −
(
1 + o

( 1

lnn

))
Ut · (1− F d

t )± d ln5 n =

(
1 + o

( 1

lnn

))
F d
t Ut.

This shows (4.5). To see (4.4) recall (4.3) and note that with probability 1− o( 1
lnn)

d∑

i=1

(d− i)Hi,t+1 =

(
1 + o

( 1

lnn

))
Utd(Ft − F d

t )± d ln5 n.
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Hence, by applying (4.3) we infer that with probability 1− o( 1
lnn)

Pt+1 = Pt −At+1 − eMt+1(At,Pt \ At) +

d∑

i=1

(d− i)Hi,t+1

=

(
1 + o

( 1

lnn

))(
Pt −

Pt

d
−
(
1− 1

d

)
Pt(1− Ft) + Utd(Ft − F d

t )

)
,

and this shows (4.4).
It remains to prove (4.6)-(4.8). We start with (4.6). This is easily seen to hold, by

applying Lemma 8 and using the fact that Pt ≥ ln7 n. To see (4.7) we apply Lemma 5 with
A = At+1,B = Pt \ At+1 and C = Ut. We infer that

µ := E(eMt+1(At+1,Pt \ At+1)) =
At+1(Pt −At+1)

Pt + dUt − 1
.

Note that for sufficiently large n we have with probability 1−o( 1
lnn) that |Pt\At+1| ≥ |At+1|,

and that At+1 = ω(lnn). By using (4.6) and the definition Ft = 1− Pt
d(Pt+dUt)

we thus obtain

µ =

(
1 + o

( 1

lnn

)) (1− 1
d)P

2
t

d(Pt + dUt − 1)
=

(
1 + o

( 1

lnn

))(
1− 1

d

)
Pt(1− Ft).

If µ ≥ ln3 n, then by applying (3.5) with ε = ln−1.1 n we infer that

P(|eMt+1(At+1,Pt \ At+1)− µ| ≥ µ ln−1.1 n) = o(ln−1 n).

On the other hand, if µ ≤ ln3 n, we obtain by Markov’s inequality that

P(eMt+1(At+1,Pt \ At+1) ≥ ln5 n) = o(ln−1 n).

By combining the above statements we infer that with probability at least 1 − o( 1
lnn) we

have that eMt+1(At+1,Pt \ At+1) = (1 + o( 1
lnn))µ ± ln5 n i.e., (4.7) is proved.

The proof of (4.8) is very similar. By applying Lemma 5 with A = At+1,B = Pt \ At+1

and C = Ut we infer that

µi := E(Hi,t+1) =

(
1 + o

( 1

lnn

))
Ut ·

(
d

i

)(
At

Pt + dUt − 1

)i (
1− At

Pt + dUt − 1

)d−i

.

As with probability 1− o( 1
lnn) we have At+1 = (1 + o( 1

lnn))
Pt
d we infer that

µi =

(
1 + o

( 1

lnn

))
Ut ·

(
d

i

)
F i
t (1− Ft)

d−i.

The proof now completes with a case distinction as above, i.e., we treat the case µi ≤ ln5 n
with Markov’s inequality and the case µi ≥ ln5 n by using (3.5). �

Lemma 9 allows us now to derive probable bounds for T1.

Corollary 10. With probability 1− o(1) we have that T1 − T0 = Cd lnn+O(ln lnn), where

Cd =
1

ln(2(1 − 1
d))

− 1

d ln(1− 1
d)

.

Proof. By applying Lemma 6 we infer that at round T0 with high probability there are for
the first time at least ln7 n informed vertices, and the set of informed vertices induces a tree.
Hence, we may assume that

ln7 n ≤ IT0 ≤ 2 ln7 n and (d− 1)IT0 ≤ PT0 ≤ dIT0 .

We will use those facts in the sequel without further reference.
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Let pt and ut be given by the recursions

pt+1 =

(
1− 1

d

)
ftpt + dut(ft − fd

t ) and ut+1 = fd
t ut,

where ft = 1− pt
d(pt+dut)

, and pT0 = PT0 , uT0 = n− IT0 . As we are interested in the probable

values of Pt and Ut for t = O(lnn) we infer by applying Lemma 9 that pt = (1+ o(1))Pt and
ut = (1+ o(1))Ut for all such t, provided that Ut, Pt ≥ ln7 n. In the sequel we shall therefore
consider only the evolution of pt and ut.

Let q := 2
(
1− 1

d

)
, ε = 0.01 and t1 be the minimal t such that qt−T0 ≤ εn

ln7 n
. We will first

show that for all T0 ≤ t ≤ t1

(4.9) pt ≤ PT0 · qt−T0 and pt ≥ PT0 · qt−T0 − 3P 2
T0

· q2(t−T0)/n,

and

(4.10) ut = n− IT0 − PT0

qt−T0 − 1

d(q − 1)
± 9 · P 2

T0
q2(t−T0)/n.

We proceed by induction on t. Note that for t = T0 the statement trivially holds. In order
to perform the induction step (t → t+ 1) we will need some facts. First, let x = 1− ft and
note that

ft − fd
t = (1− x)− (1− x)d ≤ (d− 1)x = (d− 1)

pt
d(pt + dut)

≤ d− 1

d2
pt
ut

.

So, we readily obtain the upper bound for pt in (4.9) by using the the recursion for pt as
follows.

pt+1 ≤
(
1− 1

d

)
ftpt + dut ·

d− 1

d2
pt
ut

≤ 2

(
1− 1

d

)
pt = qpt ⇒ pt+1 ≤ PT0 · qt+1−T0 .

To see the lower bound for pt, note first that the induction hypothesis, together with the
fact that qt−T0 ≤ εn

ln7 n
imply that pt

ut
< 1. Thus, 1

1+
pt
dut

≥ 1 − pt
dut

. A similar calculation as

above and by using the fact (1− x)d ≤ 1− dx+
(d
2

)
x2 for x ≥ 0 reveals that

ft − fd
t ≥ (d− 1)x−

(
d

2

)
x2 ≥ d− 1

d

pt
pt + dut

− d2

2

p2t
d2(pt + dut)2

≥ d− 1

d2
pt

ut(1 +
pt
dut

)
− p2t

2d2u2t
≥ d− 1

d2
pt
ut

− 3p2t
2d2u2t

.

By using again the recursion for pt we infer that

pt+1 ≥
(
1− 1

d

)
ftpt + dut ·

(
d− 1

d2
pt
ut

− 3p2t
2d2u2t

)
≥ qpt −

2

d

p2t
ut

.

Note that the induction hypothesis and the fact qt−T0 ≤ εn
ln7 n

imply that ut ≥ n/2. So,

pt+1 ≥ qpt −
4

dn
p2t ≥ PT0q

t+1−T0 −
3P 2

T0
q2(t−T0)+1

n
− 4

dn

(
PT0q

t−T0
)2

= PT0q
t+1−T0 −

P 2
T0
q2(t−T0+1)

n

(
3

q
+

4

dq2

)
≥ PT0q

t+1−T0 − 3
P 2
T0
q2(t−T0+1)

n
.

This proves the lower bound for pt in (4.9). Next we prove the bounds for ut+1. Note that

ut+1

ut
=

(
1− pt

d(pt + dut)

)d

≥ 1− pt
pt + dut

≥ 1− pt
dut

⇒ ut+1 ≥ ut −
pt
d
.
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A similar calculation using the fact (1− x)d ≤ 1− dx+
(d
2

)
x2 for x ≥ 0 reveals that

ut+1

ut
≤ 1− pt

pt + dut
+

(
d

2

)
p2t

d2(pt + dut)2
≤ 1− pt

dut
+

3

4

p2t
u2t

.

Recall that the induction hypothesis guarantees ut ≥ n/2. The above facts together with
the bounds for pt imply after a straightforward but lengthy calculation (4.10). We omit the
details.

The above discussion settles the growth of pt and ut up to the time t1. Note that t1 =
ln(2(1− 1

d))
−1 lnn+Θ(ln lnn). In order to deal with t > t1 let us first make two important

observations. First, note that at t1 we have that

(4.11)
pt1
ut1

= Ω(1).

Let us next consider the ratio rt := pt/ut. Note that ft = 1− pt
d(pt+dut)

= 1− 1
d(1+d/rt)

. The

recursions for pt and ut imply that

rt+1 =

(
1− 1

d

)
f−d+1
t rt + d(f−d+1

t − 1) ⇒ rt+1

rt
=

(
1− 1

d

)
f−d+1
t +

d

rt
(f−d+1

t − 1).

Consider the function

g(x) =

(
1− 1

d
+

d

x

)(
1− 1

d(1 + d/x)

)−d+1

− d

x
,

and note that rt+1

rt
= g(rt). A straightforward calculation shows that limx→0 g(x) = 2(1− 1

d ).

In the sequel we will argue that g is monotone increasing. This implies rt+1

rt
≥ g(0) ≥ 4

3 , and

so we have for any t′ > 0

(4.12) rt+t′ ≥ rt

(
4

3

)t′

⇒ pt+t′ ≥
(
4

3

)t′

ut+t′ .

This fact will become very useful later on. To see why g is increasing, note that

g′(x) =
−T (d2 + x) + dx+ d2

x2 + xd
, where T =

(
1− 1

d(1 + d/x)

)−d+1

.

Suppose that there is an x0 ≥ 0 such that g′(x0) = 0. Then −T + d2 = x0(T − d). However,
we always have 1 ≤ T < d. Thus, the right-hand side of the above equation is < 0, while
the left-hand side is > 0. We infer that there is no such x0, and therefore the sign of g′(x)
equals the sign of g′(0). As the latter is easily seen to be positive, this concludes the proof
of the monotonicity of g.

Let t2 be the minimal t such that pt2 ≥ ut2 ln
2 n. The Equations (4.11) and (4.12)

guarantee that t2 = t1 + O(ln lnn), and moreover that for any t > t2 such that ut > 0 we
have pt ≥ ut ln

2 n ≥ 1. Under these conditions note that

fd
t =

(
1− pt

d(pt + dut)

)d

=
(
1 +O(ln−2 n)

)(
1− 1

d

)d

.

Thus, for any t such that t = t2 +O(lnn) we have that

ut = (1 + o(1)) ·
(
1− 1

d

)d(t−t2)

ut2 .
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Recall that T1 is the first t such that UT1 ≤ ln7 n. As ut2 ≤ n, we readily obtain that T1 ≤
t1 +O(ln lnn)− 1

d ln((1− 1
d
))
lnn = Cd lnn+O(ln lnn). To see the corresponding lower bound

for T1, note that as long as pt ≥ 1 we always have

ut+1 ≥
(
1− 1

d

)d

ut.

The proof completes with the fact ut1 = Θ(n). �

4.4. The Final Phase. Let T1 be the first time such that the number of uninformed vertices
drops below ln7 n. In the previous section we argued that T1 = Cd lnn+O(ln lnn), where Cd

is given in Corollary 10. The main aim of this section is to prove that the broadcasting of the
message completes after additional O((ln lnn)2) rounds. This is shown in the next lemma.

Lemma 11. With probability 1− o(1) we have T − T1 = O((ln lnn)2).

Proof. Before we show the claim let us prove a auxiliary fact. Let S be any subset of the

vertices of G̃(n, d) of size at most ln7 n. We will show that with probability 1− o(1)

e(S) < 1.1|S|.

To see the claim, suppose that there is an S such that e(S) ≥ 1.1s, where we set s = |S|.
There are

(n
s

)
≤ (ens )

s choices for the set S. Moreover, there are at most s2.2s ways to choose

1.1s edges in S. Finally, the probability that the chosen edges are in G̃(n, d) is
Mdn−2.2s

Mdn
,

where Mx denotes the number of perfect matchings on x vertices. Using (3.8) we infer that

P(∃S : e(S) ≥ 1.1|S|) ≤ (1 + o(1))
(en

s

)s
· s2.2s · edn/2

(dn)dn/2
(dn− 2.2s)dn/2−1.1s

edn/2−1.1s

≤ (1 + o(1))(e2.1s1.2n)s · (dn)−1.1s.

This expression is n−Ω(1) for any s ≤ ln7 n; this concludes the proof of the auxiliary claim.

In particular, G̃(n, d) is such that any set S of at most ln7 n vertices satisfies with room to
spare

e(S, Vn \ S) ≥ (d− 2.2)s ≥ ds/4.

With this fact at hand it is routine to complete the proof of the lemma. Indeed, let S
be the set of uninformed vertices at some point in time after T1. So, |S| ≤ ln7 n. As
e(S, Vn \ S) ≥ ds/4, we know that at least s/4 vertices in S have at least one neighbor in
Vn \ S. More precisely, there is a set S′ ⊆ S such that |S′| ≥ s/4 and for all v ∈ S′ there is
at least one v′ ∈ Vn \ S such that v and v′ are joined by an edge.

Denote by B the event that after 10 ln lnn rounds there is a v ∈ S′ that was not informed
by v′. The probability for this event is at most

|S′| ·
(
1− 1

d

)10 ln lnn
(|S′|≤ln7 n)

= o(ln−1 n).

So, after 10 ln lnn rounds the new set of uninformed vertices has size at most |S \S′| ≤ 3
4 |S|.

Iterating the above argument O(ln lnn) times finally completes the proof. �
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5. Randomized broadcasting on expanding graphs: proof of Theorem 2

In this section we prove Theorem 2, thus bounding the broadcast time on connected
(n, d, λ) graphs with λ = O(

√
d). In order to avoid any confusion we stress that this condition

is interpreted as follows: there is a C > 0 such that for any n sufficiently large λ ≤ C
√
d.

We will use the main result from [14]. Before we state it, let us first introduce the notion
of a (p, ε)-typical graph. A graph G = G(V,E) on n vertices is called (p, ε)-typical, if the
following three conditions are satisfied:

• For any S ⊆ V with |S| ≥ ε2n, there is a set XS ⊆ V \ S with |XS | ≤ 8n
lnn such that

∀v ∈ (V \ S) \XS : dS(v) = (1± ε)p|S|.
• For any S ⊆ V with |S| ≤ ε2n, there is a set XS ⊆ V \S with |XS | ≤ ε|S| such that

∀v ∈ (V \ S) \XS : dS(v) ≤ εpn.

• For all S ⊆ V we have

e(S, V \ S) = |S|(n − |S|)p
(
1± 8

√
ε
)
.

The following appears in [14].

Lemma 12. Let ε = ε(n) be a positive real-valued function such that ε(n) → 0, as n → ∞,

but ε ≥ ln−1/9 n. Let p ≥ 1
ε2

lnn
n . If G is a (p, ε)-typical graph and v ∈ V , then with

probability 1− o(1)

|T (G, v) − (log2 n+ lnn)| ≤ 3ε1/3 lnn.

We will show that an (n, d, λ) graph is (p, ε)-typical with p = d/n and ε ≥ ln1/9 n. In
particular, we will prove the first two conditions by sampling uniformly at random a vertex
in V , and then showing with Chebyschev’s inequality that its degree in a given set S is
concentrated around its expected value which, as we shall see, equals d|S|/n.

Let A be the adjacency matrix of G and let e1, . . . , en be an orthonormal basis of Rn

consisting of the eigenvectors of A, ordered according to the moduli of the corresponding
eigenvalues λ1, . . . , λn. Since G is d-regular and connected, we have e1 := 1√

n
[1, . . . , 1]T (cf.

Proposition 2.10 in [20]) and the corresponding eigenvalue is d. For the sake of notational
convenience, we will fix an ordering on V , namely v1, . . . , vn and we will assume that the
ith entry of each vector corresponds to vi.

Let S be an arbitrary subset of V and let χS be the characteristic vector of S, that
is, the vector indexed by V where the elements corresponding to the vertices of S are
equal to 1 and the remaining ones are equal to 0. We set dS := AχS and note that
dS = [dS(v1), . . . , dS(vn)]

T .
Let v be a vertex in V chosen uniformly at random. Thus E(dS(v)) = 1

n

∑
u∈V dS(u).

Note that this sum is just 〈dS ,e1〉√
n

, where 〈·, ·〉 denotes the usual dot product in R
n. On the

other hand, we can express dS = AχS also by taking the expansion of χS with respect to

the basis e1, . . . , en and then multiplying by A. Note that 〈χS , e1〉e1 = |S|
n [1, . . . , 1]T . Thus

χS =
|S|
n

[1, . . . , 1]T +
∑

i≥2

〈χS , ei〉ei.

Therefore

AχS =
d|S|
n

[1, . . . , 1]T +
∑

i≥2

λi〈χS , ei〉ei.
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Since e1 is orthogonal to the vectors e2, . . . , en, we have

〈dS , e1〉 = 〈AχS , e1〉 =
d|S|
n

√
n,

implying that

d̄ := E(dS(v)) =
d|S|
n

.

In the following we will bound the variance of dS(v). Write Var(dS(v)) = D/n, where
D :=

∑
u∈V d2S(u)− nd̄2. But

∑
u∈V d2S(u) = ‖dS‖2. By Pythagoras’ Theorem

‖dS‖2 =
n∑

i=1

〈dS , ei〉2 = nd̄2 +
n∑

i=2

〈dS , ei〉2.

Therefore, D =
∑n

i=2〈dS , ei〉2. To bound the latter sum note that

n∑

i=2

〈dS , ei〉2 =
n∑

i=2

〈AχS , ei〉2 =
n∑

i=2

〈χS , Aei〉2 =
n∑

i=2

λ2
i 〈χS , ei〉2

≤ λ2
n∑

i=2

〈χS , ei〉2 = λ2
(
‖χS‖2 − 〈χS , e1〉2

)
= λ2

(
|S| − |S|2

n

)
= λ2|S|

(
1− |S|

n

)
.

Thus

Var(dS(v)) =
D

n
≤ λ2 |S|

n

(
1− |S|

n

)
.

Now we are ready to derive the first two conditions of the definition of (d/n, ε)-typicality,

when λ ≤ C
√
d.

• Let S be such that |S| ≥ ε2n. Then the size of XS is bounded from above by
nP(|dS(v) − d̄| > εd̄). We bound this probability with Chebyschev’s inequality.
Indeed,

P(|dS(v)− d̄| > εd̄) ≤ Var(dS(v))

ε2d̄2
≤ λ2|S|/n

ε2d̄2
=

λ2

dε2d̄
≤ nC2

ε2d|S| ≤
C2

ε4d
.

By the choice of ε, the above bound is at most 8/ ln n and therefore |XS | ≤ 8n/ lnn.
• Now let |S| ≤ ε2n. Thus d̄ ≤ dε2. Here the size of XS is bounded from above by
nP(dS(v) > dε). Since for n large enough dε−dε2 > dε/2, this probability is at most
P(dS(v) − d̄ > dε/2). Again, Chebyschev’s inequality implies

P(dS(v) − d̄ > dε/2) ≤ 4Var(dS(v))

ε2d2
≤ 4λ2|S|/n

ε2d2
≤ 4λ2ε2

ε2d2
=

4λ2

d2
≤ 4C2

d
.

Thus |XS | ≤ 4C2n
d . We want to deduce that this is at most ε|S|. We may assume that

|S| ≥ dε, as otherwise what we are aiming at holds trivially. So, it suffices to deduce

that 4C2n
d ≤ dε. But this holds by our assumption d ≥

√
4C2n ln1/9 n ≥

√
4C2ε−1n.

The third condition in the definition of (d/n, ε)-typicality is a standard property of (n, d, λ)
graphs.

Theorem 13 (Theorem 2.11 in [20]). Let G = G(V,E) be an (n, d, λ) graph. Then for any

two subsets U,W ⊂ V we have

∣∣∣∣e(U,W )− d|U ||W |
n

∣∣∣∣ ≤ λ

√
|U ||W |

(
1− |U |

n

)(
1− |W |

n

)
.
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We set U = S and W = V \ S. Then the above implies

∣∣∣∣e(S, V \ S)− d|S|(n − |S|)
n

∣∣∣∣ ≤ λ

√
|S|(n − |S|)

(
1− |S|

n

)(
1− n− |S|

n

)

=
λ|S|(n− |S|)

n
=

λ

d

d|S|(n − |S|)
n

≤ C√
d

d|S|(n − |S|)
n

.

Since d ≥
√
4C2ε−1n, we have C√

d
≤ ε1/4

2
√
n
. But ε ≥ ln−1/9 n and, therefore, the latter bound

is at most 8ε1/2, as required to satisfy the third condition.

Acknowledgment We would like to thank Colin McDiarmid for suggesting the use of his
concentration inequality (Theorem 4), which greatly facilitated our proofs.

References

[1] E.A. Bender and E.R. Canfield, The asymptotic number of labelled graphs with given degree sequences,
J. Combin. Theory Ser. A 24 (1978), 296–307.

[2] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,
Europ. J. Combin. 1 (1980), 311–316.

[3] S. Botros and S. Waterhouse, Search in jxta and other distributed networks, In Proceedings of the 1st
IEEE International Conference on Peer-to-Peer Computing (P2P ’01), 2001, pp. 30–35.
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