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ABSTRACT. The K,-free process starts with the empty graph on n vertices and at each
step adds a new edge chosen uniformly at random from all remaining edges that do not
complete a copy of K4. Let G be the random maximal Ky-free graph obtained at the
end of the process. We show that for some positive constant C, with high probability as
n — 0o, the maximum degree in G is at most Cn3/®<{/logn. This resolves a conjecture
of Bohman and Keevash for the Ky-free process and improves on previous bounds
obtained by Bollobas and Riordan and by Osthus and Taraz. Combined with results
of Bohman and Keevash this shows that with high probability G has ©(n®/>/logn)
edges and is ‘nearly regular’, i.e., every vertex has degree ©(n3/5¢/logn). This answers
a question of Erdds, Suen and Winkler for the K4-free process. We furthermore deduce
an additional structural property: we show that whp the independence number of
G is at least Q(n?/®(logn)*/®/loglogn), which matches an upper bound obtained by
Bohman up to a factor of O(loglogn). Our analysis of the K,-free process also yields
a new result in Ramsey theory: for a special case of a well-studied function introduced
by Erdos and Rogers we slightly improve the best known upper bound.

1 Introduction

We consider the Ky-free process. This is the random sequence of graphs defined by starting with
an empty graph on n vertices and then in each step adding a new edge chosen uniformly at random
from all remaining edges that do not complete a copy of K4. The process terminates with a maximal
K-free graph on n vertices, and we are interested in the typical structural properties of the resulting
graph as n tends to infinity. In this paper our main focus is on the final number of edges as well as
the degree of each vertex. As usual, we say that an event holds with high probability, or whp, if it
holds with probability 1 — o(1) as n — oo.

In the H-free process one forbids the appearance of a copy of some fixed graph H, instead of
forbidding a K. This process was suggested by Bollobas and Erdés [4] at a conference in 1990, as a
way to generate a ‘natural’ probability distribution on the set of maximal H-free graphs. It was first
described in print in 1995 by Erdés, Suen and Winkler [I0], who asked how many edges the final
graph typically has. Even earlier results of Ruciniski and Wormald [23] imply that for H = K 441,
where d > 0 is fixed, the K 441-free process whp ends with [nd/2| edges. Two other special cases
were examined by several researchers: H = K3 was first studied by Erdds, Suen and Winkler [10],
and H = K, by Bollobas and Riordan [5] and by Osthus and Taraz [2I]. Each of them determined
the final number of edges up to logarithmic factors. Only in a recent breakthrough was Bohman [2]
able to close the gap for the K3-free process by showing that it whp ends with @(n3/ 2/log n) edges,
thereby proving a conjecture of Spencer [25]. He went on to analyse the K4-free process, but, despite
his substantial improvements, did not obtain matching lower and upper bounds for the final number
of edges.

The general H-free process was first considered independently by Bollobds and Riordan [5] and
by Osthus and Taraz [2I]. For H that satisfy a certain density condition (strictly 2-balanced),
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Osthus and Taraz determined the typical number of edges in the final graph of the H-free process
up to logarithmic factors. Under the additional assumption that H is regular, Wolfovitz [31] later
slightly improved the lower bound (for the expected final number of edges). Recently Bohman and
Keevash [3] proved that if H is strictly 2-balanced, then for some C' > 0 the graph generated by
the H-free process has whp at least CnQ_(”H_2)/(5H_1)(log n)l/(eH_l) edges, which they conjectured
to be tight up to the constant (in fact, they conjectured that the maximum degree is at most
C'nt=u=2)/(en=1)(log n)'/(¢n=1) for some C’ > 0). As one can see, the typical number of edges
in the final graph of the H-free process has attracted a lot of attention, and for a large class of
graphs H (including cliques Ky and cycles Cy of arbitrary fixed size) interesting bounds are known.
On the other hand, only for the special cases H = K3 and H = K 411 has the question of Erdds,
Suen and Winkler [7] been answered so far, i.e., the exact order of magnitude been determined. It
is an intriguing problem to develop new upper bounds on the number of steps of the H-free process.

The analysis of the H-free process has also produced new results for certain Ramsey and Turan
type problems, which are two central topics in extremal combinatorics. In [3], BI] new lower bounds
for the Turdn numbers of certain bipartite graphs were obtained, e.g. for H = K, , with r > 5. It
is notable that Bohman’s analysis of the Kjs-free process [2] gives a lower bound for the Ramsey
number R(3,t), which matches (up to constants) the celebrated result of Kim [I8]. The subsequent
analysis of the H-free process [2, [3] has e.g. also improved the best known lower bounds for the off-
diagonal Ramsey numbers R(s,t) by some logarithmic factor for s > 4. One of the main ingredients
for the above Ramsey results is an upper bound on the independence number of the H-free process
for a certain class of graphs H. Although it is not mentioned in [3], combining an easy consequence
of Turén’s theorem [28] with the results of Osthus and Taraz [21] gives, up to logarithmic factors,
matching lower bounds for the independence number. So far, only for the special case H = Kj is
the bound obtained in [2] known to be best possible (up to constants) for the H-free process, and
it would be interesting to reduce this gap for other graphs.

Nowadays, the H-free process is also studied as a model of independent interest. For H satisfying
a certain density condition (strictly 2-balanced), the early evolution of various graph parameters,
including the degree and the number of small subgraphs, has been investigated in [3, B0, [32].
These results suggest that, perhaps surprisingly, during this initial phase the graph produced by
the H-free process is very similar to the uniform random graph with the same number of edges.
The behaviour of the H-free process in later steps is not well understood, and so far only some
preliminary results [12, 29] are known. For example, in [29] it was shown that whp very dense
subgraphs never appear in the H-free process. This motivates the continued investigation of certain
structural properties, e.g. the degree of each vertex, in the later evolution of the H-free process.

1.1 Main result

In this paper we resolve the conjecture of Bohman and Keevash [3] for the K,-free process: we
prove that whp the maximum degree is indeed O(n%/° {/logn).

Theorem 1.1. There exists C' > 0 such that with high probability the mazimum degree in the graph
generated by the K,-free process is at most Cn3/5/logn.

This improves the upper bounds by Bollobas and Riordan [5] and by Osthus and Taraz [21], who
proved that the maximum degree is whp at most O(n®°logn) and O(n®/°\/logn), respectively.
In fact, up to the constant our upper bound is best possible, since the results of Bohman and
Keevash [3] imply that for some ¢ > 0, whp the minimum degree is at least en®/® ¢log n. Putting



things together, this shows that the K4-free process produces whp a ‘nearly regular’ graph, i.e., one
in which every vertex has degree @(n3/ > logn). In particular, this answers a question of Erdés,
Suen and Winkler for the Ky-free process (see e.g. [7]): whp the final graph has ©(n®/°{/logn)
edges.

Furthermore, we obtain a new lower bound on the independence number of the H-free process for
the special case H = K4. To this end we use a result of Shearer [24], which states that for s > 4,
every K-free graph on n vertices with maximum degree d contains an independent set of size at

logd _ .
least cn 75 2 logd for d large enough, where ¢ = ¢(s) is a constant.

Corollary 1.2. There exists ¢ > 0 such that with high probability the independence number of the
graph generated by the K4-free process is at least cn?/®(logn)*/®/loglogn.

Up to the O(loglogn) factor our lower bound is best possible, since Bohman [2] showed that for
some C' > 0, whp the independence number is at most Cn?/ °(log n)4/ 5,

Our analysis of the K4-free process also produces a new result in Ramsey theory. Given integers
2<r<s<mn,let f(G) denote the maximum cardinality of a subset of vertices of G that contains
no copy of K,, and define f, s(n) := min f,(G), where the minimum is taken over all K-free graphs
on n vertices. This function was introduced in 1962 by Erdés and Rogers [11], and further examined
by Bollobds and Hind [6], Krivelevich [19] 20], Sudakov [26] 27] and Dudek and Rddl [8]. For more
details we refer to the recent survey [9]; here we just remark that the problem of determining f, s(n)
extends that of determining Ramsey numbers. As we shall see, our proof of Theorem [L.T] gives the
following new estimate for the special case f3 4(n).

Theorem 1.3. There exists C > 0 such that f34(n) < Cn3/5Togn for every n > 2.

This is a slight improvement on the previously best upper bound, f34(n) = O(n3/ ®/logn), which
was established by Krivelevich [19] in 1995 by carefully deleting edges from the binomial random
graph G, p, where the edge density p is suitably chosen.

1.2 Techniques

To prove Theorem [L.1] there are several difficulties we need to overcome. First of all, the results of
Bohman [2] as well as Bohman and Keevash [3] only allow us to ‘control’ the Ky-free process during
the initial m steps, where m is n%/ 5/logn times some small constant; the behaviour in later steps
is so far not well understood. To overcome this issue, we prove that already after the first m steps
whp every large set of vertices contains a triangle. Because the neighbourhood of every vertex has
to be triangle free, this indeed gives an upper bound on the maximum degree in the final graph of
the Ky4-free process. For the binomial random graph G, ;, such results can be derived routinely, e.g.
using Janson’s inequality [14] together with a union bound argument. But in the Kj-free process
there is a complicated dependency among the edges, which makes the use of standard tools difficult
(Bollobas and Riordan [5] and Osthus and Taraz [21] apply correlation inequalities and concentration
results in a sophisticated way, but at the cost of obtaining asymptotically suboptimal bounds on
the maximum degree). To overcome this main technical challenge, we introduce a variant of the
differential equation method [3], 33} [34] which might be of independent interest. Roughly speaking,
in the K4-free process it allows us to ‘control’ certain subgraph counts in every large subset of the
vertices. As usual for applications of the differential equation method, we need to ‘control’ the
step-by-step changes of our random variables, which introduces additional technical difficulties. To
solve one of these issues we use a tool that may also be of independent interest: we essentially show



that a slightly weaker version of the so-called Deletion Lemma by Rodl and Rucinski [17, 22] applies
to the K4-free process (and to the more general H-free process considered in [3]).

It is important to note that our method is not a simple refinement of Bohman’s argument [2] for
bounding the maximum degree in the K3-free process or the independence number of the Ky-free
process. Whereas Bohman shows that every very large subset of the vertices contains at least
one edge, we study the combinatorial structure much more precisely in order to ‘control’ various
subgraph counts in every such large set. Our ideas also yield a substantially improved version of
the variant of the Differential Equation Method proposed by Bohman and Keevash in [3], which we
believe is easier to apply in new contexts. For the sake of simplicity and clarity of presentation, we
have made no attempt to optimize the constants obtained in our proof, and we also omit floor and
ceiling signs whenever these are not crucial.

1.3 Organization of the paper

In the next section we introduce some notation and briefly review properties of the K -free process.
Section Bl is devoted to the proof of Theorems [[L1] and [[L3l The argument is simple, but relies on
a rather involved probabilistic statement, whose proof is deferred to Section [6l Next, in Section (]
we collect various properties of the K4-free process based on density considerations. Afterwards, in
Section [B] we present a variant of the differential equation method which allows us to track several
variables in every subset of a certain size. We postpone some details of the proof to the appendix,
where we also state an improved version of the differential equation method presented in [3]. In
Section [6] we give the proof of our main technical result. Our argument relies on two combinatorial
statements which are proved in Section [7l and Section [§ using the differential equation method and
density considerations.

2 The K,-free process: preliminaries and notation

In this section we introduce some notation and briefly review properties of the K4-free process
needed to prove our main result. We closely follow [3] and the reader familiar with the results of
Bohman and Keevash may wish to skip this section.

2.1 Terminology and notation

Let G(i) denote the graph with vertex set [n] = {1,...,n} after ¢ steps of the K -free process. Its
edge set E(i) contains i edges; we partition the remaining non-edges ([g}) \ E(7) into two sets, O(4)
and C(i), which we call open and closed pairs, respectively. We say that a pair uv of vertices is
closed in G(i) if G(i) U {uv} contains a copy of K4. Observe that by definition the Ky-free process
always chooses the next edge e;;1 uniformly at random from O(%). In addition, for uv € O(i) UC(i)
we write Cy,(7) for the set of pairs zy € O(i) such that adding uv and zy to G(i) creates a copy of
K, containing both uv and xy. In particular, the pair uv € O(i) would become closed, i.e., belong
to C(i+ 1), if at step ¢ + 1 the Ky-free process chooses e;41 from Cy, (7).

The neighbourhood of a vertex v in G(i) is denoted by I';(v), where we usually omit the subscript
and just write I'(v) if the corresponding i is clear from the context. With a given graph in mind,
for two vertex sets A, B we write e(A4, B) for the number of edges that have one endpoint in A and
the other in B, where an edge with both ends in A N B is counted once. Furthermore, given a set



S and an integer k > 0, we write (‘2) for the set of all k-element subsets of S.

For notational convenience we use the symbol + in two different ways, following [2, B]. First, we
denote by a % b the interval {a + zb : —1 < z < 1}, where multiple occurrences of £ are treated
independently. For brevity we also use the convention that x = a £ b means « € a +b. Second,
given a label i, expressions containing +; are an abbreviation for two different statements: one
with every =4; replaced by + and F; by —, and the other with every +; replaced by — and F; by
+. For example, 21%2 = g™ £ T2 is a shorthand for four separate statements, of which one is
2T~ = aT£bT. Asusual, whenever there is no danger of confusion, we omit those labels for brevity.

2.2 Parameters, functions and constants

Following [3], we introduce constants e, u and W, which we fix below, and set

pi=n"2/5 tmax = v/ logn and m = n>ptmax = un’’® Ylogn. (1)
We analyse the Ky-free process for the first m steps. For each step i we define t = t(i) := i/(n?p),
where, for the sake of brevity, we simply write t if the corresponding i is clear from the context.
Note that the edge-density of G(i) is roughly 2¢p. It might be more natural to use a different
parametrization (to remove the factor of two), however, as we rely on some previous results of
Bohman and Keevash [3] we follow their convention. Similar as in [2] [3] we introduce the functions

q(t) == e 1607 and ft) = e +OW, (2)

We now fix the constants for the rest of the paper: we choose W sufficiently large and then € and
w small enough such that, in addition to the constraints implicit in [3] for H = K4, we have

W > 500, e < 1/1000 and QW pd < e. (3)

Since the additional constraints in [3] only depend on H = K4, we see that ¢, u and W are absolute
constants. So, for every 0 <t < tp.x, we readily obtain the following inequalities for n large enough:

1>q(t)>n? and 1< f(t)g(t) < f(t) <n. (4)

2.3 Results of Bohman and Keevash

Using Wormald’s differential equation method [33] [34], Bohman and Keevash [3] track a collection
of random variables throughout the first m steps of the Ky-free process (in fact, their results hold
for the more general H-free process, where H satisfies a certain density condition). To this end
they introduce a ‘good’ event G; for every step ¢, which intuitively ensures that the K4-free process
has not terminated up to step ¢ and guarantees that certain random variables are essentially tightly
concentrated during the first ¢ steps. For our application the key properties of G; are estimates
on the number of open pairs as well as bounds for the degree and codegree. So, for the reader’s
convenience we state the results of Bohman and Keevash [3] here in a simplified form.

Theorem 2.1. [3] Define m = m(n), p = p(n) and tmax = tmax(n) as in [d). Set s, := pl/i2—e

and t = t(i) :=i/(n®p). Furthermore, define q(t) and f(t) as in @). Let G; denote the event that
for every 0 <i < j, in G(i) we have |O(t)| > 0, and for all distinct vertices u,v € [n] we have

0(0)] = (1 £3f(t)/se) a(t)n?/2, (5)
ITi(u)] < 3nptmax  and (6)
ITi(u) N Ti(v)] < (log n)np”. (7)



Let J; denote the event that for every 0 < i < j, for all pairs uwv € O(i) UC(i) and all distinct pairs
u'v' 0"V € O(i) we have

[Cu(@)] = (40t'q(t) £9f(t)/sc) p~"  and (8)
|Curer (i) N Curor (3)] < O (9)

Then the event G,, N T holds with high probability in the K4-free process.

The definition of the event G; used in [3] is more complicated; however, the simpler version given
above suffices for our purposes. In the following we briefly outline how the previous theorem relates
to the results of Bohman and Keevash [3]. After some simple estimates, the bounds for |O(3)|, |T';(u)]
follow directly from their Theorem 1.4 (see also the examples in Section 2 of [3]). Using p*n = w(1),
their Theorem 1.4 also implies the upper bound on the codegree (analogous to Corollary 1.5 in [3]).
Similarly, the remaining estimates follow from Corollary 6.2 and Lemma 8.4 in [3]. (As noted in
Section 1.5 of [3], their high probability events in fact hold with probability at least 1 — n~0). So
there is no problem in taking a union bound over all steps i as well as pairs uv and u'v',u"v".)
Finally, we point out that our definition of Cy, (i) is different from that in [3], so there is a factor 2
difference in the formulas (we use unordered instead of ordered pairs).

3 Bounding the maximum degree in the K,-free process

This section is devoted to the proof of our main result, namely that in the Kj4-free process the
maximum degree is whp at most O(n3/°/logn). We first state our main technical result and then
show how it implies Theorem [Tl and an upper bound on f34(n). Set

0= ~000” 7 := max {ﬁ, 150} and U = YNPlmax = ’yun3/5 5 /—log . (10)

Recall that an open pair has not yet been added to the graph produced by the K4-free process, but
may be added in the next step. Intuitively, the following theorem thus states that in the Ky-free
process every large vertex set U C [n] is ‘close’ to containing a triangle: it contains many open pairs
which would complete a copy of a triangle in U if they were added to the graph generated by the
Ky-free process.

Theorem 3.1. Define m = m(n) and p = p(n) as in [A), and 6 and u = u(n) as in ([0). Set
t = t(i) := i/(n*p) and define q(t) as in @). Let T; denote the event that for all n*p < i < j,
in G(i) every set U C [n] of size u contains at least du®(tp)2q(t) open pairs which would complete
a copy of a triangle in U if they were added to G(i). Then Ty, holds with high probability in the
Ky-free process.

As the proof of this result is rather involved, we defer it to Section [6l Let us briefly sketch the
main ideas for deducing Theorem [[.1] from Theorem B.Il Observe that in the graph produced by
the K4-free process the neighbourhood of every vertex has to be triangle-free. In order to bound
the maximum degree by v = Cn®/°/logn, where C' := ~u, it thus suffices to show that whp every
set of u vertices contains a triangle. Consider a fixed vertex set U C [n] of size u. Intuitively,
Theorem Bl implies that (after some initial steps) each step creates with reasonable probability a
triangle in U. This suggests that with very high probability U indeed contains a triangle after the
first m steps, which essentially suffices to complete the proof (using a union bound argument).



Proof of Theorem [I1. As mentioned above, we prove the theorem with C' := yu. Observe that
indeed u = Cn®/5/logn. Given U C [n] and i < m, let &; denote the event that up to step 4, the
set U is triangle-free in the Ky-free process. In addition, let &,, denote the event that there exists a
vertex set U C [n] of size u for which £y, holds. Furthermore, for every i < m we define the event
H; := G;N7T;. Note that H; depends only on the first i steps of the K -free process and furthermore
that H;4+1 implies ‘H;. Now, to complete the proof of the theorem it suffices to show

P[E N Hyn] = o(1). (11)

Indeed, by Theorems 2] and B.1] the event H,,, holds with high probability and thus (II)) implies
PlEn] = o(1). So, with high probability, every set of u vertices contains a triangle and thus the
maximum degree in the Ky-free process is bounded by u = Cn3/5¥/Iog n.

In the following we prove (II)) using a union bound argument. Fix U C [n| with |U| = u, and
let Ty7(2) € O(i) denote the open pairs after i steps which would complete at least one copy of a
triangle in U if they were added to G(i). Then

]P’[EU,m N Hm] = P[EU,an N 'anp] H ]P’[EU,Z'+1 NHit ‘ 5U7,' N HZ]
n2p<i<m-—1

< H P[ei—l—l ¢ TU(i) | 5U,i N 'Hz]

n2p<i<m-—1

(12)

Note that &y,; N H; depends only on the first ¢ steps of the process, so given this, the next edge
ei+1 is chosen uniformly at random from O(). Furthermore, G; implies (Bl), which using () implies
q(t) > |0(i)|/n? for n?p < i < m. Hence, writing t = i/(n?p) as usual, on H; = G; N T; we have

32‘2 3,2

(Tu ()] > 6’ (tp)*q(t) = 6=—q(t) = =[O, (13)

As the process fails to choose the next edge e;+1 from Ty (i) with probability 1 — [Ty (2)]/|O(3)],
from (12 and ([I3]) as well as the inequality 1 —z < e™* we deduce that

3

U 9 5 udm?
PlEum NHim] < exp —5$ Z i p <exp {_Z 5 } . (14)

n2p<i<m-—1
Substituting the definitions of m, u, p and tyax into (I4]) we see that
2 5 5
4

7?0 5 55 2l 2
]P)[gUml N %m] < exp {_Tn p tmaxu} = exXp {_ Ulogn} <n ua

where the last inequality follows from the definition of v in ([I0). Finally, taking the union bound
over all choices of U C [n] with |U| = u implies (1), and, as explained, this completes the proof. [

Clearly, Theorem [[3lis an immediate consequence of the above proof (to prove f3 4(n) < z it suffices
to construct an Ky-free graph on n vertices such that every subset of z vertices contains a copy
of K3). Note that we did not use that y; holds when establishing (I3]). With this observation
we can rewrite the proof (using stochastic domination and standard Chernoff bounds) in order to
show that whp every subset U C [n] with |U| = u contains not only one, but at least Q(u?(ptmax)?)
copies of K3; we leave the details to the interested reader.



4 Basic density arguments

In this section we collect some useful properties of the Ky-free process (in fact, these also hold for
the more general H-free process considered in [3]). Throughout we consider m and p as defined in
() and € as chosen in (3.

4.1 The occurrence of a set of edges

Essentially all results in this section are based on the following lemma by Bohman and Keevash [3],
which also holds for the H-free process whenever H is strictly 2-balanced. Intuitively, it states that
the probability that some set of edges is present in G(m) is ‘comparable’ to that in the binomial
model G, ,, where m and p are defined as in (1) and € > 0 is chosen as in (3]).

Lemma 4.1. [3, Lemma 4.1] For any set of edges F' C ([g]), the probability that G,, holds and
F C E(m) is at most (pn%)‘F'.

We remark that the proof given in [3] remains valid with our simpler definition of G;, as it only uses
that the number of open pairs is large, say |O(i)| > n?~¢/2, which readily follows from (@) and (5.

4.2 The number of edges between two sets

The next lemma essentially gives reasonable upper bounds on the number of edges between two
(not necessarily disjoint) sets, and it is an easy consequence of Lemma 4.2 in [3].

Lemma 4.2. [3, Lemma 4.2] Let D; denote the event that for all a,b > 1 and every A, B C [n] with
|A| = a and |B| = b, in G(i) we have e(A, B) < max{4s~'(a + b),pabn®*}. Then the probability
that G, holds and Dy, fails is o(n™!).

With a similar reasoning as above, the proof given in [3] also works with our simpler version of G;.

4.3 Vertices which have many neighbours in some set

Loosely speaking, the following lemma bounds the number of vertices which have many neighbours
in some set A. It is a straightforward modification of Lemma 4.3 in [3], taking into account that
the ‘high degree’ vertices may also lie in A.

Lemma 4.3. For A C [n] andd > 1, let Ds 4 C [n] denote the set of vertices which have at least d
neighbours in A. Let N denote the event that for all a > 1 and d > max{16s~", 2apn®*}, in G(i)
we have |Da 4| < 16e71d"ta for every A C [n] with |A| = a. Then D; implies N;.

Proof. We closely follow the proof of Lemma 4.3 in [3]. Suppose D; holds. Pick A C [n] with |A| =
a>1and set B= Dy 4. Suppose |B| =b > [16e"1d"'a]. Since e(A, B) > db/2 and d > 16s7!, we
have e(A, B) — 4e~'b > db/4 > 4~ 'a. Furthermore, d > 2apn? implies e(A, B) > db/2 > pabn?e.
To summarize, we have e(A, B) > max{4e~!(a + b), pabn®*}, which contradicts D;. O



4.4 Disjoint pairs which each have very many common neighbours in some set

Intuitively, the following lemma states that the number of disjoint vertex pairs, where each pair has
very many common neighbours in some set, is not too large.

Lemma 4.4. Let M; denote the event that for alla > 1 and d > max{300e~!, ap®n°, 6_1/2\/a_pn2€},
for every A C [n] with |A] = a, in G(i) the size of any set C of disjoint vertex pairs with
IT(x)NT(y)NA| > d for all zy € C is at most 30e " d~a. Then the probability that G,, N\ D, holds
and My, fails is o(n™1).

Note that we allow the vertex pairs to intersect with A. This produces some mild technical difficul-
ties, but we overcome these using the ‘larger’ lower bound d > ¢~ /2, /apn®® on the codegree.

Proof. We first fix 1 < a <n, A C [n| with |A| =a and d > max{3006_1,ap2n55,€_1/2\/@n25},
where a,d are integers. Set r := [30e~'d1a]. It henceforth suffices to consider the case d < a,
otherwise the claim is trivial. Assuming that G,, N D,, holds, we now estimate the probability that
there exists a set C' of disjoint vertex pairs with |C'| = r, where in G(m) each pair in C has at least
d common neighbours in A. In the following we distinguish several cases, where Ac- denotes all
vertices of A which are contained in some pair in C.

First, suppose there exists C; C C of size [r/2] in which each pair has at least [d/2] common
neighbours in A\ A¢. To bound the probability of this event, we first use a union bound to account
for all possible C of size [r/2] and choices of the [d/2] common neighbours N, in A\ Ac for
each pair xy € C1, and then use Lemma ] to bound the probability that G(m) contains all the
required edges, i.e., F' = (J, cc, {%,y} X Nay. Since by construction |F| = 2[d/2][r /2], whenever
Gm holds the probability of this case is bounded by

n? a \I"PU et _ g ((2eapPn®\ T
pn ) < ndr < n(3—ed/5)r < n—sdr/6 < n—2(a+1)’
V/ﬂ)((d/ﬂ) ( < d >

where we used (Z) < (ex/y)Y as well as d > ap?n’®, ed > 300 and edr > 30a.

Second, assume there exists Cy C C of size [r/2] in which each pair has at least [d/2] common
neighbours in Ac C A. If there exists C3 C Cy of size [r/4] in which all pairs are outside of A,
then for every pair xy € Cj its at least d common neighbours in A are (trivially) disjoint from Cs.
So, with similar reasoning as above, whenever G, holds this occurs with probability at most

2 /4l 2 4e dr/4
<[ n/4w> <Z> (pn26)2dﬁ“/41 <n' <%dn€> < p(1—ed/5)r < n—2a+1)
r

Otherwise there exists Cy C Cy of size [r/4], in which each pair has at least one vertex in Ac and
at least [d/2] common neighbours in Ac. But then e(A¢g) > rd/16, so d > 300! implies e(Ac) >
16e~1r. Using r < 60c*dta and d > £~Y/2, /apn® we see that d/r > £(60a)~1d? > (60)~'pn,
thus e(A¢) > rd/16 > 4r2pn?s. To sum up, e(Ac) > max{16e~'r,472pn?}, which contradicts D,,
because of |A¢| < 2r, so this case can not occur.

Finally, taking the union bound over all choices of a, d and A implies

PG N Dy, N = My] < Z n<z> on 2@+ = o(n71),

a>1

as required. 0



4.5 Deletion Lemma

In our proof we need good exponential upper-tail bounds on the probability that some subset of the
vertices contains ‘too many’ copies of some graph F'. Unfortunately, even in G, , this probability is
often not as small as it would need to be in order to apply union bounds, see e.g. [15, [16]. However,
Rédl and Ruciriski showed in [22] that for Gy, , such bounds can be obtained if we allow for deleting
a few edges; this is usually referred to as the Deletion Lemma [I7]. In the following we extend the
classical proof to our scenario at the cost of obtaining slightly worse bounds. As this lemma may
be of independent interest we state it in a slightly more general form than needed for our purposes.
As usual, here € > 0 is any constant for which Lemma [£.]] holds.

Lemma 4.5 (‘Deletion Lemma’). Suppose £ > 1 and that S is a family of {-element subsets from
([72’}). We set 1/ := |S|p*n** and say that a graph G contains « € S if all the edges of o are present
in G. Let DL;(d, k) denote the event that there exists a set Iy C S with |Zy| < d such that, setting
Eo = Uyez, o ([72’}), the graph G(i)\ Eo contains at most ' +k elements from S. Then for every
d,k > 0 the probability that G,, holds and DL,,(d, k) fails is at most

1+£ _d<e Ak
w) TPV rrS

Before giving the proof, let us briefly discuss what a typical application looks like. Suppose that
for some graph F' we want to bound the number of F-copies in G(m), or perhaps in some subset
U of G(m). Then we set £ = ep and let S contain the edge sets of all possible placements of F' (in
U). With this in mind, observe that ' corresponds up to a factor of n?* to the expected number
of F-copies in G, (restricted to U). Intuitively, the lemma thus states that if we are allowed to
delete some edges, then substantially exceeding the expected value is very unlikely. For G, , the
Deletion Lemma of Rédl and Ruciriski replaces i/ by p := |S|p?, but we emphasize that for large
deviations from p, say k = w(u'), both versions are essentially equivalent. Finally, we point out that
Lemma also holds for the more general H-free process considered by Bohman and Keevash [3],
because its proof relies only on Lemma 4.1} which also holds in this more general setup.

Proof of Lemma[{.5. We follow the lines of the proof given by Rddl and Rucinski for Gy, , see
e.g. Lemma 2.3 in [I7]. For o, 8 € S we write a ~ 8 if aN B # (. Moreover, for« € Sand Z C S
we write a ~ Z if a ~ 8 for some 3 € Z. For every a € S let Y,, denote the indicator variable of the

event that G(m) contains «, ie., that a C E(m). Set Z, := >0 Tlief Yo, where 320
denotes the sum over all sequences of aq,...,a, € S with o; # «; for 1 <i < j <r. If DLy, (d, k)

fails, then for every set Z C S with |Z| < d, if we ignore all Y, with o ~ Z then the sum of the
remaining Y, is at least ' + k. Hence, if =DL,,(d, k) holds and r < d, then

Zrn= 3 [IYe > Y>u+k‘ZHYaZ—M+k‘)

Q1,07 (€[7) aeS Q1007 (€1
Oé?é{al,...,ar}

so by induction we have Z, > (' + k)" for 1 < r < d+ 1. Recall that the factors Y,, in each term
of Z, are indicator variables for disjoint edge sets «;, each of size £. So, Lemma [.1] yields

E[Z:1g,3] = Z* ]P’[al U---Ua, € E(m) and G,,] < Z* (pn%)er < |S|" (pnk)ér = ()"
Q14O Q1. Ol

Putting everything together and using Markov’s inequality, with » = [d]| we obtain

E[Z.1 "N —d
P[Gy N —DLy(d, k)] < P[Z, > (1 + k)" and G| < Bz, < (£ < |1+ L :
(W' + k)" Wtk W
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Finally, observe that using 1 — x < e~ we also have

1+£ L T d<e __dk
w - W4k = €xp w4k ’

which completes the proof. O

If S is a family of subsets from ([g}) of arbitrary (possibly distinct) sizes, then essentially the same
proof works with p' := 3" ¢ (pn?e)lel; we leave the straightforward details to the interested reader.

4.5.1 Bounding the number of certain triples in every subset

In our application, for every subset we need to bound the number of certain triples that have at
least one common neighbour. As we expect that a ‘typical’ triple has no common neighbours, it is
more convenient to bound the number of corresponding quadruples, where the fourth vertex is a
common neighbour of the others. Here we use Lemma to show that after deleting a few edges,
the number of such quadruples is bounded.

Lemma 4.6. Let Q; denote the event that for all positive integers r and disjoint sets A, B,C C [n] of
size 1 there exists a set Eg C [n] x (AUBUC) of size at most 20617 such that G(i) contains at most
r3np*n% quadruples (u,v,w, z) € Ax BxCx[n] with z ¢ {u,v,w} and {uw, zu, zv, 2w} C E(i)\Ey.
Then the probability that G, holds and Q,, fails is o(n™1).

Roughly speaking, in Section [T.4.1] we will use this lemma to bound the total number of such
quadruples, which are as in Figure 2] on page 21l To this end we shall show later that for ‘nice’
disjoint subsets A, B,C C [n] the number of quadruples ‘destroyed’ by Ej is not too large.

Proof of Lemma [{.6, We combine the Deletion Lemma with a standard union bound argument.
First, fix r with 1 < r < [n/3]|. Second, fix disjoint sets A, B,C' C [n] of size r and set I' :=
[n] x (AUBUC). Let S C (1;) denote the family of edge sets {uw, zu, zv, zw} for all (u,v,w,z) €
Ax BxC x[n] with z ¢ {u,v,w}. Observe that |S| = r3(n—3) and so the i of Lemma [L5]satisfies
i < r3np*n®e. Next, we set k := r3np*n'®/2 and d := 5¢~'r. Clearly, we have p/ + k < r3np*n'0e,
By Lemma [A.5] the probability that G, holds and DL,,(d, k) fails is at most

k —d 2e —d
<1 + —,> < (1 + "—> <n % =n7
10 2

If DL,,(d, k) holds then this particular choice of disjoint A, B,C' C [n] has the required properties
(noting that |Ep| < 4d holds). So, the union bound over all choices of r and A, B, C' implies

PG N=Qml < Y <Z> <” . T) (” ;2T> < T = o(n ),

1<r<|n/3] r>1

as claimed. O

5 Differential equation method

In this section we present a variant of the differential equation method which may be of independent
interest: it allows us to track several variables (which may depend on each other) in every subset
of a certain size.

11



5.1 Basic idea of the differential equation method

Wormald [33] developed a method to show that in certain discrete random processes a collection V
of random variables is whp ‘close’ to the solution of a system of differential equations. The basic
idea of Wormald’s method can briefly be described as follows. First, we need to make sure that
the expected one-step changes of all random variables in V can be expressed using only variables
from V, which might involve enlarging V. Then, by pretending that all variables are continuous,
these expected changes suggest a system of ordinary differential equations. Finally, the main effort
is devoted to showing that the random variables in V are whp near the solution of the differential
equations, and for this purpose tools from probability theory are used. For this approach to work
we usually need to make sure that the expected one-step changes are roughly ‘correct’ and that
very large one-step changes are rare or do not happen at all, see e.g. [3, 33, B4]. As it turns out,
martingale estimates are particularly useful for showing the desired concentration results.

5.2 Large deviation inequalities for martingales

Suppose we have a filtration Fy C F; C --- and a sequence Xg, X1, ... of random variables where
each X; is F;-measurable. Then Xg, X1,... is a supermartingale if E[X;1|F;] < X; for all ¢ and a
submartingale if E[X;11|F;] > X; for all . Furthermore, we say that Xy, X1,... is (M, N)-bounded
if for all 7 we have

M < X1 — X; <N.

The following martingale inequalities are due to Bohman [2] and follow from the original martingale
inequality of Hoeffding [13]. Observe that for supermartingales we have E[X;] < E[X(] and for
submartingales E[X;] > E[Xj]. Intuitively, both inequalities thus give (one sided) exponential error
probabilities for deviating ‘too much’ from the expected value.

Lemma 5.1. [2, Lemma 7] Suppose 0 = Xg, X1,... is an (M, N)-bounded supermartingale with
M < N/10. Then for any m > 1 and 0 < a < mM we have

02
]P’[Xm > a] < e 3mMN ,

Lemma 5.2. [2 Lemma 6] Suppose 0 = Xo, X1,... is an (M, N)-bounded submartingale with
M < N/2. Then for any m >1 and 0 < a < mM we have

a2
P[X,, < —a] < e 3mMN .

5.3 Tracking several variables in every subset of a certain size

Suppose we want to track several variables in every subset U C [n] of a certain size u using the
differential equation method. As it turns out, in order to show that the expected or maximum step
by step changes are ‘correct’ or not too large, we often would like to slightly alter the subgraph
induced by U in order to remove (or reduce) ‘bad’ substructures, e.g. by passing to a subset of U
(deleting vertices) or by ‘ignoring’ some edges in U. Roughly speaking, we would like to use a union
bound over all possible ‘alterations’ and then prove that for some alteration all variables tracked
are concentrated. Such an approach is rather standard in probabilistic combinatorics, however, it
does not fit into the usual framework of the differential equation method as presented in [3] or [34],
for example. In this section we show how this basic idea can be formulated in the framework of the
differential equation method, which allows us to routinely use these kind of arguments.

12



5.3.1 Main concepts and ideas

In the following we introduce the concepts used in our approach. First, we consider a set C of
‘configurations’ ¥. For example, ¥ could correspond to an ‘alteration’ of some U; for the purpose
of deleting vertices we might have X = (U,U’) with U’ C U. Then, for every ¥ € C we intend
to track several random variables, i.e., for all i < m and j € V we want to bound the variables
X(EJ)(Z'). As we shall see, it suffices to track the variables for ¥ only as long as the configuration
¥ is ‘good’; otherwise a ‘certificate’ for the fact that 3 is ‘bad’ turns out to be sufficient for our
purposes. To this end we introduce the ‘bad’ events B;(X), which will hold if 3 is bad after step 4
(we point out that it can also capture other bad events not related to X, e.g. B;(X) can be used to
avoid /detect undesirable states of the random process). For example, if ¥ is an alteration of U, then
B;(3) should hold if ¥ has ‘too many bad substructures’ after step ¢; in other words, with B;(3) we
are able to ‘detect’ that the alteration Y did not remove the bad substructures, as intended. With
these concepts we aim at a statement of the following form: whp, for all ¥ € C one of the following
holds for every i* < m:

(a) the configuration ¥ is bad before step i*, i.e., B;(X) holds for some i < i*, or

(b) for 3 we can track all variables up to step i*, i.e., for all i < i* and j € V the variables
X(x,j) (i) are close to their expected values.

Let us briefly discuss how to use the previous statement. Suppose we want to track several variables
in every U of size u, and that we intend to ‘ignore’ some edges inside U. Then we construct C such
that every ¥ € C corresponds to an alteration of some U. For example, here we might have, say,
¥ =(U,F) with F C ([21) Now it remains to show (possibly using different methods) that whp at
least one ‘good’ alteration ¥ exists for every U, e.g. via the Deletion Lemma (cf. Lemma [£.5]). For
such good ¥ we are in case (b) for every i* < m, and thus able to track all the desired variables.

5.3.2 A variant of the differential equation method

Now we state our variant of the differential equation method, which is in large parts based on
Lemma 7.3 in [3], but contains several improvements and new ingredients, e.g. the error function f,
as well as the ‘configurations’ ¥ and ‘bad’ events B;(X). An important difference to [3] is that we
track the variables in V for every configuration ¥ € C; in other words, each variable tracked ‘belongs’
to a certain configuration. Inspired by [3] we introduce a ‘global’ good event H,;, and ‘give up’ as
soon as it fails. An important new ingredient is the ‘local’ bad event B<;(X). When it holds we only
‘give up’ for X, i.e., stop tracking the variables that belong to 3; the other configurations/variables
are unaffected.

Lemma 5.3 (‘Differential Equation Method’). Suppose that m = m(n) and s = s(n) are positive
parameters. Let C = C(n) and V = V(n) be sets. For every 0 < i < m set t = t(i) := i/s.
Suppose we have a filtration Fo C Fy C --- and random variables X, (i) and Y (i) which satisfy
the following conditions. Assume that for all o € C xV the random variables X, (i) are non-negative
and F;-measurable for all 0 < i < m, and that for all 0 < i < m the random variables Y.;E(i) are
non-negative, F;y1-measurable and satisfy

Xo(i+1) = Xo(i) = Y, (i) — Y, (d). (15)

o o

Furthermore, suppose that for all 0 < i < m and 3 € C we have an event B;(X) € F;. Then, for all
0 <i <m we define B<i(X) := Ug<;<; B;j(X). In addition, suppose that for each o € C XV we have
positive parameters uy = uy(n), A\g = As(n), Bo = Bs(n), To = T5(n), S¢ = S5(n) and S, = Sy(n),
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as well as functions xs(t) and f,(t) that are smooth and non-negative fort > 0. For all 0 < i* <m
and ¥ € C, let G;i=(X) denote the event that for every 0 <1i <i* and o = (X,7) with j € V we have

X, (i) = (mo(t) + f"(t)> S,. (16)

So

Next, for all 0 < i* < m let &+ denote the event that for every 0 < i < i* and X € C the event
B<i—1(X) U Gi(X) holds. Moreover, assume that we have an event H; € F; for all 0 < i < m with
Hiv1 € H; for all 0 < i < m. Finally, suppose that the following conditions hold:

1. (Trend hypothesis) For all0 < i < m and o = (X,j) € C x V, whenever & N —B<;(X) N H,;
holds we have

E[YE1(i) | 7 = (y?;l(t) . h—“”) S (17)

So s

where y£(t) and hy(t) are smooth non-negative functions such that
t
O =g~ ®) ad L) 22 [ he(r) dr+ G (18)
0

2. (Boundedness hypothesis) For all0 < i < m and o = (X, j) € CxV, whenever &EN—-B<;(L)NH;
holds we have
Bz Ss

YE@) < =2 19
) < (19)
3. (Initial conditions) For all 0 € C x V we have
_ Bo
X,(0) = 2,(0) £ =— ) S, (20)
3S,
4. (Bounded number of configurations and variables) We have
< min e". 21
max {|C|,[V]} < min e (21)

5. (Additional technical assumptions) For all o € C X V we have

s > max{15uyTs (56 Ao /Bs )% 956 Ao/ B} s/(1855As/PBs) < m < s-T,/1944, (22)

m/s
sw <A [ (ol d <, (23)
0<t<m/s 0
m/s
ho(0) < s,hs  and / K (8)] dE < 5o (24)
0
Then we have
P=&n NHp] <4 max e . (25)

geCxy

Note that Lemma [5.3] allows us to deduce that &,, NH,, holds whp, if the above conditions 1-5 are
satisfied for n large enough, H,, holds whp and u, = w(1) for all ¢ € C x V. Furthermore, observe
that & N —~B<;(X) implies G;(X). So, to calculate the expected value in (I7) for some o = (X, j),
we may assume that in the previous step all variables are essentially ‘correct’ for Y, i.e., for all
o= (%,7") with j/ € V we have (I0)).
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As our result is optimized for a slightly different setup, we only briefly compare it with Lemma 7.3
in [3]. One important advantage of Lemma [5.3]is that we state the approximation error differently
and allow for a larger family of error functions. To this end we point out that by setting h, (t) :=
(€5 To +75) (t)/4 and f,(t) := ex(t)x5(t) — O5(0)es(t)/so + 0,(t) we obtain essentially the same
approximation error as in [3], but by setting e.g. 85 := Ay := n°/7, and 7, := n°/? and and then
choosing s, > n® and u, = 2k, logn, we can weaken several of the assumptions significantly (for
example, in the additional technical assumptions we relax yZ(t) = O(1) to yF(t) < n®/7, their ¢
from Q(1) to Q(n~¢/7), and the lower bound on m from m > s to, say, m > sn~¢). The simpler
formulation of the approximation error using the function f, was suggested by Oliver Riordan.
Another new ingredient is the introduction of the parameters A,, 5, and 7,, which allow for a
trade-off between the approximation error, the boundedness hypothesis and the additional technical
assumptions. For example, in certain applications this might allow for larger one-step changes in
(I9), since in contrast to Lemma 7.3 in [3], we do not rule out the possibility that our parameters
are small, say, o(n®). Finally, we remark that essentially all of our improvements/modifications also
apply to the setup of Lemma 7.3 in [3], and for the readers convenience we have stated the resulting
improved variant of the differential equation method in Appendix [A ]

Next, let us briefly discuss the typical usage of certain parameters and give some intuition for a few
assumptions (we refer to Sections 7 and 5.1 in [3] and [34] for a further discussion of the setup).
The parameter u, relates the number of variables and configurations in (2I]) to the error probability
in (28). For example, if we want to track a few variables inside every subset of size u, then the left
hand side of (2]]) is usually dominated by the number of subsets O(n"), so u, = Q(ulogn) is a
convenient choice. With a union bound argument in mind, this indicates that u, also restricts the
kind of random variables we can hope to track: their expected values u should be larger than u,
since (in the independent case) large deviations often occur with probabilities that are exponential
in . Up to additional error terms this is essentially reflected by the boundedness hypothesis:
assuming that the maximum step-wise changes of X, are at least one the right hand side of (9]
must also be at least one, which basically means that S, needs to be larger than u,, where by
(I6]) the ‘scaling’ S, is roughly comparable to the expected value. Turning to the error terms, if
possible, it is convenient to guess some appropriate function f,(t) with f,(0) > 3, and then define
ho(t) := f.(t)/2; this satisfies the corresponding constraint in (I8). Furthermore, if possible, it
might be useful to choose the parameters such that 7, := A\, and 3, := A\;! or B, = O(1), since
this reduces the number of parameters and simplifies several conditions. Finally, we remark that
the conditions in (22]) essentially ensure that s and m are roughly the same and not too small.

Proof of Lemma [5:3. The proof is similar to the proof of Lemma 7.3 in [3]. The important differ-
ences here are the more involved definition of the desired event &,,, the modified error functions f,(t)
and h,(t), as well as the new parameters \,, 3, and 7,. The main new ingredients are the configu-
rations 2 and bad events B;(X). Let us briefly outline the main ideas of the proof. First, using (I7])
we add and subtract appropriate functions from Y. (i) in order to construct super-/submartingales
with an initial value of 0. Suppose H,,, holds and that &, fails for the first time at step i. Roughly
speaking, it suffices to consider the case when G;(X) fails. But, if (1)) is violated, then, as we shall
see, this implies that at least one of our super-/submartingales deviates substantially from 0. By
Lemma [5.1] and these large deviations are very unlikely, and it turns out that even after using
a union bound over all such events the resulting error probability is negligible.

First, we derive some additional inequalities that our functions satisfy. Using (24]) we see that

m/s
sup  heo(t) < he(0) + / |hL(t)] dt < 255, (26)
0<t<m/s 0
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We claim that the following estimates hold for all 0 < ¢* < m, writing t(i) = i/s and t* =i*/s:

i*—1
% Z 2, (t(7)) - So = <a;(,(t*) —2,(0) £ %) So and (27)
=0
¥ —1 +*
% > he(8(1)) - 2% = (2/0 ho(t) dt £ @) % (28)
i=0 o o

Both bounds are obtained with very similar calculations as in the proof of Lemma 7.3 in [3], using the
Euler-Maclaurin summation formula (see e.g. [1]) and then estimating the approximation error with
the additional technical assumptions ([23) and (24)); therefore we defer the details to Appendix [A.2]

Second, we define several random variables and start with Y;“1*2 (recall that this is an abbreviation
for four different variables, one for each way of choosing +; and +3). For all (¥,j) =0 € C x V, if
Ei N —=B<i(X) NH; holds we set

Y () = YR () — <yoil(t) +2 ho—(t)> So

e, (29)

and, otherwise (i.e., if =& U B<;(X) U—H; holds) we define Y. F1%2(4) to be 0. Note that in this case
YF1E2(4) = 0 for all 4/ > i. Next, we define
i1 2
Z;tl:tz (Z) = Zya:tlﬂ:g (Z',), Ma— — 3)\0’50 and No- — 2/80 . & (30)

2
= s STy Ug

We claim that ZF~ (i) and ZF (i) are (M,, N, )-bounded super-/submartingales with ZF1*2(0) = 0
and M, < N,/10. Clearly, Z1*2(0) = 0 holds, and, furthermore, (22)) implies M, < N,/10. Using
the trend hypothesis it is easy to establish the super-/submartingale properties, and we deduce
that the random variables are (M, , N, )-bounded using the boundedness hypothesis, the additional
technical assumptions and (26]). We defer the straightforward details to Appendix [A.2]

In the following we estimate the probability of the event —&,, N H,,. Loosely speaking, we focus on
the first step ¢* < m where &; fails, and, in particular, on the ¥ € C for which B<;«_1(X) U G;=(2)
fails. Note that (I8) and (20) ensure that Gp(X) holds for all ¥ € C, and thus & holds. So,
considering all i* < m, ¥ € C and using H,,, C H;+_1, we have

—Em N Hp C U [Hm NEx_1N —é‘l*]

1<i*<m
c U U [His 1N &1 N (Bix1(X) UG- (2))] -
1<i*<m YeC
Henceforth we fix 1 <i* <m and ¥ € C. Using that & N —B<;(X) implies G;(X), we see that
Hi—1 N Em1 N (B<in1(Z) UG () = Hirm1 N Eem1 N =Beix1(B) N Gino1(E) N =G (T).

Observe that when G;«_;(X) holds, the event G;«(X) can only fail if X, (i*) violates (I6]) for some
o= (%,7) with j € V, and for the following calculations we fix such a o = (3, j).

Suppose that H;«_1 N &E+_1 N ~B<i=—1(X) holds and X, (i*) fails to satisfy (I6]) because X, (i*) >
(2o (t*) + f5(t*)/55)Sy. With a virtually identical calculation as in the proof of the Lemma 7.3
in [3], using the relation (I5]) as well as the definitions (29) and (B0), we obtain

N . 1=, A o
ZE(0") = 251 (0") = X, (i) = Xo(0) — — > (#4)) - Sp — . > he(t()) - =, (32
i=0 i=0 7



and we include its short proof in Appendix [A.2] for the sake of completeness. With this in hand,
using the lower bound on X, (i*), the initial condition (20)) as well as (27) and (28)), we deduce

Zy~ () = Z;7() > <fg(t*) o ho(t) dt — % _ _330%) Sy _ Bo Ss

0 S
where we used (I8) and [22)), i.e., s > 9s,\, /35, for the last inequality. This readily implies

ZI(i*) > B—g% =:a or Z:T(i) < —%% = —a. (33)

Since the variables ZF1%2(4) are ‘frozen’ once X, (i) leaves the allowed range (I6]), we deduce that
ZF~(m) > aor Z;T(m) < —a holds.

Similarly, if H—1 N E=—1 N = B<i+—1(X) holds and X, (:*) fails to satisfy (I6) because X, (i*) <
(2 (t*) — fo(t*)/s6)Ss, with calculations completely analogous to those of the previous case, we
deduce that Z;~(m) > a or Z*(m) < —a holds.

Plugging our findings into (31I), we obtain

~EnNHm © |J {25 (m) 2 a}U{Z;~(m) 2 a} U{Z] " (m) < —a} U{Z,"(m) < —a}]. (34)
ceCxV

Recall that ZF (i) and ZZ* (i) are (M,, N,)-bounded super-/submartingales with M, < N, /10
and initial values of 0. Note that (22]), i.e., m > s/(18s,\, /5 ), implies a < mM,. Therefore, using
Lemmas (5.1l and as well as the definition of a, M, and N,, we deduce that the probabilities of
ZE=(m) > a and Z+(m) < —a are each bounded by

2 1
eXp {—m} = eXp {_@%To‘ua} é eXp{_3uU}7 (35)

where we used (22)), i.e., m < s-7,/1944, for the last inequality. Finally, we estimate (B84]) with a
union bound argument. Using (2I]) and (35) we deduce

Pl=&n N Hpl < 4734 < 4 max e Yo,
[&m O Hon] _a;c;v = oeCxV

and the proof is complete. O

6 Proof of the main technical result

This section is devoted to the proof of Theorem [3.I] and is organized as follows. First, in Section
we sketch some of the ideas used. Next, in Section we introduce the formal setup. In Sec-
tion we then give the proof of Theorem 31l The argument is simple, but relies on two involved
combinatorial statements, which are proved in Sections [7] and [8

6.1 Proof idea

In this section we informally outline some of the ideas used in the proof of Theorem [3.I we stress
that most of the notions and statements are refined and made precise in later sections. To focus
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on the main ideas we will assume that ¢, the number of steps of the K4-free process, is large, and
furthermore ignore constants as well as n® factors whenever they are not crucial. Intuitively, this
allows us to ignore whether an edge is open or not in our rough calculations (because by (@) and
@) we have |O(i)] > n?=¢). Moreover, by (@), (6), () and (I0) we obtain the approximations
Cerps ()] = p~L = 025 and |D(v)] ~ U] ~ n¥/5.

Fix U C [n] of size |U| ~ n®/. Let Ty (i) contain all open pairs in U which would create a copy
of K3 in U if they were added to G(i). In order to prove Theorem [B1] it suffices to establish a
lower bound on |Ty;(7)|. Note that for every pair uv € Ty (i) there exists at least one w € U such
that w € T'(u) NT(v) in G(i). Let Zy(i) denote all triples (u,v,w) € U? where uv € O(i) and
w € I'(u) NT'(v) in G(¢). As mentioned in the introduction, we expect that the graph generated
by the Ky-free process shares many properties with the uniform random graph, which in turn is
similar to the binomial random graph G, ,. With this in mind, for each uv € Ty;(¢) the number of
w € U with (u,v,w) € Zy(i) should typically be roughly |U|p? = o(1). In other words, we expect
that up to constants |Zy(i)| ~ |T7(4)|, and so for proving Theorem [B1] it should suffice to prove a
lower bound on |Zy(i)|. For this we intend to apply the differential equation method of Section [5]
and so we introduce additional variables, Xy (i) and Yy/(7), in order to keep track of the step-wise
changes resulting in elements of Z;7(i). More precisely, let X (i) denote all (u,v,w) € U3 with
{uv,vw,uw} € O(i) and let Yy (i) denote all (u,v,w) € U? with {uv,vw} C O(i) and uw € E(i).

We remark that |Xp(i)] can easily be tracked with the differential equation method. However,
|Yir(7)| causes some difficulties with respect to the one-step changes, but these are easy to resolve
using the ideas of Section 5311 Guided by our random graph intuition (and our convention that we
ignore n factors), we expect the ‘scaling’ S, of |Yy7(7)|, which essentially corresponds to the expected
value of |Yy7(m)|, to satisfy S, ~ |U[*p ~ n"/°. Recall that in order to use the differential equation
method, the maximum one-step change must be bounded by ([d), i.e., by roughly |U*p ~ n*/5. A
triple (u,v,w) € Xy (i) is only added to Yy (i + 1) if €;41 = uw, and so at most |U| =~ n3/® triples
are added in one step, which causes no problems. Note that triples (u,v,w) € Yy (i) are removed,
ie., not in Yy (i +1), if ;41 € {uv, vw} or {uv,vw} NCe,, (i) # 0. Therefore the number of triples
removed in one step can be up to (1+ |Ce,,, (i)]) - maxyep |[T(v) NU| ~ p~! - max,er [T(v) NU|. So,
as long as, say, max,cp |I'(v) N U| < n'/3 holds, the one-step changes are bounded by p~'n!/3 =
pl1/15 4/5-1/15 " which is small enough for using the differential equation method. Note that
although we expect [I'(v) NU| ~ |Ulp = n'/>, we can not even guarantee |I'(v) NU| = o(|U]) for
every v € U and U C [n] with |U| ~ n%®, since |I'(v)| ~ |U|. But, as it turns out, by removing
some vertices from U we can overcome this issue. Indeed, as we shall see, from Lemma and 4.3
we can deduce that U typically contains a subset U’ of size |U’| ~ |U| such that for every v € U’ we
have |T'(v) N U’| < n'/3. Of course, at the beginning of the K -free process, when we start tracking
the variables, we do not know which U’ C U satisfy these properties in later steps. So, intuitively
we ‘try’ all possible U’ for each U and ‘stop’ tracking as soon as the maximum degree inside U’ is
too large. This approach is sound because our previous line of argument suggests that for every U
at least one ‘good’ U’ with bounded degree exists. Using the terminology of Section [5.3.1] this idea
can be formalized as follows. We introduce configurations of the form ¥ = (U,U’), where U’ C U
satisfies |U’| ~ |U|, and for each such ¥ we track the variables only inside U’. Furthermore, we
define the bad event B;(X) such that it holds whenever the maximum degree inside U’ is too large.
These ideas would already suffice to track the variables | Xy (7)| and |Yy(7)| through the evolution
of the Ky -free process using Lemma [5.31

=n

Obtaining a lower bound on |Zy(i)| with the differential equation method is more difficult and
actually the main technical challenge of our proof. In addition to the bound on the one-step
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Figure 1: (u,v,w) is open/intermediate/partial with respect to ¥ = (U,II) with IT = (A4, B,C).
Solid lines represent edges, dotted lines open pairs and dashed lines pairs that are open or closed.

changes, we also need to deal with the issue that although the next edge satisfies e;11 = vw, the
triple (u, v, w) € Yy (i) is not always added to Zy (i + 1), since adding vw might close uv. This is an
important difference to bounding the independence number, where this issue does not arise, cf. [2] 3].
For the other variables they track, Bohman and Keevash [3] use a union bound argument (based on
density considerations) to overcome this issue. However, in contrast to [3] we have to handle this
for every large subset, and therefore a slight variation of their approach is unlikely to work here.
To overcome the difficulties arising, we substantially refine the definition of configurations and bad
events. Unfortunately, the additional ideas used are rather technical and at this point an informal
sketch would probably fail to be of much help.

6.2 Formal setup

In this section we present the formal setup which is used in our application of the differential
equation method. First, we define the configurations as well as the variables we want to track in
every subset of a certain size. Afterwards we introduce the high probability events H; and ‘bad’
events B;(2).

6.2.1 Configurations and random variables
Recall that by ([I0) we have u = ynptmax = yun®/®/logn. We set
k= u/15 = v/15 - nptmax = Y11/15 - n%/° 3/log n. (36)

Now, we define the configurations C to be the set of all ¥ = (U, II), where U € ([Z]) and Il = (A, B,C)
with disjoint A, B,C € (g) For the sake of brevity we write K = K(X):= AUBUC.

We track several random variables for every ¥ € C, which count certain triples (u,v,w) € Ax BxC
with wv € O(i) U C(i) and vw,vw € E(i) U O(7). The sets of triples which are called open wrt. X
and intermediate wrt. X, respectively, are defined as

X5 (i) == {(u,v,w) € Ax Bx C : {w,vw,uw} CO(i)} and (37)
Yy (i) = {(u,v,w) € Ax Bx C : {uv,vw} C O(i) Nuw € E(i)}. (38)

Finally, we introduce a set Zx (i), whose triples are called partial wrt. ¥, which will satisfy
Zx(i) € {(u,v,w) € Ax Bx C : wv € O(i) UC(i) AM{uw,vw} C E(i)}. (39)

We define Zx (i) inductively as follows. At the beginning we set Zx(0) := ). Suppose the process
chooses e;41 = zy € O(i) as the next edge in step i + 1. Then a triple (u,v,w) € Yx(i) is added
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to Zy(i+ 1), ie., is in Zx(i + 1), if vw = ej11, uv ¢ Cyuyp(i), and there is no w’ € C such that
(u,v,w") € Zx(i). Furthermore, a triple (u,v,w) € Zx(i) is removed, i.e., not in Zx(i + 1), or
ignored, i.e., remains in Zx (i + 1), according to the following rules (see also Figure [3 on page [34)):

Case 1. If uv = e;41, then the triple (u,v,w) is removed,

Case 2. If ¢;11 = 2y € Cyy(i) and ;41 Nuv = ), then the triple (u, v, w) is
(R2) removed if min{|T'(z) NT'(y) N A, |T'(z) NT(y) N B|} < kpn=2% holds in G(i), and
(I2) ignored otherwise.

Case 3. If e;11 = zy € Cyy(i) and e;41 Nuv = z, then the triple (u, v, w) is
(R3a) removed if |T'(y) N K| < p~in=15¢
(R3b) removed if there exists a vertex z € I'(z)NI'(y) such that {u,v}\{z} C I'(y)N['(z)NK
and |T'(y) NT(2) N K| < kpn=2% hold in G(i), and
(I3) ignored otherwise.

The way in which triples are added ensures that for every u € A and v € B there is at most one
triple in Zx (i) which contains wv. This is an important ingredient and will be exploited repeatedly
in our proof. The rules for removing triples from Zx (i) ensure that the step-wise changes are not
too large (see Section for more details). Intuitively, the ‘ignored’ cases occur only infrequently
and, as we shall later see, their contribution to Zx () turns out to be negligible. With the bound
on the codegree given by ([7]) in mind, these rules are rather natural, with the possible exception of
(R3b), which is inspired by [2]. Finally, the inclusion (89) clearly holds and we remark that every
(u,v,w) € Zx (i) with uv € C(i) was ignored in some step 7’ < i.

We are mainly interested in Zx (i), the other sets Xx (i) and Yx () are needed in order to keep track
of the step-wise changes resulting in elements of Zyx,(7), cf. Figure[ll In order to prove Theorem B.1]
it suffices to obtain a lower bound on the number of triples in Zx (i) which can still be completed
to a copy of K3. For this we define Tx (i) as follows:

Ts (i) == {(u,v,w) € Zx(i) : w € O(i)}. (40)

The definition of T%(7) may seem overly complicated, and one could think that a simpler definition,
say similar to Xx(7) and Yx(i), could be sufficient as well. It turns out (see Lemmas and [6.2])
that this is in fact an important part of our proof: on the one hand we need to relax the definition,
i.e., to ignore some triples and allow for uv € C(i), in order to ensure that the step-wise changes
are not too large, and on the other hand we must use special rules for removing triples from Zx /(i)
in order to ensure that the expected changes are still ‘correct’ and furthermore to make sure that
we do not ignore too many triples, i.e., to guarantee that |Zx(i)| ~ |Tx(i)|. Together with the
events defined in the next section this allows us to track |Zx(4)| using our variant of the differential
equation method, and, furthermore, to obtain a lower bound on |7%(7)|.

6.2.2 ‘Bad’ events and high probability events

In this section we introduce the high probability events H; and ‘bad’ events B;(X). Intuitively, H;
denotes the event that in addition to the results of Bohman and Keevash [3] the density results of
Section @ hold. More precisely, for every 0 < ¢ < m we define the event H; as

Hi:=D;NGNT;NM;NN;NQ;, (41)
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N

Figure 2: A quadruple (u,v,w, z) € ZEx(i): adding the pair vw closes uv (solid lines represent edges).
The vertex z may also be in one of the vertex classes, i.e., in AU B UC.

where G; and J; are defined as in Theorem 2.1 D;, M; and N; as in Lemmas E2H44], and Q; as in
Lemma Clearly, H; depends only on the first ¢ steps, and H;1+1 C H,; holds.

Next, we introduce the ‘bad’ event B;(X). To this end recall that we use the abbreviation K =
K(X)=AUBUC. Now, for every 0 < ¢ <m and ¥ € C we define the event B;(2) as

Bi(X) := B1,i(X) U B,i(X) U B3 i(%), (42)
where we define as B; ;(X), B2,i(X) and Bs ;(X) as follows:

B1i(¥) := in G(i) the maximum degree inside K is larger than kpn®,

By,i(3) := the number of zy € ([g}) with min{|T'(x) N T(y) N A|,|T'(z) NT(y) N B|} > kpn=20¢
is larger than kn 2% in G(4), and

Bs,i(X) := in G(i) there exists a pair zy € ([Z}) that satisfies zy € {uw, zu, zv, zw} for more
than k2pn~1%¢ quadruples (u,v,w,z) € ZEx(i), where Zx(i) contains all quadruples
(u,v,w,2) € Ax B x C x [n] with z ¢ {u,v,w} and {uw, zu, zv, zw} C E(1).

Note that B;(X) depends only on the first ¢ steps and is increasing, so B;(X) C B;+1(X) holds.
Loosely speaking, the definition of B;(X) ensures that whenever it holds certain ‘bad’ substructures
do not appear during the first ¢ steps. This allows us to track the random variables we defined in
Section with our variant of the differential equation method.

In the following we briefly give some intuition for the definition of B;(X). The event —5; ;(X)
ensures that the degree inside K is not too large, which is mainly used to bound the one-step
changes. Loosely speaking, =B ;(X) ensures that not too many triples are ignored because of (12),
which will be important for showing |Zx(¢)| ~ |T%(7)|. Finally, together with Q; the event =83 ;(X)
essentially implies that the number of triples (u,v,w) € Yx(i) with uv € Cyy (i) is not too large
(observe that for every such triple there exists z € [n] for which (u,v,w, z) € Ex(i), cf. Figures [
and [2). This will be crucial for showing that the expected number of triples added to Zx(i + 1) in
one step is not too small (see Section [[.4.1] for more details).

6.3 Proof of Theorem [3.1]

We use the following two statements to prove Theorem Bl Intuitively, the first (probabilistic)
lemma implies that for ‘good’ configurations ¥ the variables | Xx(7)], |Yx(i)| and |Zx(i)| are tightly
concentrated. Roughly speaking, the second (deterministic) lemma states that for every set U of
size u there exists a good configuration ¥* = (U, II) for which Tx+ (i) C Zx«(7) is large.

Lemma 6.1. Suppose C, B;(X), H; as well as Xx(i), Yx (i) and Zx(i) are defined as in Sections[G.21]
and [6.2Z2. Furthermore, define m = m(n) and p = p(n) as in (@), and k = k(n) as in [BG). Set
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50 :=n% and t = t(i) := i/(n*p). Define q(t) and f(t) as in @). For all0 <i* <m and ¥ € C, let
Gi+(X) denote the event that for every 0 <i < i* we have

Xn(i) = <q<t>3 ' M) g (13)
Y (i)] = <2tq(t)2 + M) k3p and (44)
25| = <2t2q<t> . @> Ep. (45)

Next, let £+ denote the event that for all 0 < i < i* and ¥ € C the event B;_1(X) U G;(X) holds.
Then £, N\ Hyy, holds with high probability.

Let us give some intuition for the trajectories our variables follow. As usual, we expect G(i) to
share many properties with the binomial random graph G, , with edge-density p = 2tp, since
(Z) p ~ i = tn?p. Furthermore, by (B the proportion of pairs which are open roughly equals g(t).
So, with this in mind, we expect |Xx ()| ~ q(t)*k3, [V (i)| ~ 2tpq(t)*k? and |Zs(i)] ~ 2(tp)2q(t)k>.
We remark that for the partial triples we ‘lose’ a factor of two since we only count those triples
where the edge uw appears before vw.

Lemma 6.2. Suppose C, B;i(X), H; as well as Zx(i) and Tx(i) are defined as Sections [6.21]
and [6.2.2.  Furthermore, define m = m(n) and p = p(n) as in [{{), v = u(n) as in [I0) and
k = k(n) as in B6). Sett = t(i) := i/(n®p) and define q(t) as in @). For n large enough, if
G(i) was generated by the Ky-free process and satisfies H;, then for every U € ([Z}) there exists
¥* = (U, 1) € C such that ~B;_1(X*) and |Zs+ (i) \ Ts+(1)| < E*p?n=1% hold.

The proofs of these lemmas are rather involved and therefore deferred to Sections [7l and Bl Next we
show how they imply our main technical result.

Proof of Theorem[3.1l By Lemma the event &,, N H,, holds whp, and so by monotonicity whp
& NH; holds for every 0 < ¢ < m. Therefore, using Lemma we deduce that, whp, for every
0<i<mandU e ([Z]) there exists a configuration ¥* = (U, II) such that

|Zs+ (i) \ T+ (i)] < KPpPn="1 (46)

and & N —B;_1(X*) hold. In the following we show that for every such ‘good’ ¥* = (U,II) the set
Ts-(i) is large. Note that t = i/(n’p) > 1 for i > n2p, and recall that q(t) > n=5/2 and f(t) < n®
by @). So, since & N —B;_1(X*) implies G;(X*), using @) and [@3)), for n’p < i < m we have

|Zs+ (0)] > K*(tp)*q(t)- (47)

Thus, using Tx-+(i) C Zx+(i), (46) and [@7) as well as (I0) and (B6]), i.e., £ = u/15 and § = 1/7000,
we deduce that, whp, for every n’p <i<m and U € ([Z}) there exists ¥* = (U, II) such that

T+ (7)| = [Zwx (1)] — [Zs+ (i) \ T+ ()]
> E3(tp)2q(t) — K*p*n 1% > k3(tp)2q(t) /2 > 6u®(tp)q(t).

Note that for every triple (u,v,w) € Tx«(i) we have {u,v,w} C U as well as uv € O(i) and
{uw,vw} C E(i). Recall that the inductive definition of Zx«(i) ensures that every uv with u € A

22



and v € B is contained in at most one of the trlples in Zy«(i). So, using Tx«(i) C Zg*('), we see
that for every pair of dlstlnct triples (u,v,w), (u',v',w'") € Ty« (i) we have uv # u'v/. We deduce
that, whp, for every n?p <i <m and U € ([ ]) there exists ¥* = (U, II) such that the set

Ty (i) == {uv € O@i) : there exists w € U such that (u,v,w) € Tx-(i)}

has size [Ty ()| = |Ts+(i)| > 6u(tp)?q(t) and contains only open pairs uv € Ty (i) such that adding
uv to G(i) completes a triangle in U. Therefore T, holds whp, which proves the theorem. O

7 Trajectory verification

In this section we prove Lemma B which is our main probabilistic statement. We work with
the ‘natural’ filtration given by the Kj-free process, where JF; corresponds to the first i steps,
and tacitly assume that n is sufficiently large whenever necessary. Note that H; depends only
on the first ¢ steps, and that #,, holds whp (using Theorem 2.1l Lemmas and E.6). We
apply the differential equation method (Lemma [5.3) with s := n?p and the purely formal set of
variables V := {X,Y, Z}, where for all ¥ € C we let X5 x)(7) := [Xs(i)|, X(n,y)(@) := [Ys(i)| and
X(5,7)(i) := |Zx(i)|. For the sake of clarity we will usually work directly with the variables under
con81derat10n e.g. with |Yx(i)| instead of X(5y)(7). Recalling that B;(%) is monotone increasing,
we see that B;(X) = B<;(X). In addition, for all o € C x V we define

By =1, Uy = un® = w(l), So = S, =1 and Ao 1= Ty = n°. (48)
Note that using k = u/15, with this parametrization the boundedness hypothesis (I9) simplifies to

. (2 So So
j/:l: < o P .
o () $2A;Te  ug  15knTe

(49)

The remainder of this section is organized as follows. First, in Section [Tl we give some inequalities
for dealing with expressions containing + symbols. Afterwards, in Sections we verify the
trend and boundedness hypotheses of Lemma [5.3] for the open, intermediate and partial triples.
Finally, in Section we finish the proof of Lemma by checking the remaining conditions.

7.1 Estimates for expressions containing + operators

The following inequalities can easily be verified using elementary calculus. Recall that a £ b is a
shorthand for {a + b : —1 < x < 1}, where multiple occurrences of + are treated independently
(see Section 2.1]).

Lemma 7.1. Suppose 0 < x < 1/2. Then
(1+z)" ' C1+2z (50)
The next lemma provides estimates for products of a special form.
Lemma 7.2. Suppose that x,y, fz, fy,9,h >0 and g < 1. Then f, +xg < h/2 implies
(x+ fz)(1+g) Cx£h. (51)
Furthermore, xfy + yfz + fofy +xyg < h/2 implies
(z £ fo)(y + fy)(1 £ 9) Cay+h. (52)
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Proof. Using x,y, fz, fy = 0 we see that
(£ fo)(y £ fy) C oy £ (fy +yfet fofy) (53)
Plugging y = 1 and f, = g into (B3]), and using g < 1, zg > 0 as well as f; + xg < h/2, we obtain
(r+ fo)(1+g) Ca(zg+ fot fog) Ca£2(fa +2g9) CaEh,

which establishes (5I)). Finally, using (53) and plugging «’ = zy and f], = z f, +y fo + f2 fy together
with fI +2/g < h/2 into (BI)) gives (52), which completes the proof. O

7.2 Open triples

In every open triple (u,v,w) € Xx(i) all pairs are open, i.e., {uv, vw,uw} C O(i). We define
a(t) = qt)>=e ", 2t():=0, a7 (t):=240t"¢(t)° (54)
Fo(t) := f()a(t)* = eWSDEHWEand by (t) = £1(t)/2. (55)
For every o = (3, X) with ¥ € C we set z4(t) := x(t), y£(t) := 2% (1), fo(t) = fo(t), ho(t) := ho(t)

and S, := k3. Moreover, we define Xj%’(z) = Xx(i+ 1)\ Xx(i) and X5 (i) := Xxn(i) \ Xn(@ +1).

Formally we then set Yé x) (i) == |X5(i)], but henceforth we work directly with | X5 (i)|. In the
following we check the trend and boundedness hypothesis for the open triples.

7.2.1 Trend hypothesis

Note that whenever £ N —B;(X) N H; holds we have to prove

3
E(XE ()] | 7] = (xh(t) n hw“)) L (56)

so ) n?p

Triples added in one step. We start by verifying (B6]) for X; (7). Clearly, adding an edge to
G(i) can not create new open triples. So | X5 (i)| = 0 = 27 (¢) always holds, which settles this case.

Triples removed in one step. Next, we prove (56) for Xy, (7). Recall that e;11 € O(4) is added to
G(7). Observe that a triple (u,v,w) € Xx (i) is removed, i.e., not in Xx(i + 1), if it either contains
ei+1, or one of its pairs is in C,, , (7), which is equivalent to €;11 € Cyy(i) U Cyp (i) U Copay (). Thus,
the number of choices for e;11 which remove (u,v,w) from X5 (i) is |Cyuy (i) U Cyy (1) U Chupe(3)| = 3.
Recall that the K4-free process chooses the edge e;+1 uniformly at random from the open pairs in
G(i). Thus, whenever & N —B;(X) N H; holds we have

Cuu(i) U iy (1) U Coy ()| £33
3 |Cu (9) (1) @) £3

E[|X5 () | ] = ol

(57)

(u,v,w)EXE(i)
Recall that & N —B;(X) implies G;(X), and thus for calculating the expected one-step changes we
may assume that | Xy (7)| satisfies ([43]). Moreover, H; implies that the inequalities (&), (8]) and (3]

hold. In addition, note that s, = n'/1>=¢ and (@) imply f(t)/s. = o(1). Substituting the former
estimates into (57), and using /¢ = w(s,), f(t) > 1 as well as Lemma [T, we deduce that

(q(£)® £ fo(t)/50)K> - [3(40t3q(t) £ 9f (£)/se)p~t & 3n~1/0p~1 + 3]
(L£3f(t)/se)q(t)n?/2
C (LE6£(t)/se) - (a(t)” £ f(t)a(t)/s0) - (240t q(t) £ T0f(t)/s¢) - k*/(np).

E[lXs ()] | Fi] =
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Therefore the desired bound, i.e., (B6]) for X5 (i), follows if

(L= 67(8)/5) - (a(6)* £ F(O)a(t)/50) - (2406%q(t) £ T0F(8)/5) C 2~ (1) £ ha(8)/50  (59)
Now, using f(t) = o(s.) and Lemma [T.2] observe that to prove (E8)) it is enough to show
140 (t)q(t)*s0/sc + 480t £ (£)q(t)* + 140 (£)*q(t)/se + 2880t f(t)q(t)*s0/se < halt).
Note that by (@) all terms involving s, are in fact o(1). So, using f,(t) = f(t)q(t)* it suffices if
14 480t" f(t) < ha(t),
which is easily seen to be true, since hy(t) > Wit*f.(t) + W/2 by @) and (E5). To summarize, we

have verified the trend hypothesis (56]) for the open triples.

7.2.2 Boundedness hypothesis

Second, we verify the boundedness hypothesis ([49) whenever & N —=B;(X) N H,; holds. Clearly, no
triples are added to Xx (i + 1), and so | X5 (i)] = 0. Suppose that e;+1 € O(i) is added to G(i).
Recall that a triple (u,v,w) € Xx (i) is removed, i.e., not in Xx (i + 1), if it either contains e;41, or
one of its pairs is in C,,, (i). Note that every pair is in at most k triples and, furthermore, that H;
implies (B), which gives |Cg,,, (i)] < p~'n°. Therefore, we deduce that

X5 (0)] < k(1 +[Cepyy (0)]) < 2kp™'n" = o(k*n ™),

which establishes the boundedness hypothesis for the open triples.

7.3 Intermediate triples
Every intermediate triple (u,v,w) € Yx (i) satisfies {uv,vw} C O(i) and uw € E(i). We define

y(t) = 2tq(t)? = 2te 32", YT (t) = 2q(t)?, Y () = 320t°¢(t)* (59)
Fo(t) = F(t)g(t) = W10+ W and hy(t) = fi(t)/2. (60)

For every o = (X,Y) with ¥ € C we set z,(t) := y(t), y£(t) := y=(t), fo(t) :== £y (1), ho(t) == hy(t)
and S, := k3p. Similar as for open triples, we define Yy (i) := Yx(i + 1) \ Y(i) and Yy (i) :=

b
Y (i) \ Yu(i + 1). Then we set Yé,y) (1) :== |Y2i(z)|, but henceforth work directly with |Y§E(z)|

7.3.1 Trend hypothesis
Whenever & N —B;(X) N H,; holds we have to prove

Kop

" (61)

Bl 7 = (0 £ 242

So
Triples added in one step. Note that a triple (u,v,w) € Xx(i) is added to Yx(i + 1), i.e., is in

Y (i + 1), if and only if ¢;11 = uww (because e;41 = uw can not close any of the open pairs uv or
vw). Recall that & N —B;(X) implies G;(X), and thus | Xx(7)| satisfies (43]). Furthermore, whenever
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H; holds so does G;, which implies (B). Using that e;;1 is chosen uniformly at random from O(%)
as well as f(t) = o(s.) and Lemma [T, whenever & N —B;(X) N#H; holds we deduce that

. 1 (q(t) £ f2()/50)R
E[|lYT @) | F] = ~ &
H . ( )‘ ’ ] (u,vﬂl%G:Xz(i) ‘O(Z)‘ - (1 + 3f(t)/se)q(t)n2/2 (62)
C (L+6£(t)/se) - (2q(t)” £ 24,(t)/50) - K*p/(n®p).

Now, using Lemma [7.2 we see that (6I) for Yy (i) follows if

Af,(t) +24f (1)q(t)?s0/5e < hy(t). (63)
Using (B]) and (60) the last inequality follows readily by observing that the term involving s, is o(1).

Triples removed in one step. Observe that a triple (u,v,w) € Yx(i) is removed, i.e., not in
Yx (i + 1), if either ;41 € {uv,vw}, or one of the pairs uv or vw is in C,,,, (i), which is equivalent
to €41 € Cuy(i) U Cyyy(i). Using that e;+q is chosen uniformly at random from O(i), we see that

|Cu (i) U Co (4)] £ 2
[03)] '

ElYy O | Fl= ), (64)

(u,v,w)EYx(7)

Recall that H; implies (@), (8) and ([@). Furthermore, as argued before, f(t)/s. = o(1) holds and
& N—Bi(X)NH,; implies that |Yx(7)| satisfies (44]). Substituting the former estimates into (64]), and
using /6 = w(s,), f(t) > 1 as well as Lemma [T}, whenever & N —B;(X) N H; holds we have

(2tq(t)* £ f,(t)/30)k%p - [2(40t*q(t) £ 9 (8) /se)p™" £ n~ "/ Op~" £ 2]
(1£3£(t)/se)q(t)n?/2
C (1£6f(t)/se) - (4tq(t) £ 2 (t)/s50) - (80t'q(t) £ 30f(t)/s¢) - k>p/(n’p).
We intend to show (GI) for Yi; (i) using Lemma Similar as for the removed open triples,

by writing down the assumptions of (52)), multiplying with 2s, and then noticing that all terms
containing s, are o(1), we see that it suffices if

EllYy O] | Fi] =

14320t £, (t) < hy(t),
which clearly holds by ([B]) and (60]). This establishes the trend hypothesis (61]).

7.3.2 Boundedness hypothesis

Second, we verify the boundedness hypothesis ([@9) whenever & N —B;(X) N H,; holds. Note that a
triple (u,v,w) € Xx(i) is added to Yx(i + 1), i.e, is in Y5 (i + 1), if ;41 = uw. As every pair is in
at most k triples, we thus obtain

Vi ()] < k= o(k*pn™™).

Observe that a triple (u,v,w) € Yx(i) is only removed, i.e., not in Yx(i + 1), if e;41 € {uv,vw}
or {uv,ow} N Ce,,, (i) # 0 holds. Since H; implies (8), we have |Ce,,, (i)] < p~'n°. Furthermore,
whenever —B;(%) holds so does =B ;(¥), and thus every vertex in K has at most kpn° neighbours
in K. Therefore, using that u and w are neighbours for every (u,v,w) € Yx(i), we deduce that

Yy ()] < (14 |Cepyy ())hpn™ < kn'% = o(k*pn™T),

which establishes the boundedness hypothesis for the intermediate triples.
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7.4 Partial triples

Every partial triple (u,v,w) € Zx(i) satisfies uv € O(i) U C (i) and {uw,vw} C E(i). Recall that
Zx (i) is defined inductively in a manner that ensures that every wv with u € A and v € B is
contained in at most one of the triples in Zx(7). We define

2(t) = 202q(t) = 2627100 2t (1) = dtq(t), 27 (t) := 160t5¢(t) (65)
Fo(t) = f(t) = eIV and ha(t) = fL(t)/2 = f'(t)/2. (66)

For every o = (3, Z) with X € C we set x,(t) := 2(t), y=(t) := 25(t), fo(t) := fo(t), ho(t) := h.(t)
and S, := k3p?. Similar as for open and intermediate triples we define ZJ (i) := Zx(i + 1) \ Zx (1)

and Zg, (i) := Zx (i) \ Zx(i +1). Then we set Y(EZ (1) := |Z ()|, but work directly with |Z (7))

7.4.1 Trend hypothesis

As usual, whenever & N —B;(X) N H; holds we have to prove

3,.2
E[ZE ()| | Fi] = (fl(t) " h—“”) i (67)

So n=p

Triples added in one step. Recall that a triple (u,v,w) € Yx(i) is added to Zx(i + 1), i.e., is
in Zy(i+1), if e;41 = vw, uv ¢ Cyy(i) and there exists no w' € C such that (u,v,w’) € Zx(i).
First we determine all (u,v,w) € Yx(i) that satisfy uv € Cyy(i). Let Cx(i) denote all such triples.
Recall that Zx(i) contains all quadruples (u,v,w,z) € A x B x C' x [n] which are as in Figure 2]
ie., with z ¢ {u,v,w} and {uw, zu, zv, zw} C E(i). Observe that for every (u,v,w) € Cx(i) there
exists z € [n] such that (u,v,w, z) € Ex(i), see also Figure [Il on page [[9l Therefore

[Ce(@)] < [Es(@)]- (68)

Note that whenever #H; holds so does Q; (defined in Lemma [£6]); hence for r = k there exists a
set By C [n] x K of pairs with |Ep| < 20e~'k such that there are at most k3np*n'® quadruples
(u,v,w, z) € Ex(i) with {uw, zu, zv, zw} C E(i) \ Ey. Furthermore, as —83;(X) holds, by —B3;(X)

we know that every zy € Ey satisfies zy € {uw, zu,zv, zw} for at most k*pn~='%¢ quadruples
(u,v,w, z) € Ex(i). So, together with (G8]) we deduce that
|CZ]( )| < |\_‘2( )| < k,3np4n10€ —I—20€_1k’3pn_15€ < k73pn_10€. (69)

Next, let Dx;(i) contain all triples (u,v,w) € Yx(i) for which there exists w’ € C such that (u,v,w') €
Zx(i). Whenever —B;(X) holds so does =B ;(X), and thus every vertex in K has at most kpn°®
neighbours in K. Since w must be a neighbour of u for every (u,v,w) € Yx(i), we deduce that
|Ds:(i)| < |Zs ()] - kpn®e. As & N —B;(3) implies G;(3), we know that |Zx(i)| satisfies (@), which
gives | Zx(i)| < k3p?nf. So, we see that

|Dx(7)] < k*p3nbe = o(k3pn=109). (70)

To summarize, (u,v,w) € Yx(i) is added to Zx(i 4+ 1) if and only if €;41 = vw and (u,v,w) ¢
Cx(i) U Dx(i). As noted before, & N —B;(X) N H; implies that O(i) and Yx (i) satisty (Bl) and (@4),
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respectively. So, using that e; 41 is chosen uniformly at random from O(i) as well as ([©9), (70),
nl% = w(s,), fy(t) > 1, f(t) = o(s.) and Lemma [T} whenever & N —B;(3) N H; holds we have

Z 1 c (2tq(t)? % £, (t)/50)k>p + 2k3pn 10
) = 1+ Da(tn2/2
wevsines@upsa) 100! (137 (@)/se)altym?/

C (L 6£(1)/se) - (4tq(t) £ 4f(t)/s0) - k*>p?/(n*p).
Now, using Lemma [T.2] we see that (67]) for Z (i) follows if
8f(t) +48tf (t)q(t)so/se < ha(t).

Using (B]) and (G6]) the last inequality follows readily by observing that the term involving s, is o(1).

B[l Z$ @) | Fi] =

Triples removed in one step. Recall that a triple (u,v,w) € Zx(i) is not always removed if
ei+1 = uv or ;41 € Cyuy(i) holds (since it can be ignored). For estimating the expected number of
removed triples we now derive sufficient and necessary conditions for a triple to be removed and we
start with a sufficient condition. To this end we first determine the triples which might be ignored
because of (I12). Let Px (i) contain all open pairs xy € O(i) with min{|I'(z) N T'(y) N A, |I'(x) N
[(y) N Bl} > kpn=2% in G(i). As —B;(X) holds, from —Bs;(X) we deduce that |Pg(i)| < kn=2%.
Now let Ix(i) denote all triples (u,v,w) € Zx(i) such that in G (i) we have {u,v} C I'(z) NT'(y) for
some zy € Py (7). Recall that every uwv with v € A and v € B is contained in at most one triple in
Zs(i). Furthermore, H; implies (), and so |['(z) NT'(y)| < (logn)np? for every zy € Ps(i). Thus,
using |Ps(i)| < kn=2%, we obtain

I (i)| < [Ps(i)] - [(log n)np’]” < k*p*n =1, (71)
Note that (R2) can only fail if (u,v,w) € Ix(i). So, if (u,v,w) € Zx(i) satisfies e;4+1 € Cyy(i) and
eir1 Nuv = 0, then (u,v,w) ¢ Ix(i) is a sufficient condition for (R2) to hold.
Next we derive a sufficient condition for (R3a). To this end let Ly (i) contain all vertices y € [n]
which satisfy [['(y) N K| > p~1n~1% in G(i). Recall that whenever H; holds so does N; (defined in

LemmalZ3]). One can check that N; implies, say, |Lx(i)| < kpn?°¢. For every triple (u,v,w) € Zx(i)
we then set Ly, »(i) :== {u,v} X Lx (i), and thus, using s, = nl/12=¢ we see that

|Luv,2(i)| = 2|L2(i)| < kpn%a =0 ((Sep)_l) . (72)
Note that (R3a) can only fail if e;11 € Ly, »(i). So, if (u,v,w) € Zx (i) satisfies e;41 € Cyy(i) and
eir1 Nuv # 0, then e;41 ¢ Ly, »(4) is a sufficient condition for (R3a) to hold.

To summarize, if (u,v,w) € Zx (i) \ Ix(¢) satisfies ;11 € Cyp (i) \ Ly, x (%), then either (R2) or (R3a)
holds and hence (u,v,w) is removed. Clearly, a necessary condition for (u,v,w) € Zx(i) being
removed is e;41 € Cyy (i) U {uv}. So, since e;11 is chosen uniformly at random from O(), we have

EZ; ) | Fl= Y !Cuv(i)\fgfgj,z(i)\ili 5 %(Z(;'N -
(u,v,w)EIx (1)

As argued before, |Zx (i)| satisfies ([@5]) whenever & N —B;(X) holds. Furthermore, H; implies that
(B) and (8) hold. Substituting the former estimates and (1)), (72)) into (73), and using n'% = w(s,),
f(t) > 1 and Lemma [TT], whenever & N —B;(X) NH,; holds we deduce that

[(2t2q(t) £ f(t)/50)K°p? & KPpPn™1%¢] - [(40tq(t) £ 9F(t)/se)p™" & (sep) ™" £ 1]
(14 3f(t)/se)q(t)n?/2
C (L£6f(t)/se) - (2t%q(t) £ 2f(t)/50) - [80t" £ 30f(t)/(sea(t))] - kp*/ (n?p).

(u,v,w)EZ% (7)

EllZs @] | Fi] =
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We intend to show (67)) for Z; (i) using Lemma [T.2] Similar as for the removed open and interme-
diate triples, by writing down the assumptions of (52)) and then noticing that all terms containing
se are negligible, we see that it suffices if

1+ 320t f(t) < (),

which clearly holds by (8] and (66]). This establishes the trend hypothesis (67).

7.4.2 Boundedness hypothesis

In this section we verify the boundedness hypothesis (49) whenever & N —B;(X) N H,; holds. Note
that for a triple (u,v,w) € Yx(i) to be added to Zx(i + 1) the conditions e;11 = vw and u € I'(w)
are necessary. Furthermore, whenever —8;(X) holds so does =B ;(X), and thus every vertex in K
has at most kpn>¢ neighbours in K. Therefore

2 0)] < kpn™ = o(k%?n 7).

Recall that a triple (u,v,w) € Zx(i) is removed, i.e., not in Zx(i + 1), according to different rules.
In the following we bound the total number of triples removed in one step by each rule. As the
inductive definition of Zx(7) ensures that every uv with u € A and v € B is contained in at most
one of the triples in Zx (i), it clearly suffices to bound the number of corresponding pairs uv with
u € A and v € B that are removed by e;11 = xy. With e;11 = xy given, we need to consider pairs
uv in three different relations to zy; these were called cases 1-3 in Section In case 1 we have
uv = e;41, and so, given e;y1, at most one triple is removed under case 1.

For e;11 = xy the rule (R2) only removes triples (u,v,w) € Zx(i) with w € I'(z) NT'(y) N A and v €
['(x) NT(y)N B. Because H; holds, all codegrees are at most (logn)np? by (). Applying the bound
in (R2) to bound the number of possibilities for u or v as appropriate, and then using the codegree to
bound the number of choices for the other, this rule removes at most kpn =2 (log n)np? < knp3n=1°¢
triples.

Every triple removed under case 3 satisfies uv Ne; 11 = x and {u,v} \ {x} C I'(y), where e;11 = zy.
Hence (R3a) removes at most 2p~1n =15 triples (the factor of two accounts for the different choices
of ). The last rule (R3b) only removes triples (u, v, w) € Zx (i) for which there exists z € T'(x)NT'(y)
such that {u,v} \ {z} CT(y) NT(2) N K and |I'(y) NT'(2) N K| < kpn=2%¢. So, using the codegree
to bound the number of choices for z and, given z, the above bound for the number of vertices in
I'(y) NT(z) N K, this rule removes at most 2(log n)np? - kpn =20 < knp3n=1%¢ triples.

Putting it all together, we deduce that
’ZZ_(Z)’ <1+ 2p—1n—155 + 2knp3n—l5a < k2p2n_10€,

which clearly establishes the boundedness hypothesis for the partial triples.

7.5 Finishing the trajectory verification

In this section we verify the remaining conditions of the differential equation method (Lemma [5.3]).

Initial conditions. Using (54)), (59) and (65)), for all ¥ € C it is easy to see that X5 (0) = k3 =
z(0)k3, Y (0) = 0 = y(0)k>p and Zx(0) = 0 = 2(0)k*p? hold, which establishes (20).
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Bounded number of configurations and variables. By construction we have
ny u 2u 2ulogn
IC] < " 44 <nt=e )

which together with |V| = 3 and u, = un® clearly establishes (2I]).

Additional technical assumptions and the function f,(t). Recall that m = un?p/logn,
s =n?p and u = yunp</logn. Now, using (@) it is easy to see that ([22) holds, with room to spare.
Next, using [@B)), (54), (59) and (65), elementary calculus shows that for all o € C x V we have

m/s
) =y — o (), s yEE) <nf=A,  and / 2(8)] dt < n® = A,
0

0<t<m/s

with plenty of room to spare for large n. Recall that for all o € C x V we have h,(t) = f.(t)/2 and
fo(t) = f(t)q(t)", where ¢ € {0,1,2}. Hence, using f,(0) = 1 = 3,, we see that

(1) :2/0 ho(7) dr + £,(0) :2/0 ho(7) dr + By

Note that hs(0) = W/2 < s,\, and h. () > 0. In addition, observe that h. (¢) is bounded by some
constant for, say, t < 30. For larger ¢, we have t® < ef, which implies, say, h (t) < W3f (t)2. Putting
things together, using elementary calculus as well as (Il) and (), for n large enough we obtain

m/s 30 m/s
/ |RL(t)] dt < / h.(t) dt + W3F()? dt < O)4+m/s- W3f(m/s)* < n® = s,\,.
0 0 30

To summarize, we showed that (I8) as well as the additional technical assumptions (22])—(24]) hold,
and this completes the proof of Lemma, O

8 ‘Very good’ configurations exist for every subset

In this section we prove Lemma [6.2], which is our main combinatorial statement. Since this lemma
is purely deterministic, it suffices to prove its claim for fixed U € ([Z]) and G(i) satisfying H;. We
proceed in two steps, always tacitly assuming that n is sufficiently large whenever necessary. First,
in Section [RJ] we pick a ‘nice’ configuration ¥* = (U, II). Afterwards, in Sections R3HR.4] we verify
the claimed properties using the density arguments of Section @l Perhaps surprisingly, for showing
that Zy« (i) \ T+ (2) is small we do not need to know all G(i') with ¢/ < i; our proof only uses the
trivial inclusion G(i') C G(i).

In the remainder of this section I'(v) denotes the neighbourhood of v in G(i), unless otherwise
stated. Furthermore, will use without further reference that G(i) satisfies

", CD; NG NM;NN;,

where G; is defined in Theorem 2.1], and D;, M; and N; are defined in Lemmas[Z2HZ 4l In particular,
as G; implies (), in G(i) all codegrees are bounded by (logn)np?. For the subsequent calculations
it may be useful to keep in mind that p = n=2/5, k = n3/5%¢ and u = O(k).
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8.1 Finding ¥* = (U,II) in G(i)

In this section we pick ¥* = (U,II) by only considering the edges of G(i); in anticipation of our
later arguments we also construct an associated set of vertices I with additional properties. Set

L:={veln] : L) NU|> kpn®>}, (74)

so L contains those vertices which have ‘too many’ neighbours in U. Observe that N; implies, say,
|L| < p~! = o(k). Henceforth we assume that the vertices v1, . ..,v, € [n] are arranged in decreasing
order wrt. their number of neighbours in U, i.e., we have

T(o1) NU[ = T(v2) NU| >+ > [D(v;) NU| = -+ > [D(vp) NUY. (75)
We greedily choose first £ 4, then £5 and finally £~ such that they are the smallest indices for which
Na= |J (C@)nU), Ng:= J (@@)NU)\Na and

1<5<la La<j<tp

Ne= |J (@@)NnU)\ (NaUNp)
tp<j<lc

each have cardinality at least 2k, where we set the corresponding index to oo if this is not possible.
Recall that k = u/15 = v/15 - nptiax by B6) and v > 150 by (I0). Furthermore, since G; holds, by
(@) the maximum degree in G(7) is at most 3nptmax < k/3. With this in mind, we deduce that the
size of N4, Np and N¢ is each at most 2k + k/3 = 7k /3. Using |L| = o(k) this implies

|NAUNBUNOUL|§7k+0(k’)§u/2. (76)

Now we pick a partition IT = (A, B,C) as follows. If ¢ = oo or £ > kpn~™%, define I := () and
choose arbitrary disjoint sets of size k satisfying

A,B,C CU\ (Ns4UNgUNgUL),

which is possible by (Z6). Otherwise £ < kpn~>° holds. In this case, we define I'(S) := [J,cg I'(v)
for every vertex set S, and set T4 = {vi,..., v, }, Ipc = {ve +1,..., 00} and I := I U Ipc.
Since by (7)) all codegrees are bounded by (log n)np?, using £4 < £c we see that

IT(Ipc) N Na| < [T(Ipc) NT(I4)| < be - L4 - (logn)np? < kn=%. (77)
Now we choose arbitrary sets of size k satisfying
ACNa\ (T(Ipc)UL), BCN\L and CCNeg\L,
which is possible by (7)) and |L| = o(k). Note that A, B and C are disjoint. Finally, we set
II:=(A,B,C), ¥ := (U,1I) and write K = K(¥*):= AUBUC.

We remark that the above construction borrows some ideas from Bohman [2], but differs in many
details. An important difference to [2] is that we may not assume that K is an independent set.
One of the new ingredients here is the removal of the high-degree vertices contained in L, which
implies an upper bound on |I'(v) N K| for every vertex v € K. Furthermore, in contrast to [2] our
construction also allows us to reason about |I'(v) N K| for every v € U \ K, cf. Section In the
following sections we argue that 3* has the properties claimed by Lemma
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8.2 Bounding the size of certain neighbourhoods

In this section we collect some bounds on the number of neighbours in A, B or K = AUBUC,
which will be used extensively in the sequel. We claim that in G(i) every vertex v € [n] \ I satisfies

IT(v) N K| <p~ i, (78)
and, furthermore, that every vertex v € I satisfies
min {|T'(v) N A, |T'(v) N B|} = 0. (79)

First, we consider the case /o < kpn~°. Every v € I clearly satisfies (79)), since by construction
Fw)NK C Aor I’'(v) N K C BUC. Similar as in [2], using the codegree bound (logn)np?, for

every v ¢ I = {v1,..., v, } we establish (8] as follows:

T(v)NK| < Z IT(v) NT(v;)] < Le(logn)np® < p~ L.
1<j<lc

Otherwise o = co or £c > kpn~>° holds. Since in this case I = (), we have to show that (%)
holds for all v € [n]. If & = oo, then all vertices satisfy |I'(v) N K| = 0. Thus we may assume that
kpn =5 < £ < oo holds. The following argument is based on an idea of Bohman [2]. The important
difference here is that our conclusion also holds for the vertices in U. Set R := {v¢,+1,...,vn}, and
note that all vertices v ¢ R satisfy |I'(v) N K| = 0 since I'(v) N"U € N4 U Np U N¢. Now, due to
(75) and K C U, to prove that (78) holds for all v € R, it is enough to show |I'(v,) N U| < p~tn!0e
for £ := kpn=°. Set H := {v1,...,v;}. On the one hand, using (75) we have

2e(H,U) > Y |T(v;) NU| > kpn >|T(ve) NU.
1<j<¢

On the other hand, since G(i) satisfies D;, using |H| = ¢ < p~! = o(k) and |U| = 15k we have,
say, e(H,U) < kn3. Putting things together, we deduce that |I'(v,) N U| < p~'n!%, with room to
spare. As explained, this completes the proof of (78] and ([79]).

8.3 The configuration >* is good

In this section we show that —B;(X*) = =B (X*) N =B2,;(X*) N —B3;(X*) holds, which by mono-
tonicity (see Section [6.2.2)) implies =B;_1(2*). Observe that the maximum degree inside K is at
most kpn®® since K N L = (), which establishes =B ;(X*).

Turning to B ;(X*), recall that we need to show that the number of pairs zy € ([Z}) with
min{|T(z) NT(y) N A|,|T(z) NT(y) N B|} > kpn~2%¢ (80)

is less than kn~2%. By (79) we may restrict our attention to pairs which contain no vertices from
I. Now, let H contain all vertices x € [n] \ I with |I'(x) N K| > kpn%%. Using N; we obtain, say,
|H| < p~'n=5% In the following we use a case distinction to count all pairs that satisfy (80). To
this end we first define Py as the set of all pairs xy € ([g]) which satisfy (80) and contain at least
one vertex from H. Fix z € H. By (B0) we know that every y with zy € Py satisfies

IT(y) N (T(z) N K)| > kpn 2% =: d. (81)
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Since ¢ I we have |I'(z) N K| < p~'n'% by (78). Thus, using N; we see that the number of such
y is bounded by 16|T'(z) N K|/(ed) < kpn®5. So, considering the number of choices for z € H, and
then the number of y with xy € Py for each such vertex x, we deduce that

‘PH’ < p—ln—GOE . kpn355 — kn—255' (82)

Second, we define Py, as the set of all pairs xy € ([Z]) which satisfy ([80) and do not contain any
vertex from H U I. To bound the size of P;, we define an auxiliary graph G(Pr) with vertex set
Pp. Two distinet vertices zy, 2y’ € V(G(Pr)) are joined by an edge if xy N2y’ # 0, i.e., if the
corresponding pairs share a vertex. As G(Pp) has |Pp| vertices, we estimate the size of Pr, with the
next lemma, whose very simple bound is e.g. attained by the complete graph and its complement.

Lemma 8.1. Suppose G is a simple graph. Let a(G) denote the size of the largest independent set
in G and let A(G) denote the mazimum degree of G. Then G has at most o(G)[1+ A(G)] vertices.

Recall that every xy € Pp, satisfies (80), which in turn implies that (8I]) holds. So, using M; we
deduce that a(G(Pr)) < 90k/(ed) < p~'n?*. To bound the maximum degree in G(Pr) we fix
x ¢ HUI and estimate the number of y with xy € P. As argued above, such pairs satisfy (&I]). So,
using V; and |T'(z) N K| < kpn®¢, the number of such y is bounded by 16|T'(z) N K|/(ed) < n%%,
which in turn implies A(G(Pr)) < 2n°%. Now, Lemma Bl together with the above bounds for
a(G(Pr)) and A(G(Pr)) yields

|PL| < p—1n256 [1 + 2n90€] < p_1n120€. (83)
Putting things together, using (82 and (83]) the number of zy € ([S}) satisfying (80) is bounded by
|PH| + |PL| < kn—25e _|_p—1n120€ < k:n_20€,

where we used (B]) for the last inequality. Therefore =85 ;(X*) holds.

Finally, we show that —B3;(X*) holds. Recall that Z5«(i) contains all quadruples (u,v,w,z) €
A x B x C x [n] which are as in Figure[ i.e., with z ¢ {u,v,w} and {uw, zu, zv, zw} C E(7). Since
z has neighbours in A and B, using (79) we see that z ¢ I. Fix a pair zy € ([72‘}). Roughly speaking,
in the following we bound the number of quadruples in =y« (i) which contain zy. First we count
the number of quadruples (u,v,w,z) € ZEx«(i) with zy = vw. Given uw, by the codegree bound
there are at most (logn)np? choices for z € (I'(u) NI'(w)) \ I and by (78) we have at most p~'n'%
possibilities for v € I'(z) N B. To sum up, there are at most (log n)np? - p~1nl% < kn' quadruples
in Ey+ (i) with zy = uw. The remaining cases, where xy equals to one of zu, zv, zw are similar: for
every quadruple (u,v,w,z) € Zx«(i) that contains xy, we need to pick two vertices a and b, where
in each case a,b are two of u, v, w. Applying the estimate (78] to bound the number of possibilities
for a or b as appropriate, and using the codegree to bound the number of choices for the other, in
each case there are again at most (logn)np?-p~1n'% < kn'% quadruples in Zg«(7) that contain zy.
Putting things together, in G (i) every pair zy € ([Z}) satisfies xy € {uw, zy, zv, zw} for at most

4kn15€ — 0(/<:2pn_15€)

quadruples (u,v,w, z) € Ex-(i), which establishes =B ;(X*).

8.4 ‘Few’ partial triples are ignored for >*

In this section we show that Zs (i) \ T« (i) is small. Let I5 s+(¢) and I3y (i) contain all (u,v,w) €
Zy»+ (i) with uv € C(i) that were ignored in any of the previous steps 0 < i’ < i because of (12) or
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Figure 3: Pairs uv with u € A and v € B such that e;11 = 2y € Cyy (i) and xy Nuv = x. Solid lines
represent edges, and the dashed line corresponds to the next edge e;+1 = xy. The vertices y and 2
may also be in AU B.

(I3). Thus, since every (u,v,w) € Zx«(i) \ Tx~(i) was ignored in one of the first i steps, we obtain
|Zse (1) \ T+ (1) < Lo+ (D) + L3+ (4)- (84)

Recall that for every u € A and v € B there is at most one triple in Zx-«(7) which contains uv. We
claim that for every such pair uv there is in fact at most one w € C such that (u, v, w) € (J; <; Zs+(7).
Indeed, when the pair uv first appears in a partial triple (u,v,w) the pair uv must be open, then no
other triple containing wv is added until (u, v, w) is removed, at which point uv is definitely closed,
so no other triples (u,v,w’) can be added in later steps.

Observe that for every (u,v,w) € Iy x«(i) there exists ¢ < i with ey41 = 2y and ey Nuv = 0
such that in G(i') C G(i) we have u,v € T'(x) NT'(y) and (80). By the findings of Section R3] we
furthermore know that —Bs ;(3*) holds. So the number of pairs zy € ([;L]) which satisfy (80) in G(7)
is bounded by kn~2%. Furthermore, as argued above, for every triple (u,v,w) € I5 y+ (i) the pair
uv uniquely determines the third vertex w. So, considering the number of choices for zy satisfying
(80), and then the number of u,v € I'(x) NI'(y) for each such pair xy, using the codegree bound
(log n)np? we deduce that

| I s+ ()] < kn=2% - [(log n)np?]” < K3p*n1%. (85)

Turning to |I3x+(i)|, let H contain all vertices y € [n] \ I with |['(y) N K| > p~tn=1%. Using N}
we infer that, say, |[H| < kpn?%s. Observe that for every (u,v,w) € I3+ (i) there exists i’ < i with
eiry1 = 2y € Cup(?) and ey1 Nuv = x. Hence in G(¢') there exists z € I'(z) N T'(y) such that
{u,v} \ {z} CT'(y) NT'(2) N K. Similarly as for I s (i), the pair uv uniquely determines the third
vertex w for every triple (u,v,w) € I3 s+(i), and therefore it suffices to bound the number of pairs
wv with the above properties, cf. Figure Bl Using that the triple was not removed due to (R3a)
and (R3b), we deduce two additional properties. On the one hand |T'(y) N K| > p~tn~1% holds,
which implies y € H U I, and, on the other hand, in G(¢') all z € I'(z) NT'(y) with {u,v} \ {z} C
I'(y) NT(z) N K satisty
IT(2) N (D(y) NK)| > kpn=2% =: d. (86)
Now, since y has neighbours in A and B, namely u € A and v € B, using (79) we deduce y & I,
which in turn implies y € H. With this in mind, we define ¥y« (i) as the set of all quadruples
(', vy, 2) € K? x H x [n] for which z € I'(y), {«/,v'} C T'(y)NT(2)N K and (88]) holds. The above
discussion yields
3,5+ (8)] < [V (7)]. (87)

Since y € H satisfies y ¢ I, by ([8) we have |['(y)NK| < p~1n!%. So, similar as in Section B3] using
N; we see that for every y € H there are at most 16|T'(y) N K|/(ed) < kpn3>° vertices z satisfying
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(8@). Furthermore, given y and z, the number of choices for u/,v" € T'(y) NT'(z) N K CT'(y) NT'(2)
are each bounded by (logn)np?. Putting things together, using (87) we deduce that

[ B5e ()] < W (0)] < |H|- kpn®™ - [(log n)np]* < k*pn®®, (83)
where we used |H| < kpn?" for the last inequality.
Finally, plugging using (85]) and (88) into (&), using ([3) we see that
‘ZE* (Z) \TE* (Z)’ < k3p2n_15€ + k‘2pn60€ < k3p2n_105,

as claimed. This completes the proof of Lemma O
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Appendix

A.1 Differential equation method

In this section we formulate the improved version of Lemma 7.3 in [3], which can be obtained by
adapting the ideas/modifications we used in the proof of Lemma back to the original setup.
Intuitively, there are different ‘types’ j € V of random variables, where o € Z; denotes particular
‘instances’, which can e.g. take into account different ‘positions’ in a graph.
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Lemma A.1 (‘Differential Equation Method’). Suppose that m = m(n) and s = s(n) are positive
parameters. Let V = V(n) be a set, and {Z;};cy be a family of sets, where T; = T;(n). For every
0<i<msett=t(i):=1i/s. Suppose we have a filtration Fy C F1; C --- and random variables
X, (i) and Y (i) which satisfy the following conditions. Assume that for all j € V and o € Z; the
random variables X, (i) are non-negative and JF;-measurable for all 0 < i < m, and that for all
0 <14 < m the random variables Y7 (i) are non-negative, F;y1-measurable and satisfy

Xo(i+1) = Xo(i) = Y,'(4) — Y (i) (89)
In addition, suppose that for each j € V and o € Z; we have positive parameters uy, = us(n),
Ao = Ao(n), Bo = Bo(n), T, = 15(n), S = So(n) and Sy = Sy(n), as well as functions x,(t) and

fo(t) that are smooth and non-negative for t > 0. For all 0 < i* < m, let G denote the event that
for all0 <i<3*, 5 €V and o € I, we have

X, (i) = (mo(t) g “(t)> S,. (90)

So

Moreover, assume that we have an event H; € F; for all 0 < i < m with H;11 C H; for all
0 <i < m. Finally, suppose that for n large enough the following conditions hold:

1. (Trend hypothesis) For all0 <i <m, j €V and o € T;, whenever & NH; holds we have
ho(t)\ So
By ) | 7] = (0 £ 220 ) 22, (o1)

where yX(t) and hy(t) are smooth non-negative functions such that
t
GO =y 0 - ®)  ad L) 22 [ he(r) dr+ b (62
0

2. (Boundedness hypothesis) For all0 < i <m, j € V and o € Z;, whenever & N H; holds we

have 52 g
Vi) < 52— . =2, 93
i) < (93)
3. (Initial conditions) For all j € V and o € T; we have
X, (0) = <x0(0) 4 3%’) S, (94)
4. (Bounded number of variables) For all j € V and o € I; we have
max{| VI, [Z;[} < e". (95)
5. (High probability event) The event H; satisfies
P <m: GiN—H;] =o(1). (96)

6. (Additional technical assumptions) For all j € V and o € T; we have u, = w(1) as well as

s > max{15usTs (56 Ao /Bs )% 956 Ao/ B} s/(1855As/PBs) < m < s-T,/1944, (97)

m/s
sup yE(t) < Ao, / 2] dt < A, (95)
0<t<m/s 0
m/s
ho(0) < s,hs  and / K (8)] dE < 5o (99)
0
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Then G, N Hoy, holds with high probability.

Compared to Lemma 7.3 in [3], one important advantage of Lemma [A] is that we state the
approximation error in a simpler form and allow for more freedom in choosing the corresponding
error functions; this should make it easier to apply our variant in other contexts. If possible, it is
often convenient to choose the same parametrization for all o € Z;, e.g. z,(t) = z;(t), since they
typically correspond to different ‘instances’ of the same type of random variables. We point out that
by using this simplification, then choosing s; > n® as well as u; = 2k; logn, and afterwards setting
7j = 1944n°/2| 5]-_1 =N i= 0T Rh(t) i= (e -mj+;) (1)/4 and f;(t) = e;(t)x;(t) —0;(t)e;(t)/s; +
6;(t), this not only implies Lemma 7.3 in [3], but also weakens certain assumptions significantly.
For example, in the additional technical assumptions we relax yjE (t) =0(1) to y]i(t) < n®/7, their
¢ from Q(1) to Q(n=5/7), and also weaken the lower bound on m from m > s to, say, m > sn™°.
Furthermore, we e.g. improve and simplify the initial conditions by allowing for a small error in
the initial value X,(0) and removing the requirement that e;(0) = ~;(0) = 0. At first sight
our assumption that H; satisfies (Q6]) seems to be more restrictive, however, due to an oversight
in the proof given by Bohman and Keevash in [3], their Lemma 7.3 also needs this additional
assumption, which of course holds in their application. Another new ingredient is the introduction
of the parameters \,, 5, and 7,, which allows for a trade-off between the approximation error,
the boundedness hypothesis and the additional technical assumptions. For example, as already
mentioned in Section [5.3.2] in certain applications this might allow for larger one-step changes than
Lemma 7.3 in [3]. Finally, as noted in [3], compared to Wormald’s formulation of the differential
equation method [33] [34], if applicable, Lemma [A.1] has the advantage that in certain applications
much weaker estimates on the one-step changes suffice.

A.2 Proof of Lemma (5.3

We omitted some details in the proof of Lemmal5.3] since they were very similar to the corresponding
calculations in proof of Lemma 7.3 in [3]. In this section we give the missing calculations, and keep
the notation and assumptions of Lemma [5.3]

Using the Euler-Maclaurin summation formula. In the following we prove the estimates (27])
and ([28). To this end we use the Euler-Maclaurin summation formula, which relates the integral
fab f(z)dz with the sum zz:l f (k). The following variant is implicit in [I].

Lemma A.2. [1] Let a < b be integers. Then for any function f with a continuous derivative on

the interval [a,b] we have

b—1

b
| t@de =3 5w
@ k

=a

b
< / 1 (@)lde. (100)

We start by proving (27)). Elementary calculus shows

3

/ " () di= s / 2 (1) dt = 5[z (%) — 2(0)]. (101)
0 0

Furthermore, using the Euler-Maclaurin summation formula (I00) and ¢(i) = i/s, we see that

a / . . — / . I "y . r "
/0 z, (¢(i)) di — ZZ:; a;a(t(z))‘ < ;/0 |2l (t())| di —/0 |z (t)| dt. (102)
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Now, combining (I0I]) and (I02]) with the additional technical assumptions (23]), we deduce
=
z,(t*) — 25(0) — 3 Z a, (t(3))

1 [ Ao
< —/ ()] dt < 22,
i=0 5Jo 8

which in turn implies (27). Using (24]), with a similar calculation we obtain

1 [ oA
—/ ()] dt < 2227
0

z—l

t*
/ dt — - Z heo
0
from which (28] readily follows.

Bounded super-/submartingales. We show that ZX~(i) and ZZ*(i) are (M,, N,)-bounded
super-/submartingales. For bounding the maximum change Z:1%2(i4 1) — Z£1%2(i) we may assume
that & N —B<;(X) NH,; holds (otherwise the difference is by definition equal to 0). In that case

So

Zc:rtl:tQ(i + 1) _ ZC:rI:1:|:2(Z-) _ YU:I:1:|:2(Z') — YU:I:1(Z') _ <y;t1(t) Fo ho_(t)> ? (103)

S

o

Now, using the boundedness hypothesis ([9) as well as y(t) > 0 and @8], i.e., hy(t) < 25,\y, We
see that (I03) is bounded from above by
B2 So | he(t) Sy

— + — <
2\ To Uy Sy S

_l’_

< No,

Ny 2X\: S,
2

where we used [22), i.e., s > 15uy7,(55\s /By )?, and B0) for the last inequality. Similarly, using
YE(i), he(t) > 0 and 23), i.e., y£(t) < Ay, we see that (I03)) is bounded from below by

(o 0) Sy Sy

For checking the super-/submartingale property we may again assume that & N —B<;(X) N#H; holds

(otherwise the value of ZF1*2(i) remains unchanged). Now by combining (I03) with the trend

hypothesis (I7), it is easy to see that ZX (i) is a supermartingale and ZZ+ (i) a submartingale.

Relating certain variables. We prove that whenever H;«_1 N &«_1 N = B<;«_1(X) holds we have
i*—1 i*—1

ZE52(0) — 2572 (0%) = Xo(07) — Xo(0) — = 5" al (t(0) - S, i2—zh -2 o

S So
=0
which readily implies ([32). Using (I5) and (I8)) as well as the definition of Y;=(i) and Z}*2(i),
i.e. (29) and (B0), because H;+—1 N E+—1 N —B<i+_1(X) holds we have

=1 =1

Xo (i) = X (0) = Y (£(3)) - % => <Xa(z‘ +1) = Xo(i) - wf;@(%‘))%)
i=0 1=0
i*—1
- Z <Yo+(z') A 0)) % — Y, (9) +y5 (1)) %)
Z'Z*__Ol i*—1 7 —1 S
=D R A OEDYS Saill .
=0 =0
i*—1
2 - 27 0) o Z ho (1)) - ﬁ
i=0 7

Rearranging gives (I04]), which, as explained, implies (32]).
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