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Abstract. The K4-free process starts with the empty graph on n vertices and at each
step adds a new edge chosen uniformly at random from all remaining edges that do not
complete a copy of K4. Let G be the random maximal K4-free graph obtained at the
end of the process. We show that for some positive constant C, with high probability as
n → ∞, the maximum degree in G is at most Cn3/5 5

√
logn. This resolves a conjecture

of Bohman and Keevash for the K4-free process and improves on previous bounds
obtained by Bollobás and Riordan and by Osthus and Taraz. Combined with results
of Bohman and Keevash this shows that with high probability G has Θ(n8/5 5

√
logn)

edges and is ‘nearly regular’, i.e., every vertex has degree Θ(n3/5 5
√
logn). This answers

a question of Erdős, Suen and Winkler for the K4-free process. We furthermore deduce
an additional structural property: we show that whp the independence number of
G is at least Ω(n2/5(logn)4/5/ log logn), which matches an upper bound obtained by
Bohman up to a factor of Θ(log logn). Our analysis of the K4-free process also yields
a new result in Ramsey theory: for a special case of a well-studied function introduced
by Erdős and Rogers we slightly improve the best known upper bound.

1 Introduction

We consider the K4-free process. This is the random sequence of graphs defined by starting with
an empty graph on n vertices and then in each step adding a new edge chosen uniformly at random
from all remaining edges that do not complete a copy of K4. The process terminates with a maximal
K4-free graph on n vertices, and we are interested in the typical structural properties of the resulting
graph as n tends to infinity. In this paper our main focus is on the final number of edges as well as
the degree of each vertex. As usual, we say that an event holds with high probability, or whp, if it
holds with probability 1− o(1) as n → ∞.

In the H-free process one forbids the appearance of a copy of some fixed graph H, instead of
forbidding a K4. This process was suggested by Bollobás and Erdős [4] at a conference in 1990, as a
way to generate a ‘natural’ probability distribution on the set of maximal H-free graphs. It was first
described in print in 1995 by Erdős, Suen and Winkler [10], who asked how many edges the final
graph typically has. Even earlier results of Ruciński and Wormald [23] imply that for H = K1,d+1,
where d > 0 is fixed, the K1,d+1-free process whp ends with ⌊nd/2⌋ edges. Two other special cases
were examined by several researchers: H = K3 was first studied by Erdős, Suen and Winkler [10],
and H = K4 by Bollobás and Riordan [5] and by Osthus and Taraz [21]. Each of them determined
the final number of edges up to logarithmic factors. Only in a recent breakthrough was Bohman [2]
able to close the gap for the K3-free process by showing that it whp ends with Θ(n3/2

√
log n) edges,

thereby proving a conjecture of Spencer [25]. He went on to analyse theK4-free process, but, despite
his substantial improvements, did not obtain matching lower and upper bounds for the final number
of edges.

The general H-free process was first considered independently by Bollobás and Riordan [5] and
by Osthus and Taraz [21]. For H that satisfy a certain density condition (strictly 2-balanced),
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Osthus and Taraz determined the typical number of edges in the final graph of the H-free process
up to logarithmic factors. Under the additional assumption that H is regular, Wolfovitz [31] later
slightly improved the lower bound (for the expected final number of edges). Recently Bohman and
Keevash [3] proved that if H is strictly 2-balanced, then for some C > 0 the graph generated by
the H-free process has whp at least Cn2−(vH−2)/(eH−1)(log n)1/(eH−1) edges, which they conjectured
to be tight up to the constant (in fact, they conjectured that the maximum degree is at most
C ′n1−(vH−2)/(eH−1)(log n)1/(eH−1) for some C ′ > 0). As one can see, the typical number of edges
in the final graph of the H-free process has attracted a lot of attention, and for a large class of
graphs H (including cliques Kℓ and cycles Cℓ of arbitrary fixed size) interesting bounds are known.
On the other hand, only for the special cases H = K3 and H = K1,d+1 has the question of Erdős,
Suen and Winkler [7] been answered so far, i.e., the exact order of magnitude been determined. It
is an intriguing problem to develop new upper bounds on the number of steps of the H-free process.

The analysis of the H-free process has also produced new results for certain Ramsey and Turán
type problems, which are two central topics in extremal combinatorics. In [3, 31] new lower bounds
for the Turán numbers of certain bipartite graphs were obtained, e.g. for H = Kr,r with r ≥ 5. It
is notable that Bohman’s analysis of the K3-free process [2] gives a lower bound for the Ramsey
number R(3, t), which matches (up to constants) the celebrated result of Kim [18]. The subsequent
analysis of the H-free process [2, 3] has e.g. also improved the best known lower bounds for the off-
diagonal Ramsey numbers R(s, t) by some logarithmic factor for s ≥ 4. One of the main ingredients
for the above Ramsey results is an upper bound on the independence number of the H-free process
for a certain class of graphs H. Although it is not mentioned in [3], combining an easy consequence
of Turán’s theorem [28] with the results of Osthus and Taraz [21] gives, up to logarithmic factors,
matching lower bounds for the independence number. So far, only for the special case H = K3 is
the bound obtained in [2] known to be best possible (up to constants) for the H-free process, and
it would be interesting to reduce this gap for other graphs.

Nowadays, the H-free process is also studied as a model of independent interest. For H satisfying
a certain density condition (strictly 2-balanced), the early evolution of various graph parameters,
including the degree and the number of small subgraphs, has been investigated in [3, 30, 32].
These results suggest that, perhaps surprisingly, during this initial phase the graph produced by
the H-free process is very similar to the uniform random graph with the same number of edges.
The behaviour of the H-free process in later steps is not well understood, and so far only some
preliminary results [12, 29] are known. For example, in [29] it was shown that whp very dense
subgraphs never appear in the H-free process. This motivates the continued investigation of certain
structural properties, e.g. the degree of each vertex, in the later evolution of the H-free process.

1.1 Main result

In this paper we resolve the conjecture of Bohman and Keevash [3] for the K4-free process: we
prove that whp the maximum degree is indeed O(n3/5 5

√
log n).

Theorem 1.1. There exists C > 0 such that with high probability the maximum degree in the graph
generated by the K4-free process is at most Cn3/5 5

√
log n.

This improves the upper bounds by Bollobás and Riordan [5] and by Osthus and Taraz [21], who
proved that the maximum degree is whp at most O(n3/5 log n) and O(n3/5

√
log n), respectively.

In fact, up to the constant our upper bound is best possible, since the results of Bohman and
Keevash [3] imply that for some c > 0, whp the minimum degree is at least cn3/5 5

√
log n. Putting
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things together, this shows that the K4-free process produces whp a ‘nearly regular’ graph, i.e., one
in which every vertex has degree Θ(n3/5 5

√
log n). In particular, this answers a question of Erdős,

Suen and Winkler for the K4-free process (see e.g. [7]): whp the final graph has Θ(n8/5 5
√
log n)

edges.

Furthermore, we obtain a new lower bound on the independence number of the H-free process for
the special case H = K4. To this end we use a result of Shearer [24], which states that for s ≥ 4,
every Ks-free graph on n vertices with maximum degree d contains an independent set of size at
least cn log d

d log log d for d large enough, where c = c(s) is a constant.

Corollary 1.2. There exists c > 0 such that with high probability the independence number of the
graph generated by the K4-free process is at least cn2/5(log n)4/5/ log log n.

Up to the Θ(log log n) factor our lower bound is best possible, since Bohman [2] showed that for
some C > 0, whp the independence number is at most Cn2/5(log n)4/5.

Our analysis of the K4-free process also produces a new result in Ramsey theory. Given integers
2 ≤ r < s < n, let fr(G) denote the maximum cardinality of a subset of vertices of G that contains
no copy of Kr, and define fr,s(n) := min fr(G), where the minimum is taken over all Ks-free graphs
on n vertices. This function was introduced in 1962 by Erdős and Rogers [11], and further examined
by Bollobás and Hind [6], Krivelevich [19, 20], Sudakov [26, 27] and Dudek and Rödl [8]. For more
details we refer to the recent survey [9]; here we just remark that the problem of determining fr,s(n)
extends that of determining Ramsey numbers. As we shall see, our proof of Theorem 1.1 gives the
following new estimate for the special case f3,4(n).

Theorem 1.3. There exists C > 0 such that f3,4(n) ≤ Cn3/5 5
√
log n for every n ≥ 2.

This is a slight improvement on the previously best upper bound, f3,4(n) = O(n3/5
√
log n), which

was established by Krivelevich [19] in 1995 by carefully deleting edges from the binomial random
graph Gn,p, where the edge density p is suitably chosen.

1.2 Techniques

To prove Theorem 1.1 there are several difficulties we need to overcome. First of all, the results of
Bohman [2] as well as Bohman and Keevash [3] only allow us to ‘control’ the K4-free process during
the initial m steps, where m is n8/5 5

√
log n times some small constant; the behaviour in later steps

is so far not well understood. To overcome this issue, we prove that already after the first m steps
whp every large set of vertices contains a triangle. Because the neighbourhood of every vertex has
to be triangle free, this indeed gives an upper bound on the maximum degree in the final graph of
the K4-free process. For the binomial random graph Gn,p such results can be derived routinely, e.g.
using Janson’s inequality [14] together with a union bound argument. But in the K4-free process
there is a complicated dependency among the edges, which makes the use of standard tools difficult
(Bollobás and Riordan [5] and Osthus and Taraz [21] apply correlation inequalities and concentration
results in a sophisticated way, but at the cost of obtaining asymptotically suboptimal bounds on
the maximum degree). To overcome this main technical challenge, we introduce a variant of the
differential equation method [3, 33, 34] which might be of independent interest. Roughly speaking,
in the K4-free process it allows us to ‘control’ certain subgraph counts in every large subset of the
vertices. As usual for applications of the differential equation method, we need to ‘control’ the
step-by-step changes of our random variables, which introduces additional technical difficulties. To
solve one of these issues we use a tool that may also be of independent interest: we essentially show
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that a slightly weaker version of the so-called Deletion Lemma by Rödl and Ruciński [17, 22] applies
to the K4-free process (and to the more general H-free process considered in [3]).

It is important to note that our method is not a simple refinement of Bohman’s argument [2] for
bounding the maximum degree in the K3-free process or the independence number of the K4-free
process. Whereas Bohman shows that every very large subset of the vertices contains at least
one edge, we study the combinatorial structure much more precisely in order to ‘control’ various
subgraph counts in every such large set. Our ideas also yield a substantially improved version of
the variant of the Differential Equation Method proposed by Bohman and Keevash in [3], which we
believe is easier to apply in new contexts. For the sake of simplicity and clarity of presentation, we
have made no attempt to optimize the constants obtained in our proof, and we also omit floor and
ceiling signs whenever these are not crucial.

1.3 Organization of the paper

In the next section we introduce some notation and briefly review properties of the K4-free process.
Section 3 is devoted to the proof of Theorems 1.1 and 1.3. The argument is simple, but relies on
a rather involved probabilistic statement, whose proof is deferred to Section 6. Next, in Section 4
we collect various properties of the K4-free process based on density considerations. Afterwards, in
Section 5 we present a variant of the differential equation method which allows us to track several
variables in every subset of a certain size. We postpone some details of the proof to the appendix,
where we also state an improved version of the differential equation method presented in [3]. In
Section 6 we give the proof of our main technical result. Our argument relies on two combinatorial
statements which are proved in Section 7 and Section 8 using the differential equation method and
density considerations.

2 The K4-free process: preliminaries and notation

In this section we introduce some notation and briefly review properties of the K4-free process
needed to prove our main result. We closely follow [3] and the reader familiar with the results of
Bohman and Keevash may wish to skip this section.

2.1 Terminology and notation

Let G(i) denote the graph with vertex set [n] = {1, . . . , n} after i steps of the K4-free process. Its
edge set E(i) contains i edges; we partition the remaining non-edges

([n]
2

)

\E(i) into two sets, O(i)
and C(i), which we call open and closed pairs, respectively. We say that a pair uv of vertices is
closed in G(i) if G(i) ∪ {uv} contains a copy of K4. Observe that by definition the K4-free process
always chooses the next edge ei+1 uniformly at random from O(i). In addition, for uv ∈ O(i)∪C(i)
we write Cuv(i) for the set of pairs xy ∈ O(i) such that adding uv and xy to G(i) creates a copy of
K4 containing both uv and xy. In particular, the pair uv ∈ O(i) would become closed, i.e., belong
to C(i+ 1), if at step i+ 1 the K4-free process chooses ei+1 from Cuv(i).

The neighbourhood of a vertex v in G(i) is denoted by Γi(v), where we usually omit the subscript
and just write Γ(v) if the corresponding i is clear from the context. With a given graph in mind,
for two vertex sets A,B we write e(A,B) for the number of edges that have one endpoint in A and
the other in B, where an edge with both ends in A ∩ B is counted once. Furthermore, given a set
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S and an integer k ≥ 0, we write
(

S
k

)

for the set of all k-element subsets of S.

For notational convenience we use the symbol ± in two different ways, following [2, 3]. First, we
denote by a ± b the interval {a + xb : −1 ≤ x ≤ 1}, where multiple occurrences of ± are treated
independently. For brevity we also use the convention that x = a ± b means x ∈ a ± b. Second,
given a label i, expressions containing ±i are an abbreviation for two different statements: one
with every ±i replaced by + and ∓i by −, and the other with every ±i replaced by − and ∓i by
+. For example, x±1±2 = a±1 ± b∓2 is a shorthand for four separate statements, of which one is
x+− = a+±b+. As usual, whenever there is no danger of confusion, we omit those labels for brevity.

2.2 Parameters, functions and constants

Following [3], we introduce constants ε, µ and W , which we fix below, and set

p := n−2/5, tmax := µ 5
√

log n and m := n2ptmax = µn8/5 5
√

log n. (1)

We analyse the K4-free process for the first m steps. For each step i we define t = t(i) := i/(n2p),
where, for the sake of brevity, we simply write t if the corresponding i is clear from the context.
Note that the edge-density of G(i) is roughly 2tp. It might be more natural to use a different
parametrization (to remove the factor of two), however, as we rely on some previous results of
Bohman and Keevash [3] we follow their convention. Similar as in [2, 3] we introduce the functions

q(t) := e−16t5 and f(t) := e(t
5+t)W . (2)

We now fix the constants for the rest of the paper: we choose W sufficiently large and then ε and
µ small enough such that, in addition to the constraints implicit in [3] for H = K4, we have

W ≥ 500, ε ≤ 1/1000 and 2Wµ5 ≤ ε. (3)

Since the additional constraints in [3] only depend on H = K4, we see that ε, µ and W are absolute
constants. So, for every 0 ≤ t ≤ tmax, we readily obtain the following inequalities for n large enough:

1 ≥ q(t) ≥ n−ε/2 and 1 ≤ f(t)q(t)2 ≤ f(t) ≤ nε. (4)

2.3 Results of Bohman and Keevash

Using Wormald’s differential equation method [33, 34], Bohman and Keevash [3] track a collection
of random variables throughout the first m steps of the K4-free process (in fact, their results hold
for the more general H-free process, where H satisfies a certain density condition). To this end
they introduce a ‘good’ event Gi for every step i, which intuitively ensures that the K4-free process
has not terminated up to step i and guarantees that certain random variables are essentially tightly
concentrated during the first i steps. For our application the key properties of Gi are estimates
on the number of open pairs as well as bounds for the degree and codegree. So, for the reader’s
convenience we state the results of Bohman and Keevash [3] here in a simplified form.

Theorem 2.1. [3] Define m = m(n), p = p(n) and tmax = tmax(n) as in (1). Set se := n1/12−ε

and t = t(i) := i/(n2p). Furthermore, define q(t) and f(t) as in (2). Let Gj denote the event that
for every 0 ≤ i ≤ j, in G(i) we have |O(i)| > 0, and for all distinct vertices u, v ∈ [n] we have

|O(i)| = (1± 3f(t)/se) q(t)n
2/2, (5)

|Γi(u)| ≤ 3nptmax and (6)

|Γi(u) ∩ Γi(v)| ≤ (log n)np2. (7)
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Let Jj denote the event that for every 0 ≤ i ≤ j, for all pairs uv ∈ O(i)∪C(i) and all distinct pairs
u′v′, u′′v′′ ∈ O(i) we have

|Cuv(i)| =
(

40t4q(t)± 9f(t)/se
)

p−1 and (8)

|Cu′v′(i) ∩ Cu′′v′′(i)| ≤ n−1/6p−1. (9)

Then the event Gm ∩ Jm holds with high probability in the K4-free process.

The definition of the event Gi used in [3] is more complicated; however, the simpler version given
above suffices for our purposes. In the following we briefly outline how the previous theorem relates
to the results of Bohman and Keevash [3]. After some simple estimates, the bounds for |O(i)|, |Γi(u)|
follow directly from their Theorem 1.4 (see also the examples in Section 2 of [3]). Using p2n = ω(1),
their Theorem 1.4 also implies the upper bound on the codegree (analogous to Corollary 1.5 in [3]).
Similarly, the remaining estimates follow from Corollary 6.2 and Lemma 8.4 in [3]. (As noted in
Section 1.5 of [3], their high probability events in fact hold with probability at least 1− n−ω(1). So
there is no problem in taking a union bound over all steps i as well as pairs uv and u′v′, u′′v′′.)
Finally, we point out that our definition of Cuv(i) is different from that in [3], so there is a factor 2
difference in the formulas (we use unordered instead of ordered pairs).

3 Bounding the maximum degree in the K4-free process

This section is devoted to the proof of our main result, namely that in the K4-free process the
maximum degree is whp at most O(n3/5 5

√
log n). We first state our main technical result and then

show how it implies Theorem 1.1 and an upper bound on f3,4(n). Set

δ :=
1

7000
, γ := max

{

5√
δµ5/2

, 150

}

and u := γnptmax = γµn3/5 5
√

log n. (10)

Recall that an open pair has not yet been added to the graph produced by the K4-free process, but
may be added in the next step. Intuitively, the following theorem thus states that in the K4-free
process every large vertex set U ⊆ [n] is ‘close’ to containing a triangle: it contains many open pairs
which would complete a copy of a triangle in U if they were added to the graph generated by the
K4-free process.

Theorem 3.1. Define m = m(n) and p = p(n) as in (1), and δ and u = u(n) as in (10). Set
t = t(i) := i/(n2p) and define q(t) as in (2). Let Tj denote the event that for all n2p ≤ i ≤ j,
in G(i) every set U ⊆ [n] of size u contains at least δu3(tp)2q(t) open pairs which would complete
a copy of a triangle in U if they were added to G(i). Then Tm holds with high probability in the
K4-free process.

As the proof of this result is rather involved, we defer it to Section 6. Let us briefly sketch the
main ideas for deducing Theorem 1.1 from Theorem 3.1. Observe that in the graph produced by
the K4-free process the neighbourhood of every vertex has to be triangle-free. In order to bound
the maximum degree by u = Cn3/5 5

√
log n, where C := γµ, it thus suffices to show that whp every

set of u vertices contains a triangle. Consider a fixed vertex set U ⊆ [n] of size u. Intuitively,
Theorem 3.1 implies that (after some initial steps) each step creates with reasonable probability a
triangle in U . This suggests that with very high probability U indeed contains a triangle after the
first m steps, which essentially suffices to complete the proof (using a union bound argument).
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Proof of Theorem 1.1. As mentioned above, we prove the theorem with C := γµ. Observe that
indeed u = Cn3/5 5

√
log n. Given U ⊆ [n] and i ≤ m, let EU,i denote the event that up to step i, the

set U is triangle-free in the K4-free process. In addition, let Em denote the event that there exists a
vertex set U ⊆ [n] of size u for which EU,m holds. Furthermore, for every i ≤ m we define the event
Hi := Gi∩Ti. Note that Hi depends only on the first i steps of the K4-free process and furthermore
that Hi+1 implies Hi. Now, to complete the proof of the theorem it suffices to show

P[Em ∩Hm] = o(1). (11)

Indeed, by Theorems 2.1 and 3.1 the event Hm holds with high probability and thus (11) implies
P[Em] = o(1). So, with high probability, every set of u vertices contains a triangle and thus the
maximum degree in the K4-free process is bounded by u = Cn3/5 5

√
log n.

In the following we prove (11) using a union bound argument. Fix U ⊆ [n] with |U | = u, and
let TU (i) ⊆ O(i) denote the open pairs after i steps which would complete at least one copy of a
triangle in U if they were added to G(i). Then

P[EU,m ∩Hm] = P[EU,n2p ∩Hn2p]
∏

n2p≤i≤m−1

P[EU,i+1 ∩Hi+1 | EU,i ∩Hi]

≤
∏

n2p≤i≤m−1

P[ei+1 /∈ TU (i) | EU,i ∩Hi].
(12)

Note that EU,i ∩ Hi depends only on the first i steps of the process, so given this, the next edge
ei+1 is chosen uniformly at random from O(i). Furthermore, Gi implies (5), which using (4) implies
q(t) ≥ |O(i)|/n2 for n2p ≤ i ≤ m. Hence, writing t = i/(n2p) as usual, on Hi = Gi ∩ Ti we have

|TU (i)| ≥ δu3(tp)2q(t) = δ
u3i2

n4
q(t) ≥ δ

u3i2

n6
|O(i)|. (13)

As the process fails to choose the next edge ei+1 from TU (i) with probability 1 − |TU (i)|/|O(i)|,
from (12) and (13) as well as the inequality 1− x ≤ e−x we deduce that

P[EU,m ∩Hm] ≤ exp







−δ
u3

n6

∑

n2p≤i≤m−1

i2







≤ exp

{

−δ

4

u3m3

n6

}

. (14)

Substituting the definitions of m, u, p and tmax into (14) we see that

P[EU,m ∩Hm] ≤ exp

{

−γ2δ

4
n2p5t5maxu

}

= exp

{

−γ2δµ5

4
u log n

}

≤ n−2u,

where the last inequality follows from the definition of γ in (10). Finally, taking the union bound
over all choices of U ⊆ [n] with |U | = u implies (11), and, as explained, this completes the proof.

Clearly, Theorem 1.3 is an immediate consequence of the above proof (to prove f3,4(n) < x it suffices
to construct an K4-free graph on n vertices such that every subset of x vertices contains a copy
of K3). Note that we did not use that EU,i holds when establishing (13). With this observation
we can rewrite the proof (using stochastic domination and standard Chernoff bounds) in order to
show that whp every subset U ⊆ [n] with |U | = u contains not only one, but at least Ω(u3(ptmax)

3)
copies of K3; we leave the details to the interested reader.
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4 Basic density arguments

In this section we collect some useful properties of the K4-free process (in fact, these also hold for
the more general H-free process considered in [3]). Throughout we consider m and p as defined in
(1) and ε as chosen in (3).

4.1 The occurrence of a set of edges

Essentially all results in this section are based on the following lemma by Bohman and Keevash [3],
which also holds for the H-free process whenever H is strictly 2-balanced. Intuitively, it states that
the probability that some set of edges is present in G(m) is ‘comparable’ to that in the binomial
model Gn,p, where m and p are defined as in (1) and ε > 0 is chosen as in (3).

Lemma 4.1. [3, Lemma 4.1] For any set of edges F ⊆
([n]
2

)

, the probability that Gm holds and

F ⊆ E(m) is at most
(

pn2ε
)|F |

.

We remark that the proof given in [3] remains valid with our simpler definition of Gi, as it only uses
that the number of open pairs is large, say |O(i)| > n2−ε/2, which readily follows from (4) and (5).

4.2 The number of edges between two sets

The next lemma essentially gives reasonable upper bounds on the number of edges between two
(not necessarily disjoint) sets, and it is an easy consequence of Lemma 4.2 in [3].

Lemma 4.2. [3, Lemma 4.2] Let Di denote the event that for all a, b ≥ 1 and every A,B ⊆ [n] with
|A| = a and |B| = b, in G(i) we have e(A,B) < max{4ε−1(a + b), pabn2ε}. Then the probability
that Gm holds and Dm fails is o(n−1).

With a similar reasoning as above, the proof given in [3] also works with our simpler version of Gi.

4.3 Vertices which have many neighbours in some set

Loosely speaking, the following lemma bounds the number of vertices which have many neighbours
in some set A. It is a straightforward modification of Lemma 4.3 in [3], taking into account that
the ‘high degree’ vertices may also lie in A.

Lemma 4.3. For A ⊆ [n] and d ≥ 1, let DA,d ⊆ [n] denote the set of vertices which have at least d
neighbours in A. Let Ni denote the event that for all a ≥ 1 and d ≥ max{16ε−1, 2apn2ε}, in G(i)
we have |DA,d| < 16ε−1d−1a for every A ⊆ [n] with |A| = a. Then Di implies Ni.

Proof. We closely follow the proof of Lemma 4.3 in [3]. Suppose Di holds. Pick A ⊆ [n] with |A| =
a ≥ 1 and set B = DA,d. Suppose |B| = b ≥ ⌈16ε−1d−1a⌉. Since e(A,B) ≥ db/2 and d ≥ 16ε−1, we
have e(A,B) − 4ε−1b ≥ db/4 ≥ 4ε−1a. Furthermore, d ≥ 2apn2ε implies e(A,B) ≥ db/2 ≥ pabn2ε.
To summarize, we have e(A,B) ≥ max{4ε−1(a+ b), pabn2ε}, which contradicts Di.
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4.4 Disjoint pairs which each have very many common neighbours in some set

Intuitively, the following lemma states that the number of disjoint vertex pairs, where each pair has
very many common neighbours in some set, is not too large.

Lemma 4.4. Let Mi denote the event that for all a ≥ 1 and d ≥ max{300ε−1, ap2n5ε, ε−1/2√apn2ε},
for every A ⊆ [n] with |A| = a, in G(i) the size of any set C of disjoint vertex pairs with
|Γ(x)∩Γ(y)∩A| ≥ d for all xy ∈ C is at most 30ε−1d−1a. Then the probability that Gm ∩Dm holds
and Mm fails is o(n−1).

Note that we allow the vertex pairs to intersect with A. This produces some mild technical difficul-
ties, but we overcome these using the ‘larger’ lower bound d ≥ ε−1/2√apn2ε on the codegree.

Proof. We first fix 1 ≤ a ≤ n, A ⊆ [n] with |A| = a and d ≥ max{300ε−1, ap2n5ε, ε−1/2√apn2ε},
where a, d are integers. Set r := ⌈30ε−1d−1a⌉. It henceforth suffices to consider the case d ≤ a,
otherwise the claim is trivial. Assuming that Gm ∩Dm holds, we now estimate the probability that
there exists a set C of disjoint vertex pairs with |C| = r, where in G(m) each pair in C has at least
d common neighbours in A. In the following we distinguish several cases, where AC denotes all
vertices of A which are contained in some pair in C.

First, suppose there exists C1 ⊆ C of size ⌈r/2⌉ in which each pair has at least ⌈d/2⌉ common
neighbours in A\AC . To bound the probability of this event, we first use a union bound to account
for all possible C1 of size ⌈r/2⌉ and choices of the ⌈d/2⌉ common neighbours Nxy in A \ AC for
each pair xy ∈ C1, and then use Lemma 4.1 to bound the probability that G(m) contains all the
required edges, i.e., F =

⋃

xy∈C1
{x, y} × Nxy. Since by construction |F | = 2⌈d/2⌉⌈r/2⌉, whenever

Gm holds the probability of this case is bounded by

(

n2

⌈r/2⌉

)(

a

⌈d/2⌉

)⌈r/2⌉
(

pn2ε
)2⌈d/2⌉⌈r/2⌉ ≤ n3r

(

2eap2n4ε

d

)dr/4

≤ n(3−εd/5)r ≤ n−εdr/6 ≤ n−2(a+1),

where we used
(x
y

)

≤ (ex/y)y as well as d ≥ ap2n5ε, εd ≥ 300 and εdr ≥ 30a.

Second, assume there exists C2 ⊆ C of size ⌈r/2⌉ in which each pair has at least ⌈d/2⌉ common
neighbours in AC ⊆ A. If there exists C3 ⊆ C2 of size ⌈r/4⌉ in which all pairs are outside of A,
then for every pair xy ∈ C3 its at least d common neighbours in A are (trivially) disjoint from C3.
So, with similar reasoning as above, whenever Gm holds this occurs with probability at most

(

n2

⌈r/4⌉

)(

a

d

)⌈r/4⌉
(

pn2ε
)2d⌈r/4⌉ ≤ nr

(

eap2n4ε

d

)dr/4

≤ n(1−εd/5)r ≤ n−2(a+1).

Otherwise there exists C4 ⊆ C2 of size ⌈r/4⌉, in which each pair has at least one vertex in AC and
at least ⌈d/2⌉ common neighbours in AC . But then e(AC) ≥ rd/16, so d ≥ 300ε−1 implies e(AC) >
16ε−1r. Using r ≤ 60ε−1d−1a and d ≥ ε−1/2√apn2ε we see that d/r ≥ ε(60a)−1d2 ≥ (60)−1pn4ε,
thus e(AC) ≥ rd/16 > 4r2pn2ε. To sum up, e(AC) > max{16ε−1r, 4r2pn2ε}, which contradicts Dm

because of |AC | ≤ 2r, so this case can not occur.

Finally, taking the union bound over all choices of a, d and A implies

P[Gm ∩ Dm ∩ ¬Mm] ≤
∑

a≥1

n

(

n

a

)

2n−2(a+1) = o(n−1),

as required.
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4.5 Deletion Lemma

In our proof we need good exponential upper-tail bounds on the probability that some subset of the
vertices contains ‘too many’ copies of some graph F . Unfortunately, even in Gn,p this probability is
often not as small as it would need to be in order to apply union bounds, see e.g. [15, 16]. However,
Rödl and Ruciński showed in [22] that for Gn,p such bounds can be obtained if we allow for deleting
a few edges; this is usually referred to as the Deletion Lemma [17]. In the following we extend the
classical proof to our scenario at the cost of obtaining slightly worse bounds. As this lemma may
be of independent interest we state it in a slightly more general form than needed for our purposes.
As usual, here ε > 0 is any constant for which Lemma 4.1 holds.

Lemma 4.5 (‘Deletion Lemma’). Suppose ℓ ≥ 1 and that S is a family of ℓ-element subsets from
(

[n]
2

)

. We set µ′ := |S|pℓn2ℓε and say that a graph G contains α ∈ S if all the edges of α are present
in G. Let DLi(d, k) denote the event that there exists a set I0 ⊆ S with |I0| ≤ d such that, setting
E0 :=

⋃

α∈I0
α ⊆

(

[n]
2

)

, the graph G(i)\E0 contains at most µ′+k elements from S. Then for every
d, k > 0 the probability that Gm holds and DLm(d, k) fails is at most

(

1 +
k

µ′

)−d

≤ exp

{

− dk

µ′ + k

}

.

Before giving the proof, let us briefly discuss what a typical application looks like. Suppose that
for some graph F we want to bound the number of F -copies in G(m), or perhaps in some subset
U of G(m). Then we set ℓ = eF and let S contain the edge sets of all possible placements of F (in
U). With this in mind, observe that µ′ corresponds up to a factor of n2ℓε to the expected number
of F -copies in Gn,p (restricted to U). Intuitively, the lemma thus states that if we are allowed to
delete some edges, then substantially exceeding the expected value is very unlikely. For Gn,p the
Deletion Lemma of Rödl and Ruciński replaces µ′ by µ := |S|pℓ, but we emphasize that for large
deviations from µ, say k = ω(µ′), both versions are essentially equivalent. Finally, we point out that
Lemma 4.5 also holds for the more general H-free process considered by Bohman and Keevash [3],
because its proof relies only on Lemma 4.1, which also holds in this more general setup.

Proof of Lemma 4.5. We follow the lines of the proof given by Rödl and Ruciński for Gn,p, see
e.g. Lemma 2.3 in [17]. For α, β ∈ S we write α ∼ β if α ∩ β 6= ∅. Moreover, for α ∈ S and I ⊆ S
we write α ∼ I if α ∼ β for some β ∈ I. For every α ∈ S let Yα denote the indicator variable of the
event that G(m) contains α, i.e., that α ⊆ E(m). Set Zr :=

∑∗
α1,...,αr

∏

i∈[r] Yαi
, where

∑∗
α1,...,αr

denotes the sum over all sequences of α1, . . . , αr ∈ S with αi 6∼ αj for 1 ≤ i < j ≤ r. If DLm(d, k)
fails, then for every set I ⊆ S with |I| ≤ d, if we ignore all Yα with α ∼ I then the sum of the
remaining Yα is at least µ′ + k. Hence, if ¬DLm(d, k) holds and r ≤ d, then

Zr+1 =
∑∗

α1,...,αr

∏

i∈[r]

Yαi

∑

α∈S
α6∼{α1,...,αr}

Yα ≥ (µ′ + k)
∑∗

α1,...,αr

∏

i∈[r]

Yαi
= (µ′ + k)Zr,

so by induction we have Zr ≥ (µ′ + k)r for 1 ≤ r ≤ d+ 1. Recall that the factors Yαi
in each term

of Zr are indicator variables for disjoint edge sets αi, each of size ℓ. So, Lemma 4.1 yields

E[Zr1{Gm}] =
∑∗

α1,...,αr

P

[

α1 ∪ · · · ∪ αr ⊆ E(m) and Gm] ≤
∑∗

α1,...,αr

(

pn2ε
)ℓr ≤ |S|r

(

pn2ε
)ℓr

=
(

µ′
)r

.

Putting everything together and using Markov’s inequality, with r = ⌈d⌉ we obtain

P[Gm ∩ ¬DLm(d, k)] ≤ P[Zr ≥ (µ′ + k)r and Gm] ≤
E[Zr1{Gm}]

(µ′ + k)r
≤
(

µ′

µ′ + k

)r

≤
(

1 +
k

µ′

)−d

.
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Finally, observe that using 1− x ≤ e−x we also have
(

1 +
k

µ′

)−d

=

(

1− k

µ′ + k

)d

≤ exp

{

− dk

µ′ + k

}

,

which completes the proof.

If S is a family of subsets from
([n]
2

)

of arbitrary (possibly distinct) sizes, then essentially the same

proof works with µ′ :=
∑

α∈S(pn
2ε)|α|; we leave the straightforward details to the interested reader.

4.5.1 Bounding the number of certain triples in every subset

In our application, for every subset we need to bound the number of certain triples that have at
least one common neighbour. As we expect that a ‘typical’ triple has no common neighbours, it is
more convenient to bound the number of corresponding quadruples, where the fourth vertex is a
common neighbour of the others. Here we use Lemma 4.5 to show that after deleting a few edges,
the number of such quadruples is bounded.

Lemma 4.6. Let Qi denote the event that for all positive integers r and disjoint sets A,B,C ⊆ [n] of
size r there exists a set E0 ⊆ [n]×(A∪B∪C) of size at most 20ε−1r such that G(i) contains at most
r3np4n10ε quadruples (u, v, w, z) ∈ A×B×C×[n] with z /∈ {u, v, w} and {uw, zu, zv, zw} ⊆ E(i)\E0.
Then the probability that Gm holds and Qm fails is o(n−1).

Roughly speaking, in Section 7.4.1 we will use this lemma to bound the total number of such
quadruples, which are as in Figure 2 on page 21. To this end we shall show later that for ‘nice’
disjoint subsets A,B,C ⊆ [n] the number of quadruples ‘destroyed’ by E0 is not too large.

Proof of Lemma 4.6. We combine the Deletion Lemma with a standard union bound argument.
First, fix r with 1 ≤ r ≤ ⌊n/3⌋. Second, fix disjoint sets A,B,C ⊆ [n] of size r and set Γ :=
[n]× (A ∪B ∪ C). Let S ⊆

(

Γ
4

)

denote the family of edge sets {uw, zu, zv, zw} for all (u, v, w, z) ∈
A×B×C× [n] with z /∈ {u, v, w}. Observe that |S| = r3(n−3) and so the µ′ of Lemma 4.5 satisfies
µ′ ≤ r3np4n8ε. Next, we set k := r3np4n10ε/2 and d := 5ε−1r. Clearly, we have µ′+ k < r3np4n10ε.
By Lemma 4.5 the probability that Gm holds and DLm(d, k) fails is at most

(

1 +
k

µ′

)−d

≤
(

1 +
n2ε

2

)−d

≤ n−dε = n−5r.

If DLm(d, k) holds then this particular choice of disjoint A,B,C ⊆ [n] has the required properties
(noting that |E0| ≤ 4d holds). So, the union bound over all choices of r and A,B,C implies

P[Gm ∩ ¬Qm] ≤
∑

1≤r≤⌊n/3⌋

(

n

r

)(

n− r

r

)(

n− 2r

r

)

n−5r ≤
∑

r≥1

n−2r = o(n−1),

as claimed.

5 Differential equation method

In this section we present a variant of the differential equation method which may be of independent
interest: it allows us to track several variables (which may depend on each other) in every subset
of a certain size.
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5.1 Basic idea of the differential equation method

Wormald [33] developed a method to show that in certain discrete random processes a collection V
of random variables is whp ‘close’ to the solution of a system of differential equations. The basic
idea of Wormald’s method can briefly be described as follows. First, we need to make sure that
the expected one-step changes of all random variables in V can be expressed using only variables
from V, which might involve enlarging V. Then, by pretending that all variables are continuous,
these expected changes suggest a system of ordinary differential equations. Finally, the main effort
is devoted to showing that the random variables in V are whp near the solution of the differential
equations, and for this purpose tools from probability theory are used. For this approach to work
we usually need to make sure that the expected one-step changes are roughly ‘correct’ and that
very large one-step changes are rare or do not happen at all, see e.g. [3, 33, 34]. As it turns out,
martingale estimates are particularly useful for showing the desired concentration results.

5.2 Large deviation inequalities for martingales

Suppose we have a filtration F0 ⊆ F1 ⊆ · · · and a sequence X0,X1, . . . of random variables where
each Xi is Fi-measurable. Then X0,X1, . . . is a supermartingale if E[Xi+1|Fi] ≤ Xi for all i and a
submartingale if E[Xi+1|Fi] ≥ Xi for all i. Furthermore, we say that X0,X1, . . . is (M,N)-bounded
if for all i we have

−M ≤ Xi+1 −Xi ≤ N.

The following martingale inequalities are due to Bohman [2] and follow from the original martingale
inequality of Hoeffding [13]. Observe that for supermartingales we have E[Xi] ≤ E[X0] and for
submartingales E[Xi] ≥ E[X0]. Intuitively, both inequalities thus give (one sided) exponential error
probabilities for deviating ‘too much’ from the expected value.

Lemma 5.1. [2, Lemma 7] Suppose 0 ≡ X0,X1, . . . is an (M,N)-bounded supermartingale with
M ≤ N/10. Then for any m ≥ 1 and 0 < a < mM we have

P[Xm ≥ a] ≤ e−
a
2

3mMN .

Lemma 5.2. [2, Lemma 6] Suppose 0 ≡ X0,X1, . . . is an (M,N)-bounded submartingale with
M ≤ N/2. Then for any m ≥ 1 and 0 < a < mM we have

P[Xm ≤ −a] ≤ e−
a
2

3mMN .

5.3 Tracking several variables in every subset of a certain size

Suppose we want to track several variables in every subset U ⊆ [n] of a certain size u using the
differential equation method. As it turns out, in order to show that the expected or maximum step
by step changes are ‘correct’ or not too large, we often would like to slightly alter the subgraph
induced by U in order to remove (or reduce) ‘bad’ substructures, e.g. by passing to a subset of U
(deleting vertices) or by ‘ignoring’ some edges in U . Roughly speaking, we would like to use a union
bound over all possible ‘alterations’ and then prove that for some alteration all variables tracked
are concentrated. Such an approach is rather standard in probabilistic combinatorics, however, it
does not fit into the usual framework of the differential equation method as presented in [3] or [34],
for example. In this section we show how this basic idea can be formulated in the framework of the
differential equation method, which allows us to routinely use these kind of arguments.
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5.3.1 Main concepts and ideas

In the following we introduce the concepts used in our approach. First, we consider a set C of
‘configurations’ Σ. For example, Σ could correspond to an ‘alteration’ of some U ; for the purpose
of deleting vertices we might have Σ = (U,U ′) with U ′ ⊆ U . Then, for every Σ ∈ C we intend
to track several random variables, i.e., for all i ≤ m and j ∈ V we want to bound the variables
X(Σ,j)(i). As we shall see, it suffices to track the variables for Σ only as long as the configuration
Σ is ‘good’; otherwise a ‘certificate’ for the fact that Σ is ‘bad’ turns out to be sufficient for our
purposes. To this end we introduce the ‘bad’ events Bi(Σ), which will hold if Σ is bad after step i
(we point out that it can also capture other bad events not related to Σ, e.g. Bi(Σ) can be used to
avoid/detect undesirable states of the random process). For example, if Σ is an alteration of U , then
Bi(Σ) should hold if Σ has ‘too many bad substructures’ after step i; in other words, with Bi(Σ) we
are able to ‘detect’ that the alteration Σ did not remove the bad substructures, as intended. With
these concepts we aim at a statement of the following form: whp, for all Σ ∈ C one of the following
holds for every i∗ ≤ m:

(a) the configuration Σ is bad before step i∗, i.e., Bi(Σ) holds for some i < i∗, or

(b) for Σ we can track all variables up to step i∗, i.e., for all i ≤ i∗ and j ∈ V the variables
X(Σ,j)(i) are close to their expected values.

Let us briefly discuss how to use the previous statement. Suppose we want to track several variables
in every U of size u, and that we intend to ‘ignore’ some edges inside U . Then we construct C such
that every Σ ∈ C corresponds to an alteration of some U . For example, here we might have, say,
Σ = (U,F ) with F ⊆

(U
2

)

. Now it remains to show (possibly using different methods) that whp at
least one ‘good’ alteration Σ exists for every U , e.g. via the Deletion Lemma (cf. Lemma 4.5). For
such good Σ we are in case (b) for every i∗ ≤ m, and thus able to track all the desired variables.

5.3.2 A variant of the differential equation method

Now we state our variant of the differential equation method, which is in large parts based on
Lemma 7.3 in [3], but contains several improvements and new ingredients, e.g. the error function fσ
as well as the ‘configurations’ Σ and ‘bad’ events Bi(Σ). An important difference to [3] is that we
track the variables in V for every configuration Σ ∈ C; in other words, each variable tracked ‘belongs’
to a certain configuration. Inspired by [3] we introduce a ‘global’ good event Hi, and ‘give up’ as
soon as it fails. An important new ingredient is the ‘local’ bad event B≤i(Σ). When it holds we only
‘give up’ for Σ, i.e., stop tracking the variables that belong to Σ; the other configurations/variables
are unaffected.

Lemma 5.3 (‘Differential Equation Method’). Suppose that m = m(n) and s = s(n) are positive
parameters. Let C = C(n) and V = V(n) be sets. For every 0 ≤ i ≤ m set t = t(i) := i/s.
Suppose we have a filtration F0 ⊆ F1 ⊆ · · · and random variables Xσ(i) and Y ±

σ (i) which satisfy
the following conditions. Assume that for all σ ∈ C×V the random variables Xσ(i) are non-negative
and Fi-measurable for all 0 ≤ i ≤ m, and that for all 0 ≤ i < m the random variables Y ±

σ (i) are
non-negative, Fi+1-measurable and satisfy

Xσ(i+ 1)−Xσ(i) = Y +
σ (i) − Y −

σ (i). (15)

Furthermore, suppose that for all 0 ≤ i ≤ m and Σ ∈ C we have an event Bi(Σ) ∈ Fi. Then, for all
0 ≤ i ≤ m we define B≤i(Σ) :=

⋃

0≤j≤i Bj(Σ). In addition, suppose that for each σ ∈ C ×V we have
positive parameters uσ = uσ(n), λσ = λσ(n), βσ = βσ(n), τσ = τσ(n), sσ = sσ(n) and Sσ = Sσ(n),
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as well as functions xσ(t) and fσ(t) that are smooth and non-negative for t ≥ 0. For all 0 ≤ i∗ ≤ m
and Σ ∈ C, let Gi∗(Σ) denote the event that for every 0 ≤ i ≤ i∗ and σ = (Σ, j) with j ∈ V we have

Xσ(i) =

(

xσ(t)±
fσ(t)

sσ

)

Sσ. (16)

Next, for all 0 ≤ i∗ ≤ m let Ei∗ denote the event that for every 0 ≤ i ≤ i∗ and Σ ∈ C the event
B≤i−1(Σ) ∪ Gi(Σ) holds. Moreover, assume that we have an event Hi ∈ Fi for all 0 ≤ i ≤ m with
Hi+1 ⊆ Hi for all 0 ≤ i < m. Finally, suppose that the following conditions hold:

1. (Trend hypothesis) For all 0 ≤ i < m and σ = (Σ, j) ∈ C × V, whenever Ei ∩ ¬B≤i(Σ) ∩ Hi

holds we have

E
[

Y ±1
σ (i) | Fi

]

=

(

y±1
σ (t)± hσ(t)

sσ

)

Sσ

s
, (17)

where y±σ (t) and hσ(t) are smooth non-negative functions such that

x′σ(t) = y+σ (t)− y−σ (t) and fσ(t) ≥ 2

∫ t

0
hσ(τ) dτ + βσ. (18)

2. (Boundedness hypothesis) For all 0 ≤ i < m and σ = (Σ, j) ∈ C×V, whenever Ei∩¬B≤i(Σ)∩Hi

holds we have

Y ±
σ (i) ≤ β2

σ

s2σλστσ
· Sσ

uσ
. (19)

3. (Initial conditions) For all σ ∈ C × V we have

Xσ(0) =

(

xσ(0) ±
βσ
3sσ

)

Sσ. (20)

4. (Bounded number of configurations and variables) We have

max {|C|, |V|} ≤ min
σ∈C×V

euσ . (21)

5. (Additional technical assumptions) For all σ ∈ C × V we have

s ≥ max{15uστσ(sσλσ/βσ)
2, 9sσλσ/βσ}, s/(18sσλσ/βσ) < m ≤ s · τσ/1944, (22)

sup
0≤t≤m/s

y±σ (t) ≤ λσ,

∫ m/s

0
|x′′σ(t)| dt ≤ λσ, (23)

hσ(0) ≤ sσλσ and

∫ m/s

0
|h′σ(t)| dt ≤ sσλσ. (24)

Then we have
P[¬Em ∩Hm] ≤ 4 max

σ∈C×V
e−uσ . (25)

Note that Lemma 5.3 allows us to deduce that Em ∩Hm holds whp, if the above conditions 1–5 are
satisfied for n large enough, Hm holds whp and uσ = ω(1) for all σ ∈ C × V. Furthermore, observe
that Ei ∩ ¬B≤i(Σ) implies Gi(Σ). So, to calculate the expected value in (17) for some σ = (Σ, j),
we may assume that in the previous step all variables are essentially ‘correct’ for Σ, i.e., for all
σ = (Σ, j′) with j′ ∈ V we have (16).
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As our result is optimized for a slightly different setup, we only briefly compare it with Lemma 7.3
in [3]. One important advantage of Lemma 5.3 is that we state the approximation error differently
and allow for a larger family of error functions. To this end we point out that by setting hσ(t) :=
(eσ · xσ + γσ)

′(t)/4 and fσ(t) := eσ(t)xσ(t) − θσ(σ)eσ(t)/sσ + θσ(t) we obtain essentially the same
approximation error as in [3], but by setting e.g. β−1

σ := λσ := nε/7, and τσ := nε/2 and and then
choosing sσ ≥ nε and uσ = 2kσ log n, we can weaken several of the assumptions significantly (for
example, in the additional technical assumptions we relax y±σ (t) = O(1) to y±σ (t) ≤ nε/7, their c
from Ω(1) to Ω(n−ε/7), and the lower bound on m from m > s to, say, m > sn−ε). The simpler
formulation of the approximation error using the function fσ was suggested by Oliver Riordan.
Another new ingredient is the introduction of the parameters λσ, βσ and τσ, which allow for a
trade-off between the approximation error, the boundedness hypothesis and the additional technical
assumptions. For example, in certain applications this might allow for larger one-step changes in
(19), since in contrast to Lemma 7.3 in [3], we do not rule out the possibility that our parameters
are small, say, o(nε). Finally, we remark that essentially all of our improvements/modifications also
apply to the setup of Lemma 7.3 in [3], and for the readers convenience we have stated the resulting
improved variant of the differential equation method in Appendix A.1.

Next, let us briefly discuss the typical usage of certain parameters and give some intuition for a few
assumptions (we refer to Sections 7 and 5.1 in [3] and [34] for a further discussion of the setup).
The parameter uσ relates the number of variables and configurations in (21) to the error probability
in (25). For example, if we want to track a few variables inside every subset of size u, then the left
hand side of (21) is usually dominated by the number of subsets O(nu), so uσ = Ω(u log n) is a
convenient choice. With a union bound argument in mind, this indicates that uσ also restricts the
kind of random variables we can hope to track: their expected values µ should be larger than uσ
since (in the independent case) large deviations often occur with probabilities that are exponential
in µ. Up to additional error terms this is essentially reflected by the boundedness hypothesis:
assuming that the maximum step-wise changes of Xσ are at least one the right hand side of (19)
must also be at least one, which basically means that Sσ needs to be larger than uσ, where by
(16) the ‘scaling’ Sσ is roughly comparable to the expected value. Turning to the error terms, if
possible, it is convenient to guess some appropriate function fσ(t) with fσ(0) ≥ βσ and then define
hσ(t) := f ′

σ(t)/2; this satisfies the corresponding constraint in (18). Furthermore, if possible, it
might be useful to choose the parameters such that τσ := λσ and βσ := λ−1

σ or βσ = Θ(1), since
this reduces the number of parameters and simplifies several conditions. Finally, we remark that
the conditions in (22) essentially ensure that s and m are roughly the same and not too small.

Proof of Lemma 5.3. The proof is similar to the proof of Lemma 7.3 in [3]. The important differ-
ences here are the more involved definition of the desired event Em, the modified error functions fσ(t)
and hσ(t), as well as the new parameters λσ, βσ and τσ. The main new ingredients are the configu-
rations Σ and bad events Bi(Σ). Let us briefly outline the main ideas of the proof. First, using (17)
we add and subtract appropriate functions from Y ±

σ (i) in order to construct super-/submartingales
with an initial value of 0. Suppose Hm holds and that Em fails for the first time at step i. Roughly
speaking, it suffices to consider the case when Gi(Σ) fails. But, if (16) is violated, then, as we shall
see, this implies that at least one of our super-/submartingales deviates substantially from 0. By
Lemma 5.1 and 5.2 these large deviations are very unlikely, and it turns out that even after using
a union bound over all such events the resulting error probability is negligible.

First, we derive some additional inequalities that our functions satisfy. Using (24) we see that

sup
0≤t≤m/s

hσ(t) ≤ hσ(0) +

∫ m/s

0
|h′σ(t)| dt ≤ 2sσλσ. (26)
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We claim that the following estimates hold for all 0 ≤ i∗ ≤ m, writing t(i) = i/s and t∗ = i∗/s:

1

s

i∗−1
∑

i=0

x′σ
(

t(i)
)

· Sσ =

(

xσ(t
∗)− xσ(0)±

λσ

s

)

Sσ and (27)

1

s

i∗−1
∑

i=0

hσ
(

t(i)
)

· 2Sσ

sσ
=

(

2

∫ t∗

0
hσ(t) dt±

2sσλσ

s

)

Sσ

sσ
. (28)

Both bounds are obtained with very similar calculations as in the proof of Lemma 7.3 in [3], using the
Euler-Maclaurin summation formula (see e.g. [1]) and then estimating the approximation error with
the additional technical assumptions (23) and (24); therefore we defer the details to Appendix A.2.

Second, we define several random variables and start with Y ±1±2
σ (recall that this is an abbreviation

for four different variables, one for each way of choosing ±1 and ±2). For all (Σ, j) = σ ∈ C × V, if
Ei ∩ ¬B≤i(Σ) ∩Hi holds we set

Y ±1±2
σ (i) := Y ±1

σ (i)−
(

y±1
σ (t)∓2

hσ(t)

sσ

)

Sσ

s
, (29)

and, otherwise (i.e., if ¬Ei ∪B≤i(Σ)∪¬Hi holds) we define Y ±1±2
σ (i) to be 0. Note that in this case

Y ±1±2
σ (i′) = 0 for all i′ ≥ i. Next, we define

Z±1±2
σ (i) :=

i−1
∑

i′=0

Y ±1±2
σ (i′), Mσ :=

3λσSσ

s
and Nσ :=

2β2
σ

s2σλστσ
· Sσ

uσ
(30)

We claim that Z±−
σ (i) and Z±+

σ (i) are (Mσ, Nσ)-bounded super-/submartingales with Z±1±2
σ (0) = 0

and Mσ ≤ Nσ/10. Clearly, Z
±1±2
σ (0) = 0 holds, and, furthermore, (22) implies Mσ ≤ Nσ/10. Using

the trend hypothesis it is easy to establish the super-/submartingale properties, and we deduce
that the random variables are (Mσ , Nσ)-bounded using the boundedness hypothesis, the additional
technical assumptions and (26). We defer the straightforward details to Appendix A.2.

In the following we estimate the probability of the event ¬Em ∩Hm. Loosely speaking, we focus on
the first step i∗ ≤ m where Ei fails, and, in particular, on the Σ ∈ C for which B≤i∗−1(Σ) ∪ Gi∗(Σ)
fails. Note that (18) and (20) ensure that G0(Σ) holds for all Σ ∈ C, and thus E0 holds. So,
considering all i∗ ≤ m, Σ ∈ C and using Hm ⊆ Hi∗−1, we have

¬Em ∩Hm ⊆
⋃

1≤i∗≤m

[

Hm ∩ Ei∗−1 ∩ ¬Ei∗
]

⊆
⋃

1≤i∗≤m

⋃

Σ∈C

[

Hi∗−1 ∩ Ei∗−1 ∩ ¬
(

B≤i∗−1(Σ) ∪ Gi∗(Σ)
)]

.
(31)

Henceforth we fix 1 ≤ i∗ ≤ m and Σ ∈ C. Using that Ei ∩ ¬B≤i(Σ) implies Gi(Σ), we see that

Hi∗−1 ∩ Ei∗−1 ∩ ¬
(

B≤i∗−1(Σ) ∪ Gi∗(Σ)
)

= Hi∗−1 ∩ Ei∗−1 ∩ ¬B≤i∗−1(Σ) ∩ Gi∗−1(Σ) ∩ ¬Gi∗(Σ).

Observe that when Gi∗−1(Σ) holds, the event Gi∗(Σ) can only fail if Xσ(i
∗) violates (16) for some

σ = (Σ, j) with j ∈ V, and for the following calculations we fix such a σ = (Σ, j).

Suppose that Hi∗−1 ∩ Ei∗−1 ∩ ¬B≤i∗−1(Σ) holds and Xσ(i
∗) fails to satisfy (16) because Xσ(i

∗) >
(xσ(t

∗) + fσ(t
∗)/sσ)Sσ. With a virtually identical calculation as in the proof of the Lemma 7.3

in [3], using the relation (15) as well as the definitions (29) and (30), we obtain

Z+−
σ (i∗)− Z−+

σ (i∗) = Xσ(i
∗)−Xσ(0)−

1

s

i∗−1
∑

i=0

x′σ
(

t(i)
)

· Sσ − 1

s

i∗−1
∑

i=0

hσ
(

t(i)
)

· 2Sσ

sσ
, (32)
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and we include its short proof in Appendix A.2 for the sake of completeness. With this in hand,
using the lower bound on Xσ(i

∗), the initial condition (20) as well as (27) and (28), we deduce

Z+−
σ (i∗)− Z−+

σ (i∗) >

(

fσ(t
∗)− 2

∫ t∗

0
hσ(t) dt−

βσ
3

− 3sσλσ

s

)

Sσ

sσ
≥ βσ

3

Sσ

sσ
,

where we used (18) and (22), i.e., s ≥ 9sσλσ/βσ , for the last inequality. This readily implies

Z+−
σ (i∗) ≥ βσ

6

Sσ

sσ
=: a or Z−+

σ (i∗) ≤ −βσ
6

Sσ

sσ
= −a. (33)

Since the variables Z±1±2
σ (i) are ‘frozen’ once Xσ(i) leaves the allowed range (16), we deduce that

Z+−
σ (m) ≥ a or Z−+

σ (m) ≤ −a holds.

Similarly, if Hi∗−1 ∩ Ei∗−1 ∩ ¬B≤i∗−1(Σ) holds and Xσ(i
∗) fails to satisfy (16) because Xσ(i

∗) <
(xσ(t

∗) − fσ(t
∗)/sσ)Sσ, with calculations completely analogous to those of the previous case, we

deduce that Z−−
σ (m) ≥ a or Z++

σ (m) ≤ −a holds.

Plugging our findings into (31), we obtain

¬Em ∩Hm ⊆
⋃

σ∈C×V

[

{Z+−
σ (m) ≥ a}∪ {Z−−

σ (m) ≥ a}∪ {Z++
σ (m) ≤ −a}∪ {Z−+

σ (m) ≤ −a}
]

. (34)

Recall that Z±−
σ (i) and Z±+

σ (i) are (Mσ , Nσ)-bounded super-/submartingales with Mσ ≤ Nσ/10
and initial values of 0. Note that (22), i.e., m > s/(18sσλσ/βσ), implies a < mMσ. Therefore, using
Lemmas 5.1 and 5.2 as well as the definition of a, Mσ and Nσ, we deduce that the probabilities of
Z±−
σ (m) ≥ a and Z±+

σ (m) ≤ −a are each bounded by

exp

{

− a2

3mMσNσ

}

= exp

{

− 1

648

s

m
τσuσ

}

≤ exp {−3uσ} , (35)

where we used (22), i.e., m ≤ s · τσ/1944, for the last inequality. Finally, we estimate (34) with a
union bound argument. Using (21) and (35) we deduce

P[¬Em ∩Hm] ≤
∑

σ∈C×V

4e−3uσ ≤ 4 max
σ∈C×V

e−uσ ,

and the proof is complete.

6 Proof of the main technical result

This section is devoted to the proof of Theorem 3.1 and is organized as follows. First, in Section 6.1
we sketch some of the ideas used. Next, in Section 6.2 we introduce the formal setup. In Sec-
tion 6.3 we then give the proof of Theorem 3.1. The argument is simple, but relies on two involved
combinatorial statements, which are proved in Sections 7 and 8.

6.1 Proof idea

In this section we informally outline some of the ideas used in the proof of Theorem 3.1; we stress
that most of the notions and statements are refined and made precise in later sections. To focus
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on the main ideas we will assume that i, the number of steps of the K4-free process, is large, and
furthermore ignore constants as well as nε factors whenever they are not crucial. Intuitively, this
allows us to ignore whether an edge is open or not in our rough calculations (because by (4) and
(5) we have |O(i)| ≥ n2−ε). Moreover, by (1), (6), (8) and (10) we obtain the approximations
|Cei+1

(i)| ≈ p−1 = n2/5 and |Γ(v)| ≈ |U | ≈ n3/5.

Fix U ⊆ [n] of size |U | ≈ n3/5. Let TU (i) contain all open pairs in U which would create a copy
of K3 in U if they were added to G(i). In order to prove Theorem 3.1 it suffices to establish a
lower bound on |TU (i)|. Note that for every pair uv ∈ TU (i) there exists at least one w ∈ U such
that w ∈ Γ(u) ∩ Γ(v) in G(i). Let ZU (i) denote all triples (u, v, w) ∈ U3 where uv ∈ O(i) and
w ∈ Γ(u) ∩ Γ(v) in G(i). As mentioned in the introduction, we expect that the graph generated
by the K4-free process shares many properties with the uniform random graph, which in turn is
similar to the binomial random graph Gn,p. With this in mind, for each uv ∈ TU (i) the number of
w ∈ U with (u, v, w) ∈ ZU (i) should typically be roughly |U |p2 = o(1). In other words, we expect
that up to constants |ZU (i)| ≈ |TU (i)|, and so for proving Theorem 3.1 it should suffice to prove a
lower bound on |ZU (i)|. For this we intend to apply the differential equation method of Section 5,
and so we introduce additional variables, XU (i) and YU (i), in order to keep track of the step-wise
changes resulting in elements of ZU (i). More precisely, let XU (i) denote all (u, v, w) ∈ U3 with
{uv, vw, uw} ⊆ O(i) and let YU(i) denote all (u, v, w) ∈ U3 with {uv, vw} ⊆ O(i) and uw ∈ E(i).

We remark that |XU (i)| can easily be tracked with the differential equation method. However,
|YU (i)| causes some difficulties with respect to the one-step changes, but these are easy to resolve
using the ideas of Section 5.3.1. Guided by our random graph intuition (and our convention that we
ignore nε factors), we expect the ‘scaling’ Sσ of |YU (i)|, which essentially corresponds to the expected
value of |YU (m)|, to satisfy Sσ ≈ |U |3p ≈ n7/5. Recall that in order to use the differential equation
method, the maximum one-step change must be bounded by (19), i.e., by roughly |U |2p ≈ n4/5. A
triple (u, v, w) ∈ XU (i) is only added to YU (i + 1) if ei+1 = uw, and so at most |U | ≈ n3/5 triples
are added in one step, which causes no problems. Note that triples (u, v, w) ∈ YU (i) are removed,
i.e., not in YU (i+1), if ei+1 ∈ {uv, vw} or {uv, vw} ∩Cei+1

(i) 6= ∅. Therefore the number of triples
removed in one step can be up to (1+ |Cei+1

(i)|) ·maxv∈U |Γ(v)∩U | ≈ p−1 ·maxv∈U |Γ(v)∩U |. So,
as long as, say, maxv∈U |Γ(v) ∩ U | ≤ n1/3 holds, the one-step changes are bounded by p−1n1/3 =
n11/15 = n4/5−1/15, which is small enough for using the differential equation method. Note that
although we expect |Γ(v) ∩ U | ≈ |U |p ≈ n1/5, we can not even guarantee |Γ(v) ∩ U | = o(|U |) for
every v ∈ U and U ⊆ [n] with |U | ≈ n3/5, since |Γ(v)| ≈ |U |. But, as it turns out, by removing
some vertices from U we can overcome this issue. Indeed, as we shall see, from Lemma 4.2 and 4.3
we can deduce that U typically contains a subset U ′ of size |U ′| ≈ |U | such that for every v ∈ U ′ we
have |Γ(v) ∩U ′| ≤ n1/3. Of course, at the beginning of the K4-free process, when we start tracking
the variables, we do not know which U ′ ⊆ U satisfy these properties in later steps. So, intuitively
we ‘try’ all possible U ′ for each U and ‘stop’ tracking as soon as the maximum degree inside U ′ is
too large. This approach is sound because our previous line of argument suggests that for every U
at least one ‘good’ U ′ with bounded degree exists. Using the terminology of Section 5.3.1, this idea
can be formalized as follows. We introduce configurations of the form Σ = (U,U ′), where U ′ ⊆ U
satisfies |U ′| ≈ |U |, and for each such Σ we track the variables only inside U ′. Furthermore, we
define the bad event Bi(Σ) such that it holds whenever the maximum degree inside U ′ is too large.
These ideas would already suffice to track the variables |XU ′(i)| and |YU ′(i)| through the evolution
of the K4-free process using Lemma 5.3.

Obtaining a lower bound on |ZU (i)| with the differential equation method is more difficult and
actually the main technical challenge of our proof. In addition to the bound on the one-step
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Figure 1: (u, v, w) is open/intermediate/partial with respect to Σ = (U,Π) with Π = (A,B,C).
Solid lines represent edges, dotted lines open pairs and dashed lines pairs that are open or closed.

changes, we also need to deal with the issue that although the next edge satisfies ei+1 = vw, the
triple (u, v, w) ∈ YU(i) is not always added to ZU (i+1), since adding vw might close uv. This is an
important difference to bounding the independence number, where this issue does not arise, cf. [2, 3].
For the other variables they track, Bohman and Keevash [3] use a union bound argument (based on
density considerations) to overcome this issue. However, in contrast to [3] we have to handle this
for every large subset, and therefore a slight variation of their approach is unlikely to work here.
To overcome the difficulties arising, we substantially refine the definition of configurations and bad
events. Unfortunately, the additional ideas used are rather technical and at this point an informal
sketch would probably fail to be of much help.

6.2 Formal setup

In this section we present the formal setup which is used in our application of the differential
equation method. First, we define the configurations as well as the variables we want to track in
every subset of a certain size. Afterwards we introduce the high probability events Hi and ‘bad’
events Bi(Σ).

6.2.1 Configurations and random variables

Recall that by (10) we have u = γnptmax = γµn3/5 5
√
log n. We set

k := u/15 = γ/15 · nptmax = γµ/15 · n3/5 5
√

log n. (36)

Now, we define the configurations C to be the set of all Σ = (U,Π), where U ∈
([n]
u

)

and Π = (A,B,C)

with disjoint A,B,C ∈
(U
k

)

. For the sake of brevity we write K = K(Σ) := A ∪B ∪C.

We track several random variables for every Σ ∈ C, which count certain triples (u, v, w) ∈ A×B×C
with uv ∈ O(i) ∪ C(i) and uw, vw ∈ E(i) ∪ O(i). The sets of triples which are called open wrt. Σ
and intermediate wrt. Σ, respectively, are defined as

XΣ(i) :=
{

(u, v, w) ∈ A×B × C : {uv, vw, uw} ⊆ O(i)
}

and (37)

YΣ(i) :=
{

(u, v, w) ∈ A×B × C : {uv, vw} ⊆ O(i) ∧ uw ∈ E(i)
}

. (38)

Finally, we introduce a set ZΣ(i), whose triples are called partial wrt. Σ, which will satisfy

ZΣ(i) ⊆
{

(u, v, w) ∈ A×B × C : uv ∈ O(i) ∪ C(i) ∧ {uw, vw} ⊆ E(i)
}

. (39)

We define ZΣ(i) inductively as follows. At the beginning we set ZΣ(0) := ∅. Suppose the process
chooses ei+1 = xy ∈ O(i) as the next edge in step i + 1. Then a triple (u, v, w) ∈ YΣ(i) is added
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to ZΣ(i+ 1), i.e., is in ZΣ(i+ 1), if vw = ei+1, uv /∈ Cvw(i), and there is no w′ ∈ C such that
(u, v, w′) ∈ ZΣ(i). Furthermore, a triple (u, v, w) ∈ ZΣ(i) is removed, i.e., not in ZΣ(i+ 1), or
ignored, i.e., remains in ZΣ(i+ 1), according to the following rules (see also Figure 3 on page 34):

Case 1. If uv = ei+1, then the triple (u, v, w) is removed,

Case 2. If ei+1 = xy ∈ Cuv(i) and ei+1 ∩ uv = ∅, then the triple (u, v, w) is

(R2) removed if min{|Γ(x) ∩ Γ(y) ∩A|, |Γ(x) ∩ Γ(y) ∩B|} ≤ kpn−20ε holds in G(i), and

(I2) ignored otherwise.

Case 3. If ei+1 = xy ∈ Cuv(i) and ei+1 ∩ uv = x, then the triple (u, v, w) is

(R3a) removed if |Γ(y) ∩K| ≤ p−1n−15ε,

(R3b) removed if there exists a vertex z ∈ Γ(x)∩Γ(y) such that {u, v}\{x} ⊆ Γ(y)∩Γ(z)∩K
and |Γ(y) ∩ Γ(z) ∩K| ≤ kpn−20ε hold in G(i), and

(I3) ignored otherwise.

The way in which triples are added ensures that for every u ∈ A and v ∈ B there is at most one
triple in ZΣ(i) which contains uv. This is an important ingredient and will be exploited repeatedly
in our proof. The rules for removing triples from ZΣ(i) ensure that the step-wise changes are not
too large (see Section 7.4.2 for more details). Intuitively, the ‘ignored’ cases occur only infrequently
and, as we shall later see, their contribution to ZΣ(i) turns out to be negligible. With the bound
on the codegree given by (7) in mind, these rules are rather natural, with the possible exception of
(R3b), which is inspired by [2]. Finally, the inclusion (39) clearly holds and we remark that every
(u, v, w) ∈ ZΣ(i) with uv ∈ C(i) was ignored in some step i′ ≤ i.

We are mainly interested in ZΣ(i), the other sets XΣ(i) and YΣ(i) are needed in order to keep track
of the step-wise changes resulting in elements of ZΣ(i), cf. Figure 1. In order to prove Theorem 3.1,
it suffices to obtain a lower bound on the number of triples in ZΣ(i) which can still be completed
to a copy of K3. For this we define TΣ(i) as follows:

TΣ(i) :=
{

(u, v, w) ∈ ZΣ(i) : uv ∈ O(i)
}

. (40)

The definition of TΣ(i) may seem overly complicated, and one could think that a simpler definition,
say similar to XΣ(i) and YΣ(i), could be sufficient as well. It turns out (see Lemmas 6.1 and 6.2)
that this is in fact an important part of our proof: on the one hand we need to relax the definition,
i.e., to ignore some triples and allow for uv ∈ C(i), in order to ensure that the step-wise changes
are not too large, and on the other hand we must use special rules for removing triples from ZΣ(i)
in order to ensure that the expected changes are still ‘correct’ and furthermore to make sure that
we do not ignore too many triples, i.e., to guarantee that |ZΣ(i)| ≈ |TΣ(i)|. Together with the
events defined in the next section this allows us to track |ZΣ(i)| using our variant of the differential
equation method, and, furthermore, to obtain a lower bound on |TΣ(i)|.

6.2.2 ‘Bad’ events and high probability events

In this section we introduce the high probability events Hi and ‘bad’ events Bi(Σ). Intuitively, Hi

denotes the event that in addition to the results of Bohman and Keevash [3] the density results of
Section 4 hold. More precisely, for every 0 ≤ i ≤ m we define the event Hi as

Hi := Di ∩ Gi ∩ Ji ∩Mi ∩ Ni ∩ Qi, (41)
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Figure 2: A quadruple (u, v, w, z) ∈ ΞΣ(i): adding the pair vw closes uv (solid lines represent edges).
The vertex z may also be in one of the vertex classes, i.e., in A ∪B ∪ C.

where Gi and Ji are defined as in Theorem 2.1, Di, Mi and Ni as in Lemmas 4.2–4.4, and Qi as in
Lemma 4.6. Clearly, Hi depends only on the first i steps, and Hi+1 ⊆ Hi holds.

Next, we introduce the ‘bad’ event Bi(Σ). To this end recall that we use the abbreviation K =
K(Σ) = A ∪B ∪ C. Now, for every 0 ≤ i ≤ m and Σ ∈ C we define the event Bi(Σ) as

Bi(Σ) := B1,i(Σ) ∪ B2,i(Σ) ∪ B3,i(Σ), (42)

where we define as B1,i(Σ), B2,i(Σ) and B3,i(Σ) as follows:

B1,i(Σ) := in G(i) the maximum degree inside K is larger than kpn5ε,

B2,i(Σ) := the number of xy ∈
([n]
2

)

with min{|Γ(x) ∩ Γ(y) ∩ A|, |Γ(x) ∩ Γ(y) ∩ B|} ≥ kpn−20ε

is larger than kn−20ε in G(i), and

B3,i(Σ) := in G(i) there exists a pair xy ∈
([n]
2

)

that satisfies xy ∈ {uw, zu, zv, zw} for more
than k2pn−15ε quadruples (u, v, w, z) ∈ ΞΣ(i), where ΞΣ(i) contains all quadruples
(u, v, w, z) ∈ A×B × C × [n] with z /∈ {u, v, w} and {uw, zu, zv, zw} ⊆ E(i).

Note that Bi(Σ) depends only on the first i steps and is increasing, so Bi(Σ) ⊆ Bi+1(Σ) holds.
Loosely speaking, the definition of Bi(Σ) ensures that whenever it holds certain ‘bad’ substructures
do not appear during the first i steps. This allows us to track the random variables we defined in
Section 6.2.1 with our variant of the differential equation method.

In the following we briefly give some intuition for the definition of Bi(Σ). The event ¬B1,i(Σ)
ensures that the degree inside K is not too large, which is mainly used to bound the one-step
changes. Loosely speaking, ¬B2,i(Σ) ensures that not too many triples are ignored because of (I2),
which will be important for showing |ZΣ(i)| ≈ |TΣ(i)|. Finally, together with Qi the event ¬B3,i(Σ)
essentially implies that the number of triples (u, v, w) ∈ YΣ(i) with uv ∈ Cvw(i) is not too large
(observe that for every such triple there exists z ∈ [n] for which (u, v, w, z) ∈ ΞΣ(i), cf. Figures 1
and 2). This will be crucial for showing that the expected number of triples added to ZΣ(i+ 1) in
one step is not too small (see Section 7.4.1 for more details).

6.3 Proof of Theorem 3.1

We use the following two statements to prove Theorem 3.1. Intuitively, the first (probabilistic)
lemma implies that for ‘good’ configurations Σ the variables |XΣ(i)|, |YΣ(i)| and |ZΣ(i)| are tightly
concentrated. Roughly speaking, the second (deterministic) lemma states that for every set U of
size u there exists a good configuration Σ∗ = (U,Π) for which TΣ∗(i) ⊆ ZΣ∗(i) is large.

Lemma 6.1. Suppose C, Bi(Σ), Hi as well as XΣ(i), YΣ(i) and ZΣ(i) are defined as in Sections 6.2.1
and 6.2.2. Furthermore, define m = m(n) and p = p(n) as in (1), and k = k(n) as in (36). Set
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so := n2ε and t = t(i) := i/(n2p). Define q(t) and f(t) as in (2). For all 0 ≤ i∗ ≤ m and Σ ∈ C, let
Gi∗(Σ) denote the event that for every 0 ≤ i ≤ i∗ we have

|XΣ(i)| =
(

q(t)3 ± f(t)q(t)2

so

)

k3, (43)

|YΣ(i)| =
(

2tq(t)2 ± f(t)q(t)

so

)

k3p and (44)

|ZΣ(i)| =
(

2t2q(t)± f(t)

so

)

k3p2. (45)

Next, let Ei∗ denote the event that for all 0 ≤ i ≤ i∗ and Σ ∈ C the event Bi−1(Σ) ∪ Gi(Σ) holds.
Then Em ∩Hm holds with high probability.

Let us give some intuition for the trajectories our variables follow. As usual, we expect G(i) to
share many properties with the binomial random graph Gn,ρ with edge-density ρ = 2tp, since
(n
2

)

ρ ≈ i = tn2p. Furthermore, by (5) the proportion of pairs which are open roughly equals q(t).

So, with this in mind, we expect |XΣ(i)| ≈ q(t)3k3, |YΣ(i)| ≈ 2tp q(t)2k3 and |ZΣ(i)| ≈ 2(tp)2q(t)k3.
We remark that for the partial triples we ‘lose’ a factor of two since we only count those triples
where the edge uw appears before vw.

Lemma 6.2. Suppose C, Bi(Σ), Hi as well as ZΣ(i) and TΣ(i) are defined as Sections 6.2.1
and 6.2.2. Furthermore, define m = m(n) and p = p(n) as in (1), u = u(n) as in (10) and
k = k(n) as in (36). Set t = t(i) := i/(n2p) and define q(t) as in (2). For n large enough, if
G(i) was generated by the K4-free process and satisfies Hi, then for every U ∈

([n]
u

)

there exists
Σ∗ = (U,Π) ∈ C such that ¬Bi−1(Σ

∗) and |ZΣ∗(i) \ TΣ∗(i)| ≤ k3p2n−10ε hold.

The proofs of these lemmas are rather involved and therefore deferred to Sections 7 and 8. Next we
show how they imply our main technical result.

Proof of Theorem 3.1. By Lemma 6.1 the event Em ∩Hm holds whp, and so by monotonicity whp
Ei ∩ Hi holds for every 0 ≤ i ≤ m. Therefore, using Lemma 6.2 we deduce that, whp, for every
0 ≤ i ≤ m and U ∈

([n]
u

)

there exists a configuration Σ∗ = (U,Π) such that

|ZΣ∗(i) \ TΣ∗(i)| ≤ k3p2n−10ε (46)

and Ei ∩ ¬Bi−1(Σ
∗) hold. In the following we show that for every such ‘good’ Σ∗ = (U,Π) the set

TΣ∗(i) is large. Note that t = i/(n2p) ≥ 1 for i ≥ n2p, and recall that q(t) ≥ n−ε/2 and f(t) ≤ nε

by (4). So, since Ei ∩ ¬Bi−1(Σ
∗) implies Gi(Σ

∗), using (4) and (45), for n2p ≤ i ≤ m we have

|ZΣ∗(i)| ≥ k3(tp)2q(t). (47)

Thus, using TΣ∗(i) ⊆ ZΣ∗(i), (46) and (47) as well as (10) and (36), i.e., k = u/15 and δ = 1/7000,
we deduce that, whp, for every n2p ≤ i ≤ m and U ∈

(

[n]
u

)

there exists Σ∗ = (U,Π) such that

|TΣ∗(i)| = |ZΣ∗(i)| − |ZΣ∗(i) \ TΣ∗(i)|
≥ k3(tp)2q(t)− k3p2n−10ε ≥ k3(tp)2q(t)/2 ≥ δu3(tp)2q(t).

Note that for every triple (u, v, w) ∈ TΣ∗(i) we have {u, v, w} ⊆ U as well as uv ∈ O(i) and
{uw, vw} ⊆ E(i). Recall that the inductive definition of ZΣ∗(i) ensures that every uv with u ∈ A
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and v ∈ B is contained in at most one of the triples in ZΣ∗(i). So, using TΣ∗(i) ⊆ ZΣ∗(i), we see
that for every pair of distinct triples (u, v, w), (u′ , v′, w′) ∈ TΣ∗(i) we have uv 6= u′v′. We deduce
that, whp, for every n2p ≤ i ≤ m and U ∈

([n]
u

)

there exists Σ∗ = (U,Π) such that the set

T̃U (i) := {uv ∈ O(i) : there exists w ∈ U such that (u, v, w) ∈ TΣ∗(i)}
has size |T̃U (i)| = |TΣ∗(i)| ≥ δu3(tp)2q(t) and contains only open pairs uv ∈ T̃U (i) such that adding
uv to G(i) completes a triangle in U . Therefore Tm holds whp, which proves the theorem.

7 Trajectory verification

In this section we prove Lemma 6.1, which is our main probabilistic statement. We work with
the ‘natural’ filtration given by the K4-free process, where Fi corresponds to the first i steps,
and tacitly assume that n is sufficiently large whenever necessary. Note that Hi depends only
on the first i steps, and that Hm holds whp (using Theorem 2.1, Lemmas 4.2–4.4 and 4.6). We
apply the differential equation method (Lemma 5.3) with s := n2p and the purely formal set of
variables V := {X,Y,Z}, where for all Σ ∈ C we let X(Σ,X)(i) := |XΣ(i)|, X(Σ,Y )(i) := |YΣ(i)| and
X(Σ,Z)(i) := |ZΣ(i)|. For the sake of clarity we will usually work directly with the variables under
consideration, e.g. with |YΣ(i)| instead of X(Σ,Y )(i). Recalling that Bi(Σ) is monotone increasing,
we see that Bi(Σ) = B≤i(Σ). In addition, for all σ ∈ C × V we define

βσ = 1, uσ := unε = ω(1), sσ := so = n2ε and λσ := τσ := nε. (48)

Note that using k = u/15, with this parametrization the boundedness hypothesis (19) simplifies to

Y ±
σ (i) ≤ β2

σ

s2σλστσ
· Sσ

uσ
=

Sσ

15kn7ε
. (49)

The remainder of this section is organized as follows. First, in Section 7.1 we give some inequalities
for dealing with expressions containing ± symbols. Afterwards, in Sections 7.2–7.4 we verify the
trend and boundedness hypotheses of Lemma 5.3 for the open, intermediate and partial triples.
Finally, in Section 7.5 we finish the proof of Lemma 6.1 by checking the remaining conditions.

7.1 Estimates for expressions containing ± operators

The following inequalities can easily be verified using elementary calculus. Recall that a ± b is a
shorthand for {a + xb : −1 ≤ x ≤ 1}, where multiple occurrences of ± are treated independently
(see Section 2.1).

Lemma 7.1. Suppose 0 ≤ x ≤ 1/2. Then

(1± x)−1 ⊆ 1± 2x. (50)

The next lemma provides estimates for products of a special form.

Lemma 7.2. Suppose that x, y, fx, fy, g, h ≥ 0 and g ≤ 1. Then fx + xg ≤ h/2 implies

(x± fx)(1± g) ⊆ x± h. (51)

Furthermore, xfy + yfx + fxfy + xyg ≤ h/2 implies

(x± fx)(y ± fy)(1± g) ⊆ xy ± h. (52)
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Proof. Using x, y, fx, fy ≥ 0 we see that

(x± fx)(y ± fy) ⊆ xy ± (xfy + yfx + fxfy). (53)

Plugging y = 1 and fy = g into (53), and using g ≤ 1, xg ≥ 0 as well as fx + xg ≤ h/2, we obtain

(x± fx)(1± g) ⊆ x± (xg + fx + fxg) ⊆ x± 2(fx + xg) ⊆ x± h,

which establishes (51). Finally, using (53) and plugging x′ = xy and f ′
x = xfy+ yfx+ fxfy together

with f ′
x + x′g ≤ h/2 into (51) gives (52), which completes the proof.

7.2 Open triples

In every open triple (u, v, w) ∈ XΣ(i) all pairs are open, i.e., {uv, vw, uw} ⊆ O(i). We define

x(t) := q(t)3 = e−48t5 , x+(t) := 0, x−(t) := 240t4q(t)3 (54)

fx(t) := f(t)q(t)2 = e(W−32)t5+Wt and hx(t) := f ′
x(t)/2. (55)

For every σ = (Σ,X) with Σ ∈ C we set xσ(t) := x(t), y±σ (t) := x±(t), fσ(t) := fx(t), hσ(t) := hx(t)
and Sσ := k3. Moreover, we define X+

Σ (i) := XΣ(i+ 1) \XΣ(i) and X−
Σ (i) := XΣ(i) \XΣ(i+ 1).

Formally we then set Y ±
(Σ,X)

(i) := |X±
Σ (i)|, but henceforth we work directly with |X±

Σ (i)|. In the
following we check the trend and boundedness hypothesis for the open triples.

7.2.1 Trend hypothesis

Note that whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have to prove

E[|X±1

Σ (i)| | Fi] =

(

x±1(t)± hx(t)

so

)

k3

n2p
. (56)

Triples added in one step. We start by verifying (56) for X+
Σ (i). Clearly, adding an edge to

G(i) can not create new open triples. So |X+
Σ (i)| = 0 = x+(t) always holds, which settles this case.

Triples removed in one step. Next, we prove (56) for X−
Σ (i). Recall that ei+1 ∈ O(i) is added to

G(i). Observe that a triple (u, v, w) ∈ XΣ(i) is removed, i.e., not in XΣ(i+ 1), if it either contains
ei+1, or one of its pairs is in Cei+1

(i), which is equivalent to ei+1 ∈ Cuv(i) ∪Cvw(i) ∪Cuw(i). Thus,
the number of choices for ei+1 which remove (u, v, w) from XΣ(i) is |Cuv(i) ∪Cvw(i) ∪ Cuw(i)| ± 3.
Recall that the K4-free process chooses the edge ei+1 uniformly at random from the open pairs in
G(i). Thus, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have

E[|X−
Σ (i)| | Fi] =

∑

(u,v,w)∈XΣ(i)

|Cuv(i) ∪ Cvw(i) ∪ Cuw(i)| ± 3

|O(i)| . (57)

Recall that Ei ∩ ¬Bi(Σ) implies Gi(Σ), and thus for calculating the expected one-step changes we
may assume that |XΣ(i)| satisfies (43). Moreover, Hi implies that the inequalities (5), (8) and (9)
hold. In addition, note that se = n1/12−ε and (4) imply f(t)/se = o(1). Substituting the former
estimates into (57), and using n1/6 = ω(se), f(t) ≥ 1 as well as Lemma 7.1, we deduce that

E[|X−
Σ (i)| | Fi] =

(q(t)3 ± fx(t)/so)k
3 · [3(40t4q(t)± 9f(t)/se)p

−1 ± 3n−1/6p−1 ± 3]

(1± 3f(t)/se)q(t)n2/2

⊆ (1± 6f(t)/se) · (q(t)2 ± f(t)q(t)/so) · (240t4q(t)± 70f(t)/se) · k3/(n2p).
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Therefore the desired bound, i.e., (56) for X−
Σ (i), follows if

(1± 6f(t)/se) · (q(t)2 ± f(t)q(t)/so) ·
(

240t4q(t)± 70f(t)/se
)

⊆ x−(t)± hx(t)/so. (58)

Now, using f(t) = o(se) and Lemma 7.2, observe that to prove (58) it is enough to show

140f(t)q(t)2so/se + 480t4f(t)q(t)2 + 140f(t)2q(t)/se + 2880t4f(t)q(t)3so/se ≤ hx(t).

Note that by (4) all terms involving se are in fact o(1). So, using fx(t) = f(t)q(t)2 it suffices if

1 + 480t4fx(t) ≤ hx(t),

which is easily seen to be true, since hx(t) ≥ Wt4fx(t) +W/2 by (3) and (55). To summarize, we
have verified the trend hypothesis (56) for the open triples.

7.2.2 Boundedness hypothesis

Second, we verify the boundedness hypothesis (49) whenever Ei ∩ ¬Bi(Σ) ∩ Hi holds. Clearly, no
triples are added to XΣ(i+ 1), and so |X+

Σ (i)| = 0. Suppose that ei+1 ∈ O(i) is added to G(i).
Recall that a triple (u, v, w) ∈ XΣ(i) is removed, i.e., not in XΣ(i+ 1), if it either contains ei+1, or
one of its pairs is in Cei+1

(i). Note that every pair is in at most k triples and, furthermore, that Hi

implies (8), which gives |Cei+1
(i)| ≤ p−1nε. Therefore, we deduce that

|X−
Σ (i)| ≤ k(1 + |Cei+1

(i)|) ≤ 2kp−1nε = o(k2n−7ε),

which establishes the boundedness hypothesis for the open triples.

7.3 Intermediate triples

Every intermediate triple (u, v, w) ∈ YΣ(i) satisfies {uv, vw} ⊆ O(i) and uw ∈ E(i). We define

y(t) := 2tq(t)2 = 2te−32t5 , y+(t) := 2q(t)2, y−(t) := 320t5q(t)2 (59)

fy(t) := f(t)q(t) = e(W−16)t5+Wt and hy(t) := f ′
y(t)/2. (60)

For every σ = (Σ, Y ) with Σ ∈ C we set xσ(t) := y(t), y±σ (t) := y±(t), fσ(t) := fy(t), hσ(t) := hy(t)
and Sσ := k3p. Similar as for open triples, we define Y +

Σ (i) := YΣ(i+ 1) \ YΣ(i) and Y −
Σ (i) :=

YΣ(i) \ YΣ(i+ 1). Then we set Y ±
(Σ,Y )(i) := |Y ±

Σ (i)|, but henceforth work directly with |Y ±
Σ (i)|.

7.3.1 Trend hypothesis

Whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have to prove

E[|Y ±1

Σ (i)| | Fi] =

(

y±1(t)± hy(t)

so

)

k3p

n2p
. (61)

Triples added in one step. Note that a triple (u, v, w) ∈ XΣ(i) is added to YΣ(i+ 1), i.e., is in
YΣ(i+ 1), if and only if ei+1 = uw (because ei+1 = uw can not close any of the open pairs uv or
vw). Recall that Ei ∩¬Bi(Σ) implies Gi(Σ), and thus |XΣ(i)| satisfies (43). Furthermore, whenever
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Hi holds so does Gi, which implies (5). Using that ei+1 is chosen uniformly at random from O(i)
as well as f(t) = o(se) and Lemma 7.1, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we deduce that

E[|Y +
Σ (i)| | Fi] =

∑

(u,v,w)∈XΣ(i)

1

|O(i)| ⊆
(q(t)3 ± fx(t)/so)k

3

(1± 3f(t)/se)q(t)n2/2

⊆ (1± 6f(t)/se) · (2q(t)2 ± 2fy(t)/so) · k3p/(n2p).

(62)

Now, using Lemma 7.2 we see that (61) for Y +
Σ (i) follows if

4fy(t) + 24f(t)q(t)2so/se ≤ hy(t). (63)

Using (3) and (60) the last inequality follows readily by observing that the term involving se is o(1).

Triples removed in one step. Observe that a triple (u, v, w) ∈ YΣ(i) is removed, i.e., not in
YΣ(i+ 1), if either ei+1 ∈ {uv, vw}, or one of the pairs uv or vw is in Cei+1

(i), which is equivalent
to ei+1 ∈ Cuv(i) ∪ Cvw(i). Using that ei+1 is chosen uniformly at random from O(i), we see that

E[|Y −
Σ (i)| | Fi] =

∑

(u,v,w)∈YΣ(i)

|Cuv(i) ∪ Cvw(i)| ± 2

|O(i)| . (64)

Recall that Hi implies (5), (8) and (9). Furthermore, as argued before, f(t)/se = o(1) holds and
Ei∩¬Bi(Σ)∩Hi implies that |YΣ(i)| satisfies (44). Substituting the former estimates into (64), and
using n1/6 = ω(se), f(t) ≥ 1 as well as Lemma 7.1, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have

E[|Y −
Σ (i)| | Fi] =

(2tq(t)2 ± fy(t)/so)k
3p · [2(40t4q(t)± 9f(t)/se)p

−1 ± n−1/6p−1 ± 2]

(1± 3f(t)/se)q(t)n2/2

⊆ (1± 6f(t)/se) · (4tq(t)± 2f(t)/so) · (80t4q(t)± 30f(t)/se) · k3p/(n2p).

We intend to show (61) for Y −
Σ (i) using Lemma 7.2. Similar as for the removed open triples,

by writing down the assumptions of (52), multiplying with 2so and then noticing that all terms
containing se are o(1), we see that it suffices if

1 + 320t4fy(t) ≤ hy(t),

which clearly holds by (3) and (60). This establishes the trend hypothesis (61).

7.3.2 Boundedness hypothesis

Second, we verify the boundedness hypothesis (49) whenever Ei ∩ ¬Bi(Σ) ∩ Hi holds. Note that a
triple (u, v, w) ∈ XΣ(i) is added to YΣ(i+ 1), i.e., is in YΣ(i+ 1), if ei+1 = uw. As every pair is in
at most k triples, we thus obtain

|Y +
Σ (i)| ≤ k = o(k2pn−7ε).

Observe that a triple (u, v, w) ∈ YΣ(i) is only removed, i.e., not in YΣ(i+ 1), if ei+1 ∈ {uv, vw}
or {uv, vw} ∩ Cei+1

(i) 6= ∅ holds. Since Hi implies (8), we have |Cei+1
(i)| ≤ p−1nε. Furthermore,

whenever ¬Bi(Σ) holds so does ¬B1,i(Σ), and thus every vertex in K has at most kpn5ε neighbours
in K. Therefore, using that u and w are neighbours for every (u, v, w) ∈ YΣ(i), we deduce that

|Y −
Σ (i)| ≤ (1 + |Cei+1

(i)|)kpn5ε ≤ kn10ε = o(k2pn−7ε),

which establishes the boundedness hypothesis for the intermediate triples.
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7.4 Partial triples

Every partial triple (u, v, w) ∈ ZΣ(i) satisfies uv ∈ O(i) ∪ C(i) and {uw, vw} ⊆ E(i). Recall that
ZΣ(i) is defined inductively in a manner that ensures that every uv with u ∈ A and v ∈ B is
contained in at most one of the triples in ZΣ(i). We define

z(t) := 2t2q(t) = 2t2e−16t5 , z+(t) := 4tq(t), z−(t) := 160t6q(t) (65)

fz(t) := f(t) = e(t
5+t)W and hz(t) := f ′

z(t)/2 = f ′(t)/2. (66)

For every σ = (Σ, Z) with Σ ∈ C we set xσ(t) := z(t), y±σ (t) := z±(t), fσ(t) := fz(t), hσ(t) := hz(t)
and Sσ := k3p2. Similar as for open and intermediate triples, we define Z+

Σ (i) := ZΣ(i+ 1) \ ZΣ(i)
and Z−

Σ (i) := ZΣ(i) \ ZΣ(i+ 1). Then we set Y ±
(Σ,Z)(i) := |Z±

Σ (i)|, but work directly with |Z±
Σ (i)|.

7.4.1 Trend hypothesis

As usual, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have to prove

E[|Z±1

Σ (i)| | Fi] =

(

z±1(t)± hz(t)

so

)

k3p2

n2p
. (67)

Triples added in one step. Recall that a triple (u, v, w) ∈ YΣ(i) is added to ZΣ(i+ 1), i.e., is
in ZΣ(i+ 1), if ei+1 = vw, uv /∈ Cvw(i) and there exists no w′ ∈ C such that (u, v, w′) ∈ ZΣ(i).
First we determine all (u, v, w) ∈ YΣ(i) that satisfy uv ∈ Cvw(i). Let CΣ(i) denote all such triples.
Recall that ΞΣ(i) contains all quadruples (u, v, w, z) ∈ A × B × C × [n] which are as in Figure 2,
i.e., with z /∈ {u, v, w} and {uw, zu, zv, zw} ⊆ E(i). Observe that for every (u, v, w) ∈ CΣ(i) there
exists z ∈ [n] such that (u, v, w, z) ∈ ΞΣ(i), see also Figure 1 on page 19. Therefore

|CΣ(i)| ≤ |ΞΣ(i)|. (68)

Note that whenever Hi holds so does Qi (defined in Lemma 4.6); hence for r = k there exists a
set E0 ⊆ [n] × K of pairs with |E0| ≤ 20ε−1k such that there are at most k3np4n10ε quadruples
(u, v, w, z) ∈ ΞΣ(i) with {uw, zu, zv, zw} ⊆ E(i) \ E0. Furthermore, as ¬Bi(Σ) holds, by ¬B3,i(Σ)
we know that every xy ∈ E0 satisfies xy ∈ {uw, zu, zv, zw} for at most k2pn−15ε quadruples
(u, v, w, z) ∈ ΞΣ(i). So, together with (68) we deduce that

|CΣ(i)| ≤ |ΞΣ(i)| ≤ k3np4n10ε + 20ε−1k3pn−15ε ≤ k3pn−10ε. (69)

Next, letDΣ(i) contain all triples (u, v, w) ∈ YΣ(i) for which there exists w′ ∈ C such that (u, v, w′) ∈
ZΣ(i). Whenever ¬Bi(Σ) holds so does ¬B1,i(Σ), and thus every vertex in K has at most kpn5ε

neighbours in K. Since w must be a neighbour of u for every (u, v, w) ∈ YΣ(i), we deduce that
|DΣ(i)| ≤ |ZΣ(i)| · kpn5ε. As Ei ∩ ¬Bi(Σ) implies Gi(Σ), we know that |ZΣ(i)| satisfies (45), which
gives |ZΣ(i)| ≤ k3p2nε. So, we see that

|DΣ(i)| ≤ k4p3n6ε = o(k3pn−10ε). (70)

To summarize, (u, v, w) ∈ YΣ(i) is added to ZΣ(i+ 1) if and only if ei+1 = vw and (u, v, w) /∈
CΣ(i) ∪DΣ(i). As noted before, Ei ∩ ¬Bi(Σ) ∩Hi implies that O(i) and YΣ(i) satisfy (5) and (44),
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respectively. So, using that ei+1 is chosen uniformly at random from O(i) as well as (69), (70),
n10ε = ω(so), fy(t) ≥ 1, f(t) = o(se) and Lemma 7.1, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we have

E[|Z+
Σ (i)| | Fi] =

∑

(u,v,w)∈YΣ(i)\[CΣ(i)∪DΣ(i)]

1

|O(i)| ⊆
(2tq(t)2 ± fy(t)/so)k

3p± 2k3pn−10ε

(1± 3f(t)/se)q(t)n2/2

⊆ (1± 6f(t)/se) · (4tq(t)± 4f(t)/so) · k3p2/(n2p).

Now, using Lemma 7.2 we see that (67) for Z+
Σ (i) follows if

8f(t) + 48tf(t)q(t)so/se ≤ hz(t).

Using (3) and (66) the last inequality follows readily by observing that the term involving se is o(1).

Triples removed in one step. Recall that a triple (u, v, w) ∈ ZΣ(i) is not always removed if
ei+1 = uv or ei+1 ∈ Cuv(i) holds (since it can be ignored). For estimating the expected number of
removed triples we now derive sufficient and necessary conditions for a triple to be removed and we
start with a sufficient condition. To this end we first determine the triples which might be ignored
because of (I2). Let PΣ(i) contain all open pairs xy ∈ O(i) with min{|Γ(x) ∩ Γ(y) ∩ A|, |Γ(x) ∩
Γ(y) ∩ B|} ≥ kpn−20ε in G(i). As ¬Bi(Σ) holds, from ¬B2,i(Σ) we deduce that |PΣ(i)| ≤ kn−20ε.
Now let IΣ(i) denote all triples (u, v, w) ∈ ZΣ(i) such that in G(i) we have {u, v} ⊆ Γ(x)∩ Γ(y) for
some xy ∈ PΣ(i). Recall that every uv with u ∈ A and v ∈ B is contained in at most one triple in
ZΣ(i). Furthermore, Hi implies (7), and so |Γ(x) ∩ Γ(y)| ≤ (log n)np2 for every xy ∈ PΣ(i). Thus,
using |PΣ(i)| ≤ kn−20ε, we obtain

|IΣ(i)| ≤ |PΣ(i)| · [(log n)np2]2 ≤ k3p2n−15ε. (71)

Note that (R2) can only fail if (u, v, w) ∈ IΣ(i). So, if (u, v, w) ∈ ZΣ(i) satisfies ei+1 ∈ Cuv(i) and
ei+1 ∩ uv = ∅, then (u, v, w) /∈ IΣ(i) is a sufficient condition for (R2) to hold.

Next we derive a sufficient condition for (R3a). To this end let LΣ(i) contain all vertices y ∈ [n]
which satisfy |Γ(y) ∩K| ≥ p−1n−15ε in G(i). Recall that whenever Hi holds so does Ni (defined in
Lemma 4.3). One can check that Ni implies, say, |LΣ(i)| ≤ kpn20ε. For every triple (u, v, w) ∈ ZΣ(i)
we then set Luv,Σ(i) := {u, v} × LΣ(i), and thus, using se = n1/12−ε, we see that

|Luv,Σ(i)| = 2|LΣ(i)| ≤ kpn25ε = o
(

(sep)
−1
)

. (72)

Note that (R3a) can only fail if ei+1 ∈ Luv,Σ(i). So, if (u, v, w) ∈ ZΣ(i) satisfies ei+1 ∈ Cuv(i) and
ei+1 ∩ uv 6= ∅, then ei+1 /∈ Luv,Σ(i) is a sufficient condition for (R3a) to hold.

To summarize, if (u, v, w) ∈ ZΣ(i)\IΣ(i) satisfies ei+1 ∈ Cuv(i)\Luv,Σ(i), then either (R2) or (R3a)
holds and hence (u, v, w) is removed. Clearly, a necessary condition for (u, v, w) ∈ ZΣ(i) being
removed is ei+1 ∈ Cuv(i) ∪ {uv}. So, since ei+1 is chosen uniformly at random from O(i), we have

E[|Z−
Σ (i)| | Fi] =

∑

(u,v,w)∈ZΣ(i)

|Cuv(i)| ± |Luv,Σ(i)| ± 1

|O(i)| ±
∑

(u,v,w)∈IΣ(i)

|Cuv(i)|
|O(i)| . (73)

As argued before, |ZΣ(i)| satisfies (45) whenever Ei ∩ ¬Bi(Σ) holds. Furthermore, Hi implies that
(5) and (8) hold. Substituting the former estimates and (71), (72) into (73), and using n15ε = ω(so),
f(t) ≥ 1 and Lemma 7.1, whenever Ei ∩ ¬Bi(Σ) ∩Hi holds we deduce that

E[|Z−
Σ (i)| | Fi] =

[(2t2q(t)± f(t)/so)k
3p2 ± k3p2n−15ε] · [(40t4q(t)± 9f(t)/se)p

−1 ± (sep)
−1 ± 1]

(1± 3f(t)/se)q(t)n2/2

⊆ (1± 6f(t)/se) · (2t2q(t)± 2f(t)/so) · [80t4 ± 30f(t)/(seq(t))] · k3p2/(n2p).
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We intend to show (67) for Z−
Σ (i) using Lemma 7.2. Similar as for the removed open and interme-

diate triples, by writing down the assumptions of (52) and then noticing that all terms containing
se are negligible, we see that it suffices if

1 + 320t4f(t) ≤ hz(t),

which clearly holds by (3) and (66). This establishes the trend hypothesis (67).

7.4.2 Boundedness hypothesis

In this section we verify the boundedness hypothesis (49) whenever Ei ∩ ¬Bi(Σ) ∩ Hi holds. Note
that for a triple (u, v, w) ∈ YΣ(i) to be added to ZΣ(i+ 1) the conditions ei+1 = vw and u ∈ Γ(w)
are necessary. Furthermore, whenever ¬Bi(Σ) holds so does ¬B1,i(Σ), and thus every vertex in K
has at most kpn5ε neighbours in K. Therefore

|Z+
Σ (i)| ≤ kpn5ε = o(k2p2n−7ε).

Recall that a triple (u, v, w) ∈ ZΣ(i) is removed, i.e., not in ZΣ(i+ 1), according to different rules.
In the following we bound the total number of triples removed in one step by each rule. As the
inductive definition of ZΣ(i) ensures that every uv with u ∈ A and v ∈ B is contained in at most
one of the triples in ZΣ(i), it clearly suffices to bound the number of corresponding pairs uv with
u ∈ A and v ∈ B that are removed by ei+1 = xy. With ei+1 = xy given, we need to consider pairs
uv in three different relations to xy; these were called cases 1–3 in Section 6.2.1. In case 1 we have
uv = ei+1, and so, given ei+1, at most one triple is removed under case 1.

For ei+1 = xy the rule (R2) only removes triples (u, v, w) ∈ ZΣ(i) with u ∈ Γ(x)∩Γ(y)∩A and v ∈
Γ(x)∩Γ(y)∩B. Because Hi holds, all codegrees are at most (log n)np2 by (7). Applying the bound
in (R2) to bound the number of possibilities for u or v as appropriate, and then using the codegree to
bound the number of choices for the other, this rule removes at most kpn−20ε·(log n)np2 ≤ knp3n−15ε

triples.

Every triple removed under case 3 satisfies uv ∩ ei+1 = x and {u, v} \ {x} ⊆ Γ(y), where ei+1 = xy.
Hence (R3a) removes at most 2p−1n−15ε triples (the factor of two accounts for the different choices
of x). The last rule (R3b) only removes triples (u, v, w) ∈ ZΣ(i) for which there exists z ∈ Γ(x)∩Γ(y)
such that {u, v} \ {x} ⊆ Γ(y) ∩ Γ(z) ∩K and |Γ(y) ∩ Γ(z) ∩K| ≤ kpn−20ε. So, using the codegree
to bound the number of choices for z and, given z, the above bound for the number of vertices in
Γ(y) ∩ Γ(z) ∩K, this rule removes at most 2(log n)np2 · kpn−20ε ≤ knp3n−15ε triples.

Putting it all together, we deduce that

|Z−
Σ (i)| ≤ 1 + 2p−1n−15ε + 2knp3n−15ε ≤ k2p2n−10ε,

which clearly establishes the boundedness hypothesis for the partial triples.

7.5 Finishing the trajectory verification

In this section we verify the remaining conditions of the differential equation method (Lemma 5.3).

Initial conditions. Using (54), (59) and (65), for all Σ ∈ C it is easy to see that XΣ(0) = k3 =
x(0)k3, YΣ(0) = 0 = y(0)k3p and ZΣ(0) = 0 = z(0)k3p2 hold, which establishes (20).
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Bounded number of configurations and variables. By construction we have

|C| ≤
(

n

u

)

4u ≤ n2u = e2u logn,

which together with |V| = 3 and uσ = unε clearly establishes (21).

Additional technical assumptions and the function fσ(t). Recall that m = µn2p 5
√
log n,

s = n2p and u = γµnp 5
√
log n. Now, using (48) it is easy to see that (22) holds, with room to spare.

Next, using (3), (54), (59) and (65), elementary calculus shows that for all σ ∈ C × V we have

x′σ(t) = y+σ (t)− y−σ (t), sup
0≤t≤m/s

y±σ (t) ≤ nε = λσ and

∫ m/s

0
|x′′σ(t)| dt ≤ nε = λσ,

with plenty of room to spare for large n. Recall that for all σ ∈ C × V we have hσ(t) = f ′
σ(t)/2 and

fσ(t) = f(t)q(t)ι, where ι ∈ {0, 1, 2}. Hence, using fσ(0) = 1 = βσ, we see that

fσ(t) = 2

∫ t

0
hσ(τ) dτ + fσ(0) = 2

∫ t

0
hσ(τ) dτ + βσ.

Note that hσ(0) = W/2 ≤ sσλσ and h′σ(t) ≥ 0. In addition, observe that h′σ(t) is bounded by some
constant for, say, t ≤ 30. For larger t, we have t8 ≤ et, which implies, say, h′σ(t) ≤ W 3f(t)2. Putting
things together, using elementary calculus as well as (1) and (4), for n large enough we obtain

∫ m/s

0
|h′σ(t)| dt ≤

∫ 30

0
h′σ(t) dt+

∫ m/s

30
W 3f(t)2 dt ≤ O(1) +m/s ·W 3f(m/s)2 ≤ n3ε = sσλσ.

To summarize, we showed that (18) as well as the additional technical assumptions (22)–(24) hold,
and this completes the proof of Lemma 6.1.

8 ‘Very good’ configurations exist for every subset

In this section we prove Lemma 6.2, which is our main combinatorial statement. Since this lemma
is purely deterministic, it suffices to prove its claim for fixed U ∈

([n]
u

)

and G(i) satisfying Hi. We
proceed in two steps, always tacitly assuming that n is sufficiently large whenever necessary. First,
in Section 8.1 we pick a ‘nice’ configuration Σ∗ = (U,Π). Afterwards, in Sections 8.3–8.4 we verify
the claimed properties using the density arguments of Section 4. Perhaps surprisingly, for showing
that ZΣ∗(i) \ TΣ∗(i) is small we do not need to know all G(i′) with i′ ≤ i; our proof only uses the
trivial inclusion G(i′) ⊆ G(i).

In the remainder of this section Γ(v) denotes the neighbourhood of v in G(i), unless otherwise
stated. Furthermore, will use without further reference that G(i) satisfies

Hi ⊆ Di ∩ Gi ∩Mi ∩ Ni,

where Gi is defined in Theorem 2.1, and Di, Mi and Ni are defined in Lemmas 4.2–4.4. In particular,
as Gi implies (7), in G(i) all codegrees are bounded by (log n)np2. For the subsequent calculations
it may be useful to keep in mind that p = n−2/5, k = n3/5±ε and u = Θ(k).
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8.1 Finding Σ∗ = (U,Π) in G(i)

In this section we pick Σ∗ = (U,Π) by only considering the edges of G(i); in anticipation of our
later arguments we also construct an associated set of vertices I with additional properties. Set

L := {v ∈ [n] : |Γ(v) ∩ U | ≥ kpn5ε}, (74)

so L contains those vertices which have ‘too many’ neighbours in U . Observe that Ni implies, say,
|L| ≤ p−1 = o(k). Henceforth we assume that the vertices v1, . . . , vn ∈ [n] are arranged in decreasing
order wrt. their number of neighbours in U , i.e., we have

|Γ(v1) ∩ U | ≥ |Γ(v2) ∩ U | ≥ · · · ≥ |Γ(vj) ∩ U | ≥ · · · ≥ |Γ(vn) ∩ U |. (75)

We greedily choose first ℓA, then ℓB and finally ℓC such that they are the smallest indices for which

NA :=
⋃

1≤j≤ℓA

(

Γ(vj) ∩ U
)

, NB :=
⋃

ℓA<j≤ℓB

(

Γ(vj) ∩ U
)

\NA and

NC :=
⋃

ℓB<j≤ℓC

(

Γ(vj) ∩ U
)

\
(

NA ∪NB

)

each have cardinality at least 2k, where we set the corresponding index to ∞ if this is not possible.
Recall that k = u/15 = γ/15 · nptmax by (36) and γ ≥ 150 by (10). Furthermore, since Gi holds, by
(6) the maximum degree in G(i) is at most 3nptmax ≤ k/3. With this in mind, we deduce that the
size of NA, NB and NC is each at most 2k + k/3 = 7k/3. Using |L| = o(k) this implies

|NA ∪NB ∪NC ∪ L| ≤ 7k + o(k) ≤ u/2. (76)

Now we pick a partition Π = (A,B,C) as follows. If ℓC = ∞ or ℓC > kpn−5ε, define I := ∅ and
choose arbitrary disjoint sets of size k satisfying

A,B,C ⊆ U \
(

NA ∪NB ∪NC ∪ L
)

,

which is possible by (76). Otherwise ℓC ≤ kpn−5ε holds. In this case, we define Γ(S) :=
⋃

v∈S Γ(v)
for every vertex set S, and set IA := {v1, . . . , vℓA}, IBC := {vℓA+1, . . . , vℓC} and I := IA ∪ IBC .
Since by (7) all codegrees are bounded by (log n)np2, using ℓA ≤ ℓC we see that

|Γ(IBC) ∩NA| ≤ |Γ(IBC) ∩ Γ(IA)| ≤ ℓC · ℓA · (log n)np2 ≤ kn−5ε. (77)

Now we choose arbitrary sets of size k satisfying

A ⊆ NA \
(

Γ(IBC) ∪ L
)

, B ⊆ NB \ L and C ⊆ NC \ L,

which is possible by (77) and |L| = o(k). Note that A, B and C are disjoint. Finally, we set
Π := (A,B,C), Σ∗ := (U,Π) and write K = K(Σ∗) := A ∪B ∪C.

We remark that the above construction borrows some ideas from Bohman [2], but differs in many
details. An important difference to [2] is that we may not assume that K is an independent set.
One of the new ingredients here is the removal of the high-degree vertices contained in L, which
implies an upper bound on |Γ(v) ∩K| for every vertex v ∈ K. Furthermore, in contrast to [2] our
construction also allows us to reason about |Γ(v) ∩K| for every v ∈ U \K, cf. Section 8.2. In the
following sections we argue that Σ∗ has the properties claimed by Lemma 6.2.
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8.2 Bounding the size of certain neighbourhoods

In this section we collect some bounds on the number of neighbours in A, B or K = A ∪ B ∪ C,
which will be used extensively in the sequel. We claim that in G(i) every vertex v ∈ [n] \ I satisfies

|Γ(v) ∩K| ≤ p−1n10ε, (78)

and, furthermore, that every vertex v ∈ I satisfies

min {|Γ(v) ∩A|, |Γ(v) ∩B|} = 0. (79)

First, we consider the case ℓC ≤ kpn−5ε. Every v ∈ I clearly satisfies (79), since by construction
Γ(v) ∩ K ⊆ A or Γ(v) ∩ K ⊆ B ∪ C. Similar as in [2], using the codegree bound (log n)np2, for
every v /∈ I = {v1, . . . , vℓC} we establish (78) as follows:

|Γ(v) ∩K| ≤
∑

1≤j≤ℓC

|Γ(v) ∩ Γ(vj)| ≤ ℓC(log n)np
2 ≤ p−1.

Otherwise ℓC = ∞ or ℓC > kpn−5ε holds. Since in this case I = ∅, we have to show that (78)
holds for all v ∈ [n]. If ℓC = ∞, then all vertices satisfy |Γ(v) ∩K| = 0. Thus we may assume that
kpn−5ε < ℓC < ∞ holds. The following argument is based on an idea of Bohman [2]. The important
difference here is that our conclusion also holds for the vertices in U . Set R := {vℓC+1, . . . , vn}, and
note that all vertices v /∈ R satisfy |Γ(v) ∩K| = 0 since Γ(v) ∩ U ⊆ NA ∪ NB ∪ NC . Now, due to
(75) and K ⊆ U , to prove that (78) holds for all v ∈ R, it is enough to show |Γ(vℓ) ∩ U | ≤ p−1n10ε

for ℓ := kpn−5ε. Set H := {v1, . . . , vℓ}. On the one hand, using (75) we have

2e(H,U) ≥
∑

1≤j≤ℓ

|Γ(vj) ∩ U | ≥ kpn−5ε|Γ(vℓ) ∩ U |.

On the other hand, since G(i) satisfies Di, using |H| = ℓ ≤ p−1 = o(k) and |U | = 15k we have,
say, e(H,U) ≤ kn3ε. Putting things together, we deduce that |Γ(vℓ) ∩ U | ≤ p−1n10ε, with room to
spare. As explained, this completes the proof of (78) and (79).

8.3 The configuration Σ∗ is good

In this section we show that ¬Bi(Σ
∗) = ¬B1,i(Σ

∗) ∩ ¬B2,i(Σ
∗) ∩ ¬B3,i(Σ

∗) holds, which by mono-
tonicity (see Section 6.2.2) implies ¬Bi−1(Σ

∗). Observe that the maximum degree inside K is at
most kpn5ε since K ∩ L = ∅, which establishes ¬B1,i(Σ

∗).

Turning to ¬B2,i(Σ
∗), recall that we need to show that the number of pairs xy ∈

([n]
2

)

with

min{|Γ(x) ∩ Γ(y) ∩A|, |Γ(x) ∩ Γ(y) ∩B|} ≥ kpn−20ε (80)

is less than kn−20ε. By (79) we may restrict our attention to pairs which contain no vertices from
I. Now, let H contain all vertices x ∈ [n] \ I with |Γ(x) ∩K| ≥ kpn65ε. Using Ni we obtain, say,
|H| ≤ p−1n−60ε. In the following we use a case distinction to count all pairs that satisfy (80). To
this end we first define PH as the set of all pairs xy ∈

([n]
2

)

which satisfy (80) and contain at least
one vertex from H. Fix x ∈ H. By (80) we know that every y with xy ∈ PH satisfies

|Γ(y) ∩ (Γ(x) ∩K)| ≥ kpn−20ε =: d. (81)
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Since x /∈ I we have |Γ(x) ∩K| ≤ p−1n10ε by (78). Thus, using Ni we see that the number of such
y is bounded by 16|Γ(x) ∩K|/(εd) ≤ kpn35ε. So, considering the number of choices for x ∈ H, and
then the number of y with xy ∈ PH for each such vertex x, we deduce that

|PH | ≤ p−1n−60ε · kpn35ε = kn−25ε. (82)

Second, we define PL as the set of all pairs xy ∈
([n]
2

)

which satisfy (80) and do not contain any
vertex from H ∪ I. To bound the size of PL we define an auxiliary graph G(PL) with vertex set
PL. Two distinct vertices xy, x′y′ ∈ V (G(PL)) are joined by an edge if xy ∩ x′y′ 6= ∅, i.e., if the
corresponding pairs share a vertex. As G(PL) has |PL| vertices, we estimate the size of PL with the
next lemma, whose very simple bound is e.g. attained by the complete graph and its complement.

Lemma 8.1. Suppose G is a simple graph. Let α(G) denote the size of the largest independent set
in G and let ∆(G) denote the maximum degree of G. Then G has at most α(G)[1+∆(G)] vertices.

Recall that every xy ∈ PL satisfies (80), which in turn implies that (81) holds. So, using Mi we
deduce that α(G(PL)) ≤ 90k/(εd) ≤ p−1n25ε. To bound the maximum degree in G(PL) we fix
x /∈ H∪I and estimate the number of y with xy ∈ PL. As argued above, such pairs satisfy (81). So,
using Ni and |Γ(x) ∩K| ≤ kpn65ε, the number of such y is bounded by 16|Γ(x) ∩K|/(εd) ≤ n90ε,
which in turn implies ∆(G(PL)) ≤ 2n90ε. Now, Lemma 8.1 together with the above bounds for
α(G(PL)) and ∆(G(PL)) yields

|PL| ≤ p−1n25ε
[

1 + 2n90ε
]

≤ p−1n120ε. (83)

Putting things together, using (82) and (83) the number of xy ∈
([n]
2

)

satisfying (80) is bounded by

|PH |+ |PL| ≤ kn−25ε + p−1n120ε ≤ kn−20ε,

where we used (3) for the last inequality. Therefore ¬B2,i(Σ
∗) holds.

Finally, we show that ¬B3,i(Σ
∗) holds. Recall that ΞΣ∗(i) contains all quadruples (u, v, w, z) ∈

A×B×C× [n] which are as in Figure 2, i.e., with z /∈ {u, v, w} and {uw, zu, zv, zw} ⊆ E(i). Since
z has neighbours in A and B, using (79) we see that z /∈ I. Fix a pair xy ∈

(

[n]
2

)

. Roughly speaking,
in the following we bound the number of quadruples in ΞΣ∗(i) which contain xy. First we count
the number of quadruples (u, v, w, z) ∈ ΞΣ∗(i) with xy = uw. Given uw, by the codegree bound
there are at most (log n)np2 choices for z ∈ (Γ(u) ∩ Γ(w)) \ I and by (78) we have at most p−1n10ε

possibilities for v ∈ Γ(z)∩B. To sum up, there are at most (log n)np2 · p−1n10ε ≤ kn15ε quadruples
in ΞΣ∗(i) with xy = uw. The remaining cases, where xy equals to one of zu, zv, zw are similar: for
every quadruple (u, v, w, z) ∈ ΞΣ∗(i) that contains xy, we need to pick two vertices a and b, where
in each case a, b are two of u, v, w. Applying the estimate (78) to bound the number of possibilities
for a or b as appropriate, and using the codegree to bound the number of choices for the other, in
each case there are again at most (log n)np2 ·p−1n10ε ≤ kn15ε quadruples in ΞΣ∗(i) that contain xy.
Putting things together, in G(i) every pair xy ∈

(

[n]
2

)

satisfies xy ∈ {uw, zy, zv, zw} for at most

4kn15ε = o(k2pn−15ε)

quadruples (u, v, w, z) ∈ ΞΣ∗(i), which establishes ¬B3,i(Σ
∗).

8.4 ‘Few’ partial triples are ignored for Σ∗

In this section we show that ZΣ∗(i) \ TΣ∗(i) is small. Let I2,Σ∗(i) and I3,Σ∗(i) contain all (u, v, w) ∈
ZΣ∗(i) with uv ∈ C(i) that were ignored in any of the previous steps 0 ≤ i′ ≤ i because of (I2) or
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x = v B
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v B
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z

Figure 3: Pairs uv with u ∈ A and v ∈ B such that ei+1 = xy ∈ Cuv(i) and xy ∩uv = x. Solid lines
represent edges, and the dashed line corresponds to the next edge ei+1 = xy. The vertices y and z
may also be in A ∪B.

(I3). Thus, since every (u, v, w) ∈ ZΣ∗(i) \ TΣ∗(i) was ignored in one of the first i steps, we obtain

|ZΣ∗(i) \ TΣ∗(i)| ≤ |I2,Σ∗(i)| + |I3,Σ∗(i)|. (84)

Recall that for every u ∈ A and v ∈ B there is at most one triple in ZΣ∗(i) which contains uv. We
claim that for every such pair uv there is in fact at most one w ∈ C such that (u, v, w) ∈ ⋃i′≤i ZΣ∗(i′).
Indeed, when the pair uv first appears in a partial triple (u, v, w) the pair uv must be open, then no
other triple containing uv is added until (u, v, w) is removed, at which point uv is definitely closed,
so no other triples (u, v, w′) can be added in later steps.

Observe that for every (u, v, w) ∈ I2,Σ∗(i) there exists i′ < i with ei′+1 = xy and ei′+1 ∩ uv = ∅
such that in G(i′) ⊆ G(i) we have u, v ∈ Γ(x) ∩ Γ(y) and (80). By the findings of Section 8.3 we
furthermore know that ¬B2,i(Σ

∗) holds. So the number of pairs xy ∈
([n]
2

)

which satisfy (80) in G(i)
is bounded by kn−20ε. Furthermore, as argued above, for every triple (u, v, w) ∈ I2,Σ∗(i) the pair
uv uniquely determines the third vertex w. So, considering the number of choices for xy satisfying
(80), and then the number of u, v ∈ Γ(x) ∩ Γ(y) for each such pair xy, using the codegree bound
(log n)np2 we deduce that

|I2,Σ∗(i)| ≤ kn−20ε ·
[

(log n)np2
]2 ≤ k3p2n−15ε. (85)

Turning to |I3,Σ∗(i)|, let H contain all vertices y ∈ [n] \ I with |Γ(y) ∩K| ≥ p−1n−15ε. Using Ni

we infer that, say, |H| ≤ kpn20ε. Observe that for every (u, v, w) ∈ I3,Σ∗(i) there exists i′ < i with
ei′+1 = xy ∈ Cuv(i

′) and ei′+1 ∩ uv = x. Hence in G(i′) there exists z ∈ Γ(x) ∩ Γ(y) such that
{u, v} \ {x} ⊆ Γ(y) ∩ Γ(z) ∩K. Similarly as for I2,Σ∗(i), the pair uv uniquely determines the third
vertex w for every triple (u, v, w) ∈ I3,Σ∗(i), and therefore it suffices to bound the number of pairs
uv with the above properties, cf. Figure 3. Using that the triple was not removed due to (R3a)
and (R3b), we deduce two additional properties. On the one hand |Γ(y) ∩ K| ≥ p−1n−15ε holds,
which implies y ∈ H ∪ I, and, on the other hand, in G(i′) all z ∈ Γ(x) ∩ Γ(y) with {u, v} \ {x} ⊆
Γ(y) ∩ Γ(z) ∩K satisfy

|Γ(z) ∩ (Γ(y) ∩K)| ≥ kpn−20ε =: d. (86)

Now, since y has neighbours in A and B, namely u ∈ A and v ∈ B, using (79) we deduce y 6∈ I,
which in turn implies y ∈ H. With this in mind, we define ΨΣ∗(i) as the set of all quadruples
(u′, v′, y, z) ∈ K2×H× [n] for which z ∈ Γ(y), {u′, v′} ⊆ Γ(y)∩Γ(z)∩K and (86) holds. The above
discussion yields

|I3,Σ∗(i)| ≤ |ΨΣ∗(i)|. (87)

Since y ∈ H satisfies y /∈ I, by (78) we have |Γ(y)∩K| ≤ p−1n10ε. So, similar as in Section 8.3, using
Ni we see that for every y ∈ H there are at most 16|Γ(y) ∩K|/(εd) ≤ kpn35ε vertices z satisfying
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(86). Furthermore, given y and z, the number of choices for u′, v′ ∈ Γ(y) ∩ Γ(z) ∩K ⊆ Γ(y) ∩ Γ(z)
are each bounded by (log n)np2. Putting things together, using (87) we deduce that

|I3,Σ∗(i)| ≤ |ΨΣ∗(i)| ≤ |H| · kpn35ε ·
[

(log n)np2
]2 ≤ k2pn60ε, (88)

where we used |H| ≤ kpn20ε for the last inequality.

Finally, plugging using (85) and (88) into (84), using (3) we see that

|ZΣ∗(i) \ TΣ∗(i)| ≤ k3p2n−15ε + k2pn60ε ≤ k3p2n−10ε,

as claimed. This completes the proof of Lemma 6.2.
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A Appendix

A.1 Differential equation method

In this section we formulate the improved version of Lemma 7.3 in [3], which can be obtained by
adapting the ideas/modifications we used in the proof of Lemma 5.3 back to the original setup.
Intuitively, there are different ‘types’ j ∈ V of random variables, where σ ∈ Ij denotes particular
‘instances’, which can e.g. take into account different ‘positions’ in a graph.
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Lemma A.1 (‘Differential Equation Method’). Suppose that m = m(n) and s = s(n) are positive
parameters. Let V = V(n) be a set, and {Ij}j∈V be a family of sets, where Ij = Ij(n). For every
0 ≤ i ≤ m set t = t(i) := i/s. Suppose we have a filtration F0 ⊆ F1 ⊆ · · · and random variables
Xσ(i) and Y ±

σ (i) which satisfy the following conditions. Assume that for all j ∈ V and σ ∈ Ij the
random variables Xσ(i) are non-negative and Fi-measurable for all 0 ≤ i ≤ m, and that for all
0 ≤ i < m the random variables Y ±

σ (i) are non-negative, Fi+1-measurable and satisfy

Xσ(i+ 1)−Xσ(i) = Y +
σ (i) − Y −

σ (i). (89)

In addition, suppose that for each j ∈ V and σ ∈ Ij we have positive parameters uσ = uσ(n),
λσ = λσ(n), βσ = βσ(n), τσ = τσ(n), sσ = sσ(n) and Sσ = Sσ(n), as well as functions xσ(t) and
fσ(t) that are smooth and non-negative for t ≥ 0. For all 0 ≤ i∗ ≤ m, let Gi∗ denote the event that
for all 0 ≤ i ≤ i∗, j ∈ V and σ ∈ Ij, we have

Xσ(i) =

(

xσ(t)±
fσ(t)

sσ

)

Sσ. (90)

Moreover, assume that we have an event Hi ∈ Fi for all 0 ≤ i ≤ m with Hi+1 ⊆ Hi for all
0 ≤ i < m. Finally, suppose that for n large enough the following conditions hold:

1. (Trend hypothesis) For all 0 ≤ i < m, j ∈ V and σ ∈ Ij, whenever Ei ∩Hi holds we have

E
[

Y ±1
σ (i) | Fi

]

=

(

y±1
σ (t)± hσ(t)

sσ

)

Sσ

s
, (91)

where y±σ (t) and hσ(t) are smooth non-negative functions such that

x′σ(t) = y+σ (t)− y−σ (t) and fσ(t) ≥ 2

∫ t

0
hσ(τ) dτ + βσ. (92)

2. (Boundedness hypothesis) For all 0 ≤ i < m, j ∈ V and σ ∈ Ij, whenever Ei ∩ Hi holds we
have

Y ±
σ (i) ≤ β2

σ

s2σλστσ
· Sσ

uσ
. (93)

3. (Initial conditions) For all j ∈ V and σ ∈ Ij we have

Xσ(0) =

(

xσ(0) ±
βσ
3sσ

)

Sσ. (94)

4. (Bounded number of variables) For all j ∈ V and σ ∈ Ij we have

max{|V|, |Ij |} ≤ euσ . (95)

5. (High probability event) The event Hi satisfies

P[∃i ≤ m : Gi ∩ ¬Hi] = o(1). (96)

6. (Additional technical assumptions) For all j ∈ V and σ ∈ Ij we have uσ = ω(1) as well as

s ≥ max{15uστσ(sσλσ/βσ)
2, 9sσλσ/βσ}, s/(18sσλσ/βσ) < m ≤ s · τσ/1944, (97)

sup
0≤t≤m/s

y±σ (t) ≤ λσ,

∫ m/s

0
|x′′σ(t)| dt ≤ λσ, (98)

hσ(0) ≤ sσλσ and

∫ m/s

0
|h′σ(t)| dt ≤ sσλσ. (99)
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Then Gm ∩Hm holds with high probability.

Compared to Lemma 7.3 in [3], one important advantage of Lemma A.1 is that we state the
approximation error in a simpler form and allow for more freedom in choosing the corresponding
error functions; this should make it easier to apply our variant in other contexts. If possible, it is
often convenient to choose the same parametrization for all σ ∈ Ij, e.g. xσ(t) = xj(t), since they
typically correspond to different ‘instances’ of the same type of random variables. We point out that
by using this simplification, then choosing sj ≥ nε as well as uj = 2kj log n, and afterwards setting
τj = 1944nε/2, β−1

j := λj := nε/7, hj(t) := (ej ·xj+γj)
′(t)/4 and fj(t) := ej(t)xj(t)−θj(t)ej(t)/sj+

θj(t), this not only implies Lemma 7.3 in [3], but also weakens certain assumptions significantly.
For example, in the additional technical assumptions we relax y±j (t) = O(1) to y±j (t) ≤ nε/7, their

c from Ω(1) to Ω(n−ε/7), and also weaken the lower bound on m from m > s to, say, m ≥ sn−ε.
Furthermore, we e.g. improve and simplify the initial conditions by allowing for a small error in
the initial value Xσ(0) and removing the requirement that ej(0) = γj(0) = 0. At first sight
our assumption that Hi satisfies (96) seems to be more restrictive, however, due to an oversight
in the proof given by Bohman and Keevash in [3], their Lemma 7.3 also needs this additional
assumption, which of course holds in their application. Another new ingredient is the introduction
of the parameters λσ, βσ and τσ, which allows for a trade-off between the approximation error,
the boundedness hypothesis and the additional technical assumptions. For example, as already
mentioned in Section 5.3.2, in certain applications this might allow for larger one-step changes than
Lemma 7.3 in [3]. Finally, as noted in [3], compared to Wormald’s formulation of the differential
equation method [33, 34], if applicable, Lemma A.1 has the advantage that in certain applications
much weaker estimates on the one-step changes suffice.

A.2 Proof of Lemma 5.3

We omitted some details in the proof of Lemma 5.3, since they were very similar to the corresponding
calculations in proof of Lemma 7.3 in [3]. In this section we give the missing calculations, and keep
the notation and assumptions of Lemma 5.3.

Using the Euler-Maclaurin summation formula. In the following we prove the estimates (27)
and (28). To this end we use the Euler-Maclaurin summation formula, which relates the integral
∫ b
a f(x)dx with the sum

∑b−1
k=a f(k). The following variant is implicit in [1].

Lemma A.2. [1] Let a < b be integers. Then for any function f with a continuous derivative on
the interval [a, b] we have

∣

∣

∣

∣

∣

∫ b

a
f(x)dx−

b−1
∑

k=a

f(k)

∣

∣

∣

∣

∣

≤
∫ b

a
|f ′(x)|dx. (100)

We start by proving (27). Elementary calculus shows

∫ i∗

0
x′σ
(

t(i)
)

di = s

∫ t∗

0
x′σ(t) dt = s

[

xσ(t
∗)− xσ(0)

]

. (101)

Furthermore, using the Euler-Maclaurin summation formula (100) and t(i) = i/s, we see that

∣

∣

∣

∣

∣

∫ i∗

0
x′σ
(

t(i)
)

di−
i∗−1
∑

i=0

x′σ
(

t(i)
)

∣

∣

∣

∣

∣

≤ 1

s

∫ i∗

0
|x′′σ
(

t(i)
)

| di =
∫ t∗

0
|x′′σ(t)| dt. (102)
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Now, combining (101) and (102) with the additional technical assumptions (23), we deduce
∣

∣

∣

∣

∣

xσ(t
∗)− xσ(0) −

1

s

i∗−1
∑

i=0

x′σ
(

t(i)
)

∣

∣

∣

∣

∣

≤ 1

s

∫ t∗

0
|x′′σ(t)| dt ≤

λσ

s
,

which in turn implies (27). Using (24), with a similar calculation we obtain
∣

∣

∣

∣

∣

∫ t∗

0
hσ(t) dt−

1

s

i∗−1
∑

i=0

hσ
(

t(i)
)

∣

∣

∣

∣

∣

≤ 1

s

∫ t∗

0
|h′σ(t)| dt ≤

sσλσ

s
,

from which (28) readily follows.

Bounded super-/submartingales. We show that Z±−
σ (i) and Z±+

σ (i) are (Mσ , Nσ)-bounded
super-/submartingales. For bounding the maximum change Z±1±2

σ (i+1)−Z±1±2
σ (i) we may assume

that Ei ∩ ¬B≤i(Σ) ∩Hi holds (otherwise the difference is by definition equal to 0). In that case

Z±1±2
σ (i+ 1)− Z±1±2

σ (i) = Y ±1±2
σ (i) = Y ±1

σ (i)−
(

y±1
σ (t)∓2

hσ(t)

sσ

)

Sσ

s
. (103)

Now, using the boundedness hypothesis (19) as well as y±σ (t) ≥ 0 and (26), i.e., hσ(t) ≤ 2sσλσ, we
see that (103) is bounded from above by

β2
σ

s2σλστσ

Sσ

uσ
+

hσ(t)

sσ

Sσ

s
≤ Nσ

2
+

2λσSσ

s
≤ Nσ,

where we used (22), i.e., s ≥ 15uστσ(sσλσ/βσ)
2, and (30) for the last inequality. Similarly, using

Y ±
σ (i), hσ(t) ≥ 0 and (23), i.e., y±σ (t) ≤ λσ, we see that (103) is bounded from below by

−
(

λσ +
hσ(t)

sσ

)

Sσ

s
≥ −3λσSσ

s
= −Mσ.

For checking the super-/submartingale property we may again assume that Ei∩¬B≤i(Σ)∩Hi holds
(otherwise the value of Z±1±2

σ (i) remains unchanged). Now by combining (103) with the trend
hypothesis (17), it is easy to see that Z±−

σ (i) is a supermartingale and Z±+
σ (i) a submartingale.

Relating certain variables. We prove that whenever Hi∗−1 ∩ Ei∗−1 ∩ ¬B≤i∗−1(Σ) holds we have

Z+±2
σ (i∗)− Z−∓2

σ (i∗) = Xσ(i
∗)−Xσ(0)−

1

s

i∗−1
∑

i=0

x′σ
(

t(i)
)

· Sσ ±2
1

s

i∗−1
∑

i=0

hσ
(

t(i)
)

· 2Sσ

sσ
, (104)

which readily implies (32). Using (15) and (18) as well as the definition of Y ±
σ (i) and Z+±2

σ (i),
i.e. (29) and (30), because Hi∗−1 ∩ Ei∗−1 ∩ ¬B≤i∗−1(Σ) holds we have

Xσ(i
∗)−Xσ(0)−

i∗−1
∑

i=0

x′σ
(

t(i)
)

· Sσ

s
=

i∗−1
∑

i=0

(

Xσ(i+ 1)−Xσ(i) − x′σ
(

t(i)
)Sσ

s

)

=
i∗−1
∑

i=0

(

Y +
σ (i) − y+σ

(

t(i)
)Sσ

s
− Y −

σ (i) + y−σ
(

t(i)
)Sσ

s

)

=

i∗−1
∑

i=0

Y +±2
σ (i)−

i∗−1
∑

i=0

Y −∓2
σ (i)∓2 2

i∗−1
∑

i=0

hσ
(

t(i)
)

sσ
· Sσ

s

= Z+±2
σ (i∗)− Z−∓2

σ (i∗)∓2
1

s

i∗−1
∑

i=0

hσ
(

t(i)
)

· 2Sσ

sσ
.

Rearranging gives (104), which, as explained, implies (32).
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