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Abstract. Consider the following random process: The vertices of a binomial random
graph Gn,p are revealed one by one, and at each step only the edges induced by the already
revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number
r of available colors immediately and irrevocably without creating a monochromatic copy of
some fixed graph F in the process.
Our first main result is that for any F and r, the threshold function for this problem is given
by p0(F, r, n) = n−1/m

∗
1(F,r), where m∗1(F, r) denotes the so-called online vertex-Ramsey

density of F and r. This parameter is defined via a purely deterministic two-player game, in
which the random process is replaced by an adversary that is subject to certain restrictions
inherited from the random setting. Our second main result states that for any F and r, the
online vertex-Ramsey density m∗1(F, r) is a computable rational number.
Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that
succeed in coloring Gn,p as desired with probability 1− o(1) for any p(n) = o(n−1/m

∗
1(F,r)).
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1. Introduction

The study of colorability properties of random graphs has a rich history and has spurred many
important developments in random graph theory. Thanks to the efforts of many researchers (e.g., [2,
3, 11, 14, 19, 29, 30, 35, 36]), very precise bounds on the chromatic number of the random graph are
known by now. More recently, also several related coloring notions and their associated ‘chromatic
numbers’ have been investigated for the random graph (e.g., [4, 9, 12, 23, 25, 28, 31, 40]).

In this work we are concerned with the following generalized notion of graph coloring: a coloring
of a graph G is valid with respect to some given graph F if it contains no monochromatic copy of
F , i.e., if there is no copy of F in G whose vertices all receive the same color. Note that a proper
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coloring in the usual sense is a coloring that is valid with respect to a single edge. More generally,
a coloring that is valid with respect to the star with ` rays is a coloring in which each color class
induces a graph with maximum degree at most `− 1 (this is sometimes called an (`− 1)-improper
coloring, see [23] and references therein).

The main motivation for studying this notion of colorability comes from Ramsey theory, where one
usually considers similarly defined edge-colorings. The threshold for the existence of a valid vertex-
coloring of the random graph with respect to some given fixed graph F was determined by Łuczak,
Ruciński, and Voigt [31]. To state their result, we introduce some terminology.

As usual, we denote by Gn,p the random graph on n vertices (labelled from 1, . . . , n) obtained by
including each of the

(
n
2

)
possible edges with probability p = p(n) independently. We say that a

graph G is (F, r)-vertex-Ramsey if every r-coloring of the vertices of G contains a monochromatic
copy of F , i.e., if G does not allow a valid r-coloring with respect to F . A graph is a matching if
its maximum degree is 1. We denote the number of edges and vertices of a graph H by e(H) and
v(H), respectively.

Theorem 1 ([31]). Let r ≥ 2 be a fixed integer and F a fixed graph with at least one edge that in
the case r = 2 is not a matching. Then there exist positive constants c = c(F, r) and C = C(F, r)
such that

lim
n→∞

P[Gn,p is (F, r)-vertex-Ramsey] =

{
0 if p(n) ≤ cn−1/m1(F ) ,
1 if p(n) ≥ Cn−1/m1(F ) ,

where
m1(F ) := max

H⊆F : v(H)≥2

e(H)

v(H)− 1
. (1)

Note that the parameter m1(F ) does not depend on r. It is widely believed (see e.g. [16]) that the
threshold behaviour is even sharper than stated in Theorem 1. Friedgut and Krivelevich [18] proved
this conjecture for the class of strictly 1-balanced graphs, i.e. for graphs F for which e(H)/(v(H)−
1) < e(F )/(v(F )− 1) for all proper subgraphs H ( F with v(H) ≥ 2.

Implicit in the lower bound proof of Theorem 1 is the existence of a polynomial-time algorithm
that a.a.s. succeeds in finding a valid coloring of Gn,p for p(n) ≤ cn−1/m1(F ), where polynomial here
and throughout means polynomial in n for F and r fixed. (Here and throughout, a.a.s. stands for
asymptotically almost surely, i.e., with probability tending to 1 as n tends to infinity.)

In this work, we study the same coloring problem in an online setting, and derive results of the same
generality as those stated in Theorem 1 for the offline case.

1.1. The online setting. We consider the following online problem: The vertices of an initially
hidden instance of Gn,p are revealed one by one in increasing order, and at each step of the process
only the edges induced by the vertices revealed so far are visible. Alternatively, one can think of the
random edges leading from each vertex to previous vertices as being generated at the moment the
vertex is revealed (each edge being inserted with probability p independently from all other edges).
Each vertex has to be colored immediately and irrevocably with one of r available colors as soon as
it is revealed, with the goal of avoiding monochromatic copies of a fixed graph F as before.

It follows from standard arguments (see [33, Lemma 7]) that this online problem has a threshold
p0(F, r, n) in the following sense: For any function p(n) = o(p0) there is a strategy that a.a.s. finds
an r-coloring of Gn,p that is valid with respect to F online, and for any function p(n) = ω(p0) any
online strategy will a.a.s. fail to do so. (Observe that no computational restrictions are imposed in
this definition, i.e., the coloring strategy is not required to be an efficient algorithm.)

Note that this is a weaker threshold behaviour than the one stated in Theorem 1. A closer inspection
of the arguments in this paper shows that the online thresholds are indeed coarser than the offline



4

thresholds given by Theorem 1: the limiting probability that a valid coloring can be found online
is a constant bounded away from 0 and 1 whenever p(n) has the same order of magnitude as the
threshold p0(F, r, n). This is a consequence of the fact that the online thresholds turn out to be
determined by local substructures (see [22, Theorem 3.9]).

The online problem was first studied in [32], where the following simple strategy was analyzed.
Assuming that the colors are numbered from 1 to r, the greedy strategy fixes an appropriate choice
of subgraphs H1, . . . ,Hr ⊆ F , and at each step uses the highest-numbered color i that does not
complete a monochromatic copy of Hi (or color 1 if no such color exists). Note that this strategy
can easily be implemented in polynomial time.

For any graph F and any integer r ≥ 1 we define the parameter m1(F, r) recursively by

m1(F, r) :=





max
H⊆F

e(H)

v(H)
if r = 1 ,

max
H⊆F

e(H) +m1(F, r − 1)

v(H)
if r ≥ 2 .

(2)

The results of [32] can be stated as follows.

Theorem 2 ([32]). For any fixed graph F with at least one edge and any fixed integer r ≥ 2, the
threshold for finding an r-coloring of Gn,p that is valid with respect to F online satisfies

p0(F, r, n) ≥ n−1/m1(F,r) ,

where m1(F, r) is defined in (2). A polynomial-time algorithm that succeeds a.a.s. for any p(n) =

o(n−1/m1(F,r)) is given by the greedy strategy.

If F has an induced subgraph F ◦ ( F on v(F )− 1 vertices satisfying

m1(F ◦) ≤ m1(F, 2) , (3)

where m1(F ◦) is defined in (1), the greedy strategy is best possible, i.e., the threshold is

p0(F, r, n) = n−1/m1(F,r) .

The second part of Theorem 2 applies in particular to the case where F is a clique or a cycle of
arbitrary fixed size (in these specific cases, the appropriate choice of subgraphs H1, . . . ,Hr ⊆ F for
the greedy strategy is H1 = · · · = Hr = F ). Thus for cliques and cycles, explicit threshold functions
are known.

It was also pointed out in [32] that the greedy strategy is not best possible in general — as we shall
see below, the threshold is significantly higher than what is guaranteed by Theorem 2 already in the
innocent-looking case when F is a long path.

Our main result gives a combinatorial characterization of the online threshold that allows us to
compute, for any F and r, a value γ = γ(F, r) such that the threshold is given by p0(F, r, n) = n−γ .
We also obtain polynomial-time coloring algorithms that a.a.s. find valid colorings of Gn,p online in
the entire regime below the respective thresholds, i.e., for any p(n) = o(p0).

1.2. A general characterization of the online threshold. Our main result characterizes the
general threshold for the online problem in terms of a deterministic two-player game, which we
describe in the following. The two players are called Builder and Painter, and the board is a graph
that grows in each step of the game. Painter wants to maintain a valid coloring of the board, and
her opponent Builder tries to prevent her from doing so by forcing her to create a monochromatic
copy of F .

The game starts with an empty board, i.e., no vertices are present at the beginning of the game.
In each step, Builder presents a new vertex and a number of edges leading from previous vertices
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to this new vertex. Painter has to color the new vertex immediately and irrevocably with one of r
available colors, and as before she loses as soon as she creates a monochromatic copy of F . Note that
so far this is the same setting as before, except that we replaced ‘randomness’ by the second player
Builder. (Put differently, if Builder presents every possible edge with probability p independently,
this is exactly the online process introduced above.) However, we additionally impose the restriction
that Builder is not allowed to present an edge that would create a (not necessarily monochromatic)
subgraph H with e(H)/v(H) > d on the board, for some fixed real number d known to both players.
In other words, Builder must adhere to the restriction that the evolving board B satisfies m(B) ≤ d
at all times, where as usual we define

m(B) := max
H⊆B

e(H)

v(H)
.

We will refer to this game as the deterministic F -avoidance game with r colors and density restric-
tion d.

We say that Builder has a winning strategy in this game (for a fixed graph F , a fixed number of
colors r, and a fixed density restriction d) if he can force Painter to create a monochromatic copy
of F within a finite number of steps. Conversely, we say that Painter has a winning strategy if she
can avoid creating a monochromatic copy of F for an arbitrary number of steps. Note that if for
some fixed F and r, Builder has a winning strategy for some density restriction d, then he also has
a winning strategy for every density restriction d′ ≥ d. We say that a Painter or Builder strategy
is optimal if it is a winning strategy simultaneously for all d for which the respective player has a
winning strategy.

For any graph F and any integer r ≥ 2 we define the online vertex-Ramsey density m∗1(F, r) as

m∗1(F, r) := inf

{
d ∈ R

∣∣∣∣
Builder has a winning strategy in the deterministic
F -avoidance game with r colors and density restriction d

}
. (4)

It is not hard to see that m∗1(F, r) is indeed well-defined for any F and r. With these definitions in
hand, our results can be stated as follows.

Theorem 3. For any graph F with at least one edge and any integer r ≥ 2, the online vertex-Ramsey
density m∗1(F, r) is a computable rational number, and the infimum in (4) is attained as a minimum.

Theorem 4. For any fixed graph F with at least one edge and any fixed integer r ≥ 2, the threshold
for finding an r-coloring of Gn,p that is valid with respect to F online is

p0(F, r, n) = n−1/m∗1(F,r) , (5)

where m∗1(F, r) is defined in (4). A polynomial-time algorithm that succeeds a.a.s. for any p(n) =
o(p0) can be derived from one of Painter’s optimal strategies in the deterministic two-player game.

Theorem 4 reduces the problem of determining the threshold of the original probabilistic problem
to the purely deterministic combinatorial problem of computing m∗1(F, r) or, informally speaking,
of ‘solving’ the deterministic two-player game. According to Theorem 3, the latter is possible by a
finite computation; note that in the asymptotic setting of Theorem 4, this is in fact a constant-size
computation.

It follows from the results of [32] that for any graph F we have

lim
r→∞

m∗1(F, r) = m1(F ) .

Thus the online thresholds approach the offline threshold given by Theorem 1 as the number of
colors increases. It also follows from an example presented in [32] that if F is the disjoint union
of two graphs H1 and H2, the parameter m∗1(F, r) may be strictly higher than both m∗1(H1, r) and
m∗1(H2, r). (Such a behaviour cannot occur for the parameter m1(F ) appearing in Theorem 1.)
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1.3. Remarks on Theorem 3. To put Theorem 3 into perspective, we mention that none of its
three statements (computable, rational, infimum attained as minimum) is known to hold for the
offline counterpart of m∗1(F, r), i.e., for the vertex-Ramsey density

mo
1(F, r) := inf

{
m(G)

∣∣ G is (F, r)-vertex-Ramsey
}

introduced in [26]. It is also not known whether such statements are true for two analogous pa-
rameters related to edge-colorings (see [8, 27]). In fact, even the value of mo

1(P3, 2) is unknown —
the authors of [26] offer 400,000 złoty (Polish currency in 1993) for its exact determination (here P3

denotes the path on three vertices).

As is the case for many parameters in Ramsey theory, computing the online vertex-Ramsey density
m∗1(F, r) becomes intractable already for moderately large graphs F . We have an implementation
that computes m∗1(F, 2) for all graphs F with at most 7 vertices in under 10 minutes on an ordinary
desktop computer. Using more computational power, we managed to determine m∗1(F, 2) exactly
for all non-forests on at most 9 vertices. (Our implementation is rather inefficient for forests —
we believe that for this special case an adapted program would be much faster, see the remarks in
Section 1.6 below.) The program can be downloaded from the authors’ websites [1]. There might
be some room for improvement here, but it seems unrealistic to compute m∗1(F, 2) for, say, general
graphs with 20 vertices with our approach in reasonable time. (Recall that the Ramsey number
R(5), i.e., the smallest integer ` such that every edge-coloring of the complete graph on ` vertices
contains a monochromatic K5, is still unknown!)

1.4. Remarks on Theorem 4. The intuition behind Theorem 4 is the following: It is well-
known [10] (see also [22, Section 3]) that for any fixed graph G, a.a.s. the random graph Gn,p
with p(n) = ω(n−1/m(G)) contains a copy of G. The textbook second moment method proof of
this fact can be adapted to show that for p(n) = ω(n−1/d) and any fixed finite Builder strategy for
the deterministic two-player game that respects the density restriction d, a.a.s. the random process
will exactly reproduce the given Builder strategy somewhere on the board. Thus if Builder has a
winning strategy for a graph F and some given density restriction d, then in the probabilistic process
with p(n) = ω(n−1/d), any online algorithm will a.a.s. be forced to create a monochromatic copy
of F somewhere on the board. Consequently, the threshold of the probabilistic problem satisfies
p0(F, r, n) ≤ n−1/d. This argument is completely generic in the sense that it does not require any
assumptions on the structure of Builder’s winning strategy. The underlying connection between
the probabilistic and a deterministic variant of the same problem was first observed in [8] (for the
edge-coloring version of the problem studied here), and subsequently applied in [5]. The main con-
tribution of the present work is that for the vertex-coloring problem studied here, the best upper
bound on the online threshold resulting from this approach is tight (recall (4) and (5)).

By the argument we just sketched, every winning strategy for Builder in the deterministic game
translates to an upper bound on the threshold of the probabilistic problem. It seems to be much
harder to prove an equally general statement translating Painter’s winning strategies in the deter-
ministic game to lower bounds on the threshold of the probabilistic problem. The reason for this is
that the probabilistic process satisfies the density restriction imposed on Builder only locally : Even
though the random graph Gn,p with p(n) = Θ(n−1/d) a.a.s. contains no constant-sized graphs G
with m(G) > d, the density of larger subgraphs is unbounded — in particular, the expected density
of the entire random graph is

(
n
2

)
p/n = Θ(n1−1/d), which is unbounded for d > 1. Consequently,

winning strategies for Painter in the deterministic game do not automatically give rise to successful
coloring strategies for the probabilistic problem. In order to nevertheless establish the desired lower
bound result we will need a quite detailed understanding of the structure of Painter’s and Builder’s
optimal strategies in the deterministic game.



7

Theorem 4 establishes a general correspondence between the original probabilistic problem and
the deterministic two-player game. We are not aware of any other results that establish a similar
correspondence between probabilistic and deterministic variants of the same problem. In particular,
such a correspondence does not hold for the offline version of the problem studied here: according
to Theorem 1, the threshold for the existence of a valid r-coloring w.r.t. F in the probabilistic
setting is determined by the parameter m1(F ), and not by the parameter mo

1(F, r) coming from the
corresponding deterministic problem (in general we have m1(F ) 6= mo

1(F, r)).

1.5. Algorithms for efficiently coloring random graphs online. We now describe the structure
of the coloring algorithms that arise from our approach, and their relation to Painter’s optimal
strategies in the deterministic game.

We use the concept of ordered graphs. An ordered graph is a graph with an associated ordering of
its vertices, where this ordering is interpreted as the order in which these vertices appeared in the
probabilistic process or the deterministic game. We will see that for any graph F and any integer r,
there exists an optimal Painter strategy (i.e., a strategy that is a winning strategy for any density
restriction d < m∗1(F, r)) that can be represented as a priority list over ordered monochromatic
subgraphs of F . Such a priority list is computed along with m∗1(F, r) in our approach, and encodes
the relative ‘level of danger’ Painter associates with copies of a given ordered subgraph of F in a
given color. In the asymptotic setting of the probabilistic process, determining such a priority list
is a constant-size computation.

Given this priority list, Painter’s strategy is the following: Whenever Builder presents a new vertex,
Painter determines for each color the most dangerous ordered graph that would be completed if the
new vertex were assigned this color, and then selects the color for which this most dangerous graph
is least dangerous among all colors. (Observe that this requires Painter to memorize the order in
which the vertices on the board arrived.) Note that this strategy based on a priority list can be
easily implemented in polynomial time.

As we shall see, for any F and r we can compute a priority list such that the strategy represented
by it is not only (i) a winning strategy for Painter in the deterministic game with density restriction
d for any d < m∗1(F, r), but also (ii) a (polynomial-time) algorithm that succeeds a.a.s. in finding a
valid coloring of Gn,p online for any p(n) = o(n−1/m∗1(F,r)). (Recall from Section 1.4 that (i) does
not automatically imply (ii)!)

1.6. Is there an explicit formula for m∗1(F, r)? From Theorem 2 and Theorem 4 it follows that
for any graph F that has an induced subgraph F ◦ ( F on v(F )− 1 vertices satisfying (3), for any
r ≥ 2 the online vertex-Ramsey density m∗1(F, r) is given by m1(F, r) as defined in (2). (Of course,
this can also be proved directly by considering only the deterministic game.)

The question arises whether also for general graphs F the abstract definition of m∗1(F, r) in (4) can
be replaced by an explicit formula, perhaps by suitably generalizing the definition (2). To address
this question we point out some of the difficulties involved in the innocent-looking case where F is
a long path. The results concerning this special case will be published separately in the companion
paper [37].

We first present a simplified formulation of our results for the case where F is an arbitrary forest.
Suppose d is of the form d = (k − 1)/k for some integer k ≥ 2. Then the restriction that Builder
is not allowed to create a subgraph of density more than d is equivalent to requiring that Builder
creates no cycles and no components (=trees) with more than k vertices. We call this game the
deterministic F -avoidance game with r colors and tree size restriction k.
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` 2, . . . , 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

k∗(P`, 2) 22, . . . , 272 791 841 902 961 1040 1089 1156 1225 1323 1376 1449 1521 1641 1699 1796 1856 1991 2057
k∗(P`, 2)− `2 0 7 0 2 0 16 0 0 0 27 7 5 0 41 18 32 7 55 32

Table 1. Exact values of k∗(P`, 2) for ` ≤ 45.

Corollary 5 (Forests). For any fixed forest F with at least one edge and any fixed integer r ≥ 2,
the threshold for finding an r-coloring of Gn,p that is valid w.r.t. F online is

p0(F, r, n) = n−1−1/(k∗(F,r)−1) ,

where k∗(F, r) is the smallest integer k such that Builder has a winning strategy in the deterministic
F -avoidance game with r colors and tree size restriction k.

(Corollary 5 can also be proved directly by a much simpler proof than the general arguments in this
work, reusing ideas of [8].)

It is not hard to see that k∗(F, r) is indeed well-defined for any forest F and any integer r ≥ 2.
It follows from the results in [32] that for any tree F and any integer r ≥ 2 the greedy strategy
(with H1 = · · · = Hr = F ) is a winning strategy for Painter in the deterministic game with tree size
restriction k = v(F )r − 1, i.e., guarantees a lower bound of k∗(F, r) ≥ v(F )r.

For the rest of this section we focus on the case where F = P` is the path on ` vertices, and r = 2
colors are available. For this case our general procedure for computing m∗1(F, r) (or, equivalently
if F is a forest, for computing k∗(F, r)) can be simplified considerably. We were able to compute
k∗(P`, 2) for all ` ≤ 45. The resulting values are stated in Table 1, where the bottom row shows
the difference k∗(P`, 2)− `2, i.e., by how much optimal Painter strategies can improve on the greedy
lower bound v(P`)

2 = `2. The values in Table 1 and the corresponding optimal Painter strategies
seem to follow no discernible pattern. In view of this, it does not seem very likely that there exists
an explicit formula for k∗(P`, 2), let alone for the parameter m∗1(F, r) in general.

The values in Table 1 also raise the question by how much optimal strategies can improve on the
greedy lower bound asymptotically as `→∞. We can show that k∗(P`, 2) = Ω(`2.01), i.e., there exist
Painter strategies that improve on the greedy lower bound by a factor polynomial in `. On the other
hand, we can prove an upper bound of k∗(P`, 2) = O(`2.59), which shows that no superpolynomial
improvement is possible [37].

1.7. Further related work. The question of finding valid edge-colorings of random graphs online
was first considered by Friedgut et al., who proved a threshold result for the case where F is a
triangle and r = 2 colors are available [17]. In [33, 34], the greedy strategy was analyzed for the
edge-coloring setting, and results similar to Theorem 2 were derived for the case of r = 2 colors.
In [8], we presented the upper bound approach via deterministic two-player games discussed above;
this approach was applied by Balogh and Butterfield to derive new upper bounds for the case where
F is a triangle and r = 3 colors are available [5]. It would be very interesting to determine whether
a general result analogous to Theorem 4 holds for the edge-coloring setting.

Various edge-coloring Builder-Painter games were studied in the context of deterministic Ramsey
theory. The smallest number of moves Builder needs to win in the deterministic edge-coloring game
without any restrictions is called the online (size) Ramsey number of F and was studied by many
researchers [6, 7, 15, 21, 27, 38, 39]. Variants of the game where Builder is subject to various
restrictions were studied in [13, 20, 24].

1.8. Organization of this paper. Before actually proving Theorem 3 and Theorem 4, we infor-
mally present the main ideas behind our proofs in Section 2. In Section 3 we describe our procedure
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to compute the online vertex-Ramsey density m∗1(F, r) for any F and r. In this section we formulate
two central propositions (Proposition 6 and Proposition 7 below) which together show that an opti-
mal Builder strategy and an optimal Painter strategy for the deterministic game can be derived from
this procedure. The proof of Theorem 3 is based on these two propositions and is also presented in
Section 3.

In Section 4 we prove Proposition 6 by deriving an explicit Builder strategy from the procedure
presented in Section 3, and in Section 5 we prove Proposition 7 by deriving an explicit Painter
strategy from the same procedure. These two sections can be read independently from each other.

In Section 6 we finally turn to the original probabilistic problem and present the proof of Theorem 4.
While the upper bound proof is completely self-contained and can be read independently from all
other proofs, the lower bound proof relies very much on our analysis of the deterministic game in
the preceding sections.

2. Proof ideas

In this section we aim to give an informal description of the main ideas behind our proofs. We
will first focus on our procedure for computing the online vertex-Ramsey density, and then briefly
comment on the proofs of Theorem 3 and Theorem 4.

2.1. Computing the online vertex-Ramsey density. Throughout this section, we focus on
the deterministic game and sketch the underlying ideas in our procedure for computing the online
vertex-Ramsey density m∗1(F, r) for given F and r. Note that the following is not a proof sketch of
Theorem 3 — rather, our goal in this section is to develop some intuition for how one arrives at the
key definitions which stand at the very beginning of our formal arguments.

2.1.1. Basic observations. Consider a family {G1, . . . , Gf} of disjoint copies of the same graph G
on the board, and suppose that Builder adds vertices v1, . . . , vf to the board connecting vi to Gi
in exactly the same way for all 1 ≤ i ≤ f . Then, by the pigeonhole principle, for a (1/r)-fraction
of the new vertices, Painter’s coloring decision will be the same and result in copies of the same
r-colored graph G+. By performing this pigeonholing in each step of his strategy, Builder can thus
force Painter to always create many copies of one of the r graphs G+ that Painter may choose from.
Consequently, in the following we may assume w.l.o.g. that whenever Builder manages to enforce an
r-colored graph G+ on the board, he has as many such copies available as he needs in further steps.

As it turns out, the only type of move that is useful for Builder is of the following form: Assume
that for each of the colors s ∈ [r] the board contains a monochromatic copy of some subgraph Hs

of F in color s. Then Builder can force Painter to extend one of these copies to a monochromatic
copy of a subgraph H+

σ of F with v(H+
σ ) = v(Hσ) + 1 for a color σ ∈ [r] by presenting a new vertex

v and connecting it appropriately to the already existing monochromatic copies of H1, . . . ,Hr (see
Figure 1). Furthermore, w.l.o.g. Builder will always perform such a step using monochromatic
copies of the graphs H1, . . . ,Hr that have evolved independently from each other so far, and that
are therefore contained in distinct components of the board (playing like this throughout will not
increase the density restriction d for which Builder’s strategy is legal). Proceeding in this fashion,
Builder step by step enforces larger monochromatic subgraphs of F from smaller ones, and eventually
a monochromatic copy of F (if the density restriction allows it).

Each monochromatic copy of some subgraph H of F created in this way is contained in a larger
‘history graph’ G that encodes all of Builder’s construction steps that lead to the monochromatic
copy of H. Using the notation from the preceding paragraph, the history graph G of H+

σ arises as
the union of the history graphs G1, . . . , Gr of the copies of H1, . . . ,Hr (due to our assumption on
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v

H1 Hσ

H+
σ

Hr G

G1 Gσ Gr

. . . . . .

Figure 1. Builder enforces larger monochromatic subgraphs of F from smaller ones.

how Builder plays, these r history graphs are disjoint from each other), the vertex v and the edges
that connect v to the copies of H1, . . . ,Hr in G1, . . . , Gr.

2.1.2. Exploring Builder’s options. The key ingredient in our approach is a systematic exploration
from Builder’s point of view which monochromatic subgraphs of F he can enforce against a fixed
Painter strategy. Our final procedure for computing m∗1(F, r) will have to branch on different col-
oring decisions of Painter, each branching corresponding to a different Painter strategy, but these
branchings do not interfere with the ideas we want to present here. In the following we therefore
assume that Painter plays according to a fixed strategy, and explain on an intuitive level how Builder
can determine the smallest density restriction d for which he can enforce a monochromatic copy of
F against the given Painter strategy.

As a first approach to such a systematic exploration, Builder could maintain for each color s ∈ [r] a
list Hs of all subgraphs Hs of F for which he has already enforced a monochromatic copy in color s
against the given Painter strategy, and also record the specific way in which the graph Hs can be
enforced by storing the corresponding history graph Gs. Builder can then use entries (Hs, Gs) ∈ Hs,
one for every color s ∈ [r], to create new entries (H+

σ , G) ∈ Hσ in the manner described above (see
Figure 1), and compute for each such step the smallest density restriction d for which this step is
legal. (Recall that by appropriate pigeonholing in each step, Builder can create as many copies of
each entry as he needs on the board.) There is no obvious termination criterion for this procedure,
i.e., without further arguments Builder can never be sure that he found the smallest possible density
restriction d for which he can enforce a monochromatic copy of F against Painter’s fixed strategy
(it could be that by building larger and larger graphs he discovers new ways to enforce F that are
compliant with smaller and smaller density restrictions). In the following we will sketch how this
approach can be refined to eventually yield a procedure which is guaranteed to find the smallest
such d in a finite number of steps.

2.1.3. A generalized density restriction. Note that each new history graph G arising in a given step
of Builder has a recursive structure. Unfortunately, for computing the smallest admissible density
restriction for which this step is legal the recursive structure of G does not help. However, by
suitably generalizing our concept of density restriction the recursive structure of G can indeed be
exploited.

For a fixed real number θ > 0 and any graph H we define

µθ(G) := v(H)− e(H) · θ , (6)

and consider the following generalization of the deterministic F -avoidance game with r colors and
density restriction d: For fixed real parameters θ > 0 and β we require that Builder adheres to the
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restriction that every subgraph H of the evolving board B with v(H) ≥ 1 satisfies

µθ(H) ≥ β . (7)

We refer to this game as the deterministic F -avoidance game with r colors and generalized density
restriction (θ, β). For any graph F with at least one edge, any integer r ≥ 2 and any real number
θ > 0 we define the parameter

β∗(F, r, θ) := sup

{
β ∈ R

∣∣∣∣∣
Builder has a winning strategy in the deter-
ministic F -avoidance game with r colors and
generalized density restriction (θ, β)

}
. (8)

Before discussing how this generalized game allows us to exploit the recursive structure of Builder’s
construction steps, let us explain how it relates to the original game with density restriction d that
we are actually interested in.

Note that for any θ > 0, the game with generalized density restriction (θ, 0) is equivalent to the
game with density restriction d = 1/θ. Together with the definition in (8) it follows that if for a
given θ > 0 we have β∗(F, r, θ) < 0, then Painter has a winning strategy in the game with density
restriction d = 1/θ, and if β∗(F, r, θ) > 0, then Builder has a winning strategy in the game with
density restriction d = 1/θ. So intuitively speaking, computing the online vertex-Ramsey density
m∗1(F, r) is equivalent to determining the root of β∗(F, r, θ), although it is not clear yet whether
such a root exists and whether it is unique.

As it turns out, β∗(F, r, θ) does indeed have a unique root θ∗ = θ∗(F, r), and the online vertex-
Ramsey density m∗1(F, r) satisfies m∗1(F, r) = 1/θ∗. Furthermore, we can show that the root θ∗ lies
in an explicitly given finite set Q = Q(F, r) of rational numbers. Therefore, it is straightforward to
compute m∗1(F, r) provided we can compute β∗(F, r, θ) for given rational values of θ. We describe a
procedure that does essentially that, with one major caveat: Observe that if β ≥ 0, then the condition
(7) holds for all subgraphs of the board if and only if it holds for all connected subgraphs. Our
approach makes crucial use of this observation, and consequently our procedure computes β∗(F, r, θ)
exactly for any input parameters F , r, θ for which β∗(F, r, θ) ≥ 0, but returns meaningless negative
values on input parameters for which β∗(F, r, θ) < 0. This makes no difference for our purposes
since in order to find the root of β∗(F, r, θ) it suffices to check whether β∗(F, r, θ) equals zero for
given values of θ ∈ Q.

In the following we explain how the generalized density restriction allows us to exploit the recursive
structure of the history graphs arising in the game. As before our viewpoint is that we are exploring
Builder’s options against a fixed strategy of Painter. More precisely, we consider a fixed value of
θ > 0, and our goal now is to determine the largest value of β for which Builder can enforce a
monochromatic copy of F in the game with generalized density restriction (θ, β) against the given
Painter strategy. Combining this with the already mentioned branching on different strategies of
Painter allows us to compute β∗(F, r, θ) as defined in (8).

2.1.4. From history graphs to vertex weights. We return to considering Builder’s construction step
in which monochromatic copies of subgraphs H1, . . . ,Hr of F with the corresponding history graphs
G1, . . . , Gr are connected to a new vertex v, and Painter’s decision to assign color σ to v creates
a copy of H+

σ in color σ with history graph G (see Figure 1). In order to find the largest β ≥ 0
for which this step is legal in the game with generalized density restriction (θ, β), we need to find
the minimal value µθ(J) among all connected subgraphs J of G that contain v (recall that we may
assume that J is connected due to the assumption that β ≥ 0). As µθ(J) = v(J)−e(J) ·θ as defined
in (6) is linear in e(J) and v(J), a connected subgraph J of G containing v that minimizes µθ(J) can
be found recursively as follows: determine independently for each s ∈ [r] the connected subgraph Js
of Gs + v containing v that minimizes µθ(Js), where Gs + v denotes the subgraph of G induced by v
and all vertices of the copy of Gs in G. The graph J we are interested in is then given by the union
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of the graphs Js for all s ∈ [r]. (Note that the subgraph J ′ of G that contains v and maximizes
e(J ′)/v(J ′) can not be found by independently considering each of the graphs Gs + v, s ∈ [r] —
this is precisely why we introduced the generalized notion of density restriction.) This independence
allows us to compute the subgraph J of G that minimizes µθ(J) recursively without remembering
the actual structure of the history graphs Gs, s ∈ [r]. All the information that is necessary to do
the same minimization in future steps (when the copy of H+

σ is extended to form larger subgraphs
of F in color σ) can be stored by assigning the value

∑
s∈[r]\{σ}(µθ(Js) − 1) to the vertex v in H+

σ

(the −1 in the sum accounts for the fact that all the graphs Gs + v, s ∈ [r], share the vertex v).
In other words, we can condense the ‘history’ behind each of the vertices of a monochromatic copy
of some subgraph of F into a single number. (Recall that we consider θ > 0 to be fixed — this is
crucial in all of the above.)

As a consequence, when maintaining the lists Hs, s ∈ [r], Builder no longer needs to store the entire
history graph associated with some monochromatic subgraph H of F on one of these lists, but can
store all the necessary information as a simple vertex-weighting of H. This greatly reduces the
amount of information Builder needs to keep track of, but does not yet solve the issue that there
is no obvious termination criterion for Builder’s exploration (Builder might still keep constructing
new non-trivial entries forever).

2.1.5. Unique vertex weights via vertex orderings. In general, it may and will happen that the same
subgraph H of F appears several times on one of Builder’s lists with different vertex-weightings
in such a way that none of these entries is redundant — depending on how H is used in future
steps, different vertex-weightings of the same graph might be desirable from Builder’s view. In other
words, there is no unique best way of enforcing a copy of H in a given color for Builder.

It turns out, however, that different useful vertex-weightings can only arise if Builder presents the
vertices of H in different orders (there are v(H)! many different orders). For a fixed such order, there
is a well-defined best vertex-weighting that Builder can achieve when enforcing H in that particular
order. Thus to explore his options completely Builder only needs to compute finite lists Hs, one for
every color s ∈ [r], which contain one entry for each vertex-ordering of every subgraph H of F .

This does not quite solve the issues we mentioned yet — it could still occur that Builder needs to
recompute the vertex-weighting for a given entry many times because he finds better and better ways
to enforce a given graph H in a particular order. To prevent this from happening, we need to be
quite careful about the order in which we compute the entries of the lists Hs — essentially we start
by considering the game with generalized density restriction (θ, β) for the given fixed θ > 0 and a
very large β, and then successively lower β by the minimal amount that makes new options available
to Builder. In each step we compute the weights for all graphs that Builder can create respecting the
current generalized density restriction (θ, β). This guarantees that we need to compute the weights
for each graph only once, and therefore finally allows Builder to explore his options completely by a
finite procedure.

2.1.6. Tying it all together. Along the lines sketched in the previous sections, we can compute
β∗(F, r, θ) by dynamic programming over vertex-ordered subgraphs of F (provided that β∗(F, r, θ) is
non-negative for the given θ > 0, see the remarks in Section 2.1.3), branching on Painter’s decisions
as appropriate. The online vertex-Ramsey density m∗1(F, r) can then be derived from β∗(F, r, θ) as
explained in Section 2.1.3. As this is now a finite procedure, it also follows that the supremum in (8)
is attained as a maximum, which with some further arguments also implies that the infimum in (4)
is attained as a minimum.

2.2. About the proof of Theorem 3. For any graph F and any integer r, let m̃(F, r) denote the
value computed by the procedure outlined in Section 2.1. We prove that m̃(F, r) equals m∗1(F, r)
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as defined in (4) by constructing explicit winning strategies for Builder and Painter, for arbitrary
density restrictions d ≥ m̃(F, r) and d < m̃(F, r), respectively.

For Builder such a strategy follows from the general principles underlying the procedure sketched
in Section 2.1: all steps of the dynamic program which is at the heart of our approach can be
interpreted as actual construction steps on the board of the deterministic game.

For Painter, such a strategy can be recovered from the branching on Painter’s decisions performed
in our procedure — we show that the decisions corresponding to a ‘worst’ path in the branching
tree (viewed from Builder’s perspective) give rise to a Painter strategy that succeeds in avoiding a
monochromatic copy of F against any Builder strategy. This Painter strategy can be encoded by a
priority list as described in Section 1.5.

To prove the success of this strategy, we use a witness graph argument : Essentially, we show induc-
tively that whenever a monochromatic copy of some ordered subgraph H of F in some color s ∈ [r]
appears on the board, then this copy is contained in a graph that is at least as dense as indicated
by the weights computed for H and the color s by the dynamic program in our procedure. (Recall
from Section 2.1 that these weights basically encode the density of the history graph corresponding
to the best way for Builder to enforce a monochromatic copy of H in color s.) This invariant holds
in particular for all vertex-orderings of the graph F and all colors s ∈ [r], and implies that when-
ever a monochromatic copy of F is completed, the board contains a graph that violates the density
restriction imposed on Builder.

The proof of Theorem 3 we just sketched also shows that there exists an integer amax = amax(F, r)
such that for any given density restriction d Builder never needs more than amax steps to enforce
a monochromatic copy of F , if he is able to do so at all. Note that this statement alone directly
implies all three assertions of Theorem 3, as it shows that m∗1(F, r) can also be computed trivially
by exhaustive search over the finitely many possible ways Builder and Painter can play in amax steps
of the game.

2.3. About the proof of Theorem 4. We have already discussed the proof of the upper bound
part of Theorem 4 in Section 1.4; as mentioned this proof is self-contained and does not depend on
the rest of this work. The proof of the lower bound part is much more involved and relies on the same
witness graph approach as the argument for Painter’s success in the deterministic game described
in the previous section. However, there is the additional issue that, as explained in Section 1.4, the
random graph Gn,p with p(n) = o(n−1/m∗1(F,r)) satisfies a density restriction of d = m∗1(F, r) only
locally and not globally. Consequently, in order to apply the witness graph argument outlined above
to the probabilistic setting of Theorem 4, we also need to show that the size of the witness graphs
resulting from our arguments is bounded by some constant vmax = vmax(F, r) (and not, say, linear
in n). Unfortunately, we cannot show this for all priority lists that represent optimal strategies for
Painter in the deterministic game. However, by applying a number of further technical refinements
to the procedure described in Section 2.1, we can guarantee that it only computes priority lists for
which a constant vmax as desired indeed exists. It follows with the same witness graph argument as
before that these priority lists represent polynomial-time coloring algorithms that a.a.s. succeed in
finding a valid coloring of Gn,p online for any p(n) = o(n−1/m∗1(F,r)).

3. Computing the online vertex-Ramsey density

3.1. Proof of Theorem 3. Recall the definition of the deterministic F -avoidance game with r
colors and generalized density restriction (θ, β) from Section 2.1.3, and recall further that, at least
intuitively, computing the online vertex-Ramsey density m∗1(F, r) is equivalent to determining the
root of β∗(F, r, θ) as defined in (8) (where existence and uniqueness of this root are not clear yet).
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As already mentioned, we are going to derive a procedure that returns β∗(F, r, θ) for any θ > 0 for
which β∗(F, r, θ) ≥ 0, and a meaningless negative value for any θ > 0 for which β∗(F, r, θ) < 0. This
procedure will be described in Section 3.3, and its output will be denoted by Λθ(F, r). We will see
that the function Λθ(F, r) is well-defined for any real number θ > 0, and for rational values of θ it
can be computed using only integer arithmetic. Most of the remainder of this paper will be devoted
to the proofs of the following two key statements.

Proposition 6 (Builder strategy from Λθ(F, r)). Let F be a graph with at least one edge and r ≥ 2
an integer. There is a constant amax = amax(F, r) such that the following holds: For any real numbers
θ > 0 and β ≥ 0 with

Λθ(F, r) ≥ β , (9)
where Λθ() is defined in (24) below, Builder can enforce a monochromatic copy of F in the deter-
ministic F -avoidance game with r colors and generalized density restriction (θ, β) in at most amax

steps, regardless of how Painter plays.

Proposition 7 (Painter strategy from Λθ(F, r)). Let F be a graph with at least one edge, r ≥ 2 an
integer, and θ > 0 and β ≥ 0 real numbers such that

Λθ(F, r) < β , (10)

where Λθ() is defined in (24) below.
Then Painter can avoid creating a monochromatic copy of F in the deterministic F -avoidance game
with r colors and generalized density restriction (θ, β), regardless of how Builder plays.

Before going into any details about the procedure that defines Λθ(F, r), we show how Proposition 6
and Proposition 7 imply Theorem 3.

For technical reasons, our formal arguments do not rely on the parameter β∗() defined in (8), but
on a related parameter that we introduce now. For any graph F with at least one edge, any integer
r ≥ 2, any real number θ > 0 and any integer a ≥ amin := r(v(F )− 1) + 1, we define

β′(F, r, θ, a) := sup

{
β ∈ R

∣∣∣∣∣
Builder has a winning strategy in the deterministic
F -avoidance game with r colors and generalized
density restriction (θ, β) in at most a steps

}
. (11)

Here the supremum is over a nonempty set of values because presenting the complete graph on amin

vertices sequentially is a winning strategy for Builder that satisfies the generalized density restriction
(θ, β) for any β ≤ min{k −

(
k
2

)
· θ | 1 ≤ k ≤ amin}. Note that for all F , r, and θ as before we have

β∗(F, r, θ) = sup
a≥amin

β′(F, r, θ, a) = lim
a→∞

β′(F, r, θ, a) . (12)

As in the definition of β′() in (11) there is only a finite number of possible Builder strategies to
consider, it is not hard to derive the following properties of β′().

Lemma 8 (Properties of β′(F, r, θ, a)). For any graph F with at least one edge, any integer r ≥ 2,
any real number θ > 0 and any integer a ≥ amin, the supremum in (11) is attained as a maximum.
For fixed F , r, and a as before, β′(F, r, θ, a) viewed as a function of θ > 0 is continuous, non-
increasing, piecewise linear, and has a unique root, which is contained in the set

Q(a) := { 0 < v
e < 2 | v, e ∈ N ∧ 1 ≤ v ≤ a ∧ 1 ≤ e ≤

(
v
2

)
} . (13)

Proof. We identify Builder’s strategies in the deterministic two-player game with r colors with finite
r-ary rooted trees, where each node at depth k of such a tree is an r-colored graph on k vertices,
representing the board after the k-th step of the game. Specifically, the tree T representing a given
Builder strategy is constructed as follows: The root of T is the null graph (the graph whose vertex
set is empty). The r children of any node B at depth k of T are obtained by adding the (k + 1)-th



15

vertex of Builder’s strategy to B (together with the edges that connect this vertex to previously
added vertices according to Builder’s strategy) and coloring it with one of the r available colors.
Continuing like this, we construct T , representing any situation in which Builder stops playing by a
leaf of T .
Note that in this formalization, a given tree T represents a generic strategy for Builder (in the
deterministic game with r colors) that may or may not satisfy a given generalized density restriction
(θ, β), and that can be thought of as a strategy for the ‘F -avoidance’ game for any given graph F .
We say that T is a winning strategy for Builder in a specific F -avoidance game if and only if every
leaf of T contains a monochromatic copy of F . We say that a Builder strategy T is a legal strategy in
the game with generalized density restriction (θ, β) if and only if (7) is satisfied for every subgraph
H with v(H) ≥ 1 of every node B in T .
Let F , r and a ≥ amin be given. As the number of steps of the game is bounded by a, there is only
a finite family T = T(r, a) of different Builder strategies, obtained by exhaustive enumeration of all
possible ways to add a new vertex to the board. Let W = W(F, r, a) ⊆ T denote the set of winning
strategies for Builder for the given F , and recall that for a ≥ amin the family W is nonempty.

Note that for any winning strategy T ∈W and for any fixed θ > 0,

fT (θ) := min
B∈T

H⊆B:v(H)≥1

µθ(H) (14)

is the maximal value of β such that T is a legal strategy in the game with generalized density
restriction (θ, β). Optimizing over the (finite and nonempty) set of winning strategies, we obtain
β′(F, r, θ, a) as defined in (11) as

β′(F, r, θ, a) = max
T ∈W

fT (θ) . (15)

We conclude that the supremum in (11) is attained as a maximum. In the following we derive the
claimed properties of β′(F, r, θ, a) as a function of θ > 0 by considering the functions fT (θ), T ∈W.

Using (14) and combining the properties of the linear functions µθ(H) for all H ⊆ B with v(H) ≥ 1
and all B ∈ T it is not hard to see that for any T ∈ W the function fT (θ) satisfies the following
properties:

• fT (θ) is continuous and piecewise linear.
• There is an ε = ε(T ) > 0 such that fT (θ) = 1 for all 0 < θ ≤ ε and fT (θ) is strictly decreasing
for all θ ≥ ε.
• fT (θ) has a unique root in the set {ve | v, e ∈ N ∧ 1 ≤ v ≤ a ∧ 1 ≤ e ≤

(
v
2

)
}.

Note that the root of fT (θ) is strictly smaller than 2: For any winning strategy T ∈ W, there is
a leaf B in T that contains a (not necessarily monochromatic) copy of P3 as a subgraph. This is
trivially true if P3 ⊆ F (as every leaf of T contains a monochromatic copy of F ). If P3 ( F , then
F is a matching, and any strategy where Painter colors endpoints of isolated edges on the board
with different colors corresponds to a root-leaf path in T that does not end with a matching (as
otherwise T would not be a winning strategy for Builder). Thus in either case the graph H = P3 is
a subgraph of some node B of T , and consequently the minimization in (14) includes the function
µθ(H) = 3− 2 · θ, whose root is strictly smaller than 2.

It follows with (15) that also β′(F, r, θ, a) satisfies the three properties listed above, and that its root
is strictly smaller than 2. Combining those properties shows that β′(F, r, θ, a) satisfies the conditions
claimed in the lemma. �

Using Proposition 6, Proposition 7 and Lemma 8, we will prove the following explicit version of
Theorem 3.
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Theorem 9 (Explicit Version of Theorem 3). For any graph F with at least one edge and any integer
r ≥ 2, the online vertex-Ramsey density m∗1(F, r) defined in (4) satisfies

m∗1(F, r) = 1/θ∗ , (16)

where θ∗ = θ∗(F, r) is the unique solution of

Λθ(F, r)
!

= 0 (17)

and Λθ() is defined in (24) below.
Moreover, θ∗ is a rational number from the set Q(amax), where Q() is defined in (13) and amax is the
constant guaranteed by Proposition 6. Furthermore, the infimum in (4) is attained as a minimum.

Theorem 3 is an immediate consequence of Theorem 9, observing that the solution of the equa-
tion (17) can be computed by evaluating Λθ(F, r) for all (finitely many) rational θ ∈ Q(amax) (the
constant amax is given explicitly in the proof of Proposition 6, see (97) below).

Proof of Theorem 9. Throughout the proof we consider F and r fixed and let amax = amax(F, r)
denote the constant guaranteed by Proposition 6.

Proposition 6 and Proposition 7 imply that for any given θ > 0 for which Λθ(F, r) ≥ 0, the pa-
rameter Λθ(F, r) is the maximal value of β for which Builder can win the deterministic game with
generalized density restriction (θ, β), and if he can win then he needs at most amax steps to enforce
a monochromatic copy of F , i.e., Λθ(F, r) coincides with β′(F, r, θ, amax) as defined in (11).

Recall that according to Lemma 8 the supremum in (11) is always attained as a maximum, i.e.,
for any θ > 0 Builder has a winning strategy in the game with generalized density restriction
(θ, β′(F, r, θ, amax)). Thus if β′(F, r, θ, amax) ≥ 0 we must have that Λθ(F, r) ≥ β′(F, r, θ, amax) as
otherwise we could apply Proposition 7 with β = β′ to obtain a contradiction. Hence also Λθ(F, r)
is non-negative in that case.

It follows that for any θ > 0 the two functions Λθ(F, r) and β′(F, r, θ, amax) either coincide or are
both negative. Thus in particular they have the same set of roots, which by Lemma 8 consists of a
single rational number θ∗ = θ∗(F, r) from the set Q(amax).

Applying Proposition 6 with θ = θ∗ and β = 0 yields that Builder has a winning strategy in the
game with generalized density restriction (θ∗, 0) (in at most amax steps). Conversely, for any θ > θ∗

we obtain with Lemma 8 that β′(F, r, θ, amax) is negative which, as discussed above, implies that
also Λθ(F, r) is negative. Consequently we may apply Proposition 7 with β = 0 to infer that Painter
has a winning strategy in the game with generalized density restriction (θ, 0).

Recalling that for any θ > 0 the game with generalized density restriction (θ, 0) is equivalent to the
original deterministic game with density restriction d = 1/θ, we may restate our findings as follows:
Builder has a winning strategy in the game with density restriction d = 1/θ∗ (in at most amax steps),
and for any d < 1/θ∗ Painter has a winning strategy in the game with density restriction d. I.e.,
the online vertex-Ramsey density defined in (4) satisfies m∗1(F, r) = 1/θ∗, and the infimum in (4) is
attained as a minimum. �

Remark 10. Analogously to the second paragraph of the preceding proof it follows that for any
given θ > 0 for which Λθ(F, r) ≥ 0, also β∗(F, r, θ) as defined in (8) coincides with Λθ(F, r) =
β′(F, r, θ, amax). Thus the unique root θ∗ of Λθ(F, r) = β′(F, r, θ, amax) is also a root of β∗(F, r, θ).

Furthermore, the observation that the non-increasing functions β′(F, r, θ, a), a ≥ amin, have a slope
of at most −1 around their respective roots implies with (12) that the pointwise limit β∗(F, r, θ) has
at most one root. Thus θ∗ is indeed also the unique root of β∗(F, r, θ), as claimed in Section 2.1.3.



17

3.2. Definitions and notations. In order to present our procedure for computing the values
Λθ(F, r) satisfying Proposition 6 and Proposition 7, we need to introduce a number of definitions and
notations. Along with the definitions we give some intuition how those formal objects implement
the ideas outlined in Section 2.1.

To simplify notation, for a graph H and any vertex v of H we abbreviate v ∈ V (H) to v ∈ H. For
a graph H and any set of vertices U ⊆ V (H), we denote by H \ U the graph obtained from H by
removing all vertices in U and all edges incident to them. To indicate removal of a single vertex
v ∈ H we abbreviate H \ {v} to H \ v.

3.2.1. Weighted graphs. A vertex-weighted graph is a graph H with a weight function w : V (H)→ R.
We refer to the values w(u), u ∈ H, as vertex weights. Throughout this work, these vertex weights
represent contributions to the linear function µθ() defined in (6) that are obtained from ‘condensing’
history graphs as outlined in Section 2.1.4. They will always be non-positive.

For a fixed real number θ > 0, any graph H, any vertex v ∈ H and any weight function w :
V (H) \ {v} → R we define the value

dθ(H, v,w) := min
J⊆H:v∈J

( ∑

u∈J\v

(
1 + w(u)

)
− e(J) · θ

)
, (18)

where the minimization is over all subgraphs J of H that contain the vertex v. As this minimization
includes the graph J that consists only of the isolated vertex v, we always have dθ(H, v,w) ≤ 0.
Note that the minimum in (18) is always attained by an induced subgraph J ⊆ H. For convenience
we will also use this notation for weight functions w whose domain is strictly larger than the set
V (H) \ {v}. Of course, for the value of dθ(H, v,w) only the values w(u) of vertices u ∈ H \ v are
relevant.

The intuition behind the value dθ(H, v,w) is the following: Assume that a copy of H \ v is used as
one of the graphs Hs in Figure 1, and Painter selects a color σ ∈ [r] such that a copy of some other
graph Hσ is extended to a copy of H+

σ . Then H becomes part of the history graph G of H+
σ , and

the recursive contribution to the value µθ(J) (as defined in (6)) of a subgraph J ⊆ G minimizing
µθ(J) is exactly dθ(H, v,w) if v is included in J . In our dynamic program, this will be recorded by
adding a term of dθ(H, v,w) to the vertex weight of v in H+

σ (and this is also how the vertex weights
w of H \ v were computed in earlier steps).

For a fixed real number θ > 0, any graph H and any weight function w : V (H) → R ∪ {−∞} we
define

λθ(H,w) :=
∑

u∈H

(
1 + w(u)

)
− e(H) · θ . (19)

As it is the case for the definition of dθ() in (18), it is also convenient here to allow weight functions
w whose domain is strictly larger than the set V (H). Of course, for the value of λθ(H,w) only the
values w(u) of vertices u ∈ H are relevant. Observe that λθ(H,w) defined in (19) can be written
recursively for every vertex v ∈ H as

λθ(H,w) = λθ(H \ v, w) + 1 + w(v)− degH(v) · θ , (20)

where degH(v) denotes the degree of v in H. This will be used several times in our arguments.

Using (6), λθ(H,w) defined in (19) can also be written as λθ(H,w) = µθ(H) +
∑

u∈H w(u), which
intuitively means the following: If we imagine H to be at the center of a large history graph G, the
parameter λθ(H,w) corresponds to the value µθ(J) of the graph J obtained by attaching to each
vertex v ∈ H the r−1 subgraphs that minimize µθ(Js) among all subgraphs Js containing v in each
of the r − 1 branches of the history graph G.
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Figure 2. Illustration of the tree T (K3) and the definition in (22) (the shaded
regions represent subsets of nodes of T (K3)).

3.2.2. Ordered graphs. For any graph H, h := v(H), a vertex ordering is a bijective mapping π :
V (H) → {1, . . . , h}, conveniently denoted by its preimages, π = (π−1(1), . . . , π−1(h)). An ordered
graph is a pair (H,π), where H is a graph and π is an ordering of its vertices. In the context of the
F -avoidance game we interpret the ordering π = (v1, . . . , vh) as the order in which the vertices of H
appeared in the game, where vh is the vertex that appeared first (we refer to it as the oldest vertex)
and v1 is the vertex that appeared last (we refer to it as the youngest vertex). We use Π(V (H)) to
denote the set of all vertex orderings π of H.

For an ordered graph (H,π) and any subgraph J ⊆ H, we denote by π|J the order on the vertices
of J induced by π. For any set U ⊆ V (H) we use π \ U as a shorthand notation for π|H\U . To
indicate removal of a single vertex v ∈ H we abbreviate π \ {v} to π \ v.
Moreover, we define

S(F ) :=
{

[(H,π)]∼
∣∣H ⊆ F with v(H) ≥ 1 and π ∈ Π(V (H))

}
(21)

as the family of all isomorphism classes of ordered subgraphs of F , where we write (H,π) ∼ (H ′, π′)
if (H,π) and (H ′, π′) are isomorphic as ordered graphs. For simplicity we refer to the elements
[(H,π)]∼ ∈ S(F ) in the following always as graphs (H,π) ∈ S(F ). It is convenient to think of
the graphs in S(F ) as nodes of a rooted tree T (F ) with root node (K1, (v1)) (an isolated vertex),
where for each node (H,π) ∈ S(F ), π = (v1, . . . , vh), with v(H) ≥ 2 the parent node is given by
(H \ v1, π \ v1). For any subset H ⊆ S(F ) we define the set C(H, F ) ⊆ S(F ) as

C(H, F ) :=

{{
(K1, (v1))

}
if H = ∅{

(H,π = (v1, . . . , vh)) ∈ S(F ) \ H
∣∣ (H \ v1, π \ v1) ∈ H

}
otherwise .

(22)

Note that C(H, F ) is exactly the set of nodes of T (F ) that are children of some node in H, but that
are not contained in H. Figure 2 shows the tree T (F ) for F = K3 and illustrates the definition in
(22).

Remark 11. Note that for two graphs H1 ( H2 with v(H1) = v(H2), a monochromatic copy of H1 on
the board can never evolve into a copy of H2 later in the game, as new edges appear only incident to
newly added vertices. As a consequence, we could restrict our attention to induced subgraphs of F
in all of our arguments. While changing the definition of S(F ) in (21) accordingly would indeed lead
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to some algorithmic savings (see Section 3.4), for our formal arguments we find it more convenient
to include all subgraphs of F in the definition (21). Otherwise, unnecessary distraction would arise
everytime an induced subgraph is mentioned in a proof.

3.3. The algorithm. In the following we present an algorithm ComputeWeights(), whose output
is then used to define the function Λθ(F, r) that is referred to in Proposition 6 and Proposition 7.

Beside the graph F and the number of colors r, the algorithm has two more input parameters:
the parameter θ from the generalized density restriction (see Section 2.1.3), and a finite sequence
α ∈ [r]r·|S(F )| with the following interpretation: As indicated in Section 2.1, the underlying idea of
the algorithm is to explore systematically from Builder’s point of view which monochromatic ordered
subgraphs of F he can enforce if Painter plays according to a fixed strategy. Step by step Builder
enforces larger monochromatic subgraphs from smaller ones, and the appropriate vertex weights for
these graphs are computed by dynamic programming. The sequence α encodes Painter’s coloring
decisions in the order they occur in the course of the algorithm (i.e., it represents a fixed Painter
strategy), where an entry of this sequence may correspond to several coloring decisions of Painter
for which she uses the same color. (Our proofs show that she would not gain anything by using
different colors for these decisions.)

The algorithm maintains for each color s ∈ [r] a family Hs ⊆ S(F ) of ordered subgraphs of F and
a function ws : Hs → R. The families Hs correspond to the ordered subgraphs of F for which
Builder has already enforced a monochromatic copy in color s. In the course of the algorithm, the
families Hs are successively enlarged. Initially, we have Hs = ∅ for all s ∈ [r], and at each step
the candidate graphs to be added to the families Hs are given by the sets C(Hs, F ) defined in (22);
these correspond to the graphs that Builder can construct by adding a single vertex to a graph he
has already enforced. Consequently, throughout the algorithm the families Hs, s ∈ [r], viewed as
subsets of nodes of the tree T (F ) defined after (21), grow downwards from the root.

For each s ∈ [r] and each ordered graph (H,π) ∈ Hs, π = (v1, . . . , vh), the function ws : Hs → R
maintained by the algorithm induces a weight function w(H,π,s) : V (H)→ R as follows: The weight
w(H,π,s)(v1) of the youngest vertex v1 is given directly by ws(H,π); the weight w(H,π,s)(v2) of the
second-youngest vertex v2 is given by ws(H \ v1, π \ v1), i.e., by the value of ws for the parent of
(H,π) in T (F ); and so on. The full weight function w(H,π,s) : V (H) → R is therefore obtained by
considering the value of ws for all graphs on the path from (H,π) to the root (K1, (v1)) of the tree
T (F ), and each graph (H,π) ∈ Hs inherits all vertex weights except that of the youngest vertex
from his ancestors in T (F ).

More formally, and extending this construction to all graphs (H,π) ∈ S(F ), we define for each
s ∈ [r] and each (H,π) ∈ S(F ), π = (v1, . . . , vh), the weight function

w(H,π,s)(vi) :=





ws(H \ {v1, . . ., vi−1}, π \ {v1, . . . , vi−1})
if (H \ {v1, . . . , vi−1}, π \ {v1, . . . , vi−1}) ∈ Hs ,

−∞ otherwise .

(23)

This notation will also be used in the formulation of ComputeWeights() in Algorithm 1 below.
(We shall see that the algorithm never encounters the value −∞ during its execution.) Note that
an ordered graph (H,π) ∈ S(F ) has vertices of weight −∞ if and only if (H,π) ∈ S(F ) \Hs for the
corresponding s ∈ [r], which intuitively means that Builder has not yet enforced a monochromatic
copy of (H,π) in color s.

The families Hs ⊆ S(F ) and the functions ws : Hs → R, s ∈ [r], are extended step by step in the
course of the algorithm, and their final values are returned when the algorithm terminates.
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Algorithm 1: ComputeWeights(F, r, θ, α)

Input: a graph F with at least one edge, an integer r ≥ 2, a real number θ > 0, a sequence
α ∈ [r]r·|S(F )|

Output: an r-tuple
(
(Hs, ws)

)
s∈[r]

, where Hs ⊆ S(F ) and ws : Hs → R for all s ∈ [r]

1 foreach s ∈ [r] do
2 Hs := ∅
3 ∀d ∈ R : Cs(d) := ∅
4 i := 0

5 repeat (*)
6 i := i+ 1

7 foreach s ∈ [r] do
8 dis := max

(H,π=(v1,...,vh))∈C(Hs,F )
dθ(H, v1, w(H,π,s))

9 σ := αi
10 wi :=

∑
s∈[r]\{σ} d

i
s

11 j := 0

12 repeat (**)
13 j := j + 1

14 Ci,j :=
{

(H,π = (v1, . . . , vh)) ∈ C(Hσ, F )
∣∣ dθ(H, v1, w(H,π,σ)) = diσ

}

15 if j = 1 then
16 Cσ(diσ) := Ci,1

17 foreach (H,π) ∈ Ci,j do
18 wσ(H,π) := wi

19 Hσ := Hσ ∪ Ci,j
20 k := 0

21 repeat (***)
22 k := k + 1

23 T i,j,k :=
{

(H,π = (v1, . . . , vh)) ∈ C(Hσ, F )
∣∣ dθ(H, v1, w(H,π,σ)) ≥ diσ

}

24 Ci,j,k := ∅
25 foreach (H,π) ∈ T i,j,k, π = (v1, . . . , vh), do
26 if dθ(H, v1, w(H,π,σ)) > diσ or @J ⊆ H : v1 ∈ J ∧ (J, π|J) ∈ Cσ(diσ) then
27 if @J ⊆ H : v1 ∈ J ∧ (J, π|J) ∈ Cσ(dθ(H, v1, w(H,π,σ))) then
28 ı̂ := max{1 ≤ ı̄ ≤ i | αı̄ = σ ∧ dθ(H, v1, w(H,π,σ)) < dı̄σ

}

29 else
30 ı̂ := max{1 ≤ ı̄ ≤ i | αı̄ = σ ∧ dθ(H, v1, w(H,π,σ)) ≤ dı̄σ

}

31 wσ(H,π) := wı̂

32 Ci,j,k := Ci,j,k ∪ {(H,π)}

33 Hσ := Hσ ∪ Ci,j,k
34 until Ci,j,k = ∅
35 until all (H,π) ∈ C(Hσ, F ), π = (v1, . . . , vh), satisfy dθ(H, v1, w(H,π,σ)) < diσ
36 until Hs = S(F ) for some s ∈ [r]

37 return
(
(Hs, ws)

)
s∈[r]
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Consider now the algorithm ComputeWeights() as given in Algorithm 1. In the following we will
try to convey an intuitive understanding of its operation, building on the informal remarks given in
Section 2.1.

The algorithm works in rounds, and each round corresponds to relaxing the generalized density
restriction (θ, β) by slightly lowering β, and then fully exploring Builder’s options that become
available as a consequence. Each iteration of the repeat-loop (*) is one such round.

At the beginning of the i-th round, for every color s ∈ [r] the maximal dθ()-value among all graphs
in C(Hs, F ), denoted by dis, is determined (lines 7–8). Here the sets C(Hs, F ) correspond to all
graphs in color s that Builder could try to enforce next, and considering for each color a graph that
maximizes dθ() yields a new construction step for which β needs to be lowered least in order for
that step to be compliant with the generalized density restriction (θ, β). (Specifically, β needs to be
lowered to βi := 1 +

∑
s∈[r] d

i
s; note however that this successive lowering of β ist not done explicitly

in the algorithm.)

The i-th entry of the sequence α is then used to determine Painter’s coloring decision σ := αi for
this construction step (line 9), and the rest of the round consists of updating the families Hs and
the functions ws with all the information that can be extracted from that decision. In fact, only the
family Hσ grows; the families Hs, s ∈ [r] \ {σ}, do not change.

The value wi :=
∑

s∈[r]\{σ} d
i
s defined in line 10 corresponds to the weight that needs to be assigned

to the youngest vertex of every graph that is completed in color σ as a direct consequence of Painter’s
coloring decision. When the repeat-loop (**) is executed for the first time, those graphs are added
to Hσ via the set Ci,1 ⊆ S(F ), and the function wσ : Hσ → R is updated by assigning the value
wi to the newly created graphs (lines 14–19). For technical reasons, these graphs are also stored
separately in a set Cσ(diσ) that will be relevant later in the algorithm.

The remainder of the i-th round explores options that became available to Builder as a result of the
graphs in Ci,1 being added to Hσ. These graphs can now be used themselves for further construction
steps, and the graphs created in those construction steps can be used even further, etc. Some of
these new potential construction steps are not legal for the current generalized density restriction
(θ, βi), and will therefore only be explored in later rounds when (intuitively) β is lowered further.
However, some of these are indeed legal for the current value of β, and it turns out that the previous
decisions of Painter already imply which colors Painter should use in each of those construction steps
(!). These indirect consequences of Painter’s decision to use color σ = αi in round i are explored
in the repeat-loop (***), and in the repeat-loop (**) when it is executed for j ≥ 2. The resulting
graphs are added to Hσ via the sets T i,j,k, Ci,j,k ⊆ S(F ) in the repeat-loop (***), and via the sets
Ci,j ⊆ S(F ), j ≥ 2, in the repeat-loop (**). This exploration of indirect consequences involves some
technicalities for which we cannot give much intuition; see however the remarks in the first three
paragraphs of Section 3.4 below. Note that the sets Cσ(diσ) defined in line 16 (in this or an earlier
round) come back into play in lines 26–27.

The i-th round terminates as soon as all ordered graphs (H,π) ∈ C(Hσ, F ), π = (v1, . . . , vh), satisfy
dθ(H, v1, w(H,π,σ)) < diσ (line 35). This corresponds to Builder having exhausted all his legal options
in the game with generalized density restriction (θ, βi) (recall that βi = 1+

∑
s∈[r] d

i
s). The (i+1)-th

round of the algorithm will then consider the game with generalized density restriction (θ, βi+1) for
some βi+1 < βi.

The algorithm terminates as soon as one of the families Hs, s ∈ [r], contains all ordered subgraphs
of F , i.e., Hs = S(F ) (line 36). This corresponds to Builder having enforced copies of all ordered
subgraphs of F in color s (in particular, monochromatic copies of F in all possible vertex orderings).

We defer the formal arguments that ComputeWeights() is a well-defined algorithm and terminates
correctly to Section 3.5, where we will prove the following claim.
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Lemma 12 (Well-definedness and termination of algorithm). All expressions that occur in the
algorithm ComputeWeights() are well-defined, all numerical values and all sets that occur are
finite, and on any input as specified the algorithm terminates correctly after at most r · |S(F )|
iterations of the repeat-loop (*).

With Algorithm 1 in hand, we now define the parameter Λθ(F, r) for which we will prove Proposi-
tion 6 and Proposition 7.

For a fixed real number θ > 0, any graph F with at least one edge and any integer r ≥ 2 we define

Λθ(F, r) := min
α∈[r]r·|S(F )|

max
s∈[r]

π∈Π(V (F ))

min
H⊆F :v(H)≥1

λθ(H,w(H,π|H ,s)) , (24)

where λθ() is defined in (19), and w(H,π,s)() is defined for all (H,π) ∈ S(F ) and all s ∈ [r] in (23)
using the results

(
(Hs, ws)

)
s∈[r]

:= ComputeWeights(F, r, θ, α) of Algorithm 1.

We defer the formal arguments that Λθ(F, r) is well-defined to Section 3.5, where we will prove the
following claim.

Lemma 13 (Well-definedness of Λθ(F, r)). For any real number θ > 0, any graph F with at least
one edge and any integer r ≥ 2, the parameter Λθ(F, r) defined in (24) is a well-defined finite value.

Note that for rational values of θ > 0, the parameter Λθ(F, r) can be computed using only integer
arithmetic.

Before we begin with the technical analysis of the algorithm ComputeWeights() in Sections 3.5—
3.7, we give a few remarks about its implementation in the next section.

3.4. Simplifications and implementation of the algorithm. By Theorem 9, we can compute
the online vertex-Ramsey densitym∗1(F, r) as the inverse of the root of the parameter Λθ(F, r) defined
in (24), where this definition involves the return values of the algorithm ComputeWeights().
As it turns out, the algorithm ComputeWeights() can be simplified considerably if one is only
interested in computing the online vertex-Ramsey density m∗1(F, r) for given F and r (and not
in proving Theorem 3 or Theorem 4, or in computing explicit winning strategies for Builder and
Painter). The program to compute m∗1(F, r) that is available from the authors’ websites [1] uses
such a simplified version of the pseudocode above. In the following we outline the most important
steps in this simplification.

First of all, the sets Cs(d) defined in line 16 and the case distinctions inside the repeat-loop (***)
whether certain subgraphs are contained in those sets or not can be omitted, as they are only used
for proving the lower bound part of Theorem 4, our result for the probabilistic problem. Specifically,
these extra technicalities are needed to bound the size of the witness graphs for certain coloring
strategies that are derived from the algorithm ComputeWeights() — recall from Section 2.2 and
Section 2.3 that such a bound is unimportant for the deterministic game, but crucial for the original
probabilistic problem (see also Lemma 35 and Remark 36 below).

In a second step the algorithm can be simplified even further: As it turns out, the entire repeat-
loop (***) can be omitted; i.e., we do not need to compute any vertex weights for graphs (H,π) ∈
C(Hσ, F ), π = (v1, . . . , vh), that satisfy dθ(H, v1, w(H,π,σ)) > diσ for the current value of diσ, and we
do not need to add such graphs to the corresponding family Hσ (thus for the color σ the algorithm
will ignore the entire subtree of T (F ) rooted at (H,π)). The reason for this is that such graphs
are essentially useless for Builder, and therefore we do not need to consider them in our systematic
exploration of Builder’s options (see Lemma 23 and Algorithm 2 below).

Yet another simplification follows from Lemma 28 below: Combining (24) and (87) shows that we
can change the return value of the algorithm ComputeWeights() to the sum on the right hand
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side of (87) (note that this sum is exactly βı̌, as used in our informal description of the algorithm).
Thus we may stop the algorithm as soon as for some π ∈ Π(V (F )) the graph (F, π) is added to one
of the families Hs, s ∈ [r], which may happen considerably earlier than the termination condition
in line 36.

Further major savings are achieved by considering only induced subgraphs in the definition (21), as
pointed out in Remark 11.

Some of these modifications might change the values returned by the algorithm ComputeWeights(F, r, θ, α)
for a specific sequence α (as the families Hs, s ∈ [r], may evolve differently in the course of the al-
gorithm, the entries of α get a different semantic), but not the value of Λθ(F, r) as defined in (24).

We conclude this section by sketching some ideas to further speed up the computation of m∗1(F, r)
that do not directly relate to the pseudocode given in Algorithm 1.

When evaluating Λθ(F, r) for a given θ ∈ (0, 2), rather than calling the algorithm ComputeWeights()

for each possible input sequence α ∈ [r]r·|S(F )| separately, we call it only once and, in each iteration,
branch on all r values the variable σ can assume in line 9. Since most of the branches of the re-
sulting recursion tree end after much fewer than r · |S(F )| iterations, this allows us to evaluate the
minimization in (24) and hence the value of Λθ(F, r) much more efficiently.

By Theorem 9 we have m∗1(F, r) = 1/θ∗, where θ∗ = θ∗(F, r) is the unique root of Λθ(F, r) defined
in (24), which is guaranteed to be in the finite set Q(amax). In order to efficiently search for θ∗ in
Q(amax), we can exploit that the function Λθ(F, r) changes its sign from positive to negative at θ∗.
Specifically, in order to compute θ∗, we alternate between shrinking the possible interval for the root
θ∗ by binary search (starting with the interval (0, 2)), and evaluating Λθ(F, r) for all rational values
of θ inside the current interval up to a certain size of the denominator.

3.5. Basic properties of the algorithm. In this section we establish a number of basic properties
of the algorithm ComputeWeights(), including several important monotonicity properties. We
also provide the proofs for Lemma 12 and Lemma 13.

We begin by proving that the families Hs grow downward from the root in the tree T (F ) throughout
the algorithm, as already mentioned.

Lemma 14 (Closure property of families Hs). Throughout the algorithm ComputeWeights() and
for each s ∈ [r] we have that if (H,π), π = (v1, . . . , vh), h ≥ 2, is in Hs, then (H \ v1, π \ v1) is also
in Hs. In particular, if Hs 6= ∅ then (K1, (v1)) ∈ Hs.

Proof. Observe that graphs are only added to Hs in lines 19 and 33 of iterations for which αi = s, via
the sets Ci,j and Ci,j,k ⊆ T i,j,k. Thus by the definition of Ci,j in line 14 and of T i,j,k in line 23, only
graphs that are currently in C(Hs, F ) are added to Hs. The claim thus follows from the definition
of C(Hs, F ) in (22). �

Next we prove the first part of Lemma 12, which states that all expressions that occur in the
algorithm ComputeWeights() are well-defined and that all numerical values and all sets that
occur are finite. (We ignore the assignment σ := αi in line 9 for the time being — well-definedness
of that assignment is immediate once we have proven the second part of Lemma 12, namely that
the algorithm ComputeWeights() terminates correctly after at most r · |S(F )| rounds.)

Proof of Lemma 12 (Well-definedness of algorithm). We need to argue that the expression dθ(H, v1, w(H,π,s))
(wherever it occurs) is well-defined, and that the maximum in line 8, line 28 and line 30 is always
over a nonempty set.
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Note that wσ(H,π) is defined in line 18 or line 31, just before (H,π) is added to Hσ in line 19
or line 33, respectively. Combining this with Lemma 14 and using the definition in (23), it fol-
lows that the function w(H,π,s) defines finite vertex weights for all vertices of every graph (H,π) ∈
Hs. Consequently, for every graph (H,π) ∈ C(Hs, F ), π = (v1, . . . , vh), the function w(H,π,s) de-
fines finite weights for all but the youngest vertex v1. As throughout the algorithm the function
dθ(H, v1, w(H,π,s)) is evaluated only for graphs from the corresponding set C(Hs, F ), it follows that
this expression (wherever it occurs) is indeed well-defined (recall the definition of dθ() in (18)).

As long as none of the families Hs, s ∈ [r], contains all graphs from S(F ), the sets C(Hs, F ) are
nonempty. Thus the termination condition in line 36 ensures that the maximum in line 8 is always
over a nonempty set and therefore well-defined.

For any σ ∈ [r], let ı̌ be the smallest integer i ≥ 1 for which αi = σ and note that the ı̌-th iteration
of the repeat-loop (*) is the first one where graphs are added to the family Hσ (initially, we have
Hσ = ∅). As C(∅, F ) = {(K1, (v1))} and dθ(K1, v1, w(K1,(v1),σ)) = 0, by the definitions in lines 8,
14, and 16 we have dı̌σ = 0, and (K1, (v1)) is contained in C ı̌,1 = Cσ(0). By the definition of dθ()
in (18), dθ(H, v1, w(H,π,σ)) on the right hand side of line 30 is always non-positive, i.e. less than or
equal to dı̌σ = 0, implying that the maximum in line 30 is always over a nonempty set and therefore
well-defined (this set contains at least the integer ı̌). We can argue analogously for the set on the
right hand side of line 28 if dθ(H, v1, w(H,π,σ)) < 0. On the other hand, if dθ(H, v1, w(H,π,σ)) = 0
then by what we said before the subgraph J ⊆ H that consists only of the vertex v1 is contained in
Cσ(0) = Cσ(dθ(H, v1, w(H,π,σ))), and thus the condition in line 27 is violated.

For this last argument we used that no graphs are ever removed from the sets Cs(d), d ∈ R. We have
not shown this yet formally; however, it follows from Lemma 16 below that after the initialization
in line 3, each set Cs(d) is modified at most once, namely in line 16 of the unique iteration i for
which αi = s and dis = d. (If the reader is worried about this forward reference, he is welcome to
substitute line 16 by Cσ(diσ) := Cσ(diσ)∪ Ci,1 for the time being, i.e., until Lemma 16 is proven.) �

Having established that all numerical values assigned in the algorithm ComputeWeights() are
finite, we state the following observations for further reference.

Lemma 15 (Finite and non-positive weights). Throughout the algorithm ComputeWeights(),
for each s ∈ [r] we have that for each (H,π) ∈ Hs, π = (v1, . . . , vh), all vertex weights w(H,π,s)(vi)
defined in (23) are finite non-positive values, while for each (H,π) ∈ S(F ) \ Hs, at least one of the
vertex weights is −∞.

Consequently, for all (H,π) ∈ Hs, λθ(H,w(H,π,s)) defined in (19) is a finite value bounded by v(F ),
while for all (H,π) ∈ S(F ) \ Hs, we have λθ(H,w(H,π,s)) = −∞.

Proof. By the definition of dθ() in (18), dθ(H, v1, w(H,π,s)) on the right hand side of line 8 is always
non-positive and finite, from which we conclude, using the definitions in line 10, 18 and 31, that
ws(H,π) is a non-positive finite value for all s ∈ [r] and all (H,π) ∈ Hs. The first part of the
statement now follows from the definition in (23) and Lemma 14. The second part follows from the
first part using the definition in (19). �

The next lemma establishes two important monotonicity properties, which will be used in many of
the upcoming proofs.

Lemma 16 (Monotonicity of dis and wi in i). Let σ ∈ [r] and α ∈ [r]r·|S(F )| be the input sequence
of the algorithm ComputeWeights(). Throughout the algorithm, if αi = σ, then the variables
dis, d

i+1
s , s ∈ [r], defined in line 8 satisfy

di+1
σ < diσ and di+1

s = dis for all s ∈ [r] \ {σ} .
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Moreover, if αı̄ = αi = σ for some ı̄ < i, then the variables wı̄, wi defined in line 10 satisfy

wi ≤ wı̄ ,
with equality if and only if αı̄ = αı̄+1 = · · · = αi = σ.

Of course, the variables dis and di+1
s referred to in Lemma 16 are defined only if the number of

iterations of the repeat-loop (*) is at least i+ 1. Similarly, wi and wı̄ are defined only if the number
of iterations is at least i. Otherwise the statement of the lemma is void.

Proof. The first part of the lemma follows from the definition of diσ in line 8, the termination
condition in line 35, and the fact that none of the families Hs, s ∈ [r] \ {σ}, is modified within the
i-th iteration of the repeat-loop (*). The second part of the lemma follows from the first part and
the definition of wi in line 10. �

For the proof that ComputeWeights() terminates correctly after at most r · |S(F )| iterations of
the repeat-loop (*) we will need the following auxiliary statement.

Lemma 17 (End of repeat-loop (**)). Throughout the algorithm ComputeWeights(), at the end
of each iteration of the repeat-loop (**), all graphs (H,π) ∈ C(Hσ, F ), π = (v1, . . . , vh), satisfy

dθ(H, v1, w(H,π,σ)) ≤ diσ . (25)

For those graphs satisfying (25) with equality there is a subgraph J ⊆ H with v1 ∈ J and (J, π|J) ∈
Cσ(diσ).

Proof. The j-th iteration of the repeat-loop (**) ends as soon as the repeat-loop (***) terminates.
Due to the condition in line 34 this happens in the first iteration k for which the set Ci,j,k ⊆ T i,j,k
is empty, which means that all graphs currently in C(Hσ, F ) violate the condition in the definition
of T i,j,k in line 23, or the condition in line 26. This implies the claim. �

We now prove the second part of Lemma 12, namely that the algorithm ComputeWeights()
terminates correctly after at most r · |S(F )| rounds.

Proof of Lemma 12 (Termination of algorithm). Before bounding the number of iterations of the
repeat-loop (*) we need to argue that the inner two repeat-loops always terminate.

Let σ ∈ [r] and suppose that we have αi = σ in the current iteration i of the repeat-loop (*). Note
that in each iteration of the repeat-loop (***) except the last one, at least one element is added to
the family Hσ via the set Ci,j,k in line 33. Since throughout the algorithm, Hσ is a subfamily of
S(F ), and since no graphs are ever deleted from Hσ, the repeat-loop (***) terminates after at most
|S(F )|+ 1 iterations.

It follows directly from the definition of diσ in line 8 that in the first iteration j = 1 of the repeat-
loop (**), the set Ci,1 defined in line 14 is nonempty. As a consequence of the first part of Lemma 17
and the termination condition in line 35, the set Ci,j is also nonempty in all later iterations j > 1.
Therefore, in each iteration of the repeat-loop (**), at least one element is added to the family Hσ
via the set Ci,j in line 19, and thus similarly to above the repeat-loop (**) terminates after at most
|S(F )| iterations.
The above also implies that in each iteration of the repeat-loop (*), the size of exactly one of the
families Hs, s ∈ [r], increases by at least one. Considering the condition in line 36, we conclude that
the algorithm terminates after at most r · |S(F )| iterations of the repeat-loop (*). �

We proceed by proving Lemma 13, which states that Λθ() defined in (24) is a well-defined finite
value.
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Proof of Lemma 13. Due to the termination condition in line 36 of ComputeWeights(), for each
possible input sequence α ∈ [r]r·|S(F )| there is an s ∈ [r] for which the family Hs returned by
ComputeWeights() equals S(F ). By Lemma 15, for this s the parameter λθ(H,w(H,π,s)) is a
finite value for all (H,π) ∈ S(F ). Thus for any fixed α ∈ [r]r·|S(F )| the maximization over all s ∈ [r]
in (24) yields a finite value, and consequently also the outer minimization over all (finitely many)
sequences α ∈ [r]r·|S(F )| in (24) yields a finite value. �

We continue with a simple invariant that holds at the beginning of each iteration of the main loop
of ComputeWeights().

Lemma 18 (Beginning of repeat-loop (*)). Throughout the algorithm ComputeWeights(), at
the beginning of the i-th iteration of the repeat-loop (*), for every s ∈ [r] all graphs (H,π) ∈ Hs,
π = (v1, . . . , vh), satisfy dθ(H, v1, w(H,π,s)) > dis.

Proof. Fix i, s ∈ [r], and (H,π) ∈ Hs as in the lemma, and let ı̄ < i denote the iteration in which
(H,π) was added to Hs. We must have αı̄ = s, and (H,π) was added to Hs either via one of the
sets C ı̄,j in line 19, or via one of the sets C ı̄,j,k ⊆ T ı̄,j,k in line 33. By the conditions in the definition
of C ı̄,j in line 14 and of T ı̄,j,k in line 23 we have dθ(H, v1, w(H,π,s)) ≥ dı̄s > dı̄+1

s ≥ dis, where the last
two inequalities follow from the first part of Lemma 16. �

The next lemma takes a closer look at the dθ()-value of graphs that are added to the families Hs
via one of the sets Ci,j,k in the repeat-loop (***).

Lemma 19 (Sandwiched dθ()-values for graphs in Ci,j,k). Let σ ∈ [r] and α ∈ [r]r·|S(F )| be the input
sequence of the algorithm ComputeWeights(). Throughout the algorithm, if αi = σ, then for any
graph (H,π), π = (v1, . . . , vh), that is added to the set Ci,j,k in line 32 (for this graph wσ(H,π) is
defined in line 31 by setting it to wı̂) the following holds: If ı̂ is defined in line 28, we have

dı̂+1
σ ≤ dθ(H, v1, w(H,π,σ)) < dı̂σ . (26a)

Otherwise, i.e. if ı̂ is defined in line 30, we have

dı̂+1
σ < dθ(H, v1, w(H,π,σ)) ≤ dı̂σ . (26b)

Proof. Clearly, the definition of ı̂ in line 28 implies

dθ(H, v1, w(H,π,σ)) < dı̂σ . (27)

As (H,π) is in Ci,j,k ⊆ T i,j,k, by the definition in line 23 we have dθ(H, v1, w(H,π,σ)) ≥ diσ, and
consequently ı̂ < i. Consider the smallest integer ν ≥ 1 for which αı̂+ν = αı̂ = σ, and note that
ı̂+ ν ≤ i. Again by the definition of ı̂ in line 28 we have

dı̂+νσ ≤ dθ(H, v1, w(H,π,σ)) . (28)

Moreover, by the choice of ν and the first part of Lemma 16 we have

dı̂+νσ = dı̂+1
σ . (29)

Combining (28) and (29) yields the first inequality in (26a), and together with (27) proves the first
part of the lemma. The second part follows similarly by using the definition of ı̂ in line 30 and by
interchanging < with ≤ in (27) and (28) (also in this case we must have ı̂ < i, as otherwise we would
have dθ(H, v1, w(H,π,σ)) = diσ, a contradiction to the condition in line 26 and the negation of the
condition in line 27). �

The next lemma captures another important monotonicity condition: the lower the dθ()-value of an
ordered graph in a particular color is, the smaller is the weight assigned to its youngest vertex.
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Lemma 20 (dθ()-value vs. weight monotonicity). Throughout the algorithm ComputeWeights(),
for every s ∈ [r] and any two graphs (H,π), (J, τ) ∈ Hs, π = (v1, . . . , vh), τ = (u1, . . . , uc), the
following two properties hold:

• If
dθ(H, v1, w(H,π,s)) < dθ(J, u1, w(J,τ,s))

then we have
w(H,π,s)(v1) ≤ w(J,τ,s)(u1) .

• If
dθ(H, v1, w(H,π,s)) = dθ(J, u1, w(J,τ,s)) and w(H,π,s)(v1) < w(J,τ,s)(u1)

then w(H,π,s)(v1)
(23)
= ws(H,π) is defined either in line 18 or in line 31 with ı̂ defined in line 30,

and w(J,τ,s)(u1) = ws(J, τ) is defined in line 31 with ı̂ defined in line 28.

For the second part of Lemma 20 note that ws(H,π) and ws(J, τ) are defined exactly once in
the course of the algorithm (each in some iteration of the various repeat-loops), just before the
corresponding graph (H,π) or (J, τ) is added to the family Hs.

Proof. Let imax denote the total number of iterations of the repeat-loop (*). Fix some σ ∈ [r] and
consider the set Rσ ∈ R2 defined by

Rσ :=
⋃

1≤i≤imax:αi=σ

{(
(1− t) · diσ + t · di+1

σ , wi
) ∣∣ t ∈ [0, 1]

}
, (30)

where we use the convention dimax+1
σ := dimax

σ if αimax = σ. By Lemma 16 we have for any two pairs
(x, y), (x′, y′) ∈ Rσ

x < x′ =⇒ y ≤ y′ . (31)
Now fix some graph (H,π) ∈ Hσ, π = (v1, . . . , vh), and consider the iteration i of the repeat-loop (*)
where αi = σ and where (H,π) is added to the family Hσ. If (H,π) is added to Hσ in line 19 then
we have

dθ(H, v1, w(H,π,σ)) = diσ and w(H,π,σ)(v1)
(23)
= wσ(H,π) = wi (32)

by the definitions in line 14 and line 18. If on the other hand (H,π) is added to Hσ in line 33 then
we obtain with Lemma 19 that

dı̂+1
σ ≤ dθ(H, v1, w(H,π,σ)) ≤ dı̂σ and w(H,π,σ)(v1)

(23)
= wσ(H,π) = wı̂ (33)

for some ı̂ ≤ i with αı̂ = σ (defined either in line 28 or in line 30).

Combining (30), (32) and (33) shows that any graph (H,π) ∈ Hσ, π = (v1, . . . , vh), satisfies
(
dθ(H, v1, w(H,π,σ)), w(H,π,σ)(v1)

)
∈ Rσ . (34)

The first part of the claim now follows from (31) and (34).

The second part of the claim follows from (30), (34) and Lemma 16 by examining where in the set
Rσ the point

(
dθ(H, v1, w(H,π,σ)), w(H,π,σ)(v1)

)
can possibly be located, depending on whether (H,π)

is added to Hσ in line 19 (then wσ(H,π) is defined in line 18) or in line 33 (then wσ(H,π) is defined
in line 31), where the cases whether ı̂ is defined in line 28 or in line 30 have to be distinguished using
(26a) and (26b) from Lemma 19. �

In the following we will repeatedly use the following auxiliary statement, which is an immediate
consequence of the definition in (18).

Lemma 21 (Weights vs. dθ()-value monotonicity). Let H be a graph, v ∈ H and J ⊆ H with v ∈ J .
Moreover, let wH : V (H) \ {v} → R and wJ : V (J) \ {v} → R with wH(u) ≤ wJ(u) for all u ∈ J \ v.
Then we have dθ(H, v,wH) ≤ dθ(J, v, wJ).
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The next lemma establishes an important monotonicity condition for the vertex weights with respect
to taking (ordered) subgraphs: the weights of a subgraph are always at least as high as the weights
of the entire graph.

Lemma 22 (Subgraph weight monotonicity). Throughout the algorithm ComputeWeights(), for
every s ∈ [r], if (H,π) ∈ Hs, then for every subgraph J ⊆ H we have (J, π|J) ∈ Hs and w(H,π,s)(u) ≤
w(J,π|J ,s)(u) for all u ∈ J .

Proof. We will prove the following auxiliary claim: for every s ∈ [r], if (H,π) ∈ Hs, π = (v1, . . . , vh),
then for every subgraph J ⊆ H with v1 ∈ J we have (J, π|J) ∈ Hs and w(H,π,s)(u) ≤ w(J,π|J ,s)(u)
for all u ∈ J . This implies the original claim, where the subgraphs J ⊆ H are not required to
contain the youngest vertex v1, as follows: if (H,π) ∈ Hs, π = (v1, . . . , vh), and J ⊆ H is any
subgraph of H, then by Lemma 14 we also have (H−c, π−c) ∈ Hs where c := min{i | vi ∈ J}−1 and
(H−c, π−c) := (H \ {v1, . . . , vc}, π \ {v1, . . . , vc}). Moreover, (J, π|J) contains the youngest vertex
vc+1 of (H−c, π−c). Therefore, applying the auxiliary claim to (H−c, π−c) and (J, π|J), together
with the observation that w(H,π,s)(u) = w(H−c,π−c,s)(u) for all u ∈ H−c completes the argument.

To prove the auxiliary claim we argue by induction over the number of vertices of H. The claim
clearly holds if H consists only of a single vertex, as then J = H is the only subgraph of H. For
the induction step let σ ∈ [r] and consider a graph (H,π) ∈ Hσ, π = (v1, . . . , vh), with at least
two vertices. We consider the iteration i of the repeat-loop (*) where αi = σ and where (H,π)
is added to the family Hσ. Let J be a subgraph of H with v1 ∈ J . By Lemma 14 we have that
(H \ v1, π \ v1) ∈ Hσ at this point, and thus we know by induction that

(J \ v1, π|J\v1
) ∈ Hσ (35)

and that
w(H,π,σ)(u) ≤ w(J,π|J ,σ)(u) for all u ∈ J \ v1 . (36)

To complete the proof we only need to show two things: Firstly, that (J, π|J) is either already con-
tained in Hσ or added to this set together with (H,π) at the latest, and secondly, that w(H,π,σ)(v1) ≤
w(J,π|J ,σ)(v1) for the last vertex v1.

Recall that graphs are only added to Hσ via one of the sets Ci,j in line 19, or via one of the sets
Ci,j,k ⊆ T i,j,k in line 33. If (H,π) is contained in one of the sets Ci,j , then by the definition in line 14
we have

dθ(H, v1, w(H,π,σ)) = diσ , (37a)

whereas if (H,π) is contained in one of the sets Ci,j,k, then by the definition in line 23 we have

dθ(H, v1, w(H,π,σ)) ≥ diσ . (37b)

Applying Lemma 21 using (36) shows that

dθ(H, v1, w(H,π,σ)) ≤ dθ(J, v1, w(J,π|J ,σ)) . (38)

We will distinguish the cases where the inequality (38) is strict,

dθ(H, v1, w(H,π,σ)) < dθ(J, v1, w(J,π|J ,σ)) , (39a)

and where it is tight,
dθ(H, v1, w(H,π,σ)) = dθ(J, v1, w(J,π|J ,σ)) . (39b)

Altogether we distinguish four cases: whether (H,π) is contained in one of the sets Ci,j or Ci,j,k, and
whether the inequality (38) is strict or tight.
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• (H,π) ∈ Ci,j and inequality (38) is strict. Combining (37a) and (39a) yields

dθ(J, v1, w(J,π|J ,σ)) > diσ . (40)

By the definition of diσ in line 8, it follows from (40) that if (J, π|J) was not already contained in
Hσ at the beginning of the repeat-loop (**) (in the i-th iteration of the repeat-loop (*)), then
at this point (J \ v1, π|J\v1

) was not contained in Hσ either. By (35) there must then be some
j′ < j such that (J \ v1, π|J\v1

) was added to Hσ in the j′-th iteration of the repeat-loop (**).
Combining the first part of Lemma 17 and (40) shows that also (J, π|J) was added to Hσ in
the j′-th iteration of the repeat-loop (**). In any case (J, π|J) is already contained in Hσ
when (H,π) is added to this set. Applying the first part of Lemma 20 using (39a) yields that
w(H,π,σ)(v1) ≤ w(J,π|J ,σ)(v1), completing the inductive step in this case.
• (H,π) ∈ Ci,j,k and inequality (38) is strict. Combining (37b) and (39a) yields dθ(J, v1, w(J,π|J ,σ)) >

diσ. Therefore, if (J, π|J) is not already contained in Hσ when (H,π) is added to this set via
the set Ci,j,k, then (J, π|J) is contained in Ci,j,k as well (recall (35) and the definition in line 23
and note that (J, π|J) satisfies the first condition in line 26), and added to Hσ together with
(H,π). To complete the inductive step apply again the first part of Lemma 20 using (39a).
• (H,π) ∈ Ci,j and inequality (38) is tight. Combining (37a) and (39b) yields dθ(J, v1, w(J,π|J ,σ)) =

diσ. Therefore, if (J, π|J) is not already contained in Hσ when (H,π) is added to this set via
the set Ci,j , then (J, π|J) is contained in Ci,j as well (recall (35) and the definition in line 14),
and added to Hσ together with (H,π). The definitions in line 18, 28, 30 and 31 show that in
any case

w(H,π,σ)(v1)
(23)
= wσ(H,π) = wi and w(J,π|J ,σ)(v1)

(23)
= wσ(J, π|J) = wı̄ (41)

for some ı̄ ≤ i with αı̄ = σ. Applying the second part of Lemma 16 using (41) yields that
w(H,π,σ)(v1) ≤ w(J,π|J ,σ)(v1), completing the inductive step in this case.
• (H,π) ∈ Ci,j,k and inequality (38) is tight. Combining (37b) and (39b) yields

dθ(J, v1, w(J,π|J ,σ)) ≥ diσ . (42)

Therefore, if (J, π|J) is not already contained in Hσ when (H,π) is added to this set via the
set Ci,j,k, then (J, π|J) is contained in T i,j,k as well (recall (35) and the definition in line 23).
Suppose for the sake of contradiction that (J, π|J) was not transferred from T i,j,k to Ci,j,k, i.e.,
that it violated the condition in line 26. By (42) and the first condition in line 26 we have

dθ(J, v1, w(J,π|J ,σ)) = diσ , (43)

and by the second condition in line 26 there is a subgraph J̄ ⊆ J with v1 ∈ J̄ and

(J̄ , π|J̄) ∈ Cσ(diσ) . (44)

Combining (37b), (38) and (43) shows that

dθ(H, v1, w(H,π,σ)) = diσ . (45)

Clearly J̄ is a subgraph of H that contains the youngest vertex v1, which combined with (44)
and (45) contradicts the fact that (H,π) satisfies the condition in line 26 (only graphs satisfying
this condition are transferred from T i,j,k to Ci,j,k). Hence the graph (J, π|J) is either already
contained in Hσ or added to this set together with (H,π) via the set Ci,j,k at the latest.
It remains to show that w(H,π,σ)(v1) ≤ w(J,π|J ,σ)(v1). Suppose for the sake of contradiction
that this inequality is violated. Using (39b) and the second part of Lemma 20 this implies that
wσ(H,π) is defined in line 31 with ı̂ defined in line 28, and that wσ(J, π|J) is defined either in
line 18 or in line 31 with ı̂ defined in line 30. In the following we show that none of those cases
can occur, as in each case, similarly to above, the existence of a graph J̄ ⊆ H with v1 ∈ J̄ and
(J̄ , π|J̄) ∈ Cσ(dθ(H, v1, w(H,π,σ))) causes (H,π) to violate the condition in line 27 (thus causing
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a contradiction). First consider the case that wσ(J, π|J) is defined in line 18, i.e., (J, π|J) is an
element of one of the sets C ı̄,̄ defined in some iteration ı̄ ≤ i. From the definition in line 14 we
know that

dı̄σ = dθ(J, v1, w(J,π|J ,σ))
(39b)
= dθ(H, v1, w(H,π,σ)) . (46)

We distinguish the subcases ̄ = 1 and ̄ ≥ 2. If ̄ = 1 then (J, π|J) was added to the
set Cσ(dı̄σ) in line 16. Using (46) it follows that (J, π|J) ∈ Cσ(dθ(H, v1, w(H,π,σ))), showing
that the graph J̄ = J itself causes (H,π) to violate the condition in line 27. Similary, if
̄ ≥ 2, then by the second part of Lemma 17 there is a subgraph J̄ ⊆ J with v1 ∈ J̄ and
(J̄ , π|J̄) ∈ Cσ(dı̄σ). Using again (46) it follows that (J̄ , π|J̄) ∈ Cσ(dθ(H, v1, w(H,π,σ))), causing a
contradiction also in this case. Now consider the case that wσ(J, π|J) is defined in line 31 with
ı̂ defined in line 30. Then by the condition in line 27 there is a subgraph J̄ ⊆ J with v1 ∈ J̄ and
(J̄ , π|J̄) ∈ Cσ(dθ(J, v1, w(J,π|J ,σ))). Using (39b) it follows that (J̄ , π|J̄) ∈ Cσ(dθ(H, v1, w(H,π,σ))),
causing (H,π) to violate the condition in line 27. This completes the proof.

�

3.6. Graphs in Ci,j,k irrelevant for Builder. When proving Proposition 6 in Section 4 we develop
a Builder strategy along the lines of the algorithm ComputeWeights(). The following lemma will
be crucial in this: It shows that Builder does not need to enforce any ordered graph (H,π) ∈ S(F )
that is added to one of the families Hs via one of the sets Ci,j,k, as for each such graph there is an
alternative ordering π′ ∈ Π(V (H)) of its vertices such that (H,π′) has already been added to Hs
via the set Ci,j with weights that are at least as good for Builder.

Lemma 23 (Partners between Ci,j and Ci,j,k). Let σ ∈ [r] and consider some iteration i of the
repeat-loop (*) with αi = σ of the algorithm ComputeWeights(). In every iteration j ≥ 1 of the
repeat-loop (**), the set Ci,j defined in line 14 and the sets Ci,j,k, k ≥ 1, defined in line 24 and 32
during each iteration of the repeat-loop (***), satisfy the following: For any graph (H,π) ∈ Ci,j,k,
π = (v1, . . . , vh), the graph (H,π′), defined by π′ := (vk+1, v1, v2, . . . , vk, vk+2, . . . , vh), is contained
in Ci,j and satisfies w(H,π,σ)(u) ≤ w(H,π′,σ)(u) for all u ∈ H.

Proof. For the reader’s convenience, Figure 3 illustrates the notations used throughout the proof.

We shall prove the following more technical claim: Let σ ∈ [r] and consider some iteration i of the
repeat-loop (*) with αi = σ and some iteration j of the repeat-loop (**). For k = 0 and any graph
(H,π) ∈ Ci,j , π = (v1, . . . , vh), and for k ≥ 1 and any graph (H,π) ∈ Ci,j,k, π = (v1, . . . , vh), the
graph (H,π′), defined by π′ := (vk+1, v1, v2, . . . , vk, vk+2, . . . , vh), is contained in Ci,j and satisfies
w(H,π,σ)(u) ≤ w(H,π′,σ)(u) for all u ∈ H.

We will argue at the end of the proof that any graph (H,π) contained in one of the sets Ci,j,k has at
least three vertices, ensuring that all subgraphs used in the following arguments have at least one
vertex.

To prove the auxiliary claim we consider a fixed iteration j ≥ 1 of the repeat-loop (**) and argue
by induction over k, the number of iterations of the repeat-loop (***). We choose the state before
the beginning of the first iteration (k = 0) as our induction base. In this case π′ = π and the claim
is trivially true.

For the induction step consider a graph (H,π) ∈ Ci,j,k, π = (v1, . . . , vh), that is added to Hσ in the
k-th iteration of the repeat-loop (***) (k ≥ 1). By the definition of T i,j,k in line 23 (recall that
Ci,j,k ⊆ T i,j,k) we clearly have

dθ(H, v1, w(H,π,σ)) ≥ diσ . (47)
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T (F )

Induction base

Induction hypothesis

Induction step

k = 0

k = 1

k = 2

Ci,j ∈ Ci,j,1

∈ Ci,j,2

∈ Ci,j,k−1

∈ Ci,j,k

v1

v1

v1

v2 v2

v2

vk+1

vk+1
vk+1

vk+1

wi

wı̄

wı̄

π = (v1, . . . , vh)

π∗ = (vk+1, v2, . . . , vk, vk+2, . . . , vh)

π′ = (vk+1, v1, . . . , vk, vk+2, . . . , vh)
(H,π)(H,π′)

(H \ v1, π \ v1)
(H \ v1, π∗)

(H \ {v1, vk+1}, π∗ \ vk+1)
= (H \ {v1, vk+1}, π \ {v1, vk+1})
= (H \ {v1, vk+1}, π′ \ {v1, vk+1})

(H \ vk+1, π \ vk+1)

Figure 3. Notations used in the proof of Lemma 23. For each ordered graph, the
respective youngest vertex is emphasized.

As (H,π) is obtained from (H \v1, π \v1) by adding v1 as the youngest vertex and all edges incident
to it, we have

w(H,π,σ)(u) = w(H\v1,π\v1,σ)(u) for all u ∈ H \ v1 . (48)

If j = 1, the definition of diσ in line 8 ensures that at the beginning of the j-th iteration of the
repeat-loop (**) we have dθ(J, u1, w(J,τ,σ)) ≤ diσ for all (J, τ) ∈ C(Hσ, F ), τ = (u1, . . . , uc). If j > 1,
the same statement is true by the first part of Lemma 17. Thus if the inequality (47) is strict, then
(H,π) was not in C(Hσ, F ) at the beginning of the j-th iteration of the repeat-loop (**), and thus
(H \ v1, π \ v1) was not in Hσ at this point. If k = 1 this means that (H \ v1, π \ v1) must have been
added to Hσ via the set Ci,j . The same conclusion holds if k = 1 and the inequality (47) is tight, as
otherwise (H,π) would have qualified for inclusion in Ci,j .
Note that the conditions for inclusion into T i,j,k and Ci,j,k in lines 23 and 26 do not change during
the entire repeat-loop (***) except for the requirement that (H,π) is in the current set C(Hσ, F ).
Thus if k ≥ 2 then (H \v1, π \v1) must have been added to Hσ via Ci,j,k−1 in the (k−1)-th iteration
of the repeat-loop (***).

In all cases we can apply the induction hypothesis and conclude that the graph (H \ v1, π
∗), defined

by π∗ := (vk+1, v2, v3 . . . , vk, vk+2, . . . , vh) (to be understood as π \ v1 if k = 1) is contained in Ci,j
and satisfies

w(H\v1,π\v1,σ)(u) ≤ w(H\v1,π∗,σ)(u) for all u ∈ H \ v1 . (49)
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By the definition of Ci,j in line 14, (H \ v1, π
∗) satisfies

dθ(H \ v1, vk+1, w(H\v1,π∗,σ)) = diσ , (50)

and the weight of its youngest vertex vk+1 is set to

w(H\v1,π∗,σ)(vk+1)
(23)
= wσ(H \ v1, π

∗) = wi (51)

in line 18.

Consider now the graph (H \ vk+1, π \ vk+1) and observe that it is a subgraph of (H,π). Applying
Lemma 21 and Lemma 22 hence yields

dθ(H \ vk+1, v1, w(H\vk+1,π\vk+1,σ)) ≥ dθ(H, v1, w(H,π,σ))
(47)
≥ diσ . (52)

As (H \ v1, π
∗) ∈ Ci,j we must have had

(H \ {v1, vk+1}, π∗ \ vk+1) = (H \ {v1, vk+1}, π \ {v1, vk+1}) ∈ Hσ (53)

at the beginning of the j-th iteration of the repeat-loop (**).

As our next intermediate step we will show that the graph (H \ vk+1, π \ vk+1) (which is obtained
from the graph in (53) by adding v1 as the youngest vertex and all edges incident to it) is contained
in Hσ at the beginning of the j-th iteration of the repeat-loop (**) as well. We first consider the
case that one of the inequalities in (52) is strict, i.e., we have

dθ(H \ vk+1, v1, w(H\vk+1,π\vk+1,σ)) > diσ . (54)

If j = 1, it follows from (53) and (54) that (H \ vk+1, π \ vk+1) is indeed contained in Hσ at the
beginning of the j-th iteration of the repeat-loop (**), as otherwise we would obtain a contradiction
to the definition of diσ in line 8. The same conclusion holds for j > 1 by using (53), (54) and the
first part of Lemma 17. Now consider the case that all inequalities in (52) are tight, i.e., we have

dθ(H \ vk+1, v1, w(H\vk+1,π\vk+1,σ)) = dθ(H, v1, w(H,π,σ)) = diσ . (55)

Suppose that j = 1 and that (H \ vk+1, π \ vk+1) was not already contained in Hσ at the beginning
of the first iteration of the repeat-loop (**). Then by (53) and (55), this graph would be added to
Ci,1 = Cσ(diσ) in line 14. As (H \ vk+1, π \ vk+1) is a subgraph of (H,π) that contains the vertex v1,
this observation together with the second equality in (55) contradicts the fact (H,π) satisfies the
condition in line 26. The remaining subcase j > 1 can be proven analogously by using the second
part of Lemma 17.

Therefore, we indeed have
(H \ vk+1, π \ vk+1) ∈ Hσ (56)

at the beginning of the j-th iteration of the repeat-loop (**). The weight assigned to the youngest
vertex v1 of this graph is

w(H\vk+1,π\vk+1,σ)(v1) = wı̄ ≥ wi (57)
for some ı̄ ≤ i with αı̄ = σ, where the last inequality follows from the second part of Lemma 16.

We will show that the graph (H,π′), defined by π′ := (vk+1, v1, . . . , vk, vk+2, . . . , vh) (which is ob-
tained from (H \ vk+1, π \ vk+1) by adding vk+1 as the youngest vertex and all edges incident to
it), satisfies the inductive claim: We first demonstrate that this graph is contained in Ci,j and then
prove the claimed inequality between the vertex weights of (H,π) and (H,π′).

As a first step towards this goal we show that dθ(H, vk+1, w(H,π′,σ)) = diσ.

Clearly we have (H \ {v1, vk+1}, π∗ \ vk+1) = (H \ {v1, vk+1}, π′ \ {v1, vk+1}), implying that

w(H\v1,π∗,σ)(u) = w(H,π′,σ)(u) for all u ∈ H \ {v1, vk+1} . (58)
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As (H,π′) is obtained from (H \ vk+1, π \ vk+1) by adding vk+1 as the youngest vertex and all edges
incident to it, we have

w(H,π′,σ)(v1) = w(H\vk+1,π\vk+1,σ)(v1)
(57)
≥ wi . (59)

Observe that (H,π′) is a supergraph of (H \ v1, π
∗), so applying Lemma 21 and Lemma 22 yields

dθ(H, vk+1, w(H,π′,σ)) ≤ dθ(H \ v1, vk+1, w(H\v1,π∗,σ))
(50)
= diσ . (60)

Now suppose for the sake of contradiction that the first inequality in (60) is strict, i.e., we have

dθ(H, vk+1, w(H,π′,σ)) < diσ . (61)

By (18) and (58) this implies that some

J ′ ∈ arg min
J⊆H:vk+1∈J

( ∑

u∈J\vk+1

(
1 + w(H,π′,σ)(u)

)
− e(J) · θ

)
(62)

includes the vertex v1. But then we would have

dθ(H, v1, w(H,π,σ))
(18)
≤

∑

u∈J ′\v1

(
1 + w(H,π,σ)(u)

)
− e(J ′) · θ

(48),(49)
≤

∑

u∈J ′\v1

(
1 + w(H\v1,π∗,σ)(u)

)
− e(J ′) · θ

=
∑

u∈J ′\{v1,vk+1}

(
1 + w(H\v1,π∗,σ)(u)

)
+
(
1 + w(H\v1,π∗,σ)(vk+1)

︸ ︷︷ ︸
(51)
= wi

)
− e(J ′) · θ

(58),(59)
≤

∑

u∈J ′\vk+1

(
1 + w(H,π′,σ)(u)

)
− e(J ′) · θ

(18),(62)
= dθ(H, vk+1, w(H,π′,σ))

(61)
< diσ ,

contradicting (47). Hence (60) holds with equality and we have indeed

dθ(H, vk+1, w(H,π′,σ)) = diσ . (63)

Clearly, as (H \ v1, π
∗) is contained in Ci,j , it follows that this graph is not contained in Hσ at the

beginning of the j-th iteration of the repeat-loop (*). As (H,π′) is a supergraph of (H \ v1, π
∗), it

follows from Lemma 22 that (H,π′) is not contained in Hσ at this point either. Hence, by (56), (63)
and the definition of Ci,j in line 14 we have (H,π′) ∈ Ci,j .
It remains to check the claimed inequality between the vertex weights of (H,π) and (H,π′). Note
that (H \ vk+1, π \ vk+1) is a subgraph of (H,π). We can hence apply Lemma 22 and, observing
that (H,π′) is obtained from (H \ vk+1, π \ vk+1) by adding vk+1 as the youngest vertex and all
edges incident to it, obtain the desired inequality for all vertices in the set {v1, . . . , vh} \ {vk+1}.
For the vertex vk+1, note that (48), (49) and (51) together yield w(H,π,σ)(vk+1) ≤ wi and that

w(H,π′,σ)(vk+1)
(23)
= wσ(H,π′) = wi by the definition in line 18.

This completes the inductive proof of Lemma 23.

It remains to show that every graph (H,π) ∈ Ci,j,k has at least three vertices, and that therefore all
graphs used in the above arguments are well-defined and have at least one vertex. We show that all
graphs (H,π) ∈ S(F ) on at most two vertices that are ever added to the family Hσ in the course
of the algorithm are added to it via one of the sets Ci,j defined in line 14: As argued in the proof
of Lemma 12 on page 24, this is true for the graph (K1, (v1)) (an isolated vertex), which is added
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via the set C ı̌,1 in the first iteration ı̌ for which αı̌ = σ. Once we have Hσ = {(K1, (v1))}, the only
two ordered subgraphs of F on two vertices, a single edge and two isolated vertices, are contained in
C(Hσ, F ). Using this fact together with the observation that (K1, (v1)) is contained in Cσ(0) and is
a subgraph of both of them, it is easy to check that each of those two graphs can only be added to
Hσ via one of the sets Ci,j : If the dθ()-value of one of these graphs is equal to 0, then it is added via
C ı̌,2. Otherwise its dθ()-value is strictly smaller than 0 and it is added via Ci,1 for some i > ı̌. �

3.7. Further properties of the algorithm. The next lemma implies in particular that for a graph
(H,π) ∈ Hs, π = (v1, . . . , vh) and a subgraph J ⊆ H, v1 ∈ J , minimizing the right hand side of the
definition of dθ(H, v1, w(H,π,s)) in (18), the inequality stated in Lemma 22 is in fact an equality. As
a consequence, in all situations where the vertex weights of a subgraph J ⊆ H are relevant, these
weights only depend on (J, π|J) and not on the ‘context’ H. This is far from clear a priori, and in
fact not true for arbitrary subgraphs J ⊆ H.

Lemma 24 (Irrelevant context of dθ()-minimizing subgraphs). Throughout the algorithm Compute-
Weights(), for every s ∈ [r], any graph (H,π) ∈ Hs ∪ C(Hs, F ), π = (v1, . . . , vh), and any graph Ĵ
from the family

arg min
J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
(64)

we have
w(H,π,s)(u) = w

(Ĵ ,π|
Ĵ
,s)

(u) for all u ∈ Ĵ \ v1 . (65a)

Moreover, if (H,π) ∈ Hs, then we have

w(H,π,s)(v1) = w
(Ĵ ,π|

Ĵ
,s)

(v1) . (65b)

Note that by Lemma 15 and Lemma 22, all vertex weights referred to in the formulation of Lemma 24
are finite values. We will not mention this explicitly again in the following.

The following two auxiliary statements are only used for proving Lemma 24.

Lemma 25. Let H be a graph with V (H) = {v1, . . . , vh}, w : V (H) \ {v1} → R an arbitrary weight
function, θ > 0 a real number, and let Ĵ be a graph from the family

arg min
J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(u)

)
− e(J) · θ

)
. (66)

Moreover, let vk be a vertex contained in Ĵ and J̃ a graph from the family

arg min
J⊆H\{v1,...,vk−1}:vk∈J

( ∑

u∈J\vk

(
1 + w(u)

)
− e(J) · θ

)
. (67)

Then the graph J̃ ∩ Ĵ is also contained in the family (67). In particular, for two graphs J ′, J ′′ from
the family (66) the graph J ′ ∩ J ′′ is also contained in (66).

Proof. In order to simplify notation, we introduce for a real number θ > 0, any graph H, any vertex
v ∈ H and any weight function w : V (H) \ {v} → R, the function

λ−θ (H, v,w) :=
∑

u∈H\v

(
1 + w(u)

)
− e(H) · θ . (68)

As for the definition of dθ() in (18), it is also convenient here to allow functions w in the third
argument of λ−θ () whose domain is strictly larger than the set V (H) \ {v}. Of course, for the value
of λ−θ (H, v,w) only the values w(u) for all u ∈ H \ v are relevant.
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By the choice of J̃ in (67) and by (68), we have

λ−θ (J̃ , vk, w) ≤ λ−θ (J̃ ∩ Ĵ , vk, w) . (69)

This inequality, however, must be tight, as otherwise the second inequality in

λ−θ (Ĵ ∪ J̃ , v1, w)
(68)
= λ−θ (Ĵ , v1, w) + λ−θ (J̃ , vk, w)− λ−θ (J̃ ∩ Ĵ , vk, w)

(69)
≤ λ−θ (Ĵ , v1, w)

would be strict, contradicting the choice of Ĵ in (66). This proves the lemma. �

The next auxiliary statement will be used to prove Lemma 24 by induction.

Lemma 26. The following invariant holds throughout the algorithm ComputeWeights(). Let
s ∈ [r] and let (H,π), π = (v1, . . . , vh), be a graph in Hs, and suppose that every graph J ′ from the
family

arg min
J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
(70)

satisfies
w(H,π,s)(u) = w(J ′,π|J′ ,s)(u) for all u ∈ J ′ \ v1 . (71)

Then every such graph J ′ satisfies

w(H,π,s)(v1) = w(J ′,π|J′ ,s)(v1) . (72)

Proof. Let J ′ be a graph from the family (70) and note that

dθ(H, v1, w(H,π,s))
(18),(70)

= dθ(J
′, v1, w(H,π,s))

(71)
= dθ(J

′, v1, w(J ′,π|J′ ,s)) . (73)

By Lemma 22 we clearly have w(H,π,s)(v1) ≤ w(J ′,π|J′ ,s)(v1). Consequently, using (73) and applying
the second part of Lemma 20, the only way that w(H,π,s)(v1) can be different from w(J ′,π|J′ ,s)(v1)

is if ws(H,π) is defined either in line 18 or in line 31 with ı̂ defined in line 30, and ws(J ′, π|J ′) is
defined in line 31 with ı̂ defined in line 28. We will show that none of those cases can occur.

• First consider the case that ws(H,π) is defined in line 18 in some iteration i of the repeat-
loop (*) (for which αi = s) and the first iteration j = 1 of the repeat-loop (**), i.e., (H,π) is
contained in Ci,1 and satisfies dθ(H, v1, w(H,π,s)) = dis and ws(H,π) = wi. Then by (73) and by
Lemma 18 and Lemma 22 the graph (J ′, π|J ′) must be contained in Ci,1 as well and is added to
Hσ together with (H,π). Hence we have ws(J ′, π|J ′) = wi by the definition in line 18, proving
(72) in this case.
• Now consider the case that ws(H,π) is defined in line 18 in some iteration i of the repeat-
loop (*) (for which αi = s) and some iteration j > 1 of the repeat-loop (**), i.e., (H,π) is
contained in Ci,j and satisfies

dθ(H, v1, w(H,π,s)) = dis . (74)

Then (H,π) must have been in C(Hs, F ) at the end of the previous iteration of the repeat-
loop (**), and by the second part of Lemma 17 there is a subgraph J̄ ⊆ H with v1 ∈ J̄ and
(J̄ , π|J̄) ∈ Cs(dis). From the definitions in line 14 and line 16 it follows that

dθ(J̄ , v1, w(J̄ ,π|J̄ ,s)) = dis . (75)

Fix some graph J ′′ from the family

arg min
J⊆J̄ :v1∈J

( ∑

u∈J\v1

(
1 + w(J̄ ,π|J̄ ,s)(u)

)
− e(J) · θ

)
(76)
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and note that

dθ(J̄ , v1, w(J̄ ,π|J̄ ,s))
(18),(76)

=
∑

u∈J ′′\v1

(
1 + w(J̄ ,π|J̄ ,s)(u)

)
− e(J ′′) · θ . (77)

By Lemma 22 we have

w(H,π,s)(u) ≤ w(J̄ ,π|J̄ ,s)(u) for all u ∈ J̄ . (78)

We hence have

dθ(H, v1, w(H,π,s))
(18)
≤

∑

u∈J ′′\v1

(
1 + w(H,π,s)(u)

)
− e(J ′′) · θ

(77),(78)
≤ dθ(J̄ , v1, w(J̄ ,π|J̄ ,s)) ,

which combined with (74) and (75) shows that the graph (J ′′, π|J ′′) is contained in the family
(70). Applying Lemma 25 yields that the graph (J ′∩J ′′, π|J ′∩J ′′) is also contained in the family
(70). Analogously to (73) we have

dθ(H, v1, w(H,π,s)) = dθ(J
′ ∩ J ′′, v1, w(J ′∩J ′′,π|J′∩J′′ ,s)) ,

which combined with (74) shows that

dθ(J
′ ∩ J ′′, v1, w(J ′∩J ′′,π|J′∩J′′ ,s)) = dis . (79)

Clearly J ′ ∩J ′′ is a subgraph of J̄ that contains the youngest vertex v1. Using this observation
and (79) and applying Lemma 18 and Lemma 22, the fact that (J̄ , π|J̄) is contained in Cs(dis)
implies that (J ′ ∩ J ′′, π|J ′∩J ′′) is contained in Cs(dis) as well. But as J ′ ∩ J ′′ is also a subgraph
of J ′ (that contains the youngest vertex v1), this implies with (73) and (74) that the graph
(J ′, π|J ′) violates the condition in line 27, which yields the desired contradiction.
• Finally consider the case that ws(H,π) is defined in line 31 (in some iteration i of the repeat-
loop (*)) with ı̂ defined in line 30. By the conditions in line 26 and line 27 we have dθ(H, v1, w(H,π,s)) >

dis and there is a graph J̄ ⊆ H with v1 ∈ J̄ and (J̄ , π|J̄) ∈ Cs(dθ(H, v1, w(H,π,s))). Using the
definitions in line 14 and line 16, as well as the first part of Lemma 16, it follows that

dθ(H, v1, w(H,π,s)) = dı̄s

and
dθ(J̄ , v1, w(J̄ ,π|J̄ ,s)) = dı̄s

for some ı̄ < i. From here the proof continues analogously to the second case (where dis needs
to be replaced by dı̄s), concluding that (J ′, π|J ′) must violate the condition in line 27, which
again yields the desired contradiction.

�

Proof of Lemma 24. We argue by induction over the number of vertices of H. The claim clearly
holds if H consists only of a single vertex, as then Ĵ = H is the only graph contained in the family
(64). This settles the base of the induction.

For the induction step suppose that H has at least two vertices, and let Ĵ be a graph from the
family (64). Clearly, (H \v1, π \v1) is contained in Hs (recall the definition of C() in (22)). Applying
Lemma 22 we obtain that (Ĵ \ v1, π|Ĵ\v1

) is contained in Hs as well and that

w(H,π,s)(vi) ≤ w(Ĵ ,π|
Ĵ
,s)

(vi) for all vi ∈ Ĵ \ v1 . (80)

We will first show that this inequality is tight for all vi ∈ Ĵ \ v1 (which is exactly the statement of
(65a)). Suppose for the sake of contradiction that the inequality in (80) is strict for some vi ∈ Ĵ \v1,
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and choose the largest index k for which this is the case, i.e.

w(H,π,s)(vk) < w
(Ĵ ,π|

Ĵ
,s)

(vk) (81)

and
w(H,π,s)(vi) = w

(Ĵ ,π|
Ĵ
,s)

(vi) for all vi ∈ Ĵ \ {v1, . . . , vk} (82)

(we clearly have k ≥ 2). Fix a graph J̃ from the family

arg min
J⊆H\{v1,...,vk−1}:vk∈J

( ∑

u∈J\vk

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
(83)

and observe that by Lemma 25, also the graph J̃ ∩ Ĵ is contained in the family (83). By (82) the
same graph J̃ ∩ Ĵ is also contained in the family

arg min
J⊆Ĵ\{v1,...,vk−1}:vk∈J

( ∑

u∈J\vk

(
1 + w

(Ĵ ,π|
Ĵ
,s)

(u)
)
− e(J) · θ

)
.

By induction, we therefore have w
(J̃∩Ĵ ,π|

J̃∩Ĵ ,s)
(vk) = w(H,π,s)(vk) and w(J̃∩Ĵ ,π|

J̃∩Ĵ ,s)
(vk) = w

(Ĵ ,π|
Ĵ
,s)

(vk),

which together contradicts (81) and shows that (80) holds with equality for all vi ∈ Ĵ \ v1, thus
proving (65a).

The relation (65b) follows from (65a) by applying Lemma 26. �

Lemma 24 allows us to derive the next statement, which is similar in spirit but considers λθ()-values
instead of dθ()-values.

Lemma 27 (Irrelevant context of λθ()-minimizing subgraphs). For every s ∈ [r] and any graph
(H,π) ∈ Hs, π = (v1, . . . , vh), we have

min
J⊆H

λθ(J,w(H,π,s)) = min
J⊆H

λθ(J,w(J,π|J ,s)) .

Proof. Using the definition of λθ() in (19), we obtain from Lemma 22 that

min
J⊆H:v1∈J

λθ(J,w(H,π,s)) ≤ min
J⊆H:v1∈J

λθ(J,w(J,π|J ,s)) . (84)

From

min
J⊆H:v1∈J

λθ(J,w(H,π,s))
(19)
= min

J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
+ 1 + w(H,π,s)(v1) (85)

it follows that the minimum on the left hand side of (84) is attained for some graph

Ĵ ∈ arg min
J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
. (86)

We can hence apply Lemma 24 and obtain

min
J⊆H:v1∈J

λθ(J,w(H,π,s))
(85),(86)

=
∑

u∈Ĵ

(1 + w(H,π,s)(u))− e(Ĵ) · θ(19),(65)
= λθ(Ĵ , w(Ĵ ,π|

Ĵ
,s)

) ,

which shows that the inequality in (84) is tight. The lemma now follows by combining the resulting
identity with the identity

min
J⊆H

λθ(J,w(H,π,s)) = min
1≤i≤h

J⊆H\{v1,...,vi−1}:vi∈J

λθ(J,w(H,π,s)) .

�
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We are now ready to state and prove the relation between Λθ(F, r) as defined in (24) and the
parameter βi = 1+

∑
s∈[r] d

i
s used in our informal explanation of the algorithm ComputeWeights()

in Section 3.3.

Lemma 28 (Relation between Λθ(F, r) and dis). For any input sequence α ∈ [r]r·|S(F )| of the
algorithm ComputeWeights() we have

max
s∈[r]

π∈Π(V (F ))

min
H⊆F

λθ(H,w(H,π|H ,s)) = 1 +
∑

s∈[r]

dı̌s , (87)

where ı̌ is the smallest integer i for which (F, π) ∈ Ci,j for some π ∈ Π(V (F )) and some integer
j ≥ 1, and dis and Ci,j are defined in line 8 and line 14.

Proof. Throughout the proof, we will repeatedly use that, as a consequence of the first part of
Lemma 16, each of the values dit, t ∈ [r], is non-increasing with i, and that the sum

1 +
∑

t∈[r]

dit (88)

is decreasing with i.

For every s ∈ [r] and any graph (H,π) ∈ Hs, π = (v1, . . . , vh), we have

min
J⊆H:v1∈J

λθ(J,w(H,π,s))
(18),(19)

= dθ(H, v1, w(H,π,s)) + 1 + w(H,π,s)(v1) . (89)

If (H,π) ∈ Ci,j for some integers i, j ≥ 1 with αi = s, then by using the definition in line 14 and by
combining (23) with the definitions in line 10 and 18 we obtain from (89) that

min
J⊆H:v1∈J

λθ(J,w(H,π,s)) = 1 +
∑

t∈[r]

dit . (90a)

Similarly, if (H,π) ∈ Ci,j,k for some integers i, j, k ≥ 1 with αi = s, then by using the definition in
line 23 (recall that Ci,j,k ⊆ T i,j,k) and by combining (23) with the definitions in line 10 and 31 we
obtain from (89), using the monotonicity of the values dit in i, that

min
J⊆H:v1∈J

λθ(J,w(H,π,s)) ≥ 1 +
∑

t∈[r]

dit . (90b)

By Lemma 15, in the maximization in (87) it suffices to consider those s ∈ [r] and vertex orderings
π ∈ Π(V (F )), π = (v1, . . . , vf ), for which (F, π) ∈ Hs. We clearly have

min
H⊆F

λθ(H,w(F,π,s)) = min
1≤c≤f

H⊆F\{v1,...,vc−1}:vc∈H

λθ(H,w(F,π,s)) . (91)

If (F, π) ∈ Ci,j for some integers i, j ≥ 1 with αi = s, then by (90) and the monotonicity of the sum
(88) in i, the minimum on the right hand side of (91) is attained for c = 1, yielding

min
H⊆F

λθ(H,w(F,π,s)) = 1 +
∑

t∈[r]

dit . (92)

If (F, π) ∈ Ci,j,k for some integers i, j, k ≥ 1 with αi = s, then by Lemma 23, the graph (F, π′),
defined by π′ := (vk+1, v1, v2, . . . , vk, vk+2, . . . , vf ), is contained in Ci,j and satisfies

w(F,π,s)(u) ≤ w(F,π′,s)(u) for all u ∈ F , (93)

implying that

min
H⊆F

λθ(H,w(F,π,s))
(93)
≤ min

H⊆F
λθ(H,w(F,π′,s))

(92)
= 1 +

∑

t∈[r]

dit . (94)
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By Lemma 27 we can replace the weight function w(F,π,s) on the left hand side of (92) by w(H,π|H ,s)
and the weight functions w(F,π,s) and w(F,π′,s) in (94) by w(H,π|H ,s) and w(H,π′|H ,s), respectively.
From the two modified equations the claim follows immediately, observing that as a consequence of
the monotonicity of the sum (88) in i, their respective right hand sides are maximized for i = ı̌ as
defined in the lemma. �

4. Builder in the deterministic game

In this section we prove Proposition 6 by explicitly constructing, for F , r, θ and β as in the propo-
sition, a Builder strategy that enforces a monochromatic copy of F in the deterministic game with
r colors in at most amax steps (where amax = amax(F, r) is defined in (97) below), and that respects
the generalized density restriction (θ, β).

4.1. The pigeonholing. We will derive Builder’s strategy from the algorithm ComputeWeights()
(Algorithm 1 on page 20) in two steps, using an abstract version of the game as an intermediate
step. The reader should not be put off by our introducing yet another game — this abstract game
is merely a convenience to separate a conceptually simple but important pigeonholing argument
from the more interesting part of the proof. We give the pigeonholing argument in detail because
there are some subtleties involved, and also because we want to derive an explicit upper bound
amax = amax(F, r) (that in particular does not depend on θ) on the number of steps that Builder
needs to enforce a copy of F in the original deterministic game.

The abstract game is played by two players AbstractBuilder and AbstractPainter that correspond
to the players of the original deterministic game. The state of the abstract game after t steps is
described by a list (G1, . . . , Gt) of r-colored graphs Gi, 1 ≤ i ≤ t, where the same r-colored graph
may appear several times in the list. (Intuitively, these entries represent r-colored graphs of which
Builder can enforce isolated copies on the board of the actual deterministic game, where by an
isolated copy of some (r-colored) graph G on the board we mean a copy of G that is the union of one
or several components.) In each step t+ 1 of the abstract game, AbstractBuilder constructs a new
graph by choosing an arbitrary subset X of the index set {1, . . . , t}, and connecting an additional
vertex v in an arbitrary way to the disjoint union of the graphs Gi, i ∈ X . AbstractPainter then
chooses a color s ∈ [r] for v, and the resulting r-colored graph Gt+1 is added to the list. The game
starts with the empty list (and thus the first graph G1 constructed is simply an isolated vertex),
and AbstractBuilder’s goal is to create an r-colored graph Gt that contains a monochromatic copy
of F . Similarly to before we say that an AbstractBuilder strategy satisfies the generalized density
restriction (θ, β) for given values θ > 0 and β if, at all times, all subgraphs H with v(H) ≥ 1 of all
graphs Gi in AbstractBuilder’s list satisfy µθ(H) ≥ β (recall (7)).

The following lemma relates the abstract game to the original deterministic game.

Lemma 29 (Link between abstract and original deterministic game). Let AbstractStrategy be
an arbitrary AbstractBuilder strategy for the abstract game with r colors. If AbstractStrategy
enforces a monochromatic copy of F in at most tmax steps, then it gives rise to a Builder strategy
Strategy for the original deterministic game with r colors that enforces a monochromatic copy of
F in at most (r+1)tmax steps. Furthermore, if AbstractStrategy satisfies the generalized density
restriction (θ, β) for given values θ > 0 and β ≥ 0, then also Strategy satisfies the generalized
density restriction (θ, β).

Proof. We simultaneously capture all possible ways the abstract game may evolve if AbstractBuilder
plays according to AbstractStrategy by an r-ary rooted tree T in which a node at depth t is
a list b = (G1, . . . , Gt) of r-colored graphs Gi, 1 ≤ i ≤ t, and has as its r children the nodes
bs = (G1, . . . , Gt, Gt+1

s ), s ∈ [r], where Gt+1
s is obtained from G1, . . . , Gt by applying the next
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construction step of AbstractStrategy and coloring the new vertex with color s. Thus the
graphs Gt+1

s differ only in the color assigned to the new vertex.

We assume w.l.o.g. that AbstractBuilder stops playing as soon as a monochromatic copy of F is
created. Thus if b = (G1, . . . , Gt) is a leaf of T , the graph Gt (the last graph constructed) contains a
monochromatic copy of F . Furthermore, by the assumption of the lemma, the depth of the strategy
tree T is bounded by tmax. In the following we assume w.l.o.g. that the depth of T is exactly tmax.

To derive Strategy from AbstractStrategy, we compute for each node b = (G1, . . . , Gt) of T a
function fb : {G1, . . . , Gt} → N0 that specifies for each of the graphs Gi the number of isolated copies
of Gi that are needed to implement the strategy AbstractStrategy in the original deterministic
game. This can be done recursively as follows.

If b = (G1, . . . , Gt) is a leaf of T , we set

fb(G
t) := 1 (95a)

and
fb(G

i) := 0 , 1 ≤ i ≤ t− 1 . (95b)

If b = (G1, . . . , Gt) is an internal node of T , then letting Xb ⊆ {1, . . . , t} denote the index set of the
graphs that are used in the construction step corresponding to b, and denoting the descendants of b
by bs = (G1, . . . , Gt, Gt+1

s ), s ∈ [r], as before, we define for 1 ≤ i ≤ t,

fb(G
i) :=

{
maxs∈[r] fbs(G

i) , if i /∈ Xb ,
maxs∈[r] fbs(G

i) +
∑

s∈[r] fbs(G
t+1
s ) , if i ∈ Xb .

(95c)

With these definitions, Strategy is obtained from AbstractStrategy by proceeding as de-
scribed by the strategy tree T , and repeating every construction step corresponding to a given
node b exactly

∑
s∈[r] fbs(G

t+1
s ) times, each time connecting a new vertex to (previously unused)

isolated copies of the graphs Gi, i ∈ Xb, on the board as specified by the corresponding step of the
abstract game. By the pigeonhole principle, this guarantees that regardless of how Painter plays
there is a color σ such that at least fbσ(Gt+1

σ ) isolated copies of Gt+1
σ are created, and by our recursive

definition in (95c) it also follows that at least fbσ(Giσ) isolated copies of each graph Giσ, 1 ≤ i ≤ t,
are left unused. Thus Builder may continue with the construction step corresponding to the node
bσ. This shows that at every node b = (G1, . . . , Gt) of T , Builder has at least fb(Gi) isolated copies
of every graph Gi available. In particular, when he reaches a leaf of T , due to (95a) he will have
created at least one copy of a graph Gt containing a monochromatic copy of F .

This shows that Strategy indeed creates a monochromatic copy of F in the original deterministic
game, and it remains to bound the number of steps it needs to do so. For every t = 1, . . . , tmax

we denote by ct the maximum of fb(Gi) over all nodes b = (G1, . . . , Gt) at depth t in T and all
1 ≤ i ≤ t. It follows from (95c) that

ct ≤ (r + 1)ct+1 , (96a)

and by (95a) and (95b) we have
ctmax = 1 . (96b)

By definition of the rule how often to repeat each step of AbstractStrategy in Strategy, the
number of repetitions of a step that corresponds to a node b at depth t in T is bounded by r · ct+1.
It follows that the total number of Builder steps when executing Strategy is bounded by

tmax−1∑

t=0

r · ct+1

(96)
≤ r

tmax−1∑

t=0

(r + 1)t ≤ (r + 1)tmax ,

as claimed.
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Furthermore, as the strategy Strategy differs from AbstractStrategy merely in how often
(Abstract)Builder’s construction steps are repeated, and because for β ≥ 0 it suffices to check the
condition (7) for all connected subgraphs H of the board, it follows that with AbstractStrategy
also Strategy satisfies the generalized density restriction (θ, β). �

4.2. Builder’s strategy and proof of Proposition 6. We now present AbstractBuilder’s strategy
AbstractBuild(F, r, θ) that will yield our final Builder strategy Build(F, r, θ) via Lemma 29.
Throughout this section, F , r, and θ are fixed, and we usually omit these arguments when we refer
to AbstractBuild(F, r, θ) or ComputeWeights(F, r, θ, α).

The strategy AbstractBuild() proceeds in rounds along the lines of the algorithm ComputeWeights().
(As before, the term ‘round’ refers to one iteration of the repeat-loop (*) of ComputeWeights().)
AbstractBuild() maintains, for each color s ∈ [r], a family Gs ⊆ S(F ) and a mapping Gs from
Gs to the r-colored graphs in AbstractBuilder’s list. For any (H,π) ∈ Gs the graph Gs(H,π) will
always contain a distinguished monochromatic copy of H in color s to which we will refer as the
central copy of H in Gs(H,π); it is however possible that this copy was constructed in an order
different from π (this is where we make crucial use of Lemma 23 proved in Section 3.6).

At the same time, AbstractBuild() extracts a sequence α ∈ [r]r·|S(F )| from AbstractPainter’s col-
oring decisions such that the following holds: After each round, the families Gs contain all graphs from
the families Hs occuring after the same number of rounds of ComputeWeights() with input se-
quence α. We will also see that for each graph (H,π) ∈ Hs, the graph Gs(H,π) on AbstractBuilder’s
list can indeed be used in further construction steps (without violating some given generalized den-
sity restriction) as indicated by the weight function w(H,π,s) computed by ComputeWeights()
with input sequence α.

In order to construct a sequence α for which the above statements hold, AbstractBuild() uses
variables defined by the algorithm ComputeWeights() for several different input sequences. We
will use the following notations: For any sequence α ∈ [r]i−1 and any s ∈ [r] we let α◦s ∈ [r]i denote
the concatenation of α with s. When we refer to the algorithm ComputeWeights() with some
input sequence α ∈ [r]i, we tacitly assume that α is extended arbitrarily to a sequence α′ ∈ [r]r·|S(F )|

with prefix α. As we will only use this convention when we refer to variables defined in the first i
iterations of the repeat-loop (*) of ComputeWeights(), the values of α′ beyond the prefix α are
irrelevant (recall that the i-th iteration reads exactly the i-th element of the input sequence α′).

A key ingredient in the construction of the sequence α is the following lemma. Recall that for any
set X and any integer r ≥ 1, an r-coloring of X is simply a mapping f : X → [r].
Lemma 30 (Dominating color). Let r ≥ 1 be an integer and X1, . . . , Xr finite, nonempty sets. For
any r-coloring f of X1 × · · · × Xr there is a color σ ∈ [r] such that for every xσ ∈ Xσ there are
elements xs ∈ Xs, s ∈ [r] \ {σ}, with f(x1, . . . , xr) = σ.

We defer the proof of Lemma 30 to the next section.

Consider now the pseudocode description of AbstractBuild() in Algorithm 2. Note that its loop
structure mirrors the structure of ComputeWeights(), with the crucial difference that while the
loop (**) of ComputeWeights() simply focuses on one color σ ∈ [r] (as indicated by the i-th
entry of the input sequence α), for the strategy AbstractBuild() the ‘right’ color σ depends on
the individual decisions of AbstractPainter occuring during the loop (++), and is therefore not
known until this loop terminates.

In the next section we will prove the following two properties of AbstractBuild(F, r, θ).
Lemma 31 (Well-definedness and duration of AbstractBuilder strategy). For F , r, and θ as in
Proposition 6, the strategy AbstractBuild(F, r, θ) enforces a monochromatic copy of F in at most
r2 · |S(F )|r+2 steps of the abstract game.
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Lemma 32 (AbstractBuilder strategy is legal). For F , r, θ, and β as in Proposition 6, the strategy
AbstractBuild(F, r, θ) satisfies the generalized density restriction (θ, β).

Together with Lemma 29, the preceding statements about AbstractBuild(F, r, θ) imply Proposi-
tion 6 straightforwardly.

Proof of Proposition 6. Using Lemma 31 and Lemma 32, we may apply Lemma 29 to AbstractBuild(F, r, θ)
to obtain a strategy Build(F, r, θ) which enforces a monochromatic copy of F in the deterministic
game with r colors in at most

amax = amax(F, r) := (r + 1)r
2·|S(F )|r+2

(97)

steps, and satisfies the generalized density restriction (θ, β). �

It remains to prove Lemma 30, Lemma 31, and Lemma 32, which we will do in the next section.

4.3. Analysis of AbstractBuild().

Proof of Lemma 30. We refer to a color σ ∈ [r] that satisfies the conditions of the lemma as a color
that is dominating in X1 × · · · ×Xr.

We argue by double induction over r and
∑

s∈[r] |Xs|. To settle the induction base note that the
claim is trivially true for r = 1 and any finite set X1, and also for r ≥ 2 and |X1| = · · · = |Xr| = 1.
For the induction step let r ≥ 2 and suppose that one of the sets Xs, s ∈ [r], contains at least two
elements. We assume w.l.o.g. that it is X1, and fix an element x ∈ X1.

By induction (over the sum of the cardinalities of the sets Xs) we know that for the restriction of f
to the set (X1 \ {x}) ×X2 × · · · ×Xr there is a dominating color σ ∈ [r]. If σ 6= 1, then σ is also
dominating in X1 × · · · ×Xr and we are done. Otherwise we have σ = 1, i.e. for all x1 ∈ X1 \ {x}
there are elements xs ∈ Xs, 2 ≤ s ≤ r, with f(x1, . . . , xr) = 1. Therefore, if f assigns color 1 to
any of the elements in {x} × X2 × · · · × Xr, then σ = 1 is dominating in X1 × · · · × Xr and we
are done as well. The only remaining case is that f(x, •, · · · , •) never uses color 1, and therefore is
an (r − 1)-coloring of X2 × · · · × Xr. By induction (over r), there is a color σ′ ∈ [r] \ {1} that is
dominating in X2 × · · · ×Xr, and therefore also in X1 × · · · ×Xr. This settles the last remaining
case. �

In order to prove Lemma 31 and Lemma 32 we will make use of the following technical lemma,
which relates the evolution of the families Gs occurring in AbstractBuild() to the evolution of
the families Hs occurring in ComputeWeights().

Lemma 33 (Evolution of the families Gs). At the end of each iteration of the repeat-loop (++)
during some iteration i of the repeat-loop (+) in AbstractBuild(), for each s ∈ [r] we have
Gs ⊇ Hs, where Hs denotes the value of Hs after js − 1 iterations of the repeat-loop (**) during
iteration i of the repeat-loop (*) in ComputeWeights() for the input sequence α◦s, for the current
value of js. Here α ∈ [r]i−1 denotes the sequence that has been constructed in previous rounds of
AbstractBuild() as a result of AbstractPainter’s coloring decisions.

Proof. Consider the i-th iteration of the repeat-loop (+), and let σ̂ be the color defined in line B14
in some iteration of the repeat-loop (++). Note that the set of graphs (H,π) that are added to Gσ̂
in line B17 and line B23 in this iteration is

Hi,jσ̂σ̂ := Ci,jσ̂σ̂ ∪
⋃

k≥1

Ci,jσ̂ ,kσ̂ (98)



43

Algorithm 2: AbstractBuilder strategy AbstractBuild(F, r, θ)

Input: a graph F with at least one edge, an integer r ≥ 2, a real number θ > 0

B1 α := ()

B2 foreach s ∈ [r] do
B3 Gs := ∅
B4 i := 0

B5 repeat (+)
B6 i := i+ 1

B7 foreach s ∈ [r] do
B8 Let jmax,s denote the total number of iterations of the repeat-loop (**) in the i-th

iteration of the repeat-loop (*) of the algorithm ComputeWeights() with input
sequence α ◦ s.

B9 For 1 ≤ j ≤ jmax,s, let Ci,js and Ci,j,ks , k ≥ 1, denote the sets defined in the algorithm
ComputeWeights() with input sequence α ◦ s in the corresponding iterations of the
repeat-loops (**) and (***) in line 14, or line 24 and 32, respectively.

B10 js := 1

B11 repeat (++)
B12 foreach ((H1, π1), . . . , (Hr, πr)) ∈ Ci,j11 × · · · × Ci,jrr do
B13 For each color s ∈ [r] let vs1 denote the youngest vertex of (Hs, πs). AbstractBuilder

constructs a new graph by taking the disjoint union of all graphs
Gs(Hs \ vs1, πs \ vs1), s ∈ [r], for which v(Hs) ≥ 2, and by adding a new vertex v in
such a way that for each s ∈ [r], coloring v in color s will extend the central copy of
Hs \ vs1 in Gs(Hs \ vs1, πs \ vs1) to a copy of Hs. AbstractPainter chooses a color
σ̄ ∈ [r] for v, the resulting new r-colored graph G is added to AbstractBuilder’s list,
and the newly created copy of Hσ̄ is designated as the central copy of G.

B14 By Lemma 30, for any combination of colors AbstractPainter chooses in the previous
loop (line B12 and B13), there is a color σ̂ ∈ [r] such that for each graph (H,π) ∈ Ci,jσ̂σ̂ ,
in at least one construction step an r-colored graph with a central copy of H in color σ̂
is created. Fix such a color σ̂.

B15 foreach (H,π) ∈ Ci,jσ̂σ̂ do
B16 Define Gσ̂(H,π) to be the r-colored graph on AbstractBuilder’s list resulting from

an arbitrary construction step in line B13 that created a central copy of H in
color σ̂.

B17 Gσ̂ := Gσ̂ ∪ Ci,jσ̂σ̂

B18 k := 0

B19 repeat (+++)
B20 k := k + 1

B21 foreach (H,π) ∈ Ci,jσ̂ ,kσ̂ , π = (v1, . . . , vh), do
B22 By Lemma 23, the graph (H,π′), defined by π′ := (vk+1, v1, . . . , vk, vk+2, . . . , vh)

is contained in Ci,jσ̂σ̂ , and consequently Gσ̂(H,π′) was just defined in line B16.
Let Gσ̂(H,π) := Gσ̂(H,π′).

B23 Gσ̂ := Gσ̂ ∪ Ci,jσ̂ ,kσ̂

B24 until Ci,jσ̂ ,kσ̂ = ∅
B25 jσ̂ := jσ̂ + 1

B26 until jσ > jmax,σ for some σ ∈ [r]

B27 α := α ◦ σ for this σ
B28 until (F, π) ∈ Gs for some s ∈ [r] and π ∈ Π(V (F ))
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for the current value of jσ̂, where the union in (98) is over all k ≥ 1 for which Ci,jσ̂ ,kσ̂ is defined in
line B9. By the definitions in line B9 these are exactly the graphs that are added to the family
Hσ̂ in the jσ̂-th iteration of the repeat-loop (**) in the i-th iteration of the repeat-loop (*) of the
algorithm ComputeWeights() for the input sequence α ◦ σ̂. It follows inductively that at the end
of the i-th iteration of the repeat-loop (+), the set of graphs (H,π) that have been added to Gσ for
the color σ ∈ [r] satisfying the termination condition in line B26 is

Hiσ :=

jmax,σ⋃

jσ=1

Hi,jσσ .

By the definition of jmax,s in line B8, these are exactly the graphs added to the family Hσ in the
i-th iteration of the repeat-loop (*) of the algorithm ComputeWeights() for the input sequence
α ◦ σ. As moreover no graphs are added to the families Hs, s ∈ [r] \ {σ}, during the i-th round of
ComputeWeights() with input sequence α◦σ, it follows inductively that throughout, the families
Gs occuring in AbstractBuild() are related to the families Hs occurring in ComputeWeights()
as claimed. �

Proof of Lemma 31. We will first argue that AbstractBuild() is a well-defined winning strategy.

Note that whenever a graph (H,π) ∈ S(F ) is added to one of the families Gs, s ∈ [r], in line B17
or B23, then Gs(H,π) is defined in B16 or in line B22, respectively, and in either case this r-
colored graph was added to AbstractBuilder’s list in line B13. Thus throughout the strategy
AbstractBuild(), for every s ∈ [r] and all graphs (H,π) ∈ Gs, the graph Gs(H,π) is well-defined
and exists on AbstractBuilder’s list. With the termination condition in line B28 this implies in
particular that when AbstractBuild() terminates, AbstractBuilder’s list indeed contains a graph
containing a monochromatic copy of F .

Next we show that whenever the construction step in line B13 is executed, all involved graphs (Hs \
vs1, πs \ vs1) are in the respective families Gs at this point, and thus the graphs Gs(Hs \ vs1, πs \ vs1)
used for the construction step are indeed on AbstractBuilder’s list. It follows from the definition of
Ci,j as a subset of C(Hs, F ) (recall (22)) in line 14 of ComputeWeights() that for each s ∈ [r]

and each (Hs, πs) ∈ Ci,jss with v(Hs) ≥ 2 in line B12, the graph (Hs \ vs1, πs \ vs1) is contained in
Hs as defined in the i-th iteration of the repeat-loop (*) at the beginning of the js-th iteration of
the repeat-loop (**) of ComputeWeights() for the input sequence α ◦ s. Thus by Lemma 33, the
graph (Hs \ vs1, πs \ vs1) is in the corresponding family Gs, as claimed.

Also note that whenever the construction step in line B13 is executed, the involved entries Gs(Hs \
vs1, πs \ vs1), s ∈ [r], on AbstractBuilder’s list are different from each other, as the corresponding
central copies of Hs \ vs1, s ∈ [r], are all in different colors.

Together the above arguments show that AbstractBuild() is indeed a well-defined strategy for the
abstract game, and it remains to bound the number of construction steps AbstractBuild() needs
to enforce a monochromatic copy of F . By Lemma 33 and the termination condition in line B28,
the number of iterations of the repeat-loop (+) until AbstractBuild() terminates is bounded by
the number of iterations of the repeat-loop (*) in ComputeWeights() until the first of the families
Hs, s ∈ [r], contains the graph (F, π) for some vertex-ordering π ∈ Π(V (F )). The termination
condition in line 36 and Lemma 12 therefore show that AbstractBuild() terminates after at most
r · |S(F )| iterations of the repeat-loop (+). In each iteration i, the number of iterations of the
repeat-loop (++) is at most

∑
s∈[r] jmax,s ≤ r · |S(F )|, as the values jmax,s are bounded by |S(F )| as

argued in the proof of Lemma 12 on page 25. Lastly, the number of iterations of the loop in line B12
is |Ci,j11 | · · · |Ci,jrr | ≤ |S(F )|r, as the sets Ci,jss are subsets of S(F ). Multiplying those numbers yields
the claimed bound on the total number of construction steps throughout the strategy. �
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s ∈ [r] \ {σ̄}

v

...

...

Gs(Hs \ vs1, πs \ vs1)

Gσ̄(Hσ̄ \ vσ̄1, πσ̄ \ vσ̄1)

G

H ′

H ′
s

Hσ̄

Jσ̄

Js

Cs

Figure 4. Notations used in the proof of Lemma 32.

Proof of Lemma 32. For the reader’s convenience, Figure 4 illustrates the notations used throughout
the proof.

We prove inductively that for each construction step in line B13 in some round i of AbstractBuild()
the following holds: Recall the notations from the algorithm, and let H ′, v(H ′) ≥ 1, be a subgraph
of the newly constructed graph G such that each component of H ′ shares at least one vertex with
the central copy of Hσ̄ in G. Letting Jσ̄ denote the intersection of H ′ with this central copy, we have

µθ(H
′) ≥ λθ(Jσ̄, w(Hσ̄ ,πσ̄ ,σ̄),σ̄) , (99)

where here and throughout we denote for any s ∈ [r] by w(H,π,s),s the weight function w(H,π,s)

computed by ComputeWeights() for the input sequence α ◦ s. (Recall the definitions in (6), (19)
and (23), and that during the i-th round of AbstractBuild(), the sequence α has length i− 1.)

For subgraphs H ′ ⊆ G that do not contain the new vertex v, the claim follows by induction if
Gσ̄(Hσ̄ \ vσ̄1, πσ̄ \ vσ̄1) was defined in line B16 (either in the same or in an earlier iteration of the
repeat-loop (+)), or by induction and by Lemma 23 if Gσ̄(Hσ̄ \ vσ̄1, πσ̄ \ vσ̄1) was defined in line B22
(either in the same or in an earlier iteration of the repeat-loop (+)), recalling the definition (19) and
the fact that the functions w(Hσ̄\vσ̄1,πσ̄\vσ̄1,σ̄),σ̄ and w(Hσ̄ ,πσ̄ ,σ̄),σ̄ assign the same weight to all vertices
of Hσ̄ different from vσ̄1 (recall (23)).

It remains to prove (99) for subgraphs H ′ that contain the vertex v. Note that throughout the
i-th iteration of the repeat-loop (+), whenever the construction step in line B13 is executed, by the
definition of the sets Ci,jss (see line B9 of AbstractBuild() and line 14 of ComputeWeights()),
all graphs (Hs, πs) ∈ Ci,jss used for the construction step satisfy

dθ(Hs, vs1, w(Hs,πs,s),s) = dis , s ∈ [r] , (100)
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where the values dis, s ∈ [r], are defined in line 8 of ComputeWeights() with input sequence α.
Note that these values depend only on the first i− 1 entries of α, i.e., they are the same during the
i-th iteration of the repeat-loop (*) of ComputeWeights() for each input sequence α ◦ s, s ∈ [r].

For the weight assigned to the youngest vertex vσ̄1 of (Hσ̄, πσ̄) by ComputeWeights() with input
sequence α ◦ σ̄, we thus obtain by combining (23) with the definitions in line 10 and 18 that

w(Hσ̄ ,πσ̄ ,σ̄),σ̄(vσ̄1) =
∑

s∈[r]\{σ̄}
dis

(100)
=

∑

s∈[r]\{σ̄}
dθ(Hs, vs1, w(Hs,πs,s),s) . (101)

For each s ∈ [r] with v(Hs) ≥ 2 we define the graph H ′s as the intersection of H ′ with the copy of
Gs(Hs \ vs1, πs \ vs1) used for the construction of G. Furthermore, for each such s ∈ [r] we define a
subgraph Js ⊆ Hs with vs1 ∈ Js as follows: Let Cs denote the central copy of Hs \ vs1 in the copy
of Gs(Hs \ vs1, πs \ vs1) used for the construction of G, and recall that the new vertex v completes
Cs to a copy of Hs. Let Js ⊆ Hs denote the graph that is isomorphic to the intersection of H ′ with
this copy of Hs, and note that H ′s intersects Cs in a copy of Js \ vs1. For all s ∈ [r] with v(Hs) = 1
(i.e., Hs consists only of an isolated vertex) we define H ′s as the null graph (the graph whose vertex
set is empty) and set Js := Hs. Using these definitions we obtain

v(H ′) =
∑

s∈[r]

v(H ′s) + 1 , (102a)

e(H ′) =
∑

s∈[r]

(
e(H ′s) + degJs(vs1)

)
. (102b)

Furthermore, for every s ∈ [r] we have

µθ(H
′
s) ≥ λθ(Js \ vs1, w(Hs,πs,s),s) (103)

(this holds trivially if v(Hs) = 1; otherwise, similarly to before, if Gs(Hs \ vs1, πs \ vs1) was defined
in line B16 then this follows by induction, whereas if Gs(Hs \ vs1, πs \ vs1) was defined in line B22
then this follows by induction and by Lemma 23).

Combining our previous observations we obtain

µθ(H
′)

(6),(102)
=

∑

s∈[r]

(
µθ(H

′
s)− degJs(vs1) · θ

)
+ 1

(103)
≥ λθ(Jσ̄ \ vσ̄1, w(Hσ̄ ,πσ̄ ,σ̄),σ̄)− degJσ̄(vσ̄1) · θ

+
∑

s∈[r]\{σ̄}

(
λθ(Js \ vs1, w(Hs,πs,s),s)− degJs(vs1) · θ

)
︸ ︷︷ ︸

(18),(19)
≥ dθ(Hs,vs1,w(Hs,πs,s),s)

+1

(101)
≥ λθ(Jσ̄ \ vσ̄1, w(Hσ̄ ,πσ̄ ,σ̄),σ̄)− degJσ̄(vσ̄1) · θ + w(Hσ̄ ,πσ̄ ,σ̄),σ̄(vσ̄1) + 1

(20)
= λθ(Jσ̄, w(Hσ̄ ,πσ̄ ,σ̄),σ̄) ,

completing the inductive proof of (99).

From (99) it follows in particular that for every graph G that is added to AbstractBuilder’s list
during the i-th iteration of the repeat-loop (+), every connected subgraph H ′ ⊆ G containing the
last added vertex v satisfies

µθ(H
′) ≥ min

J⊆H:v1∈J
λθ(J,w(H,π,s),s) (104)

for some s ∈ [r] and some (H,π), π = (v1, . . . , vh), from one of the sets Ci,j defined in the i-th
iteration of ComputeWeights() when called with input sequence α ◦ s.
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As argued in the proof of Lemma 28 (see (90a)), the right hand side of (104) equals 1 +
∑

s∈[r] d
i
s

for the values dis defined by ComputeWeights() with input sequence α. Regardless of how the
sequence α constructed by AbstractBuild() evolves in further iterations of the repeat-loop (+),
this quantity is decreasing in i by the first part of Lemma 16. Moreover, by Lemma 33 and the
termination condition in line B28, AbstractBuild() terminates after at most ı̌ iterations, for ı̌ as
defined in Lemma 28. It follows that all connected subgraphs H ′ with v(H ′) ≥ 1 of all graphs G
added to AbstractBuilder’s list in the course of AbstractBuild() satisfy

µθ(H
′) ≥ 1 +

∑

s∈[r]

dı̌s , (105)

where ı̌ and dı̌s, s ∈ [r], are defined in ComputeWeights() for the input sequence α constructed
by AbstractBuild().

By Lemma 28 and the definition of Λθ() in (24), we thus obtain from (105) that

µθ(H
′) ≥ Λθ(F, r)

(9)
≥β

for all connected subgraphs H ′ with v(H ′) ≥ 1 of all graphs G appearing on AbstractBuilder’s list.
Due to the assumption that β ≥ 0, the same statement also follows for all disconnected subgraphs
H ′ ⊆ G with v(H ′) ≥ 1, concluding the proof that the strategy AbstractBuild(F, r, θ) respects
the generalized density restriction (θ, β) throughout. �

5. Painter in the deterministic game

In this section we prove Proposition 7 by explicitly constructing, for F , r, θ and β as in the proposi-
tion, a Painter strategy that avoids creating a monochromatic copy of F in the deterministic game
with r colors and generalized density restriction (θ, β).

5.1. Painter’s strategy and proof of Proposition 7. Consider the following Painter strategy,
which has four parameters: a graph F with at least one edge, an integer r ≥ 2, a real number θ > 0
and a sequence α ∈ [r]r·|S(F )|. The strategy uses the output of Algorithm 1:

(
(Hs, ws)

)
s∈[r]

:=

ComputeWeights(F, r, θ, α). In each step of the game, Painter picks a color as follows: Let v
denote the vertex added in the current step, and for each s ∈ [r], define

Ds :=

{
(H,π) ∈ S(F )

∣∣∣∣
assigning color s to v would create a copy of
(H,π) in color s on the board

}
. (106)

(Note that this requires Painter to memorize the order in which the vertices on the board arrived.)
Calculate for each color s ∈ [r] the value

d(s) := min
(H,π)∈Ds

λθ(H,w(H,π,s)) , (107)

where λθ() is defined in (19), and w(H,π,s)() is defined in (23) using Hs ⊆ S(F ) and ws : Hs → R
as returned by Algorithm 1. (It is possible that d(s) = −∞ for some colors s ∈ [r].) Then select
σ ∈ [r] as the color for which this value is maximal, and assign color σ to the vertex v.

Intuitively, the parameter λθ(H,w(H,π,s)) measures the ‘level of danger’ that the Painter strategy
encoded by α assigns to copies of the ordered graph (H,π) in color s, where a graph is considered
the more dangerous the smaller its λθ()-value is. Thus the definition of d(s) in (107) corresponds to
determining the most dangerous graph in color s that would be created by assigning color s to v,
and our strategy selects σ as the color for which this most dangerous graph is least dangerous.
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If several colors have the same maximal value of d(s), the above rule does not determine a color σ
uniquely. Such ties are broken as follows: Consider the families

H′s = H′s(F, r, θ, α) :=
⋃

αi=s∧(i=1∨αi 6=αi−1)

Ci,1 , (108)

s ∈ r, where Ci,j are the sets defined in line 14 of the algorithm ComputeWeights(F, r, θ, α). Note
that these families are fixed throughout Painter’s strategy. In Lemma 50 below we will show that
ties can arise only between two different colors, and that whenever such a tie arises, then for exactly
one of the two colors the set

Js := arg min
(H,π)∈Ds

λθ(H,w(H,π,s)) (109)

contains an ordered graph from the corresponding family H′s. Our tie-breaking rule is to then pick
the other color, i.e., the color σ ∈ [r] for which Jσ contains no graph from H′σ. (Intuitively, Painter
considers the ordered graphs in the families H′s, s ∈ [r], as slightly more dangerous than other
ordered graphs with the same λθ()-value.)

In the following we denote the Painter strategy defined above by Paint(F, r, θ, α). Note that this
strategy can be employed both in the deterministic two-player game and in the original probabilistic
process.

Remark 34. Note that the actual λθ()-values of monochromatic ordered subgraphs of F are not
relevant in the above strategy — all that matters is the partial order on the set S(F )× [r] induced
by the λθ()-values and our tie-breaking rule. This partial order can be extended arbitrarily to a total
order by defining an arbitrary order among all elements of S(F )× [r] that have the same λθ()-value
and are in one of the sets H′s, and among all elements that have the same λθ()-value and are not in
one of the sets H′s. Thus the strategy Paint(F, r, θ, α) can indeed be represented as a priority list
of ordered monochromatic subgraphs of F , as described in Section 1.5.

A careful analysis of the strategy Paint(F, r, θ, α) will eventually yield the following key lemma.
As its statement is purely deterministic, it is applicable to both the deterministic game and the
probabilistic process. Note that the lemma does not assume any density restrictions for the evolving
board.

Lemma 35 (Witness graph invariant). For F , r, θ, and α as specified in Algorithm 1 there is a
constant vmax = vmax(F, r, θ, α) such that if Painter plays according to the strategy Paint(F, r, θ, α)
then the following invariant is maintained throughout:
The board contains a graph K ′ with v(K ′) ≤ vmax and

µθ(K
′) < 0 , (110)

or for every s ∈ [r] and every (H,π) ∈ S(F ) we have that every copy of (H,π) in color s on the
board is contained in a graph H ′ with v(H ′) ≤ vmax and

µθ(H
′) ≤ λθ(H,w(H,π,s)) , (111)

where µθ(), λθ(), and w(H,π,s) are defined in (6), (19), and (23) (using Hs ⊆ S(F ) and ws : Hs → R
as returned by Algorithm 1), respectively.

Remark 36. As we shall see shortly, the statement that the size of the graphsK ′ andH ′ in Lemma 35
is bounded by some constant vmax = vmax(F, r, θ, α) is not needed to prove Proposition 7. However,
it will be crucial for proving the lower bound part of Theorem 4 in Section 6.1 below (recall the
remarks in Section 2.2 and Section 2.3). In fact, the proof of the existence of the bound vmax relies
primarily on our tie-breaking rule described above; a version of Lemma 35 without a bound on the
size of the graphs K ′ and H ′ (which suffices to infer Proposition 7) can also be proven if ties are
broken arbitrarily. In this case the proof of Lemma 35 can be simplified considerably; in particular,
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Lemma 47, Lemma 48, Lemma 50 and the second part of Lemma 51 below are not needed. The
reader might want to skip those parts on his first read-through, or if he is only interested in the
deterministic game.

With Lemma 35 in hand, the proof of Proposition 7 is straightforward.

Proof of Proposition 7. Let α ∈ [r]r·|S(F )| be a sequence for which the minimum in the definition of
Λθ(F, r) in (24) is attained. By the definition in (24), for all colors s ∈ [r] and all vertex orderings
π ∈ Π(V (F )) there is a subgraph H ⊆ F with

λθ(H,w(H,π|H ,s)) ≤ Λθ(F, r)
(10)
< β . (112)

Suppose now that Painter plays according to the strategy Paint(F, r, θ, α) and that for some π ∈
Π(V (F )) a copy of (F, π) in some color s ∈ [r] appears on the board. Choose H ⊆ F such that
(112) holds. Then, by Lemma 35, the board contains a graph K ′ with

µθ(K
′)

(110)
< 0 ≤ β ,

or the copy of (H,π|H) in color s that is contained in the copy of (F, π) is contained in a graph H ′
with

µθ(H
′)

(111)
≤ λθ(H,w(H,π|H ,s))

(112)
< β .

None of the two cases can occur if Builder adheres to the generalized density restriction (θ, β), and
consequently Painter can avoid creating a monochromatic copy of F in the deterministic F -avoidance
game with r colors and generalized density restriction (θ, β) by playing according to the strategy
Paint(F, r, θ, α). �

The rest of this section is devoted to proving Lemma 35. To do so we will need a number of
technical lemmas. Throughout the following, F , r, θ and α are fixed, and we usually omit these
arguments when we refer to ComputeWeights(F, r, θ, α) or Paint(F, r, θ, α). We let Hs ⊆ S(F )
and ws : Hs → R denote the return values of ComputeWeights(), and w(H,π,s) the weight function
defined in (23) with respect to these return values.

5.2. A geometric viewpoint. We begin by relating the strategy Paint() and many of the quan-
tities defined in previous parts of this paper to a simple geometric object. This geometric viewpoint
will be a key ingredient in our proof of Lemma 35.

Definition 37 (Axis-parallel decreasing walk). We say that (xν)1≤ν≤k, xν ∈ Rr, is a decreasing
axis-parallel walk in Rr if for any two subsequent elements xν and xν+1 there is a coordinate s ∈ [r]
such that xν+1,s < xν,s and xν+1,t = xν,t for all t ∈ [r] \ {s}.

The following lemma is an immediate consequence of this definition.

Lemma 38 (Order on the walk). Let (xν)1≤ν≤k, xν ∈ Rr, be a decreasing axis-parallel walk in Rr.
For any two elements xµ, xν we have 1 +

∑
t∈[r] xν,t ≤ 1 +

∑
t∈[r] xµ,t if and only if xν,t ≤ xµ,t for

all t ∈ [r].

We can think of the points (xν)1≤ν≤k of a decreasing axis-parallel walk as lying on a sequence of
consecutive axis-parallel line segments. For technical reasons we also specify a direction σ ∈ [r] in
which, intuitively, the walk continues beyond the point xk. Moreover, we sometimes allow the last
segment of this walk to degenerate into the single point xk. This is made precise in the following
definition.



50

Definition 39 (Extended walk, turning point, starting point/endpoint, segment, order). Given
some decreasing axis-parallel walk (xν)1≤ν≤k, xν ∈ Rr, and some σ ∈ [r], we say that the pair(
(xν)1≤ν≤k, σ

)
is an extended decreasing axis-parallel walk in Rr. We refer to a point xν , 2 ≤ ν ≤

k − 1, on this extended walk as a turning point if the coordinate in which xν differs from xν−1 is
different from the coordinate in which xν differs from xν+1. We also define x1 to be a turning point.
Moreover, xk is a turning point if and only if the coordinate in which xk differs from xk−1 is different
from σ.

Given two consecutive turning points xµ and xν , µ < ν, that differ in some coordinate s ∈ [r], we
refer to the line segment that connects them as an s-segment, and we call xµ the starting point and
xν the endpoint of this segment. Furthermore, we refer to the line segment that connects the last
turning point xµ to the last point xk of the walk as a σ-segment (if µ = k, this segment degenerates
to a single point xk). We call xµ the starting point and xk the endpoint of this segment.

For two points xµ and xν , we say that xµ is higher on the walk than xν (or equivalently, xν is lower
on the walk than xµ) if µ < ν. We extend this notion to segments on the extended walk by saying
that an s-segment Γ is higher on the walk than an s′-segment Γ′ (or equivalently, Γ′ is lower than
Γ) if the starting point of Γ is higher on the walk than the starting point of Γ′.

Note that according to Lemma 16, the points (di1, . . . , d
i
r), i ≥ 1, form a decreasing axis-parallel

walk in Rr. In the following we define, for every s ∈ [r] and every (H,π) ∈ Hs, a point x(H,π,s) ∈ Rr
on one of the line segments of this walk.

Let dis, s ∈ [r], denote the values defined in line 8 of the algorithm ComputeWeights(), and Ci,j
and Ci,j,k the sets defined in line 14, or line 24 and 32, respectively. Recall from Section 3.3 that for
each s ∈ [r], the sets Ci,j and Ci,j,k for which αi = s form a partition of the family Hs.
Definition 40 (x-points). For every s ∈ [r] and every graph (H,π) ∈ Hs, π = (v1, . . . , vh), we
define a point x(H,π,s) ∈ Rr as follows:

(a) If (H,π) ∈ Ci,j for some i, j ≥ 1 with αi = s, then we define

x(H,π,s) :=
(
di1, . . . , d

i
s−1, dθ(H, v1, w(H,π,s)) = dis, d

i
s+1, . . . , d

i
r

)
∈ Rr . (113a)

(b) If (H,π) ∈ Ci,j,k for some i, j, k ≥ 1 with αi = s, then we define

x(H,π,s) :=
(
dı̂1, . . . , d

ı̂
s−1, dθ(H, v1, w(H,π,s)), d

ı̂
s+1, . . . , d

ı̂
r

)
∈ Rr , (113b)

where ı̂ is the value defined either in line 28 or in line 30 for this (H,π).

The fact that dθ(H, v1, w(H,π,s)) = dis in part (a) of the previous definition follows directly from the
definition in line 14 of the algorithm ComputeWeights().

The following lemma states that the points x(H,π,s) defined above indeed form an (extended) de-
creasing axis-parallel walk. We point out that the order in which the points x(H,π,s) appear on this
walk is not necessarily the order in which the corresponding graphs (H,π) are added to the families
Hs in the course of the algorithm ComputeWeights(). To be more precise, such a statement is
true for the graphs that are added via one of the sets Ci,j , but not for the graphs that are added via
one of the sets Ci,j,k.
Of particular importance are the points x(H,π,s) for the graphs (H,π) ∈ H′s, where H′s ⊆ Hs are the
families defined in (108) for our tie-breaking rule. As it turns out, those points are always turning
points of the walk. Figure 5 illustrates Definition 40 and the different statements of Lemma 41.

Lemma 41 (Walk formed by x-points). Let imax denote the total number of iterations of the repeat-
loop (*) of ComputeWeights(). The elements in the set {x(H,π,s) | s ∈ [r] ∧ (H,π) ∈ Hs} can be
ordered to form a decreasing axis-parallel walk W = W (F, r, θ, α) in Rr such that the extended walk
W =W(F, r, θ, α) := (W,αimax) satisfies the following properties:
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. . .

...
...

Figure 5. Illustration of Definition 40 and Lemma 41. The figure shows how certain
variables of the algorithm ComputeWeights(F, r, θ, α) might evolve for some graph
F , some value of θ, r = 2 and α = (1, 1, 2, 1, 2, . . . , 2, 1, . . .) (where the algorithm
terminates in the round corresponding to the last 1-entry shown). For any graph
(H,π) ∈ Hs, s ∈ {1, 2}, a bullet shows the location of the point x(H,π,s), and the arrow
attached to the bullet points along the s-axis. One bullet may represent multiple
points at the same location if the corresponding graphs are of the same type (see
legend). If graphs with the same associated point are of different type, then the
bullets are drawn directly adjacent to each other (instead of on top of each other) to
maintain readability.

(i) For any s ∈ [r] and any graph (H,π) ∈ Hs, the point x(H,π,s) is contained in an s-segment.
(ii) For any s-segment Γ, there is a graph (H,π) ∈ Hs such that x(H,π,s) is the starting point of Γ.
(iii) For any s-segment Γ, if x(H,π,s), π = (v1, . . . , vh), is the starting point of Γ, then there is some

J ⊆ H with v1 ∈ J such that x(J,π|J ,s) = x(H,π,s) and (J, π|J) ∈ H′s.
(iv) For any s-segment Γ, if x(H,π,s) ∈ Γ is not the starting point of Γ, then (H,π) /∈ H′s.
(v) The lowest segment of W is an αimax-segment and Hαimax

= S(F ).

Proof. By the first part of Lemma 16, the sequence W := (W
i
)1≤i≤imax , W

i
:= (di1, . . . , d

i
r), is a

decreasing axis-parallel walk with the property that W i and W i+1 differ exactly in the coordinate
αi. We first show that the set

{x(H,π,s) | s ∈ [r] ∧ (H,π) ∈ Ci,j for some i, j ≥ 1 with αi = s} (114)
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coincides exactly with the set of elements of this walk, and that the extended walk W := (W,αimax)
satisfies the properties of the lemma. In the second part of the proof we argue that for any s ∈ [r]
and any graph (H,π) ∈ Ci,j,k for some i, j, k ≥ 1 with αi = s, the point x(H,π,s) lies on one of the
segments of W, and that the subdivided walk obtained by inserting all those points into the walk
W still satisfies the claimed properties.

First note that on the extended walkW, every pointW i, 1 ≤ i ≤ imax, is contained in an αi-segment.

For any s ∈ [r], any i, j ≥ 1 with αi = s and any graph (H,π) ∈ Ci,j , by the definition in (113a) we
have

x(H,π,s) = (di1, . . . , d
i
r) = W

i (115)

(independently of j). Thus property (i) is satisfied for the elements in the set (114) and the walk
W.

Recall that for each 1 ≤ i ≤ imax the set Ci,1 is nonempty (see the definitions in line 8 and line 14),
implying that there is a graph (H,π) ∈ Ci,1 which for s := αi satisfies x(H,π,s) = W

i, proving in
particular property (ii) for the walk W.

To prove properties (iii) and (iv), we fix some s ∈ [r], some i, j ≥ 1 with αi = s and some graph
(H,π) ∈ Ci,j , π = (v1, . . . , vh). Let Γ denote the s-segment of W containing the point x(H,π,s). We
distinguish two cases depending on whether x(H,π,s) is the starting point of Γ or not. Note that by
the first part of Lemma 16, x(H,π,s) = W

i is the starting point of Γ if and only if i = 1 or αi 6= αi−1.

We first consider the case that x(H,π,s) is the starting point of Γ, i.e., we have

i = 1 or αi 6= αi−1 . (116)

If j = 1, then by (108) and (116) we have (H,π) ∈ H′s. If j > 1, then by the second part of
Lemma 17 (recall that by the definition in line 14 we have dθ(H, v1, w(H,π,s)) = dis) there is a
subgraph J ⊆ H with v1 ∈ J for which (J, π|J) is contained in Cs(dis). By the definition in line 16
we have Cs(dis) = Ci,1, implying that (J, π|J) ∈ Ci,1 and

x(J,π|J ,s)
(115)
= x(H,π,s) .

Furthermore, using (116) it follows from the definition in (108) that (J, π|J) ∈ H′s, proving that
property (iii) holds for the walk W.

If on the other hand x(H,π,s) is not the starting point of Γ, i.e., i > 1 and αi = αi−1, then by the
definition in (108) we have (H,π) /∈ H′s, proving property (iv) for the walk W.

Note that by the definition of W, the lowest segment of this walk is indeed an αimax-segment. By
the termination condition in line 36 and the observation that during the i-th iteration of the repeat-
loop (*), none of the families Hs, s ∈ [r] \ {αi}, is modified, we have Hαimax

= S(F ). Together this
proves property (v) for the walk W.

To complete the proof of the lemma we fix some s ∈ [r], some i, j, k ≥ 1 with αi = s and some
graph (H,π) ∈ Ci,j,k, π = (v1, . . . , vh), and show that the point x(H,π,s) lies on some s-segment of
the walk W (possibly in between two points W ı̄ and W ı̄+1), and that by including all such points
x(H,π,s) into the walk W we obtain a subdivided walk W that still satisfies the claimed properties
(note that beside (i) we only need to verify that properties (iii) and (iv) are maintained).

Note that by the definitions in line 28 and line 30 we have αı̂ = αi = s for ı̂ as in part (b) of
Definition 40. Using this relation, the definition in (113b), and Lemma 19 we obtain that x(H,π,s)

lies on the s-segment Γ that contains W ı̂ and W
ı̂+1 on the walk W, showing that the walk W

satisfies property (i).
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By the strict inequality in (26a), x(H,π,s) can not be the starting point of Γ if ı̂ was defined in line 28.
Moreover, by (26b) the point x(H,π,s) is the starting point of Γ if and only if

dθ(H, v1, w(H,π,s)) = dı̂s (117)

and
ı̂ = 1 or αı̂ 6= αı̂−1 . (118)

In this case, by the condition in line 27 there is a subgraph J ⊆ H with v1 ∈ J such that (J, π|J) is
contained in Cs(dθ(H, v1, w(H,π,s))). Using (117) and the definition in line 16 shows that (J, π|J) ∈
C ı̂,1, implying that

x(J,π|J ,s)
(115)
= (dı̂1, . . . , d

ı̂
r)

(113b),(117)
= x(H,π,s) .

Furthermore, using (118) it follows from the definition in (108) that (J, π|J) ∈ H′s, proving that
property (iii) holds for the walk W.

As none of the graphs in the sets Ci,j,k with αi = s is contained in H′s (recall (108)), the walk W
trivially satisfies property (iv). This completes the proof. �

5.3. Relation of the walk to other quantities. In the following lemmas we establish several
relations between the walk W defined in Lemma 41, the parameters dθ() and w(H,π,s) used in the
algorithm ComputeWeights(), and the parameter λθ() and the families H′s used in the definition
of the strategy Paint(). We will see that for the ordered monochromatic subgraphs of F that are
relevant for the strategy Paint(), the order of the corresponding x-points on the walk W coincides
with the ordering given by the λθ()-values — the lower on the walk the point x(H,π,s) appears, the
lower the value λ(H,w(H,π,s)), i.e., the more dangerous a copy of (H,π) in color s is considered (see
Lemma 45 below).

Lemma 42 (dθ()-value and weight from x-point). For any s ∈ [r] and any graph (H,π) ∈ Hs,
π = (v1, . . . , vh), we have

dθ(H, v1, w(H,π,s)) = x(H,π,s),s

and
w(H,π,s)(v1) =

∑

t∈[r]\{s}
x(H,π,s),t . (119)

Proof. The first part of the lemma is an immediate consequence of the definition in (113).

For any s ∈ [r] and any graph (H,π) ∈ Hs as in part (a) of Definition 40 we obtain, using the
definitions in line 10 and line 18,

w(H,π,s)(v1)
(23)
= ws(H,π) = wi =

∑

t∈[r]\{s}
dit

(113a)
=

∑

t∈[r]\{s}
x(H,π,s),t . (120)

For any s ∈ [r] and any graph (H,π) ∈ Hs as in part (b) of Definition 40 we obtain, using the
definitions in line 10 and line 31,

w(H,π,s)(v1)
(23)
= ws(H,π) = wı̂ =

∑

t∈[r]\{s}
dı̂t

(113b)
=

∑

t∈[r]\{s}
x(H,π,s),t . (121)

Together (120) and (121) prove the second part of the lemma. �

For the next lemma, recall the definition of C(H, F ) in (22).
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Lemma 43 (Graphs in C(Hs, F ) have smallest dθ()-value). Let σ ∈ [r] and (H,π) ∈ Hσ, π =
(v1, . . . , vh), and let s ∈ [r] and (J, τ) ∈ C(Hs, F ), τ = (u1, . . . , uc).
If s = σ, then we have

dθ(J, u1, w(J,τ,σ)) < x(H,π,σ),σ = dθ(H, v1, w(H,π,σ)) .

If s 6= σ, then we have

dθ(J, u1, w(J,τ,s)) ≤ x(H,π,σ),s .

Proof. Let imax denote the total number of iterations of the repeat-loop (*) in ComputeWeights().

First suppose that s = σ. Denoting by ı̂ the largest index ı̄ ≤ imax for which αı̄ = σ, the first
part of Lemma 16 and the definitions in line 14 and line 23 show that dθ(H, v1, w(H,π,σ)) ≥ dı̂σ.
By the termination condition in line 35 we also have dθ(J, u1, w(J,τ,σ)) < dı̂σ. We thus obtain
dθ(J, u1, w(J,τ,σ)) < dθ(H, v1, w(H,π,σ)). By the definition in (113) the right hand side of this last
inequality equals x(H,π,σ),σ, proving the first part of the lemma.

Now suppose that s 6= σ. By the definition in (113) we have

x(H,π,σ),s = dis (122)

for some 1 ≤ i ≤ imax. By the termination condition in line 36 and the observation that during the
ı̄-th iteration of the repeat-loop (*), none of the families Ht, t ∈ [r]\{αı̄}, is modified, we must have
αimax 6= s, as we would have Hs = S(F ) otherwise, implying that C(Hs, F ) would be empty. So let
ı̂ be the largest index ı̄ ≤ imax − 1 for which αı̄ = s. By the definition in line 8 we have

dθ(J, u1, w(J,τ,s)) ≤ dı̂+1
s . (123)

Using the first part of Lemma 16 twice we obtain

dı̂+1
s = · · · = dimax

s and dimax
s ≤ dis ,

which together with (122) and (123) yields the second part of the lemma. �

Lemma 44 (Relation between λθ()-value and x-point). Let s ∈ [r]. For any graph (H,π) ∈ Hs,
π = (v1, . . . , vh), we have

λθ(H,w(H,π,s)) ≥ 1 +
∑

t∈[r]

x(H,π,s),t .

Moreover, there is a subgraph Ĵ ⊆ H with v1 ∈ Ĵ satisfying

λθ(Ĵ , w(Ĵ ,π|
Ĵ
,s)

) = 1 +
∑

t∈[r]

x
(Ĵ ,π|

Ĵ
,s),t

= 1 +
∑

t∈[r]

x(H,π,s),t .

Proof. We clearly have

λθ(H,w(H,π,s))
(19)
=
∑

u∈H

(
1 + w(H,π,s)(u)

)
− e(H) · θ

(18)
≥ 1 + w(H,π,s)(v1) + dθ(H, v1, w(H,π,s)) . (124)

By Lemma 42 the right hand side of (124) equals 1 +
∑

t∈[r] x(H,π,s),t, proving the first part of the
lemma.

Now consider a graph Ĵ from the family

arg min
J⊆H:v1∈J

( ∑

u∈J\v1

(
1 + w(H,π,s)(u)

)
− e(J) · θ

)
. (125)
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Using the definition of dθ() in (18) we obtain

dθ(H, v1, w(H,π,s))
(18),(125)

=
∑

u∈Ĵ\v1

(
1 + w(H,π,s)(u)

)
− e(Ĵ) · θ(18),(125)

= dθ(Ĵ , v1, w(H,π,s)) . (126)

Furthermore, Lemma 24 yields that

w(H,π,s)(u) = w
(Ĵ ,π|

Ĵ
,s)

(u) for all u ∈ Ĵ . (127)

Recall from the first part of the proof that the right hand side of (124) equals 1 +
∑

t∈[r] x(H,π,s),t.
Applying (126), (127) and Lemma 42 shows that the right hand side of (124) also equals 1 +∑

t∈[r] x(Ĵ ,π|
Ĵ
,s),t

. Furthermore, applying the first equality in (126), (127) and the definition of λθ()

in (19) shows that the right hand side of (124) equals λθ(Ĵ , w(Ĵ ,π|
Ĵ
,s)

), completing the proof of the
second part of the lemma. �

We say that a family D of ordered graphs is closed under taking subgraphs that contain the youngest
vertex if for any (H,π) ∈ D, π = (v1, . . . , vh), we have that for every J ⊆ H with v1 ∈ J the ordered
graph (J, π|J) is also contained in D.
Note that the families Ds, s ∈ [r], used by the strategy Paint() and defined in (106) are nonempty
and closed under taking subgraphs that contain the youngest vertex.

Lemma 45 (x-point of λθ()-minimizing graphs). Let s ∈ [r] and Ds ⊆ Hs a nonempty family of
ordered graphs that is closed under taking subgraphs that contain the youngest vertex. For any graph
(J, τ) from the family

arg min
(H,π)∈Ds

λθ(H,w(H,π,s))

we have
λθ(J,w(J,τ,s)) = 1 +

∑

t∈[r]

x(J,τ,s),t .

Proof. The claim follows immediately from Lemma 44, using the closure property of the family Ds
and the choice of (J, τ). �

Lemma 46 (dθ()-value of λθ()-minimizing graphs). Let s ∈ [r] and let Ds ⊆ Hs ∪ C(Hs, F ) be a
nonempty family of ordered graphs that is closed under taking subgraphs that contain the youngest
vertex. Furthermore, let (J, τ), τ = (u1, . . . , uc), be an inclusion-minimal graph from the family

arg min
(H,π)∈Ds

λθ(H,w(H,π,s)) .

Then we have
λθ(J \ u1, w(J,τ,s))− degJ(u1) · θ = dθ(J, u1, w(J,τ,s)) . (128)

Proof. We distinguish two cases depending on whether (J, τ) ∈ Ds ⊆ Hs ∪ C(Hs, F ) is contained in
Hs or in C(Hs, F ).

If (J, τ) ∈ Hs, then by Lemma 45 we have

λθ(J,w(J,τ,s)) = 1 +
∑

t∈[r]

x(J,τ,s),t . (129)

Rewriting the left hand side of (129) according to (20) and the right hand side according to Lemma 42
yields the desired equality (128).
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We now consider the case (J, τ) ∈ C(Hs, F ) (in this case we have λθ(J,w(J,τ,s)) = −∞ by Lemma 15).
We clearly have

λθ(J \ u1, w(J,τ,s))− degJ(u1) · θ(19)
=

∑

u∈J\u1

(
1 + w(J,τ,s)(u)

)
− e(J) · θ

(18)
≥ dθ(J, u1, w(J,τ,s)) , (130)

and it remains to show that this inequality is in fact an equality. If the last inequality in (130)
were strict, then, as in the proof of Lemma 44 (cf. (125), (126) and (127)), there would be a proper
subgraph Ĵ ( J with u1 ∈ Ĵ satisfying

dθ(J, u1, w(J,τ,s)) = dθ(Ĵ , u1, w(Ĵ ,τ |
Ĵ
,s)

) . (131)

As (J, τ) ∈ C(Hs, F ) we have (J \u1, τ \u1) ∈ Hs, which by Lemma 22 implies that (Ĵ \u1, τ |Ĵ\u1
) ∈

Hs as well. Hence (Ĵ , τ |
Ĵ
) must be in Hs ∪ C(Hs, F ). Using (131) and the first part of Lemma 43

shows that (Ĵ , τ |
Ĵ
) must be contained in C(Hs, F ). But then we have λθ(Ĵ , w(Ĵ ,τ |

Ĵ
,s)

) = −∞ by
Lemma 15, a contradiction to the inclusion-minimality of (J, τ) (here we used again the closure
property of the family Ds). Therefore the last inequality in (130) holds with equality, proving the
lemma also in this case. �

Lemma 47 (λθ()-minimizing graphs in H′s). Let s ∈ [r] and let Ds ⊆ Hs be a nonempty family of
ordered graphs that is closed under taking subgraphs that contain the youngest vertex. Furthermore,
let (J, τ) be an inclusion-minimal graph from the family

arg min
(H,π)∈Ds

λθ(H,w(H,π,s))

and suppose that x(J,τ,s) is the starting point of some s-segment of the walk W defined in Lemma 41.
Then (J, τ) is contained in H′s.

Proof. By Lemma 45 we have

λθ(J,w(J,τ,s)) = 1 +
∑

t∈[r]

x(J,τ,s),t . (132)

Let u1 denote the youngest vertex of (J, τ) and let J̃ ( J be any proper subgraph of J with u1 ∈ J̃ .
By Lemma 44 there is a subgraph Ĵ ⊆ J̃ with u1 ∈ Ĵ satisfying

λθ(Ĵ , w(Ĵ ,τ |
Ĵ
,s)

) = 1 +
∑

t∈[r]

x
(J̃ ,τ |

J̃
,s),t

. (133)

By the inclusion-minimal choice of (J, τ), (133) must be strictly larger than (132), i.e., we have

1 +
∑

t∈[r]

x(J,τ,s),t < 1 +
∑

t∈[r]

x
(J̃ ,τ |

J̃
,s),t

,

in particular
x(J,τ,s) 6= x

(J̃ ,τ |
J̃
,s)

.

Using this observation together with the assumption that x(J,τ,s) is the starting point of some s-
segment of W, it follows from property (iii) in Lemma 41 that (J, τ) must be contained in H′s. �

Lemma 48 (x-points of graphs from H′s on the walk). Let s ∈ [r] and (J, τ) ∈ H′s, τ = (u1, . . . , uc).
Moreover, let 1 ≤ b ≤ c− 1 and define (J−b, τ−b) := (J \ {u1, . . . , ub}, τ \ {u1, . . . , ub}).
Then x(J,τ,s) is lower than x(J−b,τ−b,s) on the walk W defined in Lemma 41 and both points are
contained in different s-segments of this walk.
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Proof. By the definition of H′s in (108) we have (J, τ) ∈ Ci,1 for some i ≥ 1 with αi = s, i.e., (J, τ)
was added to the family Hs in the first iteration of the repeat-loop (**) in the i-th iteration of the
repeat-loop (*) of ComputeWeights(). By the definition in (113a) we have

x(J,τ,s),s = dθ(J, u1, w(J,τ,s)) = dis . (134)

By Lemma 22, the graph (J−b, τ−b) was added to the family Hs either before the graph (J, τ) or
together with it. But as (J−b, τ−b) is a predecessor of (J, τ) in the tree T (F ) defined after (21), it
follows from the definition in line 14 that (J−b, τ−b) must have already been contained in Hs at the
beginning of the i-th iteration of the repeat-loop (*). Applying Lemma 18 yields

x(J−b,τ−b,s),s
(113)
= dθ(J

−b, ub+1, w(J−b,τ−b,s)) > dis . (135)

Combining (134) and (135) shows that x(J,τ,s) is lower than x(J−b,τ−b,s) on the walk W. As by the
assumption (J, τ) ∈ H′s and property (iv) from Lemma 41 the point x(J,τ,s) is the starting point of
an s-segment of W, this implies that both points must be contained in different s-segments of this
walk. �

5.4. Analysis of Paint(). We are now in a position to actually analyze our Painter strategy
Paint(). Recall from Section 5.1 that the parameter d(s) defined in (107) might be equal to −∞ for
some colors s ∈ [r] (intuitively, Painter considers such a color extremely dangerous). The following
lemma shows that Paint() never chooses such a color.

Lemma 49 (Painter strategy creates only graphs from Hs). Consider a fixed step of the game, and
let the families Ds ⊆ S(F ), s ∈ [r], and the values d(s) ∈ R ∪ {−∞} be defined as in (106) and
(107), respectively. For any σ ∈ arg maxs∈[r] d(s) the value d(σ) is finite and we have Dσ ⊆ Hσ.
Consequently, playing according to the strategy Paint() throughout ensures that for all s ∈ [r] we
always have Ds ⊆ Hs ∪ C(Hs, F ) (even if ties are broken arbitrarily).

Proof. By the definition in (107) and Lemma 15 the value d(s) is finite if and only if Ds ⊆ Hs. By
the termination condition in line 36 there is some color s ∈ [r] for which Hs = S(F ). For this color
we therefore have Ds ⊆ Hs, implying that the corresponding value d(s) is finite. This shows that
for any σ ∈ arg maxs∈[r] d(s), the value d(σ) is finite and therefore Dσ ⊆ Hσ, proving the first part
of the lemma. The second part follows inductively by observing that the strategy Paint() in each
step picks a color σ ∈ arg maxs∈[r] d(s) (regardless of the tie-breaking rule), showing that in this
step only graphs from the family Dσ ⊆ Hσ in color σ are created on the board. �

The following lemma shows that the tie-breaking rule of the strategy Paint(), which uses the families
H′s and Js defined in (108) and (109), is indeed well-defined.

Lemma 50 (Well-definedness of Painter strategy). Ties in the strategy Paint() can arise only
between two different colors, and if they arise then for exactly one of the two colors (say σ) we have
Jσ ∩ H′σ = ∅, and for the other color (say s) we have Js ∩ H′s 6= ∅. (Thus the tie-breaking rule will
decide for color σ.)

If such a tie arises, the walk W defined in Lemma 41 contains a σ-segment Γ whose endpoint x ∈ Rr
is also the starting point of an s-segment Γ′, and for any (Jσ, τσ) ∈ Jσ and any (Js, τs) ∈ Js we
have x(Jσ ,τσ ,σ) = x(Js,τs,s) = x.

Proof. Recall that the families Ds, s ∈ [r], defined in (106) are nonempty and closed under taking
subgraphs that contain the youngest vertex. Fix some color σ ∈ [r] such that

d(s) ≤ d(σ) , s ∈ [r] \ {σ} , (136)
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for the values d(s), s ∈ [r], defined in (107). The tie-breaking rule of the strategy Paint() is only
considered if the inequality in (136) is tight for some color different from σ. We fix such a color
s ∈ [r] \ {σ} for which

d(s) = d(σ) . (137)
The first part of Lemma 49 yields with (136) and (137) that Ds ⊆ Hs and Dσ ⊆ Hσ (and that d(s)
and d(σ) are finite values). Thus by the definition in (109) we also have Js ⊆ Hs and Jσ ⊆ Hσ. Fix
some (Js, τs) ∈ Js and some (Jσ, τσ) ∈ Jσ. By the definition in (109) and Lemma 45 we have

λθ(Js, w(Js,τs,s)) = 1 +
∑

t∈[r]

x(Js,τs,s),t and λθ(Jσ, w(Jσ ,τσ ,σ)) = 1 +
∑

t∈[r]

x(Jσ ,τσ ,σ),t . (138)

Furthermore, using (137) and the definitions in (107) and (109) shows that

λθ(Js, w(Js,τs,s)) = λθ(Jσ, w(Jσ ,τσ ,σ)) . (139)

Combining (138) and (139) we obtain

1 +
∑

t∈[r]

x(Js,τs,s),t = 1 +
∑

t∈[r]

x(Jσ ,τσ ,σ),t . (140)

Note that the points x(Js,τs,s) and x(Jσ ,τσ ,σ) are elements of the walk W defined in Lemma 41. By
Lemma 38 the relation (140) implies that x(Js,τs,s) = x(Jσ ,τσ ,σ), i.e., the graphs (Js, τs) and (Jσ, τσ)
(and all other graphs in the families Js and Jσ) have the same associated point on the walk W. By
property (i) in Lemma 41, x(Js,τs,s) is contained in an s-segment and x(Jσ ,τσ ,σ) in a σ-segment of W,
implying that x(Js,τs,s) = x(Jσ ,τσ ,σ) must be the endpoint of some segment and the starting point
of the next lower segment. As on the walk W, only pairs of consecutive segments have a point in
common, this shows that the inequality (136) can be tight for at most one color different from σ,
proving that ties can arise only between two different colors.

Assume w.l.o.g. that for all (Jσ, τσ) ∈ Jσ, the point x(Jσ ,τσ ,σ) is the endpoint of some σ-segment Γ
and for all (Js, τs) ∈ Js the point x(Js,τs,s) is the starting point of the next lower s-segment Γ′. By
property (iv) from Lemma 41 we have Jσ ∩ H′σ = ∅, and by Lemma 47 we have Js ∩ H′s 6= ∅. This
proves the first part of the lemma and shows that our tie-breaking rule is well-defined.

Note that the segment Γ is higher on the walk W than Γ′, and that the tie-breaking rule decides for
the color σ corresponding to the higher of the two segments. Together with our previous observations
about the location of the points x(Jσ ,τσ ,σ) for all (Jσ, τσ) ∈ Jσ and x(Js,τs,s) for all (Js, τs) ∈ Js this
proves the second part of the lemma. �

The following lemma will be the key to proving Lemma 35, our main strategy invariant based on
witness graphs.

Lemma 51 (Painter strategy ensures sufficient weight). There is a constant ε = ε(F, r, θ, α) > 0
such that the following holds: Let σ ∈ [r] denote the color selected by the strategy Paint() in a
certain step of the game given the families Ds, s ∈ [r], defined in (106). For every s ∈ [r] \ {σ}, let
(Js, τs) be an inclusion-minimal graph from the family

Js
(109)
= arg min

(H,π)∈Ds
λθ(H,w(H,π,s)) ,

and let us1 denote the youngest vertex of (Js, τs).

Then for any graph (H,π) ∈ Dσ, π = (v1, . . . , vh), we have
∑

s∈[r]\{σ}

(
λθ(Js \ us1, w(Js,τs,s))− degJs(us1)

)
≤ w(H,π,σ)(v1) . (141)

If the inequality (141) is strict, then the difference between the right and left hand side is at least ε.
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If on the other hand the inequality (141) is tight, then for every s ∈ [r] \ {σ} we have (Js, τs) ∈
H′s ∪ C(Hs, F ). Moreover, denoting by W the walk defined in Lemma 41 and by Γ the σ-segment
containing x(H,π,σ) on this walk, we have the following: if (Js, τs) ∈ H′s, then x(Js,τs,s) is the starting
point of the next s-segment on W that is lower than Γ, whereas if (Js, τs) ∈ C(Hs, F ), then there is
no s-segment on W lower than Γ.

Proof. Let

ε = ε(F, r, θ, α) := min{ |dθ(H, v1, w(H,π,s))− dθ(J, u1, w(J,τ,s))| | s ∈ [r] ∧
(H,π = (v1, . . . , vh)), (J, τ = (u1, . . . , uc)) ∈ Hs ∪ C(Hs, F ) ∧

dθ(H, v1, w(H,π,s)) 6= dθ(J, u1, w(J,τ,s)) } > 0 (142)

(recall that for all s ∈ [r] the dθ()-value of all graphs in Hs ∪C(Hs, F ) is a finite real number). Note
that in the boundary case that for all s ∈ [r] and all (H,π) ∈ Hs ∪ C(Hs, F ), π = (v1, . . . , vh), the
value dθ(H, v1, w(H,π,s)) is the same (i.e., the walk W defined in Lemma 41 degenerates to a single
point), the minimum in (142) is over an empty set. We will see that in this case the inequality (141)
is never strict. Therefore we may set ε to an arbitrary positive constant in this case, ε := 1, say.

Recall that the families Ds, s ∈ [r], are nonempty and closed under taking subgraphs that contain
the youngest vertex. By the second part of Lemma 49 we have Ds ⊆ Hs ∪ C(Hs, F ) for all s ∈ [r].

We first prove that (141) holds. By the definition of the strategy, the selected color σ ∈ [r] satisfies

d(s) ≤ d(σ) , s ∈ [r] \ {σ} (143)

for the values d(s), s ∈ [r], defined in (107). Let (Jσ, τσ) be an arbitrary graph from the family

Jσ
(109)
= arg min

(H,π)∈Dσ
λθ(H,w(H,π,σ)) .

By the definition in (107) and the choice of (Js, τs), s ∈ [r], we have

λθ(Js, w(Js,τs,s)) = d(s) , s ∈ [r] . (144)

Combining (143) and (144) yields

λθ(Js, w(Js,τs,s)) ≤ λθ(Jσ, w(Jσ ,τσ ,σ)) , s ∈ [r] \ {σ} . (145)

By (143) and the first part of Lemma 49 we have Dσ ⊆ Hσ. We fix some graph (H,π) ∈ Dσ,
π = (v1, . . . , vh). By Lemma 44 there is a subgraph Ĵ ⊆ H with v1 ∈ Ĵ satisfying

λθ(Ĵ , w(Ĵ ,π|
Ĵ
,σ)

) = 1 +
∑

t∈[r]

x(H,π,σ),t . (146)

By the closure property of the family Dσ and the choice of (Jσ, τσ) we have

λθ(Jσ, w(Jσ ,τσ ,σ)) ≤ λθ(Ĵ , w(Ĵ ,π|
Ĵ
,σ)

) . (147)

By Lemma 45 we have for every s ∈ [r] \ {σ} for which (Js, τs) is contained in Hs that

λθ(Js, w(Js,τs,s)) = 1 +
∑

t∈[r]

x(Js,τs,s) . (148)

For those s ∈ [r] \ {σ} we thus obtain

1 +
∑

t∈[r]

x(Js,τs,s)
(148)
= λθ(Js, w(Js,τs,s))

(145)
≤ λθ(Jσ, w(Jσ ,τσ ,σ))

(146),(147)
≤ 1 +

∑

t∈[r]

x(H,π,σ),t . (149)
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Note that if (Js, τs) ∈ Hs, then x(Js,τs,s) is an element of the walk W defined in Lemma 41 (the
point x(H,π,σ) is clearly also an element of this walk as Dσ ⊆ Hσ). Using (149) and Lemma 38 yields
that for every s ∈ [r] \ {σ} for which (Js, τs) is contained in Hs we have

x(Js,τs,s),t ≤ x(H,π,σ),t for all t ∈ [r] , (150)

from which we conclude using

x(Js,τs,s),s
(113)
= dθ(Js, us1, w(Js,τs,s)) (151)

that
dθ(Js, us1, w(Js,τs,s)) ≤ x(H,π,σ),s . (152)

For all s ∈ [r] \ {σ} for which (Js, τs) is not contained in Hs but in C(Hs, F ), the relation (152)
follows from the second part of Lemma 43.

Combining our previous observations and applying Lemma 42 and Lemma 46, we thus obtain
∑

s∈[r]\{σ}

(
λθ(Js \ us1, w(Js,τs,s))− degJs(us1)

)(128)
=

∑

s∈[r]\{σ}
dθ(Js, us1, w(Js,τs,s))

(152)
≤

∑

s∈[r]\{σ}
x(H,π,σ),s

(119)
= w(H,π,σ)(v1) ,

(153)

proving (141).

If the inequality (153) is strict, then by (152) we have

dθ(Js, us1, w(Js,τs,s)) < x(H,π,σ),s for some s ∈ [r] \ {σ} . (154)

By the definition in (113) and the definition in line 8, the right hand side of (154) equals dθ(J̄ , ū1, w(J̄ ,τ̄ ,s))

for some (J̄ , τ̄) ∈ Hs∪C(Hs, F ), where ū1 denotes the youngest vertex of (J̄ , τ̄). With the definition
in (142) it follows that the difference between the right and left hand side of (154) and therefore
also the difference between the right and left hand side of (153) is at least ε.

If the inequality in (153) is tight, then by (152) we have

dθ(Js, us1, w(Js,τs,s)) = x(H,π,σ),s for all s ∈ [r] \ {σ} . (155)

Let Γ denote the σ-segment on the walkW that contains the point x(H,π,σ). We fix some s ∈ [r]\{σ}
and distinguish the cases whether (Js, τs) is contained in Hs or in C(Hs, F ).

We first consider the case that (Js, τs) ∈ Hs. We claim that the s-segment Γ′ on the walk W
that contains the point x(Js,τs,s) is lower on the walk W than Γ: This is trivially true if one of the
inequalities in (150) is strict. If on the other hand (150) holds with equality for all t ∈ [r], then also
all inequalities in (149) are tight, from which we conclude using (144) that d(s) = d(σ), i.e., we have
a tie between the colors s and σ. In this case, by the second part of Lemma 50, our tie-breaking
rule ensures that Γ′ is lower on the walk W than Γ. From (151) and (155) it follows that Γ′ must
be the next s-segment on W that is lower than Γ and that x(Js,τs,s) must be the starting point of
Γ′. Applying Lemma 47 shows that (Js, τs) ∈ H′s (note the inclusion-minimal choice of (Js, τs)),
completing the proof in this case.

It remains to consider the case (Js, τs) ∈ C(Hs, F ). Suppose for the sake of contradiction that there
was some s-segment Γ′ that is lower than Γ on the walk W. By property (v) in Lemma 41 the
segment Γ′ can not be lowest segment of W, as we would otherwise have Hs = S(F ) and therefore
C(Hs, F ) = ∅. So Γ′ has an endpoint x ∈ Rr which clearly satisfies

xs < x(H,π,σ),s (156)
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Figure 6. Notations used in the first part of the proof of Lemma 35.

and which is also the starting point of the next lower segment Γ̄ (the segment Γ̄ is an s̄-segment for
some s̄ ∈ [r] \ {s}). By property (ii) of Lemma 41 there is some (J̄ , τ̄) ∈ Hs̄ such that

x(J̄ ,τ̄ ,s̄) = x . (157)

Applying the second part of Lemma 43 we thus obtain

dθ(Js, us1, w(Js,τs,s)) ≤ x(J̄ ,τ̄ ,s̄),s

(157)
= xs

(156)
< x(H,π,σ),s ,

contradicting (155). This completes the proof also in this case. �

5.5. Proof of Lemma 35. We are now ready to prove Lemma 35, our main strategy invariant.

Proof of Lemma 35. For the reader’s convenience, Figure 6 illustrates the notations used in the first
part of the proof.

Let
vmax = vmax(F, r, θ, α) := rv(F )/ε+(v(F )/ε+1)(r·|S(F )|+1)(v(F )+1)+2 · v(F ) + 1 , (158)

where ε = ε(F, r, θ, α) is the constant guaranteed by Lemma 51 (and explicitly defined in (142)).

We argue by induction over the number of vertices of the board. For the induction base consider
the board at the beginning of the game when no vertex is added yet. It is convenient for the proof
to extend the statement of the lemma to (H,π) being the null graph (the graph whose vertex set is
empty). For this graph we define H ′ to be the null graph as well. Clearly, for every s ∈ [r], every
copy of the null graph (H,π) ‘in color s’ on the board is contained in this subgraph H ′ of the board,
and we have µθ(H ′) = 0 = λθ(H,w(H,π,s)) and v(H ′) = 0 ≤ vmax. This shows that the second
condition of the lemma holds at the beginning of the game and settles the induction base.

For the induction step, let v denote the vertex added in the current step of the game, Ds, s ∈ [r],
the families defined in (106), and σ the color the strategy Paint() assigns to the vertex v. By the
first part of Lemma 49, we have Dσ ⊆ Hσ.
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For a fixed graph (H,π) ∈ Dσ, π = (v1, . . . , vh), we consider a fixed copy of (H \ v1, π \ v1) in color
σ that is completed by v to a copy of (H,π) in this color. Denoting by Evσ the corresponding set of
edges incident to v, we clearly have

|Evσ| = degH(v1) . (159)
By induction, we know that this copy of (H \ v1, π \ v1) is contained in a graph H ′σ = (Vσ, Eσ) with

µθ(H
′
σ) ≤ λθ(H \ v1, w(H,π,σ)) (160)

(recall from (23) that w(H,π,σ)(u) = w(H\v1,π\v1,σ)(u) for all u ∈ H \ v1) and

v(H ′σ) ≤ vmax . (161)

For every s ∈ [r]\{σ}, let (Js, τs) be an inclusion-minimal graph from the family Js ⊆ Ds defined in
(109), and let us1 denotes the youngest vertex of (Js, τs). For each s ∈ [r] \ {σ} we consider a fixed
copy of (Js \us1, τs \us1) in color s that is completed by v to a copy of (Js, τs) (the vertex v has the
color σ 6= s, so the resulting copy is not monochromatic). Denoting by Evs the corresponding set of
edges incident to v, we clearly have

|Evs | = degJs(us1) , s ∈ [r] \ {σ} . (162)

By induction, those copies of (Js \ us1, τs \ us1) are contained in graphs J ′s = (Vs, Es) with

µθ(J
′
s) ≤ λθ(Js \ us1, w(Js,τs,s)) , s ∈ [r] \ {σ} , (163)

and
v(J ′s) ≤ vmax , s ∈ [r] \ {σ} . (164)

Applying Lemma 51 shows that the graphs (H,π) and (Js, τs), s ∈ [r] \ {σ}, satisfy
∑

s∈[r]\{σ}

(
λθ(Js \ us1, w(Js,τs,s))− degJs(us1)

)
≤ w(H,π,σ)(v1) . (165)

If µθ(H ′σ) < 0 or µθ(J ′s) < 0 for some s ∈ [r] \ {σ}, we have found a graph K ′ with µθ(K
′) < 0

and v(K ′) ≤ vmax (see (161) and (164)). Otherwise we have µθ(H ′σ) ≥ 0 and µθ(J
′
s) ≥ 0 for all

s ∈ [r] \ {σ}. We will argue later that this implies even stronger bounds on the number of vertices
of H ′σ and J ′s, namely

v(H ′σ) ≤ (vmax − 1)/r ,

v(J ′s) ≤ (vmax − 1)/r , s ∈ [r] \ {σ} . (166)

We define the graph H ′ = (V ′, E′) as

V ′ := {v} ∪
⋃

s∈[r]

Vs ,

E′ :=
⋃

s∈[r]

(Es ∪ Evs )
(167)

(see Figure 6). This graph clearly contains the copy of (H,π) in color σ we are considering.

Furthermore, we define for 2 ≤ s ≤ r the graphs

K ′s :=
(
Vs ∩

⋃

1≤t≤s−1

Vt, Es ∩
⋃

1≤t≤s−1

Et

)
. (168)

From (166) and (168) we conclude that v(K ′s) ≤ (vmax − 1)/r ≤ vmax, 2 ≤ s ≤ r. Therefore, if
µθ(K

′
s) < 0 for some 2 ≤ s ≤ r, then we have found a graph K ′ with µθ(K ′) < 0 and v(K ′) ≤ vmax.

Otherwise we have
µθ(K

′
s) ≥ 0 , 2 ≤ s ≤ r . (169)
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With (159) and (162) we obtain from (167) and (168) that

v(H ′) = 1 + v(H ′σ) +
∑

s∈[r]\{σ}
v(J ′s)−

∑

2≤s≤r
v(K ′s) ,

e(H ′) = e(H ′σ) + degH(v1) +
∑

s∈[r]\{σ}

(
e(J ′s) + degJs(us1)

)
−
∑

2≤s≤r
e(K ′s) .

(170)

Combining our previous observations yields

µθ(H
′)

(6),(170)
= 1 + µθ(H

′
σ)− degH(v1) · θ +

∑

s∈[r]\{σ}

(
µθ(J

′
s)− degJs(us1) · θ

)
−
∑

2≤s≤r
µθ(K

′
s)

(160),(163),(169)
≤ 1 + λθ(H \ v1, w(H,π,σ))− degH(v1) · θ +

∑

s∈[r]\{σ}

(
λθ(Js \ us1, w(Js,τs,s))− degJs(us1) · θ

)

︸ ︷︷ ︸
(165)
≤ w(H,π,σ)(v1)

≤ λθ(H \ v1, w(H,π,σ)) + 1 + w(H,π,σ)(v1)− degH(v1) · θ(20)
= λθ(H,w(H,π,σ))

(171)

which proves (111). From (166) and (167) we conclude that v(H ′) ≤ vmax.

It remains to show (166), i.e. that for every graph H ′ as defined in (167) with µθ(H ′) ≥ 0 we have
v(H ′) ≤ (vmax − 1)/r. For the reader’s convenience, the notations used in this part of the proof are
illustrated in Figure 7.

In the above argument we constructed the graph H ′ containing the copy of (H,π) in color σ in-
ductively from the graph H ′σ containing the copy of (H \ v1, π \ v1) in color σ and the graphs J ′s
containing the copies of (Js \ us1, τs \ us1) in color s, s ∈ [r] \ {σ}. We associate this inductive
construction with a node-colored rooted tree T (H ′), some of whose non-leaf nodes receive a special
marking (we refer to it as a flag), as follows (see the upper part of Figure 7): The nodes of T (H ′)
correspond to monochromatic copies of graphs from S(F ) on the board (the same copy may appear
as a node multiple times). If (H,π) is the null graph ‘in color σ’ (recall that in this case H ′ is the
null graph as well), T (H ′) consists only of this copy of (H,π) as an isolated node which receives the
color σ. Otherwise T (H ′) consists of the copy of (H,π) as the root node joined to r subtrees, T (H ′σ)
and T (J ′s) for all s ∈ [r] \ {σ}. The root node receives the color σ, and it is flagged if and only if
the instance of the inequality (165) corresponding to this induction step is strict. Note that the tree
T (H ′) captures only the logical structure of the inductive history of H ′. Overlappings (captured by
the graphs K ′s, 2 ≤ s ≤ r) are completely neglected.

Every flagged node of T (H ′) corresponds to a strict inequality in (165). In this case, inequality (171)
is strict as well, with a difference of at least ε between the right and left hand side, where ε is the
constant guaranteed by Lemma 51. Consequently, each flagged node contributes a term of −ε to
the right hand side of (171) in the corresponding induction step. Accumulating these terms along
the induction yields that

µθ(H
′) ≤ λθ(H,w(H,π,σ))− f(H ′) · ε , (172)

where f(H ′) denotes the number of flagged nodes in T (H ′).

By Lemma 15 we have λθ(H,w(H,π,σ)) ≤ v(F ). Thus if µθ(H ′) ≥ 0, then by (172) the tree T (H ′)
has at most λθ(H,w(H,π,σ))/ε ≤ v(F )/ε many flagged nodes. We will show that this bound on the
number of flagged nodes of T (H ′) implies the claimed bound of (vmax − 1)/r on the number of
vertices of H ′. To that end, we first show that the length of any descending path in T (H ′) that
consists only of non-flagged nodes is bounded by a constant depending only on F and r. We will
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Figure 7. Notations used in the second part of the proof of Lemma 35.

do so by showing that any descending sequence of non-flagged nodes in T (H ′) corresponds to an
ascending sequence of points on the walk W defined in Lemma 41.

Specifically, we assign to every non-leaf node Z in T (H ′) a point x(Z) ∈ Rr on the walk W as
follows: Let σ denote the color of Z and (H,π) the graph for which a copy in color σ is represented
by the node Z. We define x(Z) as the starting point of the σ-segment that contains the point x(H,π,σ)

on the walk W.

Consider a descending sequence Z, Z̄1, . . . , Z̄b, Ẑ of consecutive non-flagged nodes in T (H ′), where
Z has some color σ ∈ [r], all nodes Z̄1, . . . , Z̄b have the same color s ∈ [r] \ {σ} and Ẑ has some
color s′ ∈ [r] \ {s} (see the lower right part of Figure 7). Let (H,π) be the graph for which a copy
in color σ is represented by the node Z, and (Js, τs), τs = (us1, . . . , usc), the graph for which a
copy of (Js \ us1, τs \ us1) in color s is represented by the node Z̄1. Using these definitions, clearly
the nodes Z̄1, . . . , Z̄b represent a sequence of nested copies of (J−as , τ−as ), a = 1, . . . , b, in color s,
where (J−as , τ−as ) := (Js \ {us1, . . . , usa}, τs \ {us1, . . . , usa}). Let Γ denote the σ-segment of the
walk W that contains the point x(H,π,σ) and Γ′ the s-segment that contains the point x(J−bs ,τ−bs ,s)
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(the starting points of these segments are x(Z) and x(Z̄b), respectively; see the lower left part of
Figure 7). As the node Z is not flagged, the corresponding instance of the inequality (165) is tight.
Hence, by Lemma 51, we have (Js, τs) ∈ H′s ∪ C(Hs, F ), and if (Js, τs) ∈ H′s, then x(Js,τs,s) is the
starting point of the next s-segment on W that is lower than Γ, whereas if (Js, τs) ∈ C(Hs, F ), then
there is no s-segment on W lower than Γ. In the first case we apply Lemma 48 to conclude that Γ
is lower than Γ′ on the walk W, in the second case this conclusion is trivially true. It follows that
in any case x(Z) is lower on the walk than x(Z̄b).

Let now P be a descending path in T (H ′) that consists only of non-flagged nodes, and recall that
our goal is to bound the length of P by a constant depending only on F and r. We refer to a
maximal sequence of consecutive nodes of the same color along P as a section in this color (in the
above argument, Z̄1, . . . , Z̄b is a section in color s). Moreover, we call a section of P internal if it
is neither the first nor the last section on P . By the argument above, for the last node Z̄ of an
internal section and the last node Z of the preceding section on P , x(Z̄) is higher on the walk W
then x(Z). As the walk W contains at most r · |S(F )| different elements, the path P can have at
most r · |S(F )| − 1 internal sections, and at most r · |S(F )|+ 1 sections in total (including the first
and last section). As each section consists of at most v(F ) + 1 nodes, P consists of at most

(r · |S(F )|+ 1)(v(F ) + 1) =: p (173)

nodes, proving that the length of P is indeed bounded by a constant depending only on F and r.

Since in total there are at most v(F )/ε many flagged nodes in T (H ′), the depth of T (H ′) is bounded
by

v(F )/ε+ (v(F )/ε+ 1)p =: t , (174)
where the first term bounds the number of flagged nodes and the second term the number of non-
flagged nodes. Consequently, we have

v(T (H ′)) ≤ 1 + r + r2 + · · ·+ rt ≤ rt+1 .

Observing that every node of T (H ′) corresponds to at most v(F ) vertices of H ′, we finally obtain
that

v(H ′) ≤ rt+1 · v(F )
(158),(173),(174)

= (vmax − 1)/r .

This justifies (166) and concludes the proof. �

6. Proof of Theorem 4

We denote the board of the probabilistic process after i steps by Gi, where 0 ≤ i ≤ n. We take the
alternative view mentioned in Section 1.1, in which the random edges leading from a newly added
vertex to previous vertices are generated at the moment this vertex is revealed instead of at the
beginning of the process. (Recall that each edge is inserted with probability p = p(n) independently
from all other edges.) Thus Gi is an r-colored graph on i vertices, and the underlying uncolored
graph is distributed as Gi,p.

Recall that all our asymptotic results are with respect to n, the number of vertices of Gn or Gn,p.
We write f(n) � g(n) if f(n) = o(g(n)), f(n) � g(n) if f(n) = ω(g(n)), and f(n) � g(n) if
f(n) = Θ(g(n)).

6.1. Lower bound. The crucial ingredient for the proof of the lower bound part of Theorem 4 is
Lemma 35 from Section 5.

Proof of Theorem 4 (lower bound). Let θ∗ = θ∗(F, r) be defined as in Theorem 9, and let α∗ =

α∗(F, r) be a sequence from the set [r]r·|S(F )| for which the minimum in the definition of Λθ∗(F, r)
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in (24) is attained. We show that the strategy Paint(F, r, θ∗, α∗) defined in Section 5.1 a.a.s. avoids
F for all n steps of the process if

p� p0(F, r, n) = n−1/m∗1(F,r)(16)
= n−θ

∗
. (175)

By the choice of α∗ and the definition in (24) we have that for all colors s ∈ [r] and all vertex
orderings π ∈ Π(V (F )) there is a subgraph H ⊆ F such that

λθ∗(H,w(H,π|H ,s)) ≤ Λθ∗(F, r)
(17)
= 0 . (176)

According to Lemma 35 we then have for each such (H,π|H): if Gn contains a copy of (H,π|H)
in color s, then it contains a graph K ′ with v(K ′) ≤ vmax and µθ∗(K

′) < 0, or a graph H ′ with
v(H ′) ≤ vmax and

µθ∗(H
′)

(111)
≤ λθ∗(H,w(H,π|H ,s))

(176)
≤ 0 .

This yields a family W =W(F, π, s, r) of graphs W ′ satisfying µθ∗(W ′) ≤ 0 and v(W ′) ≤ vmax such
that, deterministically, Gn contains a graph from W if it contains a copy of (F, π) in color s. It
follows that Gn contains a graph from

W∗ =W∗(F, r) :=
⋃

s∈[r]
π∈Π(V (F ))

W(F, π, s, r)

if it contains a monochromatic copy of F .

Moreover, since no graph in W∗ has more than vmax(F, r, θ∗(F, r), α∗(F, r)) vertices, the size of W∗
is bounded by a constant only depending on F and r. By the definition of µθ∗() in (6) and the fact
that µθ∗(W ′) ≤ 0 for all W ′ ∈ W∗, the expected number of copies of the (underlying uncolored)
graphs from W∗ in Gn,p is of order

∑

W ′∈W∗
nv(W ′)pe(W

′)(175)
�

∑

W ′∈W∗
nµθ∗ (W ′) ≤ |W∗| · n0 = Θ(1) .

It follows with Markov’s inequality that a.a.s. Gn,p contains no copy of any of the (underlying
uncolored) graphs fromW∗. Consequently, a.a.s. Gn contains no copy of any of the graphs fromW∗
and hence no monochromatic copy of F . This proves the claimed lower bound on the threshold of
the probabilistic process.

To prove the second part of Theorem 4 it suffices to show that the strategy Paint(F, r, θ∗, α∗) is an
optimal strategy for Painter in the deterministic two-player game, i.e., that it is a winning strategy
in the game with density restriction d for any d < m∗1(F, r) = 1/θ∗ (we have already argued that
this strategy can be implemented as a polynomial-time algorithm in Section 1.5 and Remark 34).
Fix some 0 < d < 1/θ∗ and define θ := 1/d > θ∗. Suppose Painter plays according to the strategy
Paint(F, r, θ∗, α∗) in the game with density restriction d and suppose for the sake of contradiction
that the game ends with a monochromatic copy of F . Then as before it follows from Lemma 35 that
the board contains a graph K ′ with

µθ∗(K
′) < 0 (177)

or a graph H ′ with
µθ∗(H

′) ≤ 0 (178)
(note that H ′ contains at least one vertex and as a consequence of (178) and the definition in (6)
also at least one edge; similarly, K ′ contains at least one edge as a consequence of (177)). Using
that θ > θ∗ it follows from (177), (178) and the definition in (6) that in any case the board contains
a graph W ′ (with v(W ′) ≥ 1) satisfying µθ(W ′) < 0, or equivalently, e(W ′)/v(W ′) > 1/θ = d,
violating the given density restriction. �
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6.2. Upper bound. As in the proof of Lemma 8 we identify Builder’s strategies in the deterministic
two-player game with r colors with finite r-ary rooted trees, where each node at depth k of such a
tree is an r-colored graph on k vertices, representing the board after the k-th step of the game.

Note that in this formalization, a given tree T represents a generic strategy for Builder (in the
deterministic game with r colors) that may or may not satisfy a given density restriction d, and that
can be thought of as a strategy for the ‘F -avoidance’ game for any given graph F . We say that T is
a winning strategy for Builder in a specific F -avoidance game if and only if every leaf of T contains
a monochromatic copy of F . We say that a Builder strategy T is a legal strategy in the game with
density restriction d if and only if e(H)/v(H) ≤ d for every subgraph H of every node B in T .
When we say that Gi, the board of the probabilistic process after i steps, contains a copy of some
r-colored graph B (e.g. a node of some Builder strategy T ) we mean that there is a subgraph of Gi
that is isomorphic to B as a colored graph.

The upper bound part of Theorem 4 is an immediate consequence of the following lemma.

Lemma 52 (Random process reproduces Builder strategy). Let r ≥ 2 be a fixed integer, let d > 0
be a fixed real number, and let T represent an arbitrary legal strategy for Builder in the deterministic
game with r colors and density restriction d.

If p� n−1/d, then regardless of the online coloring strategy employed, a.a.s. Gn contains a copy of
a leaf of T .

Proof of Theorem 4 (upper bound). By Theorem 3 there exists a legal winning strategy T for Builder
in the deterministic F -avoidance game with r colors and density restriction d = m∗1(F, r). As
each leaf of T contains a monochromatic copy of F , applying Lemma 52 to T yields that if p �
p0(F, r, n) = n−1/m∗1(F,r), then a.a.s. Gn contains a monochromatic copy of F , regardless of the online
coloring strategy employed, which is exactly the upper bound statement of Theorem 4. �

In order to prove Lemma 52, we shall show the following more technical statement by induction
on k.

Lemma 53 (Random process reproduces Builder strategy step by step). Let r ≥ 2 be a fixed integer,
let d > 0 be a fixed real number, and let T represent an arbitrary legal strategy for Builder in the
deterministic game with r colors and density restriction d.

If p � n−1/d, then for any integer k ≥ 1 the following is true. Regardless of the online coloring
strategy employed, a.a.s. one of the following two statements holds:

• Gn contains a copy of a leaf of T , or
• there is a node B at depth k in T such that Gn contains Ω(nv(B)pe(B)) many copies of B.

The second property of Lemma 53 is meaningful since, due to the assumption that T is a legal
strategy for Builder in the game with density restriction d, we have

e(B)/v(B) ≤ m(B) ≤ d ,

which yields with p� n−1/d ≥ n−v(B)/e(B) that

nv(B)pe(B) � 1 .

Proof of Lemma 52. Set k := depth(T ) + 1 in Lemma 53. �

It remains to prove Lemma 53.
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Proof of Lemma 53. We proceed by induction on k. For the induction base k = 1, note that each of
the r nodes B at depth 1 in T consists simply of an isolated vertex, colored in one of the r available
colors. Clearly, Gn contains at least n/r = Ω(n) copies of one of these by the pigeonhole principle.

For the induction step we employ a two-round approach. That is, we divide the process into two
rounds of equal length n/2 (w.l.o.g. we assume n to be even) and analyze these two rounds separately.
Denoting the vertices added throughout the process by v1, . . . , vn, the first round consists of adding
the vertices v1, . . . , vn/2 together with the corresponding random edges. At the end of the first round,
we thus obtain a graph Gn/2, to which we can apply the induction hypothesis and some standard
random graph arguments. The second round consists of adding the vertices vn/2+1, . . . , vn (together
with the corresponding random edges). Using a variance calculation, we show that conditional on
a ‘good’ first round, the second round turns out as claimed. (In fact, our argument does not make
use of any edges added between vertices of the set {vn/2+1, . . . , vn}.)
By the induction hypothesis, if the graph Gn/2 does not contain a copy of a leaf of T (in which case
we are done), a.a.s. it contains a family of

M � nv(B◦)pe(B
◦) (179)

copies of some graph B◦ corresponding to a non-leaf node at depth k−1 in T . We label these copies
B◦i , 1 ≤ i ≤M . Let B denote the graph obtained from B◦ by adding a new vertex v to it together
with edges connecting v to B◦ as prescribed by Builder’s next move specified by T (so v is uncolored
in B, but assigning it one of the r available colors yields exactly one of the children of B◦ in T ).
For each copy B◦i , 1 ≤ i ≤ M , and each vertex v`, n/2 + 1 ≤ ` ≤ n, we fix a set Ei,` of degB(v)
many vertex pairs such that if the elements of Ei,` are actual edges generated in the second round,
then v` together with those edges completes B◦i to a copy of B. We let Zi,` be the indicator variable
for the event that the elements of Ei,` are generated as edges in the second round. Let

Z :=
M∑

i=1

n∑

`=n/2+1

Zi,` ,

and note that by the pigeonhole principle at least Z/r many copies of one of the children of B◦ in
T are created. Thus the second condition of the lemma is satisfied if we show that a.a.s.

Z � nv(B)pe(B) . (180)

We will do so by the methods of first and second moment.

We clearly have

Pr[Zi,` = 1] = p|Ei,`| = pdegB(v) ,

and, conditioning on the first round satisfying the induction hypothesis,

E[Z] = M · n/2 · pdegB(v)(179)� nv(B)pe(B) . (181)

In the following, we slightly abuse notation and write B also for the uncolored graph underlying
B. Let D denote the family of all (uncolored) graphs D that can be constructed by considering the
union of two copies of B intersecting in at least two vertices, one of which must be the vertex v
(we again slightly abuse notation in the following and refer to the corresponding vertex in each such
graph D as v). For any D ∈ D, we denote by D◦ the graph obtained by removing v from D.
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To calculate the variance of Z, observe that the variables Zi,` and Zj,`′ are independent whenever
` 6= `′ or B◦i ∩B◦j = ∅. Hence such pairs can be omitted, and we have

Var[Z] =

M∑

i,j=1

n∑

`,`′=n/2+1

(E[Zi,`Zj,`′ ]− E[Zi,`]E[Zj,`′ ])

≤
∑

i,j=1,...,M :
B◦i ∩B◦j 6=∅

n∑

`=n/2+1

Pr[Zi,` = 1 ∧ Zj,` = 1]

=
∑

D∈D

∑

i,j=1,...,M :
B◦i ∩B◦j=D◦

n∑

`=n/2+1

p|Ei,`∪Ej,`|

≤
∑

D∈D
MD◦ ·Θ(1) · npdegD(v) ,

(182)

where MD◦ denotes the total number of copies of D◦ in (the underlying uncolored graph of) Gn/2.
By definition of D, each D ∈ D satisfies

v(D◦) = 2v(B)− v(J)− 1 ,

e(D◦) = 2e(B)− e(J)− degD(v)
(183)

for some subgraph J ⊆ B. Moreover, since we assumed that T is a legal strategy for Builder in the
game with density restriction d, we have

e(J)/v(J) ≤ m(B) ≤ d ,

which yields with p� n−1/d ≥ n−v(J)/e(J) that

nv(J)pe(J) � 1 . (184)

Thus the expected number of copies of D◦ in (the underlying uncolored graph of) Gn/2 is
(

n

v(D◦)

)
·Θ(1) · pe(D◦)(183)� n2v(B)−v(J)−1p2e(B)−e(J)−degD(v)

(184)
� n2v(B)−1p2e(B)−degD(v) .

and Markov’s inequality implies that

MD◦ � n2v(B)−1p2e(B)−degD(v) (185)

a.a.s. As moreover the number of graphs in D is bounded by a constant depending only on T , a.a.s.
(185) holds for all D ∈ D simultaneously.

Thus, conditioning on the first round satisfying the induction hypothesis (cf. (179)), and (185) for
all D ∈ D, we obtain from (182) that

Var[Z]
(185)
�

∑

D∈D

(
nv(B)pe(B)

)2 (181)� E[Z]2 .

Chebyshev’s inequality now yields that a.a.s. the second round satisfies (180). This implies that
there is at least the claimed number of copies of one of the children of B◦ in Gn, as discussed. �
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