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UPPER BOUNDS ON PROBABILITY THRESHOLDS FOR

ASYMMETRIC RAMSEY PROPERTIES

YOSHIHARU KOHAYAKAWA, MATHIAS SCHACHT, AND RETO SPÖHEL

Abstract. Given two graphs G and H , we investigate for which functions p “ ppnq the

random graph Gn,p (the binomial random graph on n vertices with edge probability p)

satisfies with probability 1 ´ op1q that every red-blue-coloring of its edges contains a red

copy of G or a blue copy of H . We prove a general upper bound on the threshold for

this property under the assumption that the denser of the two graphs satisfies a certain

balancedness condition. Our result partially confirms a conjecture by the first author

and Kreuter, and together with earlier lower bound results establishes the exact order

of magnitude of the threshold for the case in which G and H are complete graphs of

arbitrary size.

In our proof we present an alternative to the so-called deletion method, which was in-

troduced by Rödl and Ruciński in their study of symmetric Ramsey properties of random

graphs (i.e. the case G “ H), and has been used in many proofs of similar results since

then.

§1. Introduction

1.1. Ramsey properties of random graphs. Ramsey properties of random graphs were

studied first by Frankl and Rödl [6], and much effort has been devoted to their further

investigation since then. Perhaps most notably, Rödl and Ruciński [20, 21] established a

general threshold result that we present in the following.

For any two graphs F and H , let

F Ñ pHqk

denote the property that every edge-coloring of F with k colors contains a monochromatic

copy of H . Throughout, we denote the number of edges and vertices of a graph G by eG
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and vG respectively (sometimes also by epGq and vpGq). We say that a graph is nonempty

if it has at least one edge. For any graph H we define

d2pHq :“

$
’’’&
’’’%

eH ´ 1

vH ´ 2
if vH ě 3

1{2 if H – K2

0 if eH “ 0,

(1)

and set

m2pHq :“ max
JĎH

d2pJq . (2)

We say that H is 2-balanced if m2pHq “ d2pHq, and strictly 2-balanced if in addition

m2pHq ą d2pJq for all proper subgraphs J Ĺ H . With the notation above, a slightly

simplified version of the result of Rödl and Ruciński reads as follows. (The lower bound

proof given in [20] does not cover the case where J Ď H maximizing d2pJq is a triangle;

however, this case was settled earlier in [18].)

Recall that in the binomial random graph Gn,p on n vertices, every edge is present with

probability 0 ď p “ ppnq ď 1 independently of all other edges.

Theorem 1 (Rödl and Ruciński [20,21]). Let k ě 2 and H be a graph that is not a forest.

Then there exist constants c, C ą 0 such that

lim
nÑ8

P pGn,p Ñ pHqkq “

$
&
%

0 if p “ ppnq ď cn´1{m2pHq

1 if p “ ppnq ě Cn´1{m2pHq,

where m2pHq is defined in (1) and (2).

We will refer to the two statements made by Theorem 1 as the 0- and the 1-statement,

respectively, and to the function pHpnq “ n´1{m2pHq as the threshold for the Ramsey

property F Ñ pHqk. The 1-statement of Theorem 1 is also true when H is any forest that

is not a matching; for the 0-statement however there are a few well-understood nontrivial

exceptions (see e.g. [11, Section 8.1]).

A vertex-coloring analogue of Theorem 1 was proved earlier in [18], and generalizations

of Theorem 1 to the (uniform) hypergraph setting were studied in [7, 22, 23]. Most work

on the hypergraph setting has focused on the corresponding 1-statements, i.e., on proving

upper bounds on the thresholds of the respective Ramsey properties. This line of work

has been settled quite recently by the results of [7], which imply 1-statements analogous

to that of Theorem 1 for even more general settings. Similar results were reported by

Conlon and Gowers [4].
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1.2. Asymmetric Ramsey properties. In Theorem 1 the same graph H is forbidden

in every color class. In this paper we are concerned with the natural generalization of this

setup where a different graph is forbidden in each of the k color classes. Within classical

Ramsey theory the study of these so-called asymmetric Ramsey properties led to many

interesting questions and results; see e.g. [3].

For any graphs F, H1, . . . , Hk, let

F Ñ pH1, . . . , Hkq

denote the property that every edge-coloring of F with k colors contains a monochromatic

copy of Hi in color i for some 1 ď i ď k. The threshold of this asymmetric Ramsey

property was determined for the case in which all the Hi are cycles Cℓi
(here Cℓ denotes

the cycle of length ℓ) by the first author and Kreuter.

Theorem 2 ([14]). Let k ě 2 and 3 ď ℓ1 ď ¨ ¨ ¨ ď ℓk be integers. Then there exist constants

c, C ą 0 such that

lim
nÑ8

P pGn,p Ñ pCℓ1
, . . . , Cℓk

qq “

$
&
%

0 if p “ ppnq ď cn´1{m2pCℓ2
,Cℓ1

q

1 if p “ ppnq ě Cn´1{m2pCℓ2
,Cℓ1

q ,

where

m2pCℓ2
, Cℓ1

q :“
ℓ1

ℓ1 ´ 2` pℓ2 ´ 2q{pℓ2 ´ 1q
.

Note that the threshold does not depend on ℓ3, . . . , ℓk in order of magnitude.

In the same paper, an explicit threshold function for asymmetric Ramsey properties

involving arbitrary graphs Hi is conjectured. The conjecture is stated for the two-color

case, and also we will restrict our attention to this case in the following. We will briefly

return to the case with more colors at the end of this paper.

For any two graphs G and H we let

d2pG, Hq :“

$
’&
’%

eH

vH ´ 2` 1{m2pGq
if eG, eH ě 1

0 otherwise
(3)

(where m2pGq is defined in (1) and (2)), and set

m2pG, Hq :“ max
JĎH

d2pG, Jq . (4)

We say that H is balanced w.r.t. d2pG, ¨q if m2pG, Hq “ d2pG, Hq, and strictly balanced

w.r.t. d2pG, ¨q if in addition m2pG, Hq ą d2pG, Jq for all proper subgraphs J Ĺ H .

It can be verified that m2pG, Gq “ m2pGq for any graph G and, more generally, that for

any two graphs G and H with m2pGq ď m2pHq we have m2pGq ď m2pG, Hq ď m2pHq,

with both inequalities strict if 0 ă m2pGq ă m2pHq. The conjecture in [14] is as follows.
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Conjecture 3 ([14]). Let G and H be graphs that are not forests with m2pGq ď m2pHq.

Then there exist constants c, C ą 0 such that

lim
nÑ8

P pGn,p Ñ pG, Hqq “

$
&
%

0 if p “ ppnq ď cn´1{m2pG,Hq

1 if p “ ppnq ě Cn´1{m2pG,Hq,

where m2pG, Hq is defined in (3) and (4).

The assumption that G and H are not forests was not made in the original formulation

of Conjecture 3, but without it the 0-statement fails to hold even in the symmetric case,

as mentioned above.

The threshold function stated in Conjecture 3 can be motivated as follows. Let G

and H be graphs with 0 ă m2pGq ă m2pHq, and assume that we are looking for a red-

blue-coloring of Gn,p that contains no red copy of G and no blue copy of H . For simplicity,

suppose that m2pGq “ peG ´ 1q{pvG ´ 2q and m2pG, Hq “ eH{pvH ´ 2 ` 1{m2pGqq. Note

that w.l.o.g. we may assign color blue to all edges that are not contained in a copy of H

– in other words, only the edges of Gn,p that are contained in copies of H are relevant for

the Ramsey property Gn,p Ñ pG, Hq. We shall call these edges H-edges in the following.

By standard calculations, for p “ cn´1{m2pG,Hq the expected number of H-edges in Gn,p

is of order nvH ´eH{m2pG,Hq “ n2´1{m2pGq, and if these edges behave like edges of a random

graph Gn,p˚ with p˚ “ c1n´1{m2pGq, the expected number of copies of G that are formed

by such H-edges and contain a given edge of Gn,p is a constant depending on c. If this

constant is close to zero, the copies of G formed by H-edges in Gn,p should be loosely

scattered, and we can color one edge blue in each of these copies without creating blue

copies of H in the process. On the other hand, if this constant is large, the copies of G

formed by H-edges of Gn,p will highly intersect with each other, and, according to the

conjecture, almost surely there will be no coloring avoiding both a red copy of G and a

blue copy of H .

The reader may wonder why a similar reasoning with the roles of G and H reversed

is not equally justified. The reason is that whenever p is larger than n´1{m2pGq by an

appropriate polylogarithmic factor (in particular for p “ cn´1{m2pG,Hq as above), with high

probability every edge of Gn,p is contained in a copy of G. (Recall that G is the sparser

of the two graphs.) Thus the notion of ‘G-edges’ is meaningless in our context.

A vertex-coloring analogue of Conjecture 3 was proved by Kreuter [17]. The only sig-

nificant progress towards proving Conjecture 3 since its publication in [14] concerns the

0-statement, which was shown to hold for the case in which G and H are complete graphs

of arbitrary fixed sizes in [19].
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The approach employed in [14] for the proof of the 1-statement of Theorem 2 is based on

the sparse version of Szemerédi’s regularity lemma (see [13,16]). The approach via sparse

regularity can be extended to prove the 1-statement of Conjecture 3 for any two graphs G

and H , provided the so-called KŁR-Conjecture [15] holds for G and H is strictly balanced

w.r.t. d2pG, ¨q (see [19]; additionally, Lemma 16 in [14] needs to be modified slightly to

relax the condition on H from ‘2-balanced’ to ‘strictly balanced w.r.t. d2pG, ¨q’). The

KŁR-Conjecture has been proven for cycles of arbitrary size, and for complete graphs on

up to five vertices. For references and a comprehensive overview of the status quo of that

conjecture, we refer to the survey article [8].

1.3. Our results. In this paper we prove the 1-statement of Conjecture 3 under the same

balancedness assumption for H as is needed for the approach via sparse regularity, but

without invoking the KŁR-Conjecture for G. We say that a graph is a matching if it has

maximum degree at most 1.

Theorem 4 (Main result). Let G and H be graphs that are not matchings such that H

is strictly balanced w.r.t. d2pG, ¨q. Then there exists a constant C ą 0 such that for

p “ ppnq ě Cn´1{m2pG,Hq we have

lim
nÑ8

PpGn,p Ñ pG, Hqq “ 1 .

Recall that we suppose that m2pGq ď m2pHq in Conjecture 3. One can show that the

assumption that H should be strictly balanced w.r.t. d2pG, ¨q in Theorem 4 implies that

m2pGq ă m2pHq.

There is an equivalent formulation of the hypothesis of strict balancedness in Theorem 4.

For every subgraph J of H , let µpJ ; n, pq be the expected number of occurences of J in Gn,p.

Then H is strictly balanced w.r.t. d2pG, ¨q if and only if

µpH ; n, n´1{m2pG,Hqq “ opµpJ ; n, n´1{m2pG,Hqqq

for every proper subgraph J of H (see Remark 12 and Lemma 13(ii) below).

Our proof of Theorem 4 does not use sparse regularity at all, and has in fact more in

common with the original proof of the 1-statement for the symmetric case (Theorem 1),

due to Rödl and Ruciński, than with the proof of Theorem 2 given in [14]. We believe that

a feature of interest in our proof is that it introduces a different approach for handling

certain technical difficulties that are dealt with in the Rödl–Ruciński proof via the so

called ‘deletion method’ (for details, see Section 1.4).

Together with the lower bound results for complete graphs we already mentioned [19],

our result establishes general threshold functions for the case where G “ Kℓ and H “ Kr

are complete graphs of fixed sizes ℓ ă r.
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Corollary 5. Let 3 ď ℓ ă r be integers. Then there exist constants c, C ą 0 such that

lim
nÑ8

P pGn,p Ñ pKℓ, Krqq “

$
&
%

0 if p “ ppnq ď cn´1{m2pKℓ,Krq

1 if p “ ppnq ě Cn´1{m2pKℓ,Krq,

where

m2pKℓ, Krq “

`
r

2

˘

r ´ 2` 2{pℓ` 1q
.

We can use Theorem 4 to infer statements about the existence of locally sparse graphs F

that enjoy the asymmetric Ramsey property F Ñ pG, Hq, similarly to those presented

in [21] for symmetric Ramsey properties. We refrain from a general statement of these

results, and only mention the following corollary, which is an asymmetric variant of Corol-

lary 5 in [21] and can be deduced analogously.

Corollary 6. For all 3 ď ℓ ď r, there exists a constant C such for m ě Cn2´1{m2pKℓ,Krq,

almost all graphs F on n vertices with m edges that contain no copy of Kr`1 satisfy

F Ñ pKℓ, Krq.

We close with a deterministic consequence of Corollary 5. A graph F is called Ramsey-

critical, or simply critical, for a pair of graphs pG, Hq, if F Ñ pG, Hq but, for any proper

subgraph F 1 of F , the relation F 1 Ñ pG, Hq fails. The pair pG, Hq is called Ramsey-finite

if the class CpG, Hq of all graphs that are critical for pG, Hq is finite, and Ramsey-infinite

otherwise. Note that, by definition, the Ramsey property F Ñ pG, Hq is equivalent to F

containing a copy of a graph from CpG, Hq.

The following result was originally proved by constructive means by Burr, Erdős, and

Lovasz [2]. We obtain an alternative (non-constructive) proof as an immediate consequence

of Corollary 5.

Corollary 7. For all 3 ď ℓ ă r, the pair pKℓ, Krq is Ramsey-infinite.

Proof. It is well-known (and can be shown similarly to [11, Theorem 3.9]) that for any

finite family F , the property P “ PpFq of containing a copy of a graph from F admits

a threshold pF “ pFpnq such that, for any constant c ą 0, the random graph Gn,p with

p “ cpF satisfies

0 ă lim inf
nÑ8

P pGn,p P Pq ď lim sup
nÑ8

P pGn,p P Pq ă 1 .

Corollary 5 implies that the property F Ñ pKℓ, Krq does not admit a function pF “ pFpnq

and hence Corollary 7 follows. �
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1.4. An alternative to the deletion method. Our proof of Theorem 4 reuses many

ideas of the proof of the 1-statement of Theorem 1 given in [21]. However, we point out

one particular technical issue that is solved in a quite different way from [21] in our proof.

Namely, at some point in the proof one needs to control the upper tail of the random

variable that counts the number of copies of some given graph T in Gn,p.

In typical proofs of similar results (see, e.g., [7, 22–24]), this is taken care of by the

so-called deletion method (see also [12]), i.e., by allowing the deletion of a small fraction

of edges to get the desired exponentially small error probability. This is formalized in the

‘deletion lemma’ [21, Lemma 4] (see also [11, Lemma 2.51]).

This deletion lemma is then combined with a ‘robustness lemma’ [21, Lemma 3] (see

also [11, Lemma 2.52]), which states that monotone properties (like the Ramsey properties

discussed here) that hold with probability exponentially close to 1 continue to hold with

similarly high probabilities even if an adversary is allowed to delete a small fraction of the

edges. This robustness lemma is needed to guarantee that the few edges that were deleted

to control the number of copies of T do not destroy other properties that are important

for the proof.

In our proof we use a different and arguably simpler approach to control the number

of copies of T . Namely, we condition on the number of copies of T in Gn,p not being too

large, and apply the Harris inequality [9] (Theorem 17) to show that this only increases

the probability that other relevant properties fail to hold (and, hence, bounding the prob-

ability of such bad events in the conditional space from above gives upper bounds for the

probability of those bad events in the original space). Thus we may work in the conditional

space. The fact that the event on which we condition holds with reasonable probability

(constant probability is more than enough here) implies that the conditional space we

are considering behaves essentially like the original space, except that with probability 1

the number of copies of T is not too large. Thus there is no need to delete edges in our

approach. We believe that many of the earlier proofs in the field, in particular the proof

given in [21] for the symmetric case (Theorem 1), can be simplified analogously from the

technical point of view.

1.5. Organization of this paper. We collect a number of definitions and auxiliary state-

ments in Section 2, and prove Theorem 4 in Section 3. We discuss possible extensions of

our results in Section 4.

§2. Preliminaries

2.1. Basic inequalities. We begin by stating some equalities that follow immediately

from the definitions of m2pGq and m2pG, Hq, and that will be used throughout this paper.
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Recall that we call a graph nonempty if it has at least one edge. The definitions in (1)

and (2) imply that for any nonempty graph G and any subgraph I Ď G with vI ě 2 we

have

vI ´
eI

m2pGq
ě 2´

1

m2pGq
(5)

(with equality for I “ G if G is 2-balanced). Similarly, the definitions in (3) and (4) imply

that for any two nonempty graphs G and H and any subgraph J Ď H with vJ ě 2 we

have

vJ ´
eJ

m2pG, Hq
ě 2´

1

m2pGq
(6)

(with equality for J “ H if H is balanced w.r.t. d2pG, ¨q). Combining the previous two

equalities yields in particular that for any two nonempty graphs G and H we have

vG ´ 2` peG ´ 1qpvH ´ 2q ´
peG ´ 1qeH

m2pG, Hq

(6)
ě vG ´ 2´

eG ´ 1

m2pGq

(5)
ě 0 , (7)

which will become important later on.

2.2. H-covered copies. The following definitions will be crucial in our inductive scheme.

Definition 8. For graphs H and A, we denote by EHpAq Ď EpAq the union of the edge

sets of all copies of H in A. We will refer to the edges in EHpAq as the H-edges of A.

Furthermore, we say that a copy Ḡ of a graph G in EHpAq is H-covered in A if there is a

family of eG pairwise edge-disjoint copies of H in A such that each edge of Ḡ is contained

in (exactly) one of these copies.

Note that not every copy of G that is formed by H-edges of A is H-covered in A.

Definition 9. For any two graphs G and H , let FpG, Hq denote the family of all graphs

obtained by taking a copy of G and embedding each of its edges into a copy of H such

that these eG copies of H are pairwise edge-disjoint (not nessarily vertex-disjoint).

We denote the graphs in FpG, Hq by GH , and refer to a copy of G in GH that can be

used to construct GH as described as a central copy of G in GH (in general, for a given

GH P FpG, Hq such a central copy is not uniquely defined). Note that a copy of G in

some graph A is H-covered if and only if it is a central copy in a copy of some graph

GH P FpG, Hq in A.

For any G and H and any graph GH P FpG, Hq, let

LpGHq :“ vG ` eG ¨ pvH ´ 2q ´ vpGHq ě 0 .
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Intuitively, this quantity denotes the number of vertices that are ‘lost’ because the copies

of H forming GH intersect in more vertices than specified by G. Thus we have

epGHq “ eG ¨ eH ,

vpGHq “ vG ` eG ¨ pvH ´ 2q ´ LpGHq .
(8)

Our induction is on the number of edges of G, and we will mostly need the above

definitions for a certain graph G´ with epGq ´ 1 edges to which we apply the induction

hypothesis. The following technical lemma will become important later on.

Lemma 10. Let G be a graph that is not a matching, let H be a nonempty graph, and

fix some subgraph G´ Ď G with epG´q “ epGq ´ 1 and vpG´q “ vpGq. Furthermore, let a

graph GH
´ P FpG´, Hq with central copy G1

´ be given, and let g denote a vertex pair that

completes G1
´ to a copy of G when inserted as an edge. Then every subgraph J Ď GH

´ that

contains the two vertices of g satisfies

vpJq ´
epJq

m2pG, Hq
ě 2´ LpGH

´ q .

Proof. Note that it suffices to prove the claim for induced subgraphs J Ď GH
´ . We consider

a fixed such subgraph J and decompose it as follows. Let E1 :“ EpG1
´q denote the edge

set of the central copy G1
´. For f P E1, let Jf denote the intersection of J with the

corresponding copy of H in GH
´ (the graph Jf may contain isolated vertices). Furthermore,

let I0 denote the intersection of J with G1
´, and set V0 :“ V pI0q “ V pJq X V pG1

´q, E0 :“

EpI0q “ EpJqXEpG1
´q. Observe that the assumption that J is an induced subgraph of GH

´

implies that also I0 is an induced subgraph of G1
´. Furthermore, due to our assumption

that J contains the two vertices of g, also I0 contains the two vertices of g.

Note that

epJq “
ÿ

fPE1

vpJf qě2

epJfq
(9)

and

vpJq ě vpI0q `
ÿ

fPE1

`
vpJfq ´ |f X V0|

˘
´ LpGH

´ q

ě vpI0q `
ÿ

fPE1

vpJf qě2

`
vpJfq ´ |f X V0|

˘
´ LpGH

´ q ,
(10)

where the first inequality is due to the fact that the big sum overcounts the actual number

of vertices of J by at most LpGH
´ q (i.e., J Ď GH

´ ‘loses’ at most as many vertices as GH
´

because of vertex-overlapping copies of H).
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Combining (9) and (10) yields that

vpJq ´
epJq

m2pG, Hq
ě vpI0q `

ÿ

fPE1

vpJf qě2

T

ˆ
vpJfq ´ |f X V0| ´

epJf q

m2pG, Hq

˙
´ LpGH

´ q

(6)
ě vpI0q `

ÿ

fPE1

vpJf qě2

ˆ
2´ |f X V0| ´

1

m2pGq

˙
´ LpGH

´ q

“ vpI0q ´
epI0q

m2pGq
`

ÿ

fPE1
rE0

vpJf qě2
|fXV0|ď1

ˆ
2´ |f X V0| ´

1

m2pGq

˙
´ LpGH

´ q ,

where for the equality we used that the edges f P E1 “ EpG1
´q with |f X V0| “ 2 are

exactly the edges in E0 “ EpI0q due to the fact that I0 is an induced subgraph of G1
´.

Using that m2pGq ě 1, we may omit the remaining sum, and observing that adding the

edge g to I0 yields a graph I`
0 that is isomorphic to a subgraph of G, we obtain further

vpJq ´
epJq

m2pG, Hq
ě vpI`

0 q ´
epI`

0 q ´ 1

m2pGq
´ LpGH

´
q

(5)
ě 2´ LpGH

´
q ,

concluding the proof of Lemma 10. �

2.3. The parameters m˚pHq and x˚pHq. In this section we introduce two graph pa-

rameters m˚pHq and x˚pHq that will play in important role in our proof. The param-

eter m˚pHq is a convenient quantity to capture the concept of H being ‘its own least

frequent subgraph’ that many authors have used before (see Remark 12 below). The

parameter x˚pHq is a rescaled version of m˚pHq that is tailored to the specifics of the

problem studied in this paper.

Definition 11. For any graph H with vH ě 3, let

m˚pHq :“ min
JĎH:

2ďvJ ăvH

eH ´ eJ

vH ´ vJ

(11)

and, if H is nonempty,

x˚pHq :“
m˚pHq

eH ´m˚pHqpvH ´ 2q
. (12)

Note that for any graph H , the parameter m˚pHq is nonnegative, and that m˚pHq “ 0

if and only if H has an isolated vertex. It follows from (11) that for any nonempty graph

H with vH ě 3 the parameter x˚pHq as defined in (12) is well-defined and positive. Note
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that solving (12) for m˚pHq yields

m˚pHq “
eH

vH ´ 2` 1{x˚pHq
, (13)

which connects m˚pHq to d2pG, Hq as defined in (3). More specifically, the point here is

that comparing m˚pHq to d2pG, Hq can be formulated equivalently as comparing x˚pHq

to m2pGq.

Remark 12. It follows from the definition of m˚pHq in (11) that

vJ ´
eJ

m˚pHq
ě vH ´

eH

m˚pHq
,

for all subgraphs J Ď H with vJ ě 2. Thus for p ď n´1{m˚pHq we have nvJ peJ ě nvH peH

for all such J , which means that the expected number of copies of H in Gn,p does not

exceed the expected number of copies of any subgraph J Ď H with vJ ě 2 by more than

a constant factor.

In some sense, both m˚pHq and x˚pHq measure ‘how balanced’ H is. Below we will

prove some general results that make this precise. These will in particular imply the

following lemma, which restates the hypothesis of Theorem 4 in two alternative forms

that are more convenient for us.

Lemma 13. For any two nonempty graphs G and H with vH ě 3, the following statements

are equivalent.

(i ) H is strictly balanced w.r.t. d2pG, ¨q,

(ii ) m2pG, Hq ă m˚pHq,

(iii ) m2pGq ă x˚pHq.

Lemma 13 will be proved in Section 2.3.2 below.

2.3.1. The parameter m˚pHq and general density measures. For arbitrary (possibly nega-

tive) values a ď 1 and b ă 2, we define for any graph H the density measure

da,bpHq :“

$
&
%

eH ´ a

vH ´ b
if eH ě 1

0 otherwise,

(14)

and set

ma,bpHq :“ max
JĎH

da,bpJq .

As usual we say that H is balanced w.r.t. da,b if ma,bpHq “ da,bpHq, and strictly balanced

w.r.t. da,b if in addition ma,bpHq ą da,bpJq for all proper subgraphs J Ĺ H .
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Lemma 14. Let da,b be a density measure as in (14). A graph H with vH ě 3 is balanced

w.r.t. da,b if and only if m˚pHq ě da,bpHq (or, equivalently, if and only if m˚pHq ě

ma,bpHq). Similarly, a graph H with vH ě 3 is strictly balanced w.r.t. da,b if and only if

m˚pHq ą da,bpHq (or, equivalently, if and only if m˚pHq ą ma,bpHq).

For the proof we use the following elementary observation, which we state separately

for further reference.

Fact 15. For a, c P R and b ą d ą 0, we have

c

d
ď

a

b
ðñ

a ´ c

b´ d
ě

a

b

and, similarly,
c

d
ă

a

b
ðñ

a´ c

b´ d
ą

a

b
.

Proof of Lemma 14. Observe that H is balanced w.r.t. da,b if and only if for all subgraphs

J Ď H with vJ ě 2 we have
eJ ´ a

vJ ´ b
ď

eH ´ a

vH ´ b

(note that this condition is always satisfied for graphs J with vJ ě 2 and eJ “ 0). By

Fact 15, this is equivalent to the requirement that

eH ´ eJ

vH ´ vJ

“
peH ´ aq ´ peJ ´ aq

pvH ´ bq ´ pvJ ´ bq

Fact 15
ě

eH ´ a

vH ´ b

for all subgraphs J Ď H with 2 ď vJ ă vH , i.e., to m˚pHq ě da,bpHq.

The statement for ‘strictly balanced’ follows analogously using the second statement of

Fact 15. �

2.3.2. The parameter x˚pHq and the asymmetric 2-density. As a consequence of Lemma 14

we obtain the next lemma, which is specifically concerned with the asymmetric 2-density.

Lemma 16. Let G be a nonempty graph. A nonempty graph H with vH ě 3 is balanced

w.r.t. d2pG, ¨q if and only if m2pGq ď x˚pHq. Similarly, a nonempty graph H with vH ě 3

is strictly balanced w.r.t. d2pG, ¨q if and only if m2pGq ă x˚pHq.

Proof. For any x ą 0 and any graph H with vH ě 2, let

d2px, Hq :“

$
’&
’%

eH

vH ´ 2` 1{x
if eH ě 1

0 otherwise,

(15)

and set

m2px, Hq :“ max
JĎH

d2px, Jq .
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Note that d2pm2pGq, Hq as defined in (15) coincides with d2pG, Hq as defined in (3),

and that, according to (13), for any nonempty graph H with vH ě 3 we have

m˚pHq “ d2px
˚pHq, Hq . (16)

With Lemma 14 we obtain that H is balanced w.r.t. d2pG, ¨q if and only if

d2px
˚pHq, Hq

(16)
“ m˚pHq

L. 14
ě d2pG, Hq “ d2pm2pGq, Hq .

Since d2px, Hq is monotone increasing in x, this is equivalent to m2pGq ď x˚pHq, as

claimed.

The statement for ‘strictly balanced’ follows analogously using the second statement of

Lemma 14. �

Proof of Lemma 13. The equivalence of (i ) and (ii ) follows from Lemma 14, observing

that, for any fixed nonempty graph G, the parameter d2pG, Hq defined in (3) is a density

measure as in (14) (with a “ 0 and b “ 2´ 1{m2pGq).

The equivalence of (i ) and (iii ) is stated in Lemma 16. �

2.4. Other preliminaries. As already mentioned, we will make crucial use of the Harris

inequality [9] (which also arises as a special case of the FKG inequality [5] and various

other related inequalities).

Throughout, we will assume that the random graph Gn,p is generated on the vertex set

rns “ t1, . . . , nu. For the purposes of this paper, a graph property is a family of labelled

graphs on the vertex set rns (which is not necessarily closed under isomorphism), where n

will be clear from the context. We say that a graph property A is decreasing if for any

two graphs G and H on vertex set rns the following holds: if G P A and H Ď G, we

also have H P A. Similarly, we say that a graph property A is increasing if for any two

graphs G and H on vertex set rns the following holds: if G P A and H Ě G, we also

have H P A. Note that the complement of a decreasing property is increasing, and vice

versa.

Theorem 17 (Harris [9]). For any two decreasing (increasing) graph properties A and B

and any n P N and 0 ď p ď 1, we have

PpGn,p P AX Bq ě PpGn,p P AqPpGn,p P Bq ,

or, equivalently if PpGn,p P Bq ą 0,

PpGn,p P A |Gn,p P Bq ě PpGn,p P Aq .
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Clearly, it follows from Theorem 17 that, for the binomial random graph Gn,p the

probability of any decreasing (respectively, increasing) event A does not decrease if we

condition on another decreasing (respectively, increasing) event B.

Janson’s inequality is a very useful tool in probabilistic combinatorics. In many cases,

it yields an exponential bound on lower tails where the second moment method only gives

a considerably weaker bound. Here we formulate a version tailored to random graphs.

Theorem 18 (Janson [10]). Consider a family H “ tHi | i P Iu of subgraphs of the

complete graph on the vertex set rns. For each Hi P H, let Xi denote the indicator random

variable for the event Hi Ď Gn,p, and, for each ordered pair pHi, Hjq P H ˆH with i ‰ j,

write Hi „ Hj if Hi and Hj are not edge-disjoint. Let

X “
ÿ

HiPH

Xi ,

µ “ ErXs “
ÿ

HiPH

pepHiq ,

∆ “
ÿ

pHi,HjqPHˆH

Hi„Hj

ErXiXjs “
ÿ

pHi,HjqPHˆH

Hi„Hj

pepHiq`epHjq´epHiXHjq .

Then for all 0 ď δ ď 1 we have

PpX ď p1´ δqµq ď e´ δ2µ2

2pµ`∆q .

Often Janson’s inequality is applied with H being the family of all copies of some given

fixed graph H in the complete graph Kn. The concept of p̺, dq-denseness will allow us to

derive very similar results when applying Janson’s inequality with H being the family of

all copies of H in a graph F Ď Kn that is not necessarily complete.

Definition 19. For any ̺ ą 0 and 0 ă d ď 1, a graph F on vertex set rns is said to be

p̺, dq-dense if for every subset V Ď rns with |V | ě ̺n we have

epF rV sq ě d

ˆ
n

2

˙
,

where F rV s denotes the subgraph induced by F on V .

We will use the following fact (for a proof see e.g. [21]).

Lemma 20. For all 0 ă d ď 1 and ℓ ě 1, there exist positive constants ̺, n0 and c0 such

that every p̺, dq-dense graph on n ě n0 vertices contains at least c0n
ℓ complete subgraphs

Kℓ.
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2.5. Edge-disjoint copies. The tools and definitions presented in the previous section

come together in the following technical lemma, which states that under the appropriate

assumptions, a random subgraph of a p̺, dq-dense graph contains a large family of pairwise

edge-disjoint copies of a given graph H . The key idea of applying Turán’s Theorem to a

suitably defined auxiliary graph is due to Kreuter [17]. We will use Turán’s Theorem in

the following form (see e.g. [1, p. 282]).

Theorem 21 (Turán). Let G be a graph. Then G has an independent set of size at least

vpGq2

vpGq ` 2epGq
.

Lemma 22. Let H be a nonempty graph with vH ě 3. For any 0 ă d ď 1, there exist

positive constants ̺, n0 and b such that for n ě n0 and p ď n´1{m˚pHq the following holds: If

F Ď Kn is a p̺, dq-dense graph on n vertices, then, with probability at least 1´2´bnvH peH `1,

the graph F XGn,p contains a family of at least bnvH peH pairwise edge-disjoint copies of H.

Note that for p “ opn´1{m˚pHqq we have nvH peH “ opn2pq (recall Remark 12), so the

error probability in Lemma 22 is not as high as it may look like at first glance.

Proof of Lemma 22. Let

̺ :“ ̺pvH , dq , n0 :“ n0pvH , dq , c0 :“ c0pvH , dq ď 1 (17)

denote the constants obtained by applying Lemma 20 with ℓ :“ vH and d. We shall prove

Lemma 22 for ̺ and n0 as defined in (17) and

b :“
c2

0

16v2

H
`1

. (18)

Let F be a p̺, dq-dense graph on n ě n0 vertices be given, and set

A :“

"
K Ď Kn

ˇ̌
ˇ̌ F XK contains a family of at least bnvH peH pair-

wise edge-disjoint copies of H

*
. (19)

Note that A is increasing. Our goal is to bound PpGn,p P  Aq from above.

Denote by H the family of all copies of H in F . By our choice of constants in (17),

the assumption that F is p̺, dq-dense yields with Lemma 20 that there are at least c0n
vH

complete graphs of order vH in F . In particular, we have

|H| ě c0nvH . (20)

We will apply Janson’s inequality (Theorem 18) to the family H. For any graph K Ď Kn,

we let HpKq Ď H denote the family of all copies of H in F XK. We obtain for µ as defined

in Theorem 18 that

µ “ Er|HpGn,pq|s “ |H| ¨ p
eH

(20)
ě c0nvH peH . (21)
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Let S be the family of all pairwise nonisomorphic graphs that are unions of two copies

of H that intersect in at least one edge. For a fixed graph S P S, let J denote the

intersection of the two copies of H . Owing to the assumption that p ď n´1{m˚pHq, we

obtain for any nonempty subgraph J Ď H that

nvH ´vJ peH´eJ ď nvH ´vJ ´peH ´eJ q{m˚pHq
(11)
ď 1 , (22)

which implies that for any S P S we have

nvS peS “ n2vH ´vJ p2eH ´eJ
(22)
ď nvH peH . (23)

As there are at most nvS copies of S in F , and since each such copy corresponds to at

most ppvSqvH
q2 ď p2vHq

2vH ď 4v2

H pairs pHi, Hjq P H ˆ H, i ‰ j with Hi Y Hj – S, we

obtain for ∆ as defined in Theorem 18 that

∆ “
ÿ

SPS

ÿ

pHi,HjqPHˆH

HiYHj–S

peS

ď 4v2

H

ÿ

SPS

nvS peS

(23)
ď 16v2

H nvH peH ,

(24)

where in the last step we bounded |S| by the number of graphs on at most 2vH vertices,

which in turn is bounded by
ř2vH

i“2 2p
i
2q ď 2p

2vH
2
q`1 ď 22v2

H .

Consider now the property

E :“
!

K Ď Kn

ˇ̌
ˇ |HpKq| ě µ{2

)
. (25)

By Janson’s inequality (Theorem 18) we have

PpGn,p P  Eq ď exp

ˆ
´

µ2

8pµ`∆q

˙
ď exp

ˆ
´

1

16
¨min

!
µ,

µ2

∆

)˙

(21), (24)
ď exp

ˆ
´

1

16
min

!
c0,

c2
0

16v2

H

)
nvH peH

˙
(18)
ď expp´bnvH peHq , (26)

where in the second to last step we also used that c0 ď 1 (see (17)).

For a given graph K Ď Kn, consider the auxiliary graph rG “ rGpKq on the vertex set

V p rGq “ HpKq, in which two vertices are connected by an edge if and only if those two

copies of H are not edge-disjoint.

Note that

Erep rGpGn,pqqs “ ∆{2
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for ∆ as in (24) (the factor 1{2 is due to the fact that the sum in (24) is over ordered

pairs). Thus for the property

D :“
!

K Ď Kn

ˇ̌
ˇ ep rGpKqq ď ∆

)
, (27)

we obtain with Markov’s inequality that

PpGn,p P Dq ě 1{2 . (28)

By definition of the auxiliary graph rG “ rGpKq, any independent set in rG corresponds

to a family rH Ď HpKq of pairwise edge-disjoint copies of H in F XK. Thus our definitions

of D and E imply with Turán’s Theorem (Theorem 21) that any graph K P DXE contains

a subfamily rH Ď HpKq of pairwise edge-disjoint copies of H of size at least

| rH|
Thm. 21
ě

vp rGq2

vp rGq ` 2ep rGq
ě

1

2
¨min

!
vp rGq, vp rGq2

2ep rGq

)

(25),(27)
ě

1

16
min

!
4µ,

µ2

∆

)
ě bnvH peH , (29)

where the last inequality follows analogously to (26). In other words, we have just shown

that

D X E Ď A

or, equivalently,

 AXD Ď  E . (30)

Since  A and D are both decreasing, we obtain with the Harris inequality (Theorem 17)

that

PpGn,p P  Aq
Thm. 17
ď PpGn,p P  A |Gn,p P Dq

(28)
ď 2PpGn,p P  AXDq

(30)
ď 2PpGn,p P  Eq

(26)
ď 2 expp´bnvH peH q ď 21´bnvH peH

,

as claimed. �

§3. Proof of Theorem 4

As already mentioned, our proof of Theorem 4 proceeds by induction on epGq, whereas H

is considered fixed. In order for this induction to work, we will prove the following stronger

statement. Recall that we introduced the set of H-edges EHpGn,pq and the notion of H-

covered copies in Definition 8.
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Lemma 23 (Main lemma). Let H be a nonempty graph with vH ě 3. For any nonempty

graph G satisfying m2pGq ă x˚pHq there exist positive constants a, b, C, and n0 such that

for n ě n0 and

Cn´1{m2pG,Hq ď p ď n´1{m˚pHq , (31)

with probability at least 1 ´ 2´bnvH peH , every red-blue-coloring of EHpGn,pq that does not

contain a blue copy of H contains at least anvGpnvH ´2peHqeG many H-covered red copies

of G.

Note that, because of (8), the number of H-covered red copies of G guaranteed by

Lemma 23 is of the same order of magnitude as the expected number of copies of graphs

from FpG, Hq (as defined in Definition 9) in Gn,p.

Remark 24. The statement of Lemma 23 is void if H is not strictly balanced w.r.t. d2pG, ¨q

(recall Lemma 13). On the other hand, for H strictly balanced w.r.t. d2pG, ¨q, there is p as

in (31), and – crucially for our proof of Lemma 23 – we may apply Lemma 22 for such p.

Remark 25. For the two-color case studied here, it would be sufficient to prove the state-

ment of Lemma 23 with an error probability of 2´Θpnq instead of 2´ΘpnvH peH q (see (72)

below). However, our arguments yield the latter for free, and this is also what would be

needed to extend our inductive approach to more than two colors.

Lemma 23 implies Theorem 4 as follows.

Proof of Theorem 4. Owing to Lemma 13, G and H as in Theorem 4 satisfy the hypothesis

of Lemma 23. We will prove Theorem 4 for the constant C “ CpG, Hq guaranteed by

Lemma 23.

By monotonicity it suffices to prove the theorem for p “ ppnq :“ Cn´1{m2pG,Hq. Again

due to Lemma 13, this is smaller than n´1{m˚pHq for n large enough, and thus Lemma 23

is applicable for this p “ ppnq. Clearly, if the event in Lemma 23 holds then we have in

particular that Gn,p Ñ pG, Hq. Furthermore, due to (6) and the assumption that G is not

a matching, nvH peH is a growing function of n. Hence the probability stated in Lemma 23

is indeed 1´ op1q, and Theorem 4 is proved. �

3.1. Proof of Lemma 23. It remains to prove Lemma 23, which we will do in the remain-

der of this section. Our main proof hinges on two fairly involved statements (Claim 26 and

Claim 27 below), whose proofs are deferred to Section 3.2 and Section 3.3, respectively.

As already mentioned, we proceed by induction on epGq. Our induction base is the case

where G is a matching.
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Proof of Lemma 23: Induction base – G is a matching. W.l.o.g. we may assume that G

contains no isolated vertices, i.e., that vG “ 2eG. Let

̺ :“ ̺pH, 1q , n1 :“ n0pH, 1q , b1 :“ bpH, 1q (32)

denote the constants obtained by applying Lemma 22 for H and d :“ 1. We shall prove

Lemma 23 for

a “ apG, Hq :“

ˆ
b1

p2eGqvH

˙eG

, (33)

b “ bpG, Hq :“
b1

plog2 eG ` 2q ¨ p2eGqvH
, (34)

C “ CpG, Hq :“ b´1{eH , (35)

n0 “ n0pG, Hq :“ p2eGq ¨ n
1 . (36)

Note that for any n ě 1 we have

1 “ n2´1{m2pGq
(6),(35)
ď bCeH nvH ´eH{m2pG,Hq

(31)
ď bnvH peH . (37)

Fix eG pairwise disjoint sets V1, . . . , VeG
Ď rns of size

rn :“ tn{eGu ě n{p2eGq (38)

each, and note that the graphs Gn,prVis induced by Gn,p on these sets behave like inde-

pendent random graphs Grn,p, where rn ě n1 due to our choice of n0 in (36).

Due to our choice of constants in (32) and observing that the complete graph Krn is p̺, 1q-

dense, we obtain with Lemma 22 and the union bound that for n ě n0, with probability

at least

1´ eG ¨ 2
1´b1rnvH peH ě 1´ 2log2 eG`1´pb1{p2eGqvH qnvH peH

(34)
“ 1´ 2log2 eG`1´plog2 eG`2qbnvH peH

(37)
ě 1´ 2´bnvH peH

,

each of the graphs Gn,prVis contains a family of at least b1rnvH peH pairwise edge-disjoint

copies of H . To avoid creating a blue copy of H , one edge from each of these copies needs

to be colored red. Thus in every red-blue-coloring of EHpGn,pq there is either a blue copy

of H or we can obtain at least

pb1rnvH peH q
eG

(33), (38)
ě an2eGpnvH ´2peHqeG “ anvGpnvH ´2peH qeG

many red matchings by picking exactly one H-covered red edge from each of the graphs

Gn,prVis, 1 ď i ď eG. By definition, these red matchings are H-covered red copies of G. �
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Before giving the proof of the induction step, let us give an informal outline of the key

proof ideas. As already mentioned, our approach can be seen as a refinement of the proof

for the symmetric case given by Rödl and Ruciński in [21]. We will generate Gn,p in two

rounds, i.e., as the union of two independent binomial random graphs Gn,p1
and Gn,p2

on

the same vertex set. Let G´ denote a fixed subgraph of G with epGq ´ 1 edges and vpGq

vertices. By the induction hypothesis, with high probability every coloring of the H-edges

of the first round that does not contain a blue copy of H contains ‘many’ H-covered red

copies of G´. Each of those induces a vertex pair that will complete a red copy of G

if it is sampled as an edge of the second round and is colored red. In our argument we

will consider vertex pairs that complete not only one, but ‘many’ red copies of G´ to

copies of G. We will call the graph spanned by these edges the base graph Γphq of a given

coloring h of EHpGn,p1
q, the H-edges of the first round. Our main goal when analyzing the

first round is to show that, with suitably high probability, the base graph Γphq is p̺, dq-

dense for every coloring h of EHpGn,p1
q (for appropriately chosen parameters ̺ and d).

Once this is shown, we may apply Lemma 22 to find ‘many’ pairwise edge-disjoint copies

of H in Γphq X Gn,p2
, the random subgraph of Γphq spanned by the edges of the second

round. In order to avoid creating a blue copy of H , one edge from each such copy needs

to be colored red, which by definition of the base graph Γphq creates ‘many’ H-covered

red copies of G.

For this approach to work, the arguments of the second round need to work for all

possible colorings of the H-edges of the first round simultaneously. In order to infer this

with the union bound, we need that for a fixed coloring h of the first round, the second

round fails with probability exponentially small in the number of H-edges. Here it is

crucial that we only consider colorings of the H-edges of the first round, as the error

probability for the second round is not small enough to beat the number of colorings of

all edges of the first round!

Proof of Lemma 23: Induction step – G is not a matching. We denote by G´ an arbitrary

fixed subgraph of G with epGq´ 1 edges and vpGq vertices. Note that we imposed no bal-

ancedness restricion on G, and hence both G and G´ may be disconnected and even

contain isolated vertices.

We start by fixing all constants needed in the proof. Throughout the following, by

apG´, Hq etc we denote the constants guaranteed inductively by Lemma 23.

Let

ℓ :“ 2
`
vG ` peG ´ 1qpvH ´ 2q

˘
, (39)
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and set

d :“
apG´, Hq2

12 ¨ 2ℓ2 ¨ ℓ2vG
. (40)

Let

̺ :“ ̺pH, dq , n1 :“ n0pH, dq , b1 :“ bpH, dq (41)

denote the constants obtained by applying Lemma 22 for H and d. Set

cΓ :“ ̺pvG´2q`peG´1qpvH ´2q ¨ apG´, Hq (42)

and

C1 :“ max

#
CpG´, Hq,

ˆ
3

cΓ

˙ 1

eH peG´1q

+
. (43)

Fix α ą 0 small enough such that

αeH ď
b1

16eH

and p1´ αqeH ě 1{2 , (44)

and set

b1 :“
1

2
bpG´, Hq̺vH αeH , (45)

b2 :“ b1{4 . (46)

We shall prove Lemma 23 for

a “ apG, Hq :“ pb1{2q ¨ cΓ ¨ α
peG´1qeH , (47)

b “ bpG, Hq :“
1

2
mintb1, b2{2u , (48)

C “ CpG, Hq :“ max

"
C1

α ¨ ̺1{m2pG,Hq
, b´1{eH

*
, (49)

n0 “ n0pG, Hq :“ max

"
n0pG´, Hq

̺
, n1

*
. (50)

Let n ě n0 and p as in (31) be given, and set

p1 :“ αp , p2 :“
p´ p1

1´ p1

. (51)

Note that

p1´ αqp ď p2 ď p . (52)

Throughout the proof we will identify Gn,p with the union of two independent random

graphs Gn,p1
and Gn,p2

on the same vertex set rns. Note that indeed each edge of Kn is

included in Gn,p1
YGn,p2

with probability

1´ p1´ p1qp1´ p2q
(51)
“ p

independently.
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As G is not a matching, we have m2pGq ě 1, and consequently for any n ě 1 that

n ď n2´1{m2pGq
(6),(49)
ď bCeH nvH ´eH{m2pG,Hq

(31)
ď bnvH peH . (53)

Next we define a number of graph properties to formalize the ideas outlined above.

Throughout, A, B, C etc. denote ‘good’ properties, i.e., properties that are desirable in our

proofs.

Let

A :“

$
’’’&
’’’%

K Ď Kn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Every red-blue-coloring of EHpKq that does not

contain a blue copy of H contains at least

anvGpnvH ´2peHqeG many H-covered red copies of

G

,
///.
///-

, (54)

and note that A is an increasing graph property. Our goal is to bound PpGn,p P  Aq from

above.

For any graph K Ď Kn (representing a fixed outcome of Gn,p1
) and any red-blue color-

ing h of EHpKq, set

AK,h :“

$
’’’&
’’’%

K 1 Ď Kn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

Every extension of h to EHpK Y K 1q that does

not contain a blue copy of H contains at least

anvGpnvH ´2peH qeG many H-covered red copies of

G

,
///.
///-

. (55)

Note that AK,h is increasing for any fixed K and h.

Let

z :“ cΓ ¨ n
vG´2

`
nvH ´2peH

1

˘eG´1
. (56)

where cΓ is defined in (42). For any graph K Ď Kn (again representing a fixed outcome

of Gn,p1
) and any red-blue-coloring h of EHpKq, set

ΓpK, hq :“

$
&
%e P

`
rns
2

˘
ˇ̌
ˇ̌
ˇ̌
e completes at least z many H-covered copies of

G´ in EHpKq that are colored red in h to copies

of G

,
.
- . (57)

We will refer to the graph prns, ΓpK, hqq Ď Kn as the base graph determined by the

coloring h. Further, let

B :“

$
’&
’%

K Ď Kn

ˇ̌
ˇ̌
ˇ̌
ˇ

For every red-blue-coloring h of EHpKq that does

not contain a blue copy of H , the base graph

ΓpK, hq is p̺, dq-dense

,
/.
/-

, (58)

where d and ̺ are defined in (40) and (41). Note that B is an increasing graph property.

Finally, let

C :“
!

K Ď Kn

ˇ̌
ˇ |EHpKq| ď 2eH ¨ n

vH peH
1

)
, (59)

and note that C is a decreasing graph property.
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We will prove the following two claims.

Claim 26. We have

PpGn,p1
P  Bq ď 2´b1 nvH peH

.

Claim 27. For every K P B and every red-blue-coloring h of EHpKq, we have

PpGn,p2
P  AK,hq ď 2´b2 nvH peH

.

Claim 26 and Claim 27 imply Lemma 23 as follows. Recall that our goal is to bound

PpGn,p P  Aq from above, and that we generate Gn,p as the union of two independent

random graphs Gn,p1
and Gn,p2

.

As the expected number of copies of H in Gn,p1
is bounded by nvH peH

1 , Markov’s in-

equality yields for C defined in (59) that

PpGn,p1
P Cq ě 1{2 . (60)

For any graph K 1 Ď Kn (representing a fixed outcome of Gn,p2
) we set

AK 1 :“
!

K Ď Kn

ˇ̌
ˇ K YK 1 P A

)
,

where A is defined in (54). As A is increasing, also the property AK 1 is increasing for any

K 1 Ď Kn. Thus its complement is decreasing, and we obtain with the Harris inequality

(Theorem 17) that for any K 1 Ď Kn we have

PpGn,p1
P  AK 1q

Thm. 17
ď PpGn,p1

P  AK 1 |Gn,p1
P Cq

(60)
ď 2PpGn,p1

P  AK 1 X Cq . (61)

Using the independence of Gn,p1
and Gn,p2

and the law of total probability, we can infer

that

PpGn,p P  Aq “
ÿ

K 1ĎKn

PrGn,p1
P  AK 1s ¨ PrGn,p2

“ K 1s

(61)
ď 2

˜
ÿ

K 1ĎKn

PrGn,p1
P  AK 1 X Cs ¨ PrGn,p2

“ K 1s

¸

“ 2PppGn,p P  Aq ^ pGn,p1
P Cqq .

(62)

Thus it suffices to bound the last probability. Again by the law of total probability, we

have

P
`
pGn,p P  Aq ^ pGn,p1

P Cq
˘

“P
`
pGn,p P  Aq ^ pGn,p1

P  B X Cq
˘

`
ÿ

KPBXC

P
`
Gn,p P  A |Gn,p1

“ K
˘
PpGn,p1

“ Kq

ďPpGn,p1
P  Bq ` max

KPBXC
PpGn,p P  A |Gn,p1

“ Kq .

(63)
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Observe that if Gn,p1
“ K we have Gn,p P  A if and only if Gn,p2

P
Ť

h  AK,h,

where the union is over all 2|EHpKq| red-blue colorings h of EHpKq. Together with the

independence of Gn,p1
and Gn,p2

it follows that for any K Ď Kn we have

PpGn,p P  A |Gn,p1
“ Kq “ PpGn,p2

P
Ť

h AK,hq .

If in addition K is in C as defined in (59), we obtain with

|EHpKq|
(59)
ď 2eH ¨ n

vH peH
1

(44),(51)
ď pb1{8qnvH peH

(46)
“ pb2{2qn

vH peH

and the union bound that

PpGn,p P  A |Gn,p1
“ Kq ď 2pb2{2qnvH peH ¨max

h
PpGn,p2

P  AK,hq , (64)

where the maximum is over all red-blue colorings h of EHpKq.

Combining (62), (63), and (64), we obtain that

P pGn,p P  Aq ď 2

ˆ
PpGn,p1

P  Bq ` 2pb2{2qnvH peH max
KPB, h

PpGn,p2
P  AK,hq

˙

Cl. 26, Cl. 27
ď 2

`
2´b1nvH peH ` 2´pb2{2qnvH peH

˘

ď 4 ¨ 2´ mintb1,b2{2unvH peH (48)
“ 22´2bnvH peH ď 2´bnvH peH

,

where in the last step we used that 2 ď bnvH peH due to (53). �

It remains to prove Claim 26 and Claim 27.

3.2. Proof of Claim 26. We start with the proof of Claim 26, which concerns the ‘prob-

ability of failure’ of the first round Gn,p1
.

Proof of Claim 26. In order to verify that a graph F Ď Kn is p̺, dq-dense, an averaging

argument shows that it suffices to check that every set V Ď rns of size

rn :“ r̺ns (65)

contains at least d
`rn

2

˘
edges of F (see [21]).

For any graph K Ď Kn (representing a fixed outcome of Gn,p1
), any red-blue-coloring h

of EHpKq, and any set V Ď rns, |V | “ rn, set

ΓpK, h, V q :“

$
&
%e P

`
V

2

˘
ˇ̌
ˇ̌
ˇ̌

e completes at least z many H-covered copies of

G´ in EHpKrV sq that are colored red in h to

copies of G

,
.
- , (66)
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where z is defined in (56), and define

BV :“

$
’&
’%

K Ď Kn

ˇ̌
ˇ̌
ˇ̌
ˇ

For every red-blue-coloring h of EHpKq that

does not contain a blue copy of H , we have

|ΓpK, h, V q| ě drn2

,
/.
/-

. (67)

Note that BV is increasing.

For a fixed set V Ď rns, |V | “ rn, and for any red-blue coloring h of EHpKq, let

kG´pK, h, V q denote the total number of H-covered red copies of G´ in EHpKrV sq, and

set

AV :“

$
’&
’%

K Ď Kn

ˇ̌
ˇ̌
ˇ̌
ˇ

For every red-blue-coloring h of EHpKq that does not

contain a blue copy of H , we have

kG´pK, h, V q ě apG´, Hq ¨ rnvGprnvH ´2peH
1 q

eG´1

,
/.
/-

. (68)

Note that AV is increasing.

Recall that H-covered copies of G´ are copies of G´ that are a central copy in a copy

of a graph GH
´ P FpG´, Hq as defined in Definition 9. Let T be the family of all pairwise

nonisomorphic graphs T which are unions of two graphs from FpG´, Hq, say GH
1´ and GH

2´,

such that some vertex pair g P
`

V pT q
2

˘
completes both a central copy in GH

1´ and a central

copy in GH
2´ to a copy of G. For any graph K Ď Kn and any set V Ď rns, |V | “ rn, let

kT pK, V q denote the number of copies of graphs from T in KrV s, and set

DV :“
!

K Ď Kn

ˇ̌
ˇ kT pK, V q ď 2ℓ2rn2vG´2prnvH ´2peH

1 q
2peG´1q

)
. (69)

Note that DV is decreasing.

We will show the following three statements.

Fact 28. For every fixed set V Ď rns, |V | “ rn, we have PpGn,p1
P  AV q ď 2´2b1 nvH peH .

Fact 29. For every fixed set V Ď rns, |V | “ rn, we have PpGn,p1
P DV q ě 1{2.

Fact 30. For every fixed set V Ď rns, |V | “ rn, we have AV XDV Ď BV .

With these statements in hand, Claim 26 can be deduced as follows. Note that Fact 30

is equivalent to

 BV XDV Ď  AV .

Since  BV and DV are both decreasing, we obtain with the Harris inequality (Theorem 17)

that
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PpGn,p1
P  BV q

Thm. 17
ď PpGn,p1

P  BV |Gn,p1
P DV q

Fact 29
ď 2PpGn,p1

P  BV XDV q

Fact 30
ď 2PpGn,p1

P  AV q

Fact 28
ď 21´2b1 nvH peH

.

(70)

By definition of B and BV (see (58) and (67)), we have

 B Ď
ď

V Ďrns:
|V |“rn

 BV . (71)

Taking the union bound over all sets V Ď rns with |V | “ rn we obtain

PpGn,p1
P  Bq

(71)
ď

ÿ

V Ďrns:
|V |“rn

PpGn,p1
P  BV q

(70)
ď 2n`1´2b1 nvH peH ď 2´b1nvH peH

, (72)

where in the last step we used that n ` 1 ď b1n
vH peH due to (53) and (48). �

It remains to prove Facts 28, 29, and 30. For all these proofs, note that Gn,p1
rV s behaves

exactly like a binomial random graph Grn,p1
, and that

p1

(31), (51)
ě αCn´1{m2pG,Hq

(49), (65)
ě C1 rn´1{m2pG,Hq . (73)

Proof of Fact 28. Owing to the monotonicity of the 2-density and to the assumption on G

in Lemma 23, we have m2pG´q ď m2pGq ă x˚pHq. Moreover, by our choice of constants,

we have

rn
(65)
ě ̺n0

(50)
ě n0pG´, Hq

and

CpG´, Hqrn´1{m2pG´,Hq
(43),(73)
ď p1

(31), (51)
ď αn´1{m˚pHq ď rn´1{m˚pHq .

Thus we may apply the induction hypothesis to Gn,p1
rV s to infer

PpGn,p1
P  AV q ď 2´bpG´,Hq rnvH p

eH
1

(45),(51),(65)
ď 2´2b1 nvH peH

recalling the definition of AV in (68). �

Proof of Fact 29. Consider a fixed graph T P T as defined before (69), and let

J :“ GH
1´ XGH

2´

denote the intersection of the two graphs from FpG´, Hq forming T . We obtain with

Lemma 10 that

rnvpJqp
epJq
1

(73)
ě rnvpJq´epJq{m2pG,Hq L.10

ě rn2´LpGH
1´q , (74)
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where in the first step we also used that C1 ě 1. Thus the expected number of copies of T

in Gn,p1
rV s is bounded by

rnvpT qp
epT q
1

(74)
ď rnvpGH

1´q`vpGH
2´q´2`LpGH

1´qp
epGH

1´q`epGH
2´q

1

(8)
“ rn2

`
vG`peG´1qpvH ´2q

˘
´2´LpGH

2´qp
2peG´1qeH

1

ď rn2vG´2prnvH ´2peH
1 q

2peG´1q ,

where in the last step we used that LpGH
2´q is nonnegative. Thus in total the expected

number of graphs from T in Gn,p1
rV s is at most

2ℓ2´1 ¨ rn2vG´2prnvH ´2peH
1 q

2peG´1q

where we bounded |T | by the number of graphs on at most ℓ vertices (recall (39)), which

in turn is bounded by ℓ2p
ℓ
2q ď 2ℓ2´1.

Fact 29 now follows with Markov’s inequality, recalling the definition of DV in (69). �

Proof of Fact 30. Consider a fixed set V Ď rns, |V | “ rn, and an arbitrary graph K Ď Kn.

For any red-blue-coloring h of EHpKq and for every edge e P
`

V

2

˘
, let

xe “ xepK, h, V q :“

ˇ̌
ˇ̌
ˇ̌

$
&
%G´

ˇ̌
ˇ̌
ˇ̌
G´ is an H-covered copy of G´ in EHpKrV sq that

is colored red in h, and e completes G´ to a copy

of G

,
.
-

ˇ̌
ˇ̌
ˇ̌ .

Note that, by our definition of ΓpK, h, V q in (66)), for all e P ΓpK, h, V q we have

xe ě z
(56),(73)
ě cΓ C

eHpeG´1q
1 nvG´2pnvH ´2rn´eH {m2pG,HqqeG´1

(7),(43)
ě 3 , (75)

where in the second inequality we also used that rn ď n.

We will show that if K is in AV , we have

ÿ

ePΓpK,h,V q

xe ě
apG´, Hq

2
¨ rnvGprnvH ´2peH

1 q
eG´1 (76)

for every coloring h of EHpKq that contains no blue copy of H , and that if K is in DV ,

we have
ÿ

ePΓpK,h,vq

ˆ
xe

2

˙
ď 2ℓ2

ℓ2vG ¨ rn2vG´2prnvH ´2peH
1 q

2peG´1q (77)

for every coloring h of EHpKq.

As by Jensen’s inequality we have

ÿ

ePΓpK,h,V q

ˆ
xe

2

˙
ě

ˇ̌
ΓpK, h, V q

ˇ̌ˆˇ̌
ΓpK, h, V q

ˇ̌´1 ř
ePΓpK,h,V q xe

2

˙
(75)
ě
p
ř

ePΓpK,h,V q xeq
2

3
ˇ̌
ΓpK, h, V q

ˇ̌ , (78)
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(where in the second inequality we used that
`

x

2

˘
ě x2{3 for x ě 3), (76) and (77) will

imply that for any K P AV XDV we have

ˇ̌
ΓpK, h, V q

ˇ̌ (78)
ě
p
ř

ePΓpK,h,V q xeq
2

3
ř

ePΓpK,h,V q

`
xe

2

˘ (76),(77)
ě

apG´, Hq2

12 ¨ 2ℓ2 ¨ ℓ2vG
¨ rn2 (40)

“ drn2

for every coloring h of EHpKq that does not contain a blue copy of H , i.e., that K

satisfies BV as defined in (67).

It remains to show (76) and (77). To verify (76), recall that kG´pK, h, V q denotes

the total number of H-covered red copies of G´ in EHpKrV sq. Since every such copy

contributes to at least one of the xe, we have

ÿ

ePpV
2q

xe ě kG´pK, h, V q . (79)

Note that

z
(56)
“ cΓ ¨ n

vG´2pnvH ´2peH
1 q

eG´1
(42), (65)
ď apG´, Hq ¨ rnvG´2prnvH ´2peH

1 q
eG´1 . (80)

Since by definition of ΓpK, h, V q we have xe ă z for all e P
`

V

2

˘
r ΓpK, h, V q (recall (66)),

it follows that

ÿ

ePΓpK,h,V q

xe

(79)
ě kG´pK, h, V q ´

ÿ

ePpV
2qrΓpK,h,V q

xe ě kG´pK, h, V q ´

ˆ
rn
2

˙
¨ z

(80)
ě kG´pK, h, V q ´

apG´, Hq

2
¨ rnvGprnvH ´2peH

1 q
eG´1 .

It follows from the definition of AV in (68) that indeed (76) holds for every coloring h

of EHpKq that contains no blue copy of H if K is in AV .

To verify (77), recall that every H-covered copy of G´ is contained in a copy of a graph

GH
´ P FpG´, Hq (see Definition 8 and Definition 9). It follows with the definition of

kT pK, V q (see the paragraph before (69)) that

ÿ

ePpV
2q

ˆ
xe

2

˙
ď ℓ2vG kT pK, V q , (81)

where ℓ is as defined in (39). Here the constant ℓ2vG follows from the fact that a given

copy of some T P T contributes at most ppvT qvG
q2 ď pvT q

2vG ď ℓ2vG to the sum.

Consequently, if K P DV , the definition of DV in (69) implies that

ÿ

ePΓpK,h,vq

ˆ
xe

2

˙
ď

ÿ

ePpV
2q

ˆ
xe

2

˙
(69), (81)
ď 2ℓ2

ℓ2vG ¨ rn2vG´2prnvH ´2peH
1 q

2peG´1q

for every coloring h of EHpKq, as claimed in (77). �
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3.3. Proof of Claim 27. It now remains to prove Claim 27.

Proof of Claim 27. Consider a fixed graph K P B and a fixed red-blue-coloring h of EHpKq.

By definition of the event B (recall (58)), the graph ΓpK, hq is p̺, dq-dense.

Note that due to (44) and (52) we have

b1nvH peH
2 ě pb1{2qnvH peH . (82)

Thus Lemma 22 yields with (31) and our choice of constants in (41) and (50) that with

probability at least

1´ 21´b1nvH p
eH
2

(82),(46)
ě 1´ 21´2b2nvH peH ě 1´ 2´b2nvH peH

(where in the last step we used that 1 ď bvH peH ď b2n
vH peH due to (53) and (48)), the

graph ΓpK, hq X Gn,p2
contains a family of at least b1nvH peH

2 pairwise edge-disjoint copies

of H .

To avoid creating a blue copy of H , one edge from each of these copies needs to be

colored red, and by the definition of ΓpK, hq (see (57)), each such edge that is colored red

creates at least z many H-covered red copies of G. Thus any extension of h to a coloring

of EHpKq Y EHpGn,p2
q Ď EHpK YGn,p2

q creates a blue copy of H or at least

b1nvH peH
2 ¨ z

(56),(82)
ě b1{2 ¨ cΓ ¨ n

vH peH ¨ nvG´2pnvH ´2peH
1 q

eG´1

(47), (51)
“ anvGpnvH ´2peH qeG

many H-covered red copies of G. Thus Gn,p2
is indeed in AK,h as defined in (55) with the

claimed probability. �

§4. Concluding remarks

We believe that the proof for the two-color case given here can be extended to the setting

with more than two colors along the lines of [21]. Namely, for given graphs H1, . . . , Hk with

m2pHkq ď ¨ ¨ ¨ ď m2pH2q ă m2pH1q and H1 strictly balanced w.r.t. d2pH2, ¨q, one should

be able to prove that PpGn,p Ñ pH1, . . . , Hkqq “ 1´ op1q if p ě Cn´1{m2pH2,H1q as follows:

Clearly, in order to prove Gn,p Ñ pH1, . . . , Hkq it suffices to prove Gn,p Ñ pG, . . . , G, Hq,

where G denotes the disjoint union of H2, . . . , Hk, and H :“ H1. Furthermore, it is not

hard to see that m2pGq “ m2pH2q, and consequently also m2pG, Hq “ m2pH2, H1q. Thus

it suffices to show that PpGn,p Ñ pG, . . . , G, Hqq “ 1 ´ op1q if p ě Cn´1{m2pG,Hq. We

believe that this can be done by combining the approach via double induction (on epGq

and the number of colors k) used in [21] with the ideas presented in this paper. Note that

this implies using Lemma 1 of [21], which relies on the regularity lemma for dense graphs.
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We do not pursue this further here. In our view, a more interesting next step would be

to extend the approach taken in [7] to the asymmetric scenario, with the goal of deriving

1-statements for more general settings, in particular for the hypergraph setting. This

might also help in getting rid of the balancedness assumption on H in the existing proofs.

An altogether different open question is the proof of the 0-statement in Conjecture 3.

With some extra work the approach in [19] can be pushed through to prove the 0-statement

for certain graphs G and H that are not complete, but a general proof does not seem to

be within reach of the known methods.
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