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Sizes of the largest clusters

for supercritical percolation

on random recursive trees

Jean Bertoin∗

Abstract

We consider Bernoulli bond-percolation on a random recursive tree of size n ≫ 1, with

supercritical parameter p(n) = 1− t/ ln n+ o(1/ ln n) for some t > 0 fixed. We show that

with high probability, the largest cluster has size close to e−tn whereas the next largest

clusters have size of order n/ lnn only and are distributed according to some Poisson

random measure.

Key words: Random recursive tree, supercritical bond-percolation.

1 Introduction

Consider Bernoulli bond-percolation on a large but finite connected graph. So each edge is

removed with some fixed probability 1 − p ∈ (0, 1) and independently of the other edges,

inducing a partition of the set of vertices into connected clusters. Loosely speaking, assume

that p is supercritical, in the sense that with high probability, there exists a giant cluster, that

is of size comparable to that of the entire graph. A natural problem in this setting is then to

estimate the size of the next largest clusters; let us merely recall the known answers to this

question in three important instances.

First, in the case of the complete graph with n vertices, a classical result due to Erdős and

Rényi (see for instance [4]) shows that for p(n) ∼ c/n with c > 1 fixed, with high probability

when n ≫ 1, the largest cluster has size close to θ(c)n where θ(c) is the unique strictly positive

solution to the equation x + e−cx = 1, while the second, third, etc. largest clusters have only

size of order lnn.
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Second, consider a box in the d-dimensional cubic lattice with d ≥ 2, say [1, ℓ]d, so this box

contains n = ℓd vertices. Let p be greater than the critical parameter pc of Bernoulli bond-

percolation on the entire lattice and denote by θ(p) the probability that the origin belongs to

the infinite cluster. Then with high probability when n ≫ 1, the size of the largest percolation

cluster in the box is close to θ(p)n, and the next largest clusters have size of order (lnn)d/(d−1)

as it can deduced for instance from results in Chapter 8 of [8].

Third, in the case of a uniform Cayley tree of size n (i.e. a tree picked uniformly at random

amongst the nn−2 trees on a set of n labelled vertices), Pitman [18, 19] showed that for 1−p(n) ∼
t/
√
n with a fixed t > 0, the sequence of the sizes of the clusters ranked in decreasing order and

renormalized by a factor 1/n converges weakly as n → ∞ to a random mass partition which

can be described explicitly in terms of a conditioned Poisson measure. It is interesting to point

out that in this situation, the number of giant components is unbounded as n → ∞.

The main purpose of this work is to investigate analogously the case of large random recursive

trees. More precisely, a tree on the set of vertices {0, 1, . . . , n} (note that the parameter n now

corresponds to the number of edges) is called recursive if when rooted at 0, the sequence of

vertices along any branch from the root to a leaf is increasing. Recursive trees are sometimes

also referred to as increasing trees in the literature; they arise for instance in computer science

as data structures, or as simple epidemic models; they can be used to represent permutations

or the Bolthausen-Sznitman coalescent (see Goldschmidt and Martin [7]). There are n! such

recursive trees, and we pick one of them uniformly at random. Loosely speaking, our main

result shows that for 1− p(n) ∼ t/ lnn with t > 0 fixed and n ≫ 1, with high probability there

is a unique giant cluster of size ∼ e−tn and the next largest clusters have size of order n/ lnn.

A more precise description will be given in Theorem 1 below.

Our approach relies crucially on a coupling between the so-called cutting down of random

recursive trees and a certain random walk, which is due to Iksanov and Möhle [6] and was used

by these authors to investigate the asymptotic behavior of number of random cuts which are

needed to isolate the root. More precisely, this coupling combined with well-known features of

extreme value theory also provided useful estimates for the sizes of the largest tree-components

that became disconnected from the root in the cutting down process. Essentially, all what

is needed then is to remove some further edges to these components in order to observe the

percolation configuration.

This work leaves open similar questions in the sub-critical regime. Typically, it would be

interesting to estimate the size of the largest percolation clusters when 1 − p(n) ≫ 1/ lnn.

Possibly our approach for tackling this problem in the super-critical case might still be of some

use in sub-critical situations provided that p(n) still remains sufficiently close to 1; however

there will probably be several technical difficulties to overcome.
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The plan of the rest of this paper is as follows. Section 2 introduces the cutting down

procedure in discrete time and investigates consequences of the coupling of Iksanov and Möhle.

Section 3 is devoted to the continuous-time version of the cutting down process and its limiting

behavior when n → ∞. Our main results for supercritical percolation on large random recursive

trees are stated and proved in Section 4. Finally, in Section 5, we compare the effects of the

same fragmentation procedures on random recursive trees and random Cayley trees.

2 Cutting down a tree and a chain of ordered forests

Consider a tree T = (V,E), where as usual V is the set of vertices and E the set of edges. We

denote by n = |E| the number of edges, so |V | = n+ 1. The parameter n will have of course a

crucial role in this work although for the sake of conciseness it will be frequently (but not always)

omitted from the notation. We assume that one of the vertices has been distinguished; it will

be referred to as the root. A forest on V is a graph with no cycles, in other words the connected

components are trees. The tree-component that contains the root is called the root-component,

we denote it with a prime to distinguish it from the other tree-components. A forest is called

ordered if its tree-components have been ranked, with the convention that the root-component

is always ranked last. So a typical ordered forest has the form (T1, T2, . . . , Tj, T
′) where T ′ is

the root-component and T1, . . . , Tj are the tree-components that do not contain the root.

We will be interested in the following Markov chain F = (Fk, k ≥ 0) with values in the space

of ordered forests, which can be traced back to the work of Meir and Moon [14], and will be

referred to as the cutting-down chain. Let the chain start from F0 = T . We then remove an

edge of T uniformly at random; this yields an ordered forest with two subtrees, F1 = (T1, T
′
1),

where T ′
1 contains the root. The subtree T1 will be left unchanged in the next steps, whereas

we keep removing randomly edges from the root-component. That is, at the second step, we

remove an edge from T ′
1 picked uniformly at random, provided of course that T ′

1 is not yet

reduced to the root. This disconnects T ′
1 into two subtrees T2 and T ′

2 where T ′
2 contains the

root. Then F2 is given by the sequence (T1, T2, T
′
2). We iterate in an obvious way, the chain

reaching its terminal state after ζ steps when the root has been isolated, that is when all the

edges adjacent to the root have been removed. The study of the absorption time ζ for various

types of random trees has motivated a number of works in the literature, see in particular Meir

and Moon [14, 15], Janson [12, 13], Panholzer [16, 17], Iksanov and Möhle [6], Drmota et al.

[5], Holmgren [10, 11], etc.

We now further assume that the set of vertices V is endowed with a total order and that

the root is the smallest vertex. Recall that a recursive tree on V is a tree such that the

sequence of vertices from the root to any leaf is increasing. A random recursive tree T on V
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refers to a recursive tree picked uniformly at random; it can be constructed by the following

elementary algorithm. If we denote by v0, v1, . . . , vn the ordered sequence of vertices, then for

every i = 1, . . . , n, we pick v′i uniformly at random from {v0, . . . , vi−1} and independently of

the v′j for j 6= i, and declare that {(v′i, vi) : i = 1, . . . n} is the set of edges of T .

From now on, we shall always assume that the initial state of the forest-valued chain F is

given by a random recursive tree on V , i.e. T = T . The following statement should be plain

from induction using the construction of T described above; it is already implicit in several

works in this area.

Lemma 1 Fix k ∈ N and denote by V1, . . . , Vk∧ζ, and V ′
k∧ζ the subsets of vertices of the subtrees

T1, . . . , Tk∧ζ, and T ′
k∧ζ of the ordered forest Fk. Then conditionally on V1, . . . , Vk∧ζ, and V ′

k∧ζ,

the trees T1, . . . , Tk∧ζ, and T ′
k∧ζ are independent random recursive trees on their respective sets

of vertices.

The key quantitative ingredient for studying the distribution of Fk is the fact that the

distribution of |V1|, the number of vertices of the subtree T1 that do not contain the root

after the first edge removal, is known explicitly, see [15, 16]. Specifically, introduce first an

integer-valued random variable ξ with distribution

P(ξ = ℓ) =
1

ℓ(ℓ+ 1)
, ℓ ∈ N .

Recall that |V | = n + 1; then one has

P(|V1| = ℓ) = P(ξ = ℓ | ξ ≤ n) =
n + 1

nℓ(ℓ + 1)
, ℓ = 1, . . . , n . (1)

Lemma 1 now incites us to introduce a random walk

Sj = ξ1 + . . .+ ξj , j ∈ N

where the ξi are i.i.d. copies of ξ, together with its first passage time

N(n) = min{j ≥ 1 : Sj > n} .

Following Iksanov and Möhle [6], one can couple the random walk S and the Markov chain

F as follows. [In fact the coupling of Iksanov and Möhle is stronger than that described in

Lemma 2 below; see Section 2 in [6] for details. The present weaker version will be sufficient

for our purpose.]
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Lemma 2 One can construct on the same probability space a version of the random walk S

and a version of the Markov chain F started from a random recursive tree with n edges such

that:

(i) The absorption time ζ of F is bounded from below by N(n),

(ii) For every k < N(n), there is the identity

(|V1|, . . . , |Vk|, |V ′
k|) = (ξ1, . . . , ξk, n+ 1− Sk) ,

where for i = 1, . . . , k, |Vi| denotes the number of vertices of the i-th tree component of Fk, and

|V ′
k| the number of vertices of the root-component of Fk.

In this direction, we recall that the asymptotic behavior as n → ∞ of the first passage time

N(n) has been determined in Proposition 2 of [6]: n−1(lnn)2N(n)− lnn− ln lnn converges in

distribution to a completely asymmetric Cauchy variable. For the purpose of this work, it will

be sufficient to record that

lim
n→∞

lnn

n
N(n) = 1 in probability. (2)

Lemma 2 enables one to rephrase questions about the sizes of the largest components of Fk

in terms of the random walk S and its increments, at least on the event {N(n) > k}. Observe

that, according to (2), this event has a high probability as soon as k ≤ cn/ lnn for some fixed

c < 1 and n ≫ 1. In this direction, we will be mainly interested in the following easy feature.

For k ∈ N, denote by

ξ1,k ≥ ξ2,k ≥ . . . ≥ ξk,k

the order statistics of the first k i.i.d. copies of ξ. Let also σ(·, k) be the random permutation

of {1, . . . , k} such that ξi,k = ξσ(i,k), that is σ(i, k) should be thought of as the index of the i-th

record in the k-sample.

Lemma 3 Let (k(n) : n ∈ N) be a random sequence of integers such that

lim
n→∞

lnn

n
k(n) = c in probability

for some fixed c ∈ (0, 1). Then as n → ∞, n−1Sk(n) converges in probability to c, and for every

fixed j ∈ N, the (2j)-tuple

(

lnn

n
ξ1,k(n), . . . ,

lnn

n
ξj,k(n);

lnn

n
σ(1, k(n)), . . . ,

lnn

n
σ(j, k(n))

)
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converges in distribution to

(a1, . . . , aj ; u1, . . . , uj)

where (a1, u1), (a2, u2), . . . is the sequence of the atoms of a Poisson random measure on (0,∞)×
[0, c] with intensity a−2dadu, ranked in the decreasing order of the first coordinate.

Remark. Basic properties of Poisson random measures entail that the variables u1, . . . , uj

are i.i.d. uniformly distributed on [0, c], and independent of a1, . . . , aj . Further 1/a1, 1/a2 −
1/a1, . . . , 1/aj − 1/aj−1 is a sequence of j independent standard exponential variables. In

particular aj has the same distribution as 1/γj, with γj a gamma variable with parameter

(j, 1).

Proof: It is easily verified using generating functions that if the sequence k(n) is deterministic

with k(n) ∼ cn/ lnn, then the random walk S fulfills the following weak law of large numbers:

n−1Sk(n) converges in probability to c. See the proof of Proposition 2 in [6] for a second order

limit theorem in this vein.

Then consider the general case when k(n) may be random. The assumptions that n−1k(n) lnn

converges in probability to a fixed c > 0 enables us to introduce two deterministic sequences

of integers k′(n) and k′′(n) such that k′(n) ∼ k′′(n) ∼ cn/ lnn and the probability of the event

{k′(n) ≤ k(n) ≤ k′′(n)} tends to 1 as n → ∞. On this event, we have by monotonicity

Sk′(n)

n
≤ Sk(n)

n
≤ Sk′′(n)

n
,

from which we conclude that n−1Sk(n) converges to c in probability.

The second part of the statement about the largest increments of the random walk and

their locations is immediate from extreme value theory, since the tail-distribution of ξ fulfills

P(ξ > x) ∼ 1/x as x → ∞. See, for instance, Proposition 3.21 in [20]. �

We conclude this section with a technical consequence of Lemmas 2 and 3 which shall be

useful later on. For every j ≥ 0, let |E ′
j(n)| denote the number of edges of the root-component

of Fj ; in particular |E ′
0(n)| = n, |E ′

j(n)| = 0 for j ≥ ζ , and |E ′
j(n)| = |V ′

j | − 1 = n − Sj if

j < N(n).

Corollary 1 Let (k(n) : n ∈ N) be a sequence of random integers such that

lim
n→∞

lnn

n
k(n) = c in probability
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for some fixed c ∈ (0, 1). Then

lim
n→∞

k(n)−1
∑

j=0

lnn

|E ′
j(n)|

= − ln(1− c) and lim
n→∞

k(n)−1
∑

j=0

(

lnn

|E ′
j(n)|

)2

= 0 in probability.

Proof: Fix some integer m ≥ 1 and for i = 1, . . . , m − 1, introduce sequences of integers

(ki(n))n∈N such that ki(n) ∼ (i/m)k(n). Then decompose

k(n)−1
∑

j=0

lnn

|E ′
j(n)|

=

k1(n)−1
∑

j=0

lnn

|E ′
j(n)|

+

k2(n)−1
∑

j=k1(n)

lnn

|E ′
j(n)|

+ · · ·+
k(n)−1
∑

j=km−1(n)

lnn

|E ′
j(n)|

.

Next observe by monotonicity that for i = 0, . . . , m− 1 and k0(n) ≡ 0,

ki+1(n)− ki(n)

|E ′
ki+1(n)

(n)| ≤
ki+1(n)−1
∑

j=ki(n)

1

|E ′
j(n)|

≤ ki+1(n)− ki(n)

|E ′
ki(n)

(n)| .

On the one hand, combining Lemmas 2 and 3, we know that

|E ′
ki(n)

(n)| = |V ′
ki(n)

| − 1 ∼ (1− c(i/m))n in probability,

while on the other hand

ki+1(n)− ki(n) ∼ m−1cn/ lnn in probability.

Letting m → ∞, we conclude from Riemann-sum approximation that

lim
n→∞

k(n)−1
∑

j=0

lnn

|E ′
j(n)|

= c

∫ 1

0

ds

1− cs
= − ln(1− c) in probability.

The second claim follows immediately since for every j = 0, . . . , k(n)− 1 there is the bound

(

lnn

|E ′
j(n)|

)2

≤
(

lnn

|E ′
j(n)|

)

(

lnn

|E ′
k(n)(n)|

)

and the second term of the product in the right-hand side tends to 0 in probability (again from

Lemmas 2 and 3). �
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3 Cutting down in continuous time

The purpose here is to translate the results of the preceding section in terms of a continuous

time process F = (Fs, s ≥ 0) whose discrete time skeleton is the Markov chain F , and which

will be instrumental in the study of percolation on large random recursive trees. We shall often

refer to F as the cutting-down process.

We start by attaching to each edge e of T an independent exponential variable with pa-

rameter 1/ lnn, say ε(e), which should be thought of as the time at which the edge e may be

removed. However we do effectively remove this edge at that time if and only if e currently

belongs to the root-component. That is, only the root-component splits as time passes, the

other components appearing in the process being instantaneously frozen.

Rigorously, let e1, . . . , en denote the edges of T listed in the increasing order of the attached

exponential variables, i.e. such that ε(e1) < ε(e2) < . . .. Then we declare that Fs ≡ T for all

0 ≤ s < ε(e1) and Fs = (T1, T
′
1) for ε(e1) ≤ s < ε(e2), where T1 and T ′

1 are the two subtrees

resulting from T after removing the edge e1, with the convention that T ′
1 contains the root.

Next, for ε(e2) ≤ s < ε(e3), if e2 ∈ T1 then Fs = (T1, T
′
1), whereas otherwise Fs = (T1, T2, T

′
2)

where T2 and T ′
2 are the two subtrees resulting from T ′

1 after removing the edge e2, with the

convention that T ′
2 contains the root. We iterate in an obvious way.

Plainly, F is a continuous-time Markov chain whose discrete-time skeleton coincides with the

forest-valued Markov chain F of the preceding section. More precisely, if Rs(n) is the number of

edges of the root-component which have been removed up to time s in the procedure described

above, that is if Rs(n) + 1 is the number of tree-components of Fs, then there is the identity

Fs = FRs(n). (3)

We stress that the processes F and F also depend on the parameter n, although this does not

appear in the notation for the sake of simplicity.

Lemma 4 We have for every fixed t > 0

lim
n→∞

sup
0≤s≤t

∣

∣

∣

∣

lnn

n
Rs(n)− (1− e−s)

∣

∣

∣

∣

= 0 in probability.

Proof: Recall that ζ denotes the absorption time of the chain F , i.e. the number of edges

that have been removed when the root is isolated. For every k ≤ ζ , define

ρk(n) = inf{s ≥ 0 : Rs(n) = k} ,

the first instant when k edges have been removed from the root-component in the process F .
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Since in the continuous-time process, each edge of the root-component is removed with rate

1/ lnn independently of the other edges, we have

ρk(n) =

k−1
∑

j=0

lnn

|E ′
j(n)|

εj

where |E ′
j(n)| denotes the number of edges of the root-component T ′

j of Fj and (εj : j = 0, 1, . . .)

a sequence of i.i.d. standard exponential variables which is independent of the chain F . We

readily deduce from Corollary 1 that for k = k(n) ∼ cn/ lnn with 0 < c < 1,

lim
n→∞

ρk(n) = − ln(1− c) in probability,

and then by inversion that for every s ≥ 0

lim
n→∞

lnn

n
Rs(n) = 1− e−s in probability.

By the diagonal procedure, we may extract from an arbitrary increasing sequence of integers

a subsequence, say (nℓ)ℓ∈N, such that with probability one,

lim
ℓ→∞

lnnℓ

nℓ

Rs(nℓ) = 1− e−s for all rational s ≥ 0.

As s → Rs(nℓ) increases, the above convergence holds uniformly on [0, t] for an arbitrarily fixed

t > 0, i.e.

lim
ℓ→∞

sup
0≤s≤t

∣

∣

∣

∣

lnnℓ

nℓ
Rs(nℓ)− (1− e−s)

∣

∣

∣

∣

= 0 a.s.

and our claim follows. �

It will be convenient for our purpose to enrich the process F by keeping track of the time

at which tree-components not containing the root have appeared. Specifically, if immediately

before time ε(e) the edge e belongs to the root-component, then removing e disconnects the

root-component into say T and T ′ where T ′ contains the root, and we assign the mark ε(e) to

T .

Then denote by γ′
t the size of the root-component at time t, and by γ1,t ≥ γ2,t ≥ . . . the

sequence ranked in the decreasing order of the sizes of the other components of Ft. Let also

εi,t be the mark attached to the i-th largest component of Ft that does not contain the root,

i.e. the instant at which this component became disconnected from the root. We stress that

all these quantities depend implicitly on the parameter n.

Corollary 2 Consider a sequence of times (t(n), n ∈ N) which converges to some t > 0. When
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n → ∞, n−1γ′
t(n) converges towards e

−t in probability, and for every fixed j ∈ N, the (2j)-tuple

(

lnn

n
γ1,t(n), . . . ,

lnn

n
γj,t(n); ε1,t(n), . . . , εj,t(n)

)

converges in distribution towards

(a1, . . . , aj; s1, . . . , sj)

where (a1, s1), (a2, s2), . . . is the sequence of the atoms of a Poisson random measure on (0,∞)×
[0, t] with intensity a−2da⊗ e−sds, ranked in the decreasing order of the first coordinate.

Proof: Recall that |V1|, |V2|, . . . denotes the sequence of the sizes of the tree-components that

do not contain the root ranked in their order of appearance in the discrete-time Markov chain

F , where again for the sake of simplicity the parameter n is omitted from the notation. Also

|V ′
k| is the size of the root-component of Fk.

Now take k(n) = Rt(n)(n), so according Lemma 4, k(n) ∼ (1 − e−t)n/ lnn in probability.

Note also from (2) that k(n) < N(n) with high probability when n ≫ 1. Introduce the random

permutation σ(·, k(n)) of {1, . . . , k(n)} which ranks the sequence |V1|, |V2|, . . . , |Vk(n)| in the

decreasing order, i.e. such that

|Vσ(1,k(n))| ≥ |Vσ(2,k(n))| ≥ . . . ≥ |Vσ(k(n),k(n))| .

We see from (3) that there are the identities for i = 1, . . . , k(n)

γ′
t(n) = |V ′

k(n)| , γi,t(n) = |Vσ(i,k(n))| and εi,t(n) = ρσ(i,k(n))(n) , (4)

where |V ′
k(n)| is the size of the root-component in Fk(n) and ℓ → ρℓ(n) denotes the generalized

inverse of s → Rs(n).

It follows from Lemma 2, Lemma 3 and the estimate k(n) ∼ (1− e−t)n/ lnn in probability,

that n−1|V ′
k(n)| converges in probability to e−t as n → ∞. Further, for j ∈ N fixed, the (2j)-tuple

(

lnn

n
|Vσ(1,k(n))|, . . . ,

lnn

n
|Vσ(j,k(n))|;

lnn

n
σ(1, k(n)), . . . ,

lnn

n
σ(j, k(n))

)

converges in distribution as n → ∞ towards

(a1, . . . , aj ; u1, . . . , uj)

where (a1, u1), (a2, u2), . . . is the sequence of the atoms of a Poisson measure on (0,∞)× [0, 1−
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e−t] with intensity a−2dadu, ranked in the decreasing order of the first coordinate.

Recall from Lemma 4 that ρℓ(n) ∼ − ln(1−u) whenever ℓ ∼ un/ lnn and u remains bounded

away from 1. Combining with (4), this establishes our claim since the image of the measure

a−2dadu on (0,∞) × [0, 1 − e−t] by the map (a, u) → (a,− ln(1 − u)) is a−2da ⊗ e−sds on

(0,∞)× [0, t]. �

4 Asymptotic sizes of the largest percolation clusters

In this section, we consider a Bernoulli bond-percolation with parameter p(n) on T , a random

recursive tree on a set of n + 1 ordered vertices. We shall use the name cluster to designate

connected components induced by percolation, keeping the terminology tree-components for

connected components arising from cutting down T as in Sections 2 and 3 (even though ob-

viously percolation clusters are trees). Again for the sake of simplicity, the parameter n shall

often be omitted from the notation.

We denote by C ′ the size of the cluster that contains the root and by C1, C2, . . . the sequence

of the sizes of the remaining clusters ranked in the decreasing order. The purpose of this section

is to establish the following weak limit theorem, which is the main result of this work.

Theorem 1 Assume that

1− p(n) ∼ t/ lnn

where t > 0 is fixed. Then as n → ∞, n−1C ′ converges in probability towards e−t, and for every

fixed integer j,
(

lnn

n
C1, . . . ,

lnn

n
Cj

)

converges in distribution towards

(x1, . . . , xj)

where x1 > x2 > . . . denotes the sequence of the atoms of a Poisson random measure on (0,∞)

with intensity te−tx−2dx .

Remarks. 1. Alternatively, the law of the limiting sequence can be specified as follows:

1/x1, 1/x2 − 1/x1, . . . , 1/xj − 1/xj−1 are i.i.d. exponential variables with parameter te−t. In

particular xj has the same distribution as the inverse of a gamma variable with parameter

(j, te−t), xj ∼ te−t/j as j → ∞, and the m-th moment of xj is finite iff m < j.

2. We stress that just as for supercritical percolation on a large complete graph or on a large

d-dimensional cubic box, with high probability when n ≫ 1, there is a unique giant component
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whose size is essentially deterministic. However the next largest components only fail to be

giant by a logarithmic factor, which contrasts sharply with the preceding examples.

The rest of this section is devoted to the proof of Theorem 1. Set t(n) = − lnn× ln p(n), so

p(n) = exp(−t(n)/ lnn) and lim
n→∞

t(n) = t .

We will use a dynamical version of percolation which yields a natural coupling with the cutting

down process F of Section 3. Recall that we attach to each edge e of T an independent

exponential variable with parameter 1/ lnn, say ε(e). If we decide to remove e at time ε(e), no

matter whether e belongs or not to the root-cluster, then we observe at time t(n) a Bernoulli

bond-percolation on T with parameter p(n).

The cutting down process F should be thought of as a dynamical percolation in which

components that do not contain the root are instantaneously frozen. In particular, the root-

cluster for percolation and the root-component for the continuous cutting down process coincide,

i.e. C ′ = γ′
t(n), and we conclude from Corollary 2 that indeed

lim
n→∞

n−1C ′ = e−t in probability,

as stated in Theorem 1. We also stress that each percolation cluster is contained in some

tree-component generated by the cutting down process up to time t(n).

Let us sketch our approach to establishing the more interesting part of Theorem 1, namely

that about the largest clusters that do not contain the root. Roughly speaking, we are led

to de-freeze the tree-components that are disconnected from the root in the cutting down

process up to time t(n), that is to perform a further bond-percolation on the latter. More

precisely, if T̃ = (Ṽ , Ẽ) is such a tree-component which got disconnected from the root at

time s ∈ (0, t(n)), then by the lack of memory of exponential variables, we should consider a

Bernoulli bond percolation on T̃ with parameter exp(−(t(n) − s)/ lnn) = p(n) exp(s/ lnn) to

obtain the sub-family of percolation clusters of T at time t(n) on Ṽ . Because we are interested

in clusters of size of order n/ lnn, we may restrict our attention to tree-components of size

of the same order, as smaller components will obviously not contribute. We shall see that

if |Ṽ | ≍ n/ lnn, then with high probability when n ≫ 1, percolation on T̃ with parameter

exp(−(t(n)−s)/ ln n) produces a single giant cluster of size ∼ e−(t−s)|Ṽ | while the next clusters
have size O(n/ ln2 n). Hence, only the giant percolation cluster on T̃ contributes to the family

of clusters on T with size of order n/ lnn. More precisely, a tree-component T̃ of size ∼ an/ lnn

born at time s yields a single cluster at time t(n) of size ∼ e−(t−s)an/ lnn. The asymptotic

description of the tree-components in Corollary 2 then easily entails that of Theorem 1.

We now provide the technical details that justify rigorously the approach sketched above. We

12



first fix ℓ ∈ N and for n sufficiently large, we consider the ℓ largest components of Ft(n) that do

not contain the root, say T̃ (1) = (Ṽ (1), Ẽ(1)), . . . , T̃ (ℓ) = (Ṽ (ℓ), Ẽ(ℓ)) in the decreasing order

of their sizes, together with their birth-times, say s(1), . . . , s(ℓ). We stress again that these

quantities depend also on the parameter n, although for simplicity the latter does not appear

in the notation. Note further that in the notation of Section 3, the size of T̃ (i) is |Ṽ (i)| = γi,t(n)

and s(i) = εi,t(n).

We work conditionally on the variables Ṽ (1), . . . , Ṽ (ℓ) and s(1), . . . , s(ℓ), and recall from

Lemma 1 that T̃ (1), . . . , T̃ (ℓ) are then independent random recursive trees on their respective

sets of vertices. As explained in the sketch of the proof above, we perform independent Bernoulli

bond-percolations on each subtree T̃ (i) with parameter exp(−(t(n) − s(i))). For i = 1, . . . , ℓ,

we denote by C̃ ′
i the size of the root-cluster and by C̃∗

i the size of the largest cluster that does

not contain the root, where here of course root means the root of T̃ (i), that is the smallest

vertex in Ṽ (i).

Lemma 5 In the notation above,

C̃∗
i = O(n/ ln2(n)) in probability for every i = 1, . . . , ℓ .

Further the ℓ-tuple
(

lnn

n
C̃ ′

1, . . . ,
lnn

n
C̃ ′

ℓ

)

converges in distribution towards

(

e−(t−s1)a1, . . . , e
−(t−sℓ)aℓ

)

where (a1, s1), (a2, s2), . . . is the sequence of the atoms of a Poisson random measure on (0,∞)×
[0, t] with intensity a−2da⊗ e−sds, ranked in the decreasing order of the first coordinate.

Proof: We couple percolation on each random recursive tree T̃ (i) with a cutting down process

F̃ (i) in which edges of the root-component are removed at rate 1/ ln(|Ṽ (i)|−1) (remember that

|Ṽ (i)| − 1 is the number of edges in T̃ (i)). If we set

r(i) = (t(n)− s(i))
ln(|Ṽ (i)| − 1)

lnn
, (5)

then C̃ ′
i coincides with |Ṽ ′

r(i)(i)|, the size of the root-component of F̃r(i)(i), while C̃
∗
i is bounded

from above by |Ṽ ∗
r(i)(i)|, the size of the largest tree-component of F̃r(i)(i) that does not contain

the root.

First note from Corollary 2 that ln(|Ṽ (i)| − 1) ∼ lnn in probability, and therefore r(i) can
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be bounded from above by 2t with high probability when n ≫ 1. In that case, we have

C̃∗
i ≤ |Ṽ ∗

r(i)(i)| ≤ |Ṽ ∗
2t(i)|

and we conclude again from Corollary 2 that

C̃∗
i = O

(

|Ṽ (i)| − 1

ln(|Ṽ (i)| − 1)

)

= O(n/ ln2(n)) in probability,

establishing the first claim.

We then turn our attention to the second part of the statement. To ease the notation we

shall only consider the one-parameter case ℓ = 1, the argument for ℓ ≥ 2 being similar. Let

f : [0, 1] → R be a continuous function. We have for every m = 1, . . . , n and s ≥ 0

E(f(n−1C ′
1) | |Ṽ (1)| = m, s(1) = s) = Em(f(n

−1|Ṽ ′
r (1)|))

where Em refers to the mathematical expectation starting from a random recursive tree of size

m and r = r(1) in (5) with s(1) = s and |Ṽ (1)| = m. We know from the first part of the proof

that ln(|Ṽ (1)| − 1) ∼ lnn in probability, so from (5) we may focus on the regime r ∼ t− s. On

the other hand, according to Corollary 2, we know that if m ∼ an for some fixed a ∈ (0, 1),

then Em(f(n
−1|Ṽ ′

r (1)|)) ∼ f(ae−r) ∼ f(ae−(t−s)).

Still according to Corollary 2, the pair (n−1|Ṽ (1)|, s(1)) converges in distribution as n → ∞
towards (a1, s1), the atom with the largest the first coordinate of a Poisson random measure on

(0,∞)× [0, t] with intensity a−2da⊗ e−sds. Since the function (a, s) → f(ae−(t−s)) is uniformly

continuous on [0, 1]× [0, t], we conclude that

lim
n→∞

E(f(n−1C ′
1)) = E(f(a1e

−(t−s1)))

This completes the proof of Lemma 5. �

The second brick of the proof of Theorem 1 consists of verifying that, roughly speaking, for

every fixed j ∈ N, one can chose ℓ sufficiently large such that the probability that each of the

j largest percolation clusters of T with parameter p(n) can be found amongst the root-clusters

of the independent percolations on the ℓ largest tree-components T̃1, . . . , T̃ℓ with respective

parameters exp(−(t(n)− si)) = p(n) exp(si), remains as close to 1 as we wish as n → ∞.

Rigorously, in the notation of Lemma 5, denote by

C̃ ′
1,ℓ ≥ C̃ ′

2,ℓ ≥ . . . ≥ C̃ ′
ℓ,ℓ

14



the rearrangement in decreasing order of the C̃ ′
i for i = 1, . . . , ℓ.

Lemma 6 For each fixed j ∈ N, it holds that

lim
ℓ→∞

lim inf
n→∞

P

(

C̃ ′
i,ℓ = Ci for every i = 1, . . . , j

)

= 1 .

Proof: A Poisson random measure on (0,∞) × [0, t] with intensity measure a−2da ⊗ e−sds

has infinitely many atoms, so in the notation of Lemma 5, we have mini=1,...,j e
−(t−si)ai > 0

a.s. Since the size Cj of the j-th largest cluster cannot be smaller than mini=1,...,j C̃
′
i, where

C̃ ′
i denotes the size of the root-cluster in the percolation on the i-th subtree T̃i with parameter

exp(−(t(n)− si))), we deduce from Lemma 5 and the portmanteau theorem that

lim
α→0+

lim sup
n→∞

P(Cj < αn/ lnn) = 0. (6)

Roughly speaking, this means that for α sufficiently small, when n ≫ 1 the size of the j-th

largest cluster that does not contain the root is unlikely to be smaller than αn/ lnn. On the

other hand, in the notation of Corollary 2, aℓ decreases to 0 when ℓ → ∞ a.s. We deduce from

Corollary 2 and again the portmanteau theorem that for each fixed α > 0,

lim
ℓ→∞

lim
n→∞

P(γℓ,t(n) > αn/ lnn) = 0 ,

where γℓ,t(n) = |Ṽ (ℓ)| is the size of the ℓ-th largest tree-component that does not contain the

root generated by the cutting-down process F up to time t(n).

Recall that the coupling of percolation with the cutting-down process entails that every

percolation cluster is contained in some tree-component of Ft(n). Combining the preceding two

observations, we deduce that if we denote by Λi,ℓ(n) the event that the i-th largest cluster that

does not contain the root is not included in one of the first ℓ largest tree-components generated

by the cutting-down process up to time t(n), then for each fixed i

lim
ℓ→∞

lim sup
n→∞

P(Λi,ℓ(n)) = 0 .

This means that if we chose ℓ sufficiently large, then the probability that each of the j largest

clusters is included in one of the ℓ largest tree-components generated by the cutting-down

process, remains as close to 1 as we wish when n → ∞.

We now conclude from (6) and the first part of Lemma 5 that provided that ℓ is sufficiently

large, the probability that each of the j largest percolation clusters coincides with one the ℓ

root-clusters of the independent percolations on the tree-components T̃1, . . . , T̃ℓ with respective

parameters exp(−(t(n)− si)), remains as close to 1 as we wish when n → ∞. This entails our
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claim. �

The final intermediate step we will need consists of the following elementary features.

Lemma 7 Let (a1, s1), . . . be as in Lemma 5 and x1 ≥ x2 ≥ . . . the decreasing rearrangement

of the infinite sequence (e−(t−si)ai : i ∈ N).

(i) The xi form the sequence of the atoms of a Poisson random measure on (0,∞) with intensity

te−tx−2dx, listed in decreasing order.

(ii) For every ℓ ∈ N, let x1,ℓ ≥ x2,ℓ ≥ . . . ≥ xℓ,ℓ denote the decreasing rearrangement of the finite

sequence (e−(t−si)ai : i = 1, . . . , ℓ). Then for each fixed j ∈ N,

lim
ℓ→∞

P (xi,ℓ = xi for every i = 1, . . . , j) = 1 .

Proof: The first part is immediate from the image property of Poisson random measures and

the fact that the measure te−tx−2dx on (0,∞) arises in this setting as the image of the intensity

measure a−2da⊗ e−sds on (0,∞)× [0, t] by the map (a, s) → x = e−(t−s)a.

The second part is obvious since limi→∞ ai = 0 almost surely. �

We can now finish the proof of Theorem 1. Consider a continuous function f : [0,∞)j → [0, 1]

and fix η > 0. According to Lemma 7(ii), we may chose ℓ sufficiently large so that

E (f (x1, . . . , xj)) ≤ E (f (x1,ℓ, . . . , xj,ℓ)) + η .

On the other hand, again provided that ℓ is chosen sufficiently large, we get from Lemma 6

that there exists nη ∈ N such that the upper bound

E

(

f

(

lnn

n
C1, . . . ,

lnn

n
Cj

))

≤ E

(

f

(

lnn

n
C̃ ′

1,ℓ, . . . ,
lnn

n
C̃ ′

j,ℓ

))

+ η

holds for all n ≥ nη. We now deduce from Lemma 5 and these two bounds that

lim sup
n→∞

E

(

f

(

lnn

n
C1, . . . ,

lnn

n
Cj

))

≤ E (f (x1, . . . , xj)) + 2η .

Because η can be arbitrarily small and f replaced by 1− f , this establishes Theorem 1.

5 Comparing edge-deletion for Cayley and recursive trees

We conclude this work by commenting on similitudes and differences between random edge-

deletion processes on random Cayley trees and on random recursive trees. For every integer
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n, we denote now by T (r,n) a random recursive tree on an ordered set of n + 1 vertices, and

by T (c,n) a random Cayley tree on the same set of vertices. In other words, T (c,n) is a tree

picked uniformly at random amongst the (n+ 1)n−1 trees on these n+ 1 vertices, relaxing the

requirement that vertices on the branch from the root to a leaf should increase, and T (r,n) can be

viewed as a conditioned version of T (c,n). We stress that, informally, the conditioning becomes

singular as n → ∞, and indeed the asymptotic behaviors of T (c,n) and T (r,n) are notoriously

different. For instant, the typical height of T (c,n) is of order
√
n while that of T (r,n) is only of

order lnn.

Both random Cayley trees and random recursive trees fulfill the following fundamental split-

ting property. If we remove one edge uniformly at random, thus disconnecting that tree into

two subtrees, then conditionally on the partition of vertices that results, the structure of each

component is again a random tree of the same type (Cayley or recursive), and further the

two subtrees are independent. This splitting property is of course crucial when iterating the

edge-deletion; I am not aware of other non-degenerate types of random trees fulfilling this

property.

We shall now discuss the effects of two related algorithms on T (c,n) and T (r,n), the first

corresponds to viewing iterated edge-deletion as a continuous-time fragmentation process, while

the second takes the view point of so-called Markov branching trees.

5.1 Fragmentation chains and processes

So imagine first that given T (c,n) or T (r,n), we attach to each edge e an independent exponential

variable ε(e), and remove the edge e at time ε(e). The parameter of ε(e) will be specified

later on, depending both on n and the nature of the random tree. We are interested in the

processes X(c,n) and X(r,n) which record the sizes of the tree-components at time t, re-scaled by

a factor 1/(n+1) and ranked in the decreasing order. These two processes take their values in

the space of mass-partitions, i.e. of non-increasing sequences of nonnegative real numbers with

sum at most 1. The splitting property entails that both are fragmentation chains in the sense

of Definition 1.1 in [2].

We are concerned with the asymptotic behaviors of these processes when n → ∞. In the

Cayley case, Pitman [18, 19] noted that one should take the parameter of the exponential

variable ε(e) attached to a generic edge e to be equal to 1/
√
n. Then the fragmentation chain

X(c,n) has a weak limit X(c) as n → ∞; more precisely X(c) is a self-similar fragmentation

process with index 1/2 which appears as the dual to the standard additive coalescent. See

Aldous and Pitman [1] and Section 5.3.4 in [2]. In the recursive case, we have seen that the

parameter of ε(e) should be chosen as 1/ lnn, and it follows readily from Theorem 1 that

X(r,n) also converges as n → ∞, but now in probability to a deterministic process given by

17



X
(r)
t = (e−t, 0, . . .). The latter should be viewed as a pure erosion, a somewhat degenerate

instance of homogeneous fragmentation. See Chapter 3 in [2] for background.

5.2 Markov branching trees and fragmentation trees

A recent work of Haas and Miermont [9] also invites us to consider a variation of the random

edge-deletion procedure in discrete time. Specifically, given T (c,n) or T (r,n), we consider the

following algorithm. At the first step, we remove an edge uniformly at random, disconnecting

the tree into two subtrees. We iterate independently with each subtree, i.e. at the second step,

we remove an edge chosen uniformly at random in each of the two subtrees (at least provided

that none is reduced to a single vertex), and so on until the tree has been completely destroyed.

Following Haas and Miermont, we represent this algorithm by a random rooted binary tree,

where vertices of the binary tree corresponds to the connected components that arise in the

procedure described above. More precisely, the root of this binary tree is given by the initial

set V of n + 1 vertices, and its leaves are the singletons {i} for i ∈ V . Further, whenever the

edge-removal for some component C produces two sub-components C1 and C2, respectively,

then we create two edges connecting C and its two children, C1 and C2.

Let us denote by T (c,n) and T (r,n) the two random binary trees which result from this con-

struction, where of course the exponent c refers to the case when one starts from the random

Cayley tree T (c,n) and the exponent r to the case when one starts from the random recursive

tree T (r,n). By the splitting property, both T (c,n) and T (r,n) are then Markov branching trees

(see [9] for background). Since Haas and Miermont [9] have recently established a general weak

limit theorem in the sense of Gromov-Hausdorff for sequences of Markov branching trees, it is

therefore natural to consider the asymptotic behaviors of T (c,n) and T (r,n).

The asymptotic behavior of T (c,n) has been determined in [3], see the proof of Lemma 1

there. Roughly speaking, if we rescale the edge-lengths of T (c,n) by a factor 1/
√
n, then the

sequence of rescaled random trees converges weakly towards Aldous’ Continuum Random Tree.

We stress that this is a direct application of the limit theorem of Haas and Miermont.

On the other hand, the results of Haas and Miermont do not apply for the recursive case.

More precisely their fundamental assumption, namely Equation (3) in [9], fails for T (r,n), as it

can be seen from (1). Nonetheless, it is easy to deduce from the approach developed in the

present work that if we rescale the edge-lengths of T (r,n) by a factor n−1 lnn, then the sequence

of rescaled random trees converges in probability to a degenerate deterministic real tree which

can be identified as the unit interval [0, 1]. Details are left to the interested reader.
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