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Abstract

We study several models of random geometric subdivisions arising

from the model of Diaconis and Miclo (2011). In particular, we show

that the limiting shape of an indefinite subdivision of a quadrilateral is

a.s. a parallelogram. We also show that the geometric subdivisions of a

triangle by angle bisectors converge (only weakly) to a non-atomic dis-

tribution, and that the geometric subdivisions of a triangle by choosing

random points on its sides converges to a “flat” triangle, similarly to

the result of Diaconis and Miclo (2011).

Keywords: barycentric subdivision, geometric probability, Markov chain, it-

erated random functions.

AMS subject classification: 60J05, 60D05.

1 Motivation

The aim of this paper is to consider several models involving random subdivi-

sion of geometrical objects. Markov chains involving geometry and polygons

have been studied quite widely in the literature, see e.g. [3] and references

therein; however, the main motivation of this paper comes from the paper by
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Diaconis and Miclo [2], who considered the following model, earlier also stud-

ied by Hough [5]. A non-degenerate triangle is divided by its three medians

into 6 smaller triangles, and one of these new triangles is chosen with equal

probability, and (optionally) re-scaled, thus becoming the “new” triangle.

This procedure is repeated indefinitely. It was shown that in some sense the

limiting triangle will be “flat”, that is the largest angle will converge to π.

In the current paper we consider several generalizations of the above

model. In Section 2 we consider subdivisions of a quadrilateral by the lines

connecting the middle points on the opposite sides; in Section 3 we consider

subdivision of a triangle using angle bisectors. Finally, in Section 4 we con-

sider a sequence of triangles obtained by randomly choosing a point on each

of the sides and letting them be vertices of the new triangle.

2 Random subdivision of quadrilateral
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F

G

H
M

We are given a convex quadrilateral ABCD. Let E, F,G,H be the middle

points of the sides AB, BC, CD, and DA respectively. Let M be the point

of intersection of segments EG and FH . Now we replace ABCD by one
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of the following four quadrilaterals AEMH , EBFM , MFCG and HMGD

with equal probabilities. Suppose that we repeat this procedure indefinitely.

What is the limiting shape of the quadrilateral obtained as the limit of this

procedure?

Theorem 1 Under the procedure described above, the limiting shape of the

quadrilateral will be a parallelogram, and the rate of convergence is geometric.

(Note that the shape of parallelogram is “invariant” for the procedure).

Proof. Observe that ~HF = 1
2
( ~AB + ~DC), and ~HM = ~MF = 1

2
~HF where

~x denotes the vector x. Also suppose that when we replace the original

quadrilateral by one of the four smaller ones, we rescale the smaller one

twice thus making it bigger; this will not affect the shape. Let ~u0 = ~AB and

~v0 = ~DC be the vectors corresponding to the “horizontal” sides of ABCD,

and ~u1, ~v1 be the corresponding vectors of the new quadrilateral obtained by

subdivision. The crucial observation is that

{~u1, ~v1} =

{

{

~u0,
1
2
(~u0 + ~v0)

}

with probability 1/2;
{

~v0,
1
2
(~u0 + ~v0)

}

with probability 1/2.

Similarly we can define {~un, ~vn}, n = 2, 3, . . . .
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✟✟✟✟✟✟✟✟✟✟✟✟✟✯
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❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍ U0

V0

X1

X2

O

Let us place all vectors ~un, ~vn at the origin O and let Un and Vn be the

corresponding endpoints of these vectors. Let Xn = Un if Un /∈ {Un−1, Vn−1}
and Xn = Vn if Vn /∈ {Un−1, Vn−1} (exactly one of these two statements must

be true). Then we see that all points Xn lie on the segment U0V0. Moreover,
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X1 lies exactly in the middle of U0V0, X2 with equal probabilities splits U0X1

or V0X1 in the middle, etc. As a result, we see that Xn a.s. converges to

a point X∞ which is uniformly distributed on the segment U0V0. Taking

into account that |UnVn| = 2−n|U0V0|, we obtain a deterministic speed of

convergence of ~un and ~vn towards ~u∞ := ~OX∞:

|U0V0|
2n+1

≤ max{|~un − ~u∞|, |~vn − ~u∞|} ≤ |U0V0|
2n

.

The analogous statement holds also for the “vertical” sides corresponding to

AD and BC, thus yielding the desired convergence towards a parallelogram.

3 Random subdivision of triangle with angle

bisectors
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EF
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α/2

α/2

β/2

β/2

γ/2 γ/2

β + γ/2 α + γ/2

α + β/2

γ + β/2

β + α/2

γ + α/2
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Unlike the median-subdivision model considered in [2], suppose that we

subdivide the triangle ABC by the three angle bisectors which intersect the

sides AB, BC, CA at points E, F , G respectively, and let M be the point

of intersections of all angle bisectors, the centre of the inscribed circle. The

replacement procedure now states that the triangle ABC is replaced with

probabilities 1/6 by one of the following triangles: ADM , DBM , BEM ,

ECM , CFM , FAM . As before, the object of interest is the shape of the

limiting triangle obtained by indefinite repetition of the above replacement

procedure.

It turns out to be convenient to work with the angles of the triangle. If

the original triangle has the angles (α, β, γ), α + β + γ = π, then the new

triangle will have one of the following six sets of angles:
(

α

2
, γ +

β

2
,
α+ β

2

)

,

(

α

2
, β +

γ

2
,
α + γ

2

)

,

(

β

2
, α+

γ

2
,
β + γ

2

)

,

(

β

2
, γ +

α

2
,
α+ β

2

)

, (3.1)

(

γ

2
, β +

α

2
,
α + γ

2

)

,

(

γ

2
, α+

β

2
,
β + γ

2

)

.

Obviously, we cannot expect convergence almost surely for this procedure

(since e.g. any angle can be halved on the next step with probability 1/3).

Observe that we can generate the sequence of triangles by always choosing

the left-bottom triangle, that is by using the mapping (α, β, γ) →
(

α
2
, γ + β

2
, α+β

2

)

,

and then performing a random permutation of the set of three newly obtained

angles. Formally, let (αn, βn, γn) denote the set of the angles of the n-th tri-

angle, then

(αn+1, βn+1, γn+1) = σn

(

αn

2
, γn +

βn

2
,
αn + βn

2

)

= σn

(

αn

2
, π − αn −

βn

2
,
αn + βn

2

)

(3.2)

where σn =
{

σ(1), σ(2), σ(3), σ(4), σ(5), σ(6)
}

is a random permutation of the

set of three elements; σn

(

(a, b, c)
)

takes one of the six possible values

{(a, b, c), (b, c, a), (c, a, b), (c, b, a), (b, a, c), (a, c, b)}
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with equal probability, and σn’s are i.i.d. The advantage of this method is

that the distribution of the set of the angles of the n-th triangle is completely

symmetric with respect to exchanges of its components, even though the

components are not independent. Unlike the case of barycentric subdivision

studied in [2], only the weak limit exists in our case.

Theorem 2 The sequence (αn, βn, γn) converges in distribution to some limit.

Proof. Let S = {(α, β, γ) : α, β, γ ≥ 0, α+β+γ = π} be the 2-simplex with

the standard Euclidean distance. Let fi(u), u ∈ S, i = 1, . . . , 6 be the set of

functions given by (3.1). Let u = (α, β, γ) and v = (α + x, β + y, γ + z), so

that x+ y + z = 0. Observe that all fi are Lipschitz and that

2
∑

i=1

log
|fi(u)− fi(v)|

|u− v| = log

√

[x2 + y2 + [y + z]2 + xz][x2 + z2 + [y + z]2 + xy]

4(x2 + y2 + z2)2

=
1

2
log

(y2 + 3z2 + 3yz)(3y2 + z2 + 3yz)

16(y2 + z2 + yz)2

≤ 1

2
log

(3y2 + 3z2 + 3yz)(3y2 + 3z2 + 3yz)

16(y2 + z2 + yz)2
= log

3

4
< 0.

The identical bound holds for i = 3, 4 and i = 5, 6. Therefore, if Zu denotes

a set of the angles obtained from u by random subdivision, we have

E

[

log
|Zu − Zv|
|u− v|

]

=

6
∑

i=1

1

6
log

|fi(u)− fi(v)|
|u− v| ≤ log

√
3

2
< 0.

Therefore, by Theorem 1 from [1], see also the proof of Lemma 5.1 in [2], the

mapping u → Zu is ergodic, that is there is a (unique) probability measure

ν on S such that for any starting configuration u = (α, β, γ) ∈ S we have

Z
(n)
u → ν weakly. (Here Z(n) stands for the superposition of n i.i.d. mappings

Z.)

Now let us try to get a handle on the distribution of the limiting triangle.

For the purpose of simplicity, and without loss of generality, assume from

now on that αn + βn + γn ≡ 1 (as opposed to π).
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We already know that (αn, βn) converges to some pair (ᾱ, β̄) in distribu-

tion. Since ᾱ is bounded and β̄ and γ̄ := 1− ᾱ− β̄ have the same distribution

as ᾱ, and ᾱβ̄, β̄γ̄, γ̄ᾱ all have the same distribution as well (from the sym-

metry), we conclude

E [ᾱ + β̄ + γ̄] = 1 =⇒ E ᾱ = E β̄ = E γ̄ =
1

3
,

E [ᾱ + β̄ + γ̄]2 = 1 =⇒ 3E ᾱ2 + 6E [ᾱβ̄] = 1

Also from (3.2) we have

E ᾱ2 =
1

3

[

1

4
E ᾱ2 + E

[

γ̄ +
β̄

2

]2

+
1

4
E (ᾱ + β̄)2

]

.

This in turn yields

E ᾱ2 =
1

7
, E [ᾱβ̄] =

2

21
, Var (ᾱ) =

2

63
, Cov(ᾱ, β̄) = − 1

63

which sheds some light on the distribution of ᾱ and the dependence between

ᾱ and β̄.

A more interesting and subtle statement about the joint distribution of

ᾱ, β̄, γ̄ is the following

Theorem 3 Let c1, c2, c3 be some real numbers, not all of which are 0. Then

distribution of the random variable c1ᾱ + c2β̄ + c3γ̄ does not have atoms.

In fact, we conjecture that the distribution of ν is continuous on the

simplex, and so are the marginal distributions, e.g. the distribution of ᾱ.

Numerical simulations suggest that the pdf of a randomly chosen angle of

a limiting triangle looks like the one shown on Figure 1, which is obviously

quite non-trivial.

Due to the symmetry of the triple (ᾱ, β̄, γ̄) with respect to permutations

and the fact that ᾱ + β̄ + γ̄ = 1, Theorem 3 follows immediately from the

next statement.

Lemma 1 For any c ∈ R and x ∈ R, P(ᾱ+ cβ̄ = x) = 0.
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Figure 1: Density of a randomly chosen angle.

Proof. Equation (3.2) together with the weak convergence of (αn, βn, γn) yield

P(ᾱ + cβ̄ = x) =
1

6

{

P

(

ᾱ

2
+ c

[

1− ᾱ− β̄

2

]

= x

)

+ P

(

c
ᾱ

2
+

[

1− ᾱ− β̄

2

]

= x

)

+ P

(

ᾱ

2
+ c

ᾱ + β̄

2
= x

)

+ P

(

c
ᾱ

2
+

ᾱ + β̄

2
= x

)

+ P

([

1− ᾱ− β̄

2

]

+ c
ᾱ + β̄

2
= x

)

+ P

(

c

[

1− ᾱ− β̄

2

]

+
ᾱ+ β̄

2
= x

)}

. (3.3)

In particular,

P(ᾱ = x) =
1

3

{

P(ᾱ/2 = x) + P(1− ᾱ− β̄/2 = x) + P([ᾱ+ β̄]/2 = x)
}

(3.4)

and if we set x = 1, then

P(ᾱ = 1) =
1

3

{

P(ᾱ/2 = 1) + P(1− ᾱ− β̄/2 = 1) + P([1− γ̄]/2 = 1)
}

=
1

3

{

0 + P(ᾱ = 0, β̄ = 0) + 0
}

=
1

3
P(γ̄ = 1) =

1

3
P(ᾱ = 1),

yielding

P(ᾱ = 1) = 0. (3.5)
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Figure 2: Sample density of ν on simplex S.

Rewriting (3.3) for c /∈ {−1, 1/2, 2} we have

P(ᾱ + cβ̄ = x) =
1

6

{

P

(

ᾱ +
c

2c− 1
β̄ =?

)

+ P

(

ᾱ +
1

2− c
β̄ =?

)

+ P

(

ᾱ +
c

1 + c
β̄ =?

)

+ P

(

ᾱ +
1

1 + c
β̄ =?

)

(3.6)

+P

(

ᾱ +
c− 1

c− 2
β̄ =?

)

+ P

(

ᾱ +
1− c

1− 2c
β̄ =?

)}

where the question marks stand for some non-random numbers. We can

make sense of the expression above also for c ∈ {−1, 1/2, 2} if we replace the

fractions equal to infinity by zeros, due to the symmetry between ᾱ and β̄.

For each c, let x∗(c) be such that P(ᾱ+cβ̄ = x∗(c)) = p∗(c) ≡ maxx∈R P(ᾱ+

cβ̄ = x); clearly such x∗(c) must exist. Suppose that the statement of the

lemma does not hold; then p∗ = supc∈R p
∗(c) > 0. From (3.6) and the sym-

metry between ᾱ and β̄ it follows that

p∗(c) = P
(

ᾱ + cβ̄ = x∗(c)
)

≤ 1

6
{p∗ + p∗ + p∗ + p∗(c+ 1) + p∗ + p∗}

=
1

6
{5p∗ + p∗(c+ 1)} ,

9



hence

p∗(c+ 1) = p∗(c)− 6ε whenever p∗(c) > p∗ − ε.

Fix a very small ε′ > 0 and let c0 be such that p∗(c0) > p∗ − ε′. Then for

ci = c0 + i, i = 1, 2, . . . , we have p∗(ci) > p∗ − 6iε′.

Let A(c) = {ω : ᾱ+ cβ̄ = x∗(c)} and ZN = 1A(c0)+1A(c1)+ · · ·+1A(cN−1).

On one hand,

EZN =
N−1
∑

i=0

P(A(ci)) > Np∗ − 0.2 · 6Nε′

since P(A(ci)) = p∗(ci) > p∗ − 6iε′. On the other hand, for 1 ≤ n ≤ N ,

EZN =
N
∑

i=1

P(ZN ≥ i) ≤ n− 1 + P(ZN ≥ n),

thus

P(ZN ≥ n) > Np∗ − (n− 1)− 0.2 · 6Nε′.

Suppose that

Np∗ > (n− 1) + 0.2 · 6Nε′. (3.7)

Then there is a subset of A(c0), . . . , A(cN−1) containing n distinct elements,

say A(ci1), . . . , A(cin) for which the probability of ∩n
m=1A(cim) is strictly pos-

itive. We are going to make use of

Claim 1 Suppose that z1, z2, . . . , zn, n ≥ 3, is a collection of n distinct real

numbers. Let B =
⋂n

i=1A(zi). If P(B) > 0 then the sets A(zi) \ B, i =

1, 2, . . . , n, are disjoint and as a result

P

(

n
⋃

i=1

A(zi)

)

= P(B) +
n
∑

i=1

P(A(zi) \B) =
n
∑

i=1

P(A(zi))− (n− 1)P(B).

Proof of the claim. Since P(B) > 0, the system of equations






















ᾱ + z1β̄ = x∗(z1)

ᾱ + z2β̄ = x∗(z2)

. . .

ᾱ + znβ̄ = x∗(zn)

10



must have a solution in (ᾱ, β̄). This yields that for all distinct i, j ∈ {1, . . . , n}
we have

β̄ =
x∗(zi)− x∗(zj)

zi − zj
(3.8)

and thus for any three distinct i, j, k

x∗(zi)− x∗(zj)

zi − zj
=

x∗(zi)− x∗(zk)

zi − zk

which in turn leads to ω ∈ A(zi) ∩ A(zj) ⇒ ω ∈ A(zk) for all k ⇒ ω ∈ B.

Now the second statement of the claim is trivial.

From Claim 1 it follows that for B = ∩n
m=1A(cim)

P(B) ≥ −1 +
∑n

m=1 P(A(cim))

n− 1
> p∗ − 6Nε′ − 1

n− 1
.

Let ε′′ = 6Nε′+ 1
n−1

. From (3.8) we have that if we set y =
x∗(ci1 )−x∗(ci2 )

ci1−ci2
then

P(ᾱ = y) = P(β̄ = y) ≥ P(B) ≥ p∗ − ε′′. At the same time, from (3.4) it

follows

p∗ − ε′′ ≤ P(ᾱ = y) =
1

3

{

P (ᾱ = 2y) + P
(

ᾱ + β̄/2 = 2(1− y)
)

+ P
(

ᾱ + β̄ = 2y
)}

=
1

3

{

P (ᾱ = 2y) + P
(

ᾱ + β̄/2 = 2(1− y)
)

+ P (ᾱ = 1− 2y)
}

.

Since each of the expressions on the RHS does not exceed p∗, we have

min{P(ᾱ = 2y),P(ᾱ = 1 − 2y)} ≥ p∗ − 3ε′′. W.l.o.g. assume that 2y ≥ 1/2.

Reiterating (3.4) and recalling (3.5) (so that P(ᾱ ≥ 1) = P(ᾱ = 1) = 0 ) we

obtain

p∗ − 3ε′′ ≤ P(ᾱ = 2y)

=
1

3

{

P (ᾱ = 4y) + P

(

ᾱ +
β̄

2
= 2(1− 2y)

)

+ P (ᾱ = 1− 4y)

}

≤ 1

3

{

0 + P
(

ᾱ+ β̄/2 = 2(1− 2y)
)

+ 0
}

≤ p∗

3

leading to a contradiction, provided ε′′ < 2p∗/9. To finish the proof, we

have to demonstrate that there exist n,N, ε′ instantaneously satisfying this

11



condition as well as (3.7). Indeed, fix an n so large that n− 1 > 9/p∗. Next,

let N be larger than (n− 1)/p∗. Finally, set

ε′ =
min {Np∗ − (n− 1), p∗/9}

6N
> 0.

It is easy to see that (3.7) is fulfilled and moreover

ε′′ = 6Nε′ +
1

n− 1
<

p∗

9
+

p∗

9
=

2p∗

9
.

4 Random subtriangle of triangle

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔✔

❚
❚

❚
❚

❚
❚

❚
❚

❚
❚

❚
❚

❚
❚❚

✟✟✟✟✟✟✟✟✟
❳❳❳❳❳❳❳❳❳❳❳

❉
❉
❉
❉
❉
❉
❉

A B

C

C1

A1

B1

Now on each side of the triangle we randomly (independently and uniformly)

choose points A1, B1, C1. The new triangle is now formed by these three

points (A1B1C1). Repeat this procedure indefinitely. What is the limit of

the shape?

Let a0 = |BC|, b0 = |CA|, and c0 = |AB|. Also let ξa = |BA1|/|BC|,
ξb = |CB1|/|CA|, and ξc = |AC1|/|AB|. According to our assumption,

ξi, i = a, b, c, are independent uniform [0, 1] random variables. Also let

a1 = |B1C1|, b1 = |C1A1|, and c1 = |A1B1| be the sides of the new obtained

triangle.

12



Theorem 4 The limiting triangle shape is a.s. flat (i.e., maximum angle

converges to π). Moreover, for any c < 1 + log 4
3

− π2

9
= 0.365 . . .

yn ≤ e−cn for all sufficiently large n

where yn is the ratio of the height of the triangle corresponding to its largest

side and the length of this side.

Similarly to [2], let us rescale the triangle such that the largest side’s

length (say, AB) is 1, and fit this side on the coordinate plane such that

A = (0, 0), B = (1, 0). Also suppose that C lies in the upper plane and

|AC| ≥ |BC|. Let C = (x, y), then x ∈ [1/2, 1], y ≥ 0, and the pair (x, y)

completely characterizes the shape of the triangle ABC. We also have

A1 = (1− (1− x)ξa, yξa) , B1 = (x(1− ξb), y(1− ξb)) , C1 = (ξc, 0) .

The new side lengths will then satisfy

a21 = [x(1− ξb)− ξc]
2 + [y(1− ξb)]

2

b21 = [(1− (1− x)ξa)− ξc]
2 + [yξa]

2

c21 = [(1− (1− x)ξa)− x(1− ξb)]
2 + [y(1− ξa − ξb)]

2

and according to the standard formulas, the area of the triangle with vertex

coordinates A1, B1, and C1 equals

∆ :=
y

2
[ξaξbξc + (1− ξa)(1− ξb)(1− ξc)]

Thus the new value of y is now

y1 =
2∆

max{a1, b1, c1}2
= y · ξaξbξc + (1− ξa)(1− ξb)(1− ξc)

max{a21, b21, c21}

and also

x1 =















a21+b21−c21
2max{a1,b1}2

if c1 = min{a1, b1, c1};
a21+c21−b21

2max{a1,c1}2
if b1 = min{a1, b1, c1};

b21+c21−a21
2max{b1,c1}2

if a1 = min{a1, b1, c1}.
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which can be summarized as

y1 = y · r,

x1 =
a21 + b21 + c21 − 2min{a21, b21, c21}

2max{a21, b21, c21}
where

r = r(x, y) =
R

max{a21, b21, c21}
and

R = R(ξa, ξb, ξc) = ξaξbξc + (1− ξa)(1− ξb)(1− ξc).

Observe that the denominator of r(x, y) is increasing in y; hence r(x, y) ≤
r(x, 0).

From now on let us assume y = 0. For y = 0, we have that points A1,

B1, C1 all lie on the horizontal axes with coordinates µ = 1 − (1 − x)ξa,

ν = x(1 − ξb) and ξc respectively; we always have 0 ≤ ν ≤ µ ≤ 1 since

ν ∈ [0, x] and µ ∈ [x, 1]. Consequently,

S(x; ξa, ξb, ξc) := max{a1, b1, c1}

= max{µ− ξc, µ− ν, ξc − ν} =















µ− ξc if ξc < ν;

µ− ν if ν ≤ ξc ≤ µ;

ξc − ν if ξc > µ.

Therefore,

E [r(x, 0) | ξa, ξb] =
∫ 1

0

R(ξa, ξb, ξc)

[max{a1, b1, c1}]2
dξc = I1 + I2 + I3

=

∫ ν

0

R(ξa, ξb, ξc)

(µ− ξc)2
dξc +

∫ µ

ν

R(ξa, ξb, ξc)

(µ− ν)2
dξc +

∫ 1

µ

R(ξa, ξb, ξc)

(ξc − ν)2
dξc.

Easy algebra gives

I1 = (ξa + ξb − 1) ln

(

ξbx+ (1− x)(1 − ξa)

1− ξa + ξax

)

+
(1− ξb)ξax

1− ξa + ξax
,

I2 =
ξa + 1− ξb

2
,

I3 = (ξa + ξb − 1) ln

(

1− x+ ξbx

ξbx+ (1− x)(1 − ξa)

)

+
ξa(1− ξb)(1− x)

1− x+ ξbx
,
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hence

E [r(x, 0) | ξa, ξb] = (ξa + ξb − 1) ln

(

1− x+ ξbx

1− ξa + ξax

)

+
ξa + 1− ξb

2

− ξa(1− ξb)(x
2(ξa + ξb − 1) + ξa(1− 2x)− 1)

(1− ξa + ξax)(1− x+ ξbx)
.

As a result,

E [r(x, 0) | ξa] =
∫ 1

0

E [r(x, 0) | ξa, ξb] dξb

=
1

2x2(1− ξa + ξax)
[x(x+ 1− ξa(1− x)(2x+ 3− ξa(2− x)))

+ (1− 2ξa)(1− ξa + ξax)((1− x2) log(1− x) + x2 log(1− ξa + ξax))
]

and thus

E [r(x, y)] ≤ E [r(x, 0)] =

∫ 1

0

E [r(x, 0) | ξa] dξa = 1.

Let (x0, y0), (x1, y1), (x2, y2), . . . be the sequence of coordinates corre-

sponding to the sequence of subdivided triangles. Assume y0 > 0, then with

probability 1 we have yn > 0 for all n. Let Fn be the sigma-field generated

by {(xi, yi), i = 0, 1, . . . , n}. We have just established that

E [yn+1 | Fn] = ynE [r(xn, yn)] ≤ yn.

Thus yn ∈ [0, 1] is a supermartingale which must converge a.s. to some limit

y∞. Let E = {ξa < 0.1, ξb > 0.9}, then P(E) = 0.01 > 0. On the event E

we have c1 ≥ 0.8, hence

r(x, y) =
ξa · [ξbξc] + (1− ξb) · [(1− ξa)(1− ξc)]

max{a1, b1, c1}2
≤ 2 · 0.1

c21
<

1

3
.

Consequently, P(yn+1 < yn/3 | Fn) > 0.01 which implies y∞ = 0 a.s.

Note that

E [logR (ξa, ξb, ξc)] =

∫ 1

0

∫ 1

0

∫ 1

0

log(R) dξc dξb dξa =
π2

9
− 8

3
= −1.57 . . .
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and

E [log S(x; ξa, ξb, ξc)] =

∫ 1

0

dξa

∫ 1

0

dξb

[
∫ ν

0

log(µ− ξc) dξc +

∫ µ

ν

log(µ− ν) dξc

+

∫ 1

µ

log(ξc − ν) dξc

]

= −5

6
− x3 log(x) + (1− x)3 log(x)

3x(1− x)

≥ log 4− 5

6
= −0.602 · · · =: −κ (4.9)

Observe that

log yn − log yn−1 = log r(xn−1, yn−1) ≤ log r(xn, 0)

= logR
(

ξ(n)a , ξ
(n)
b , ξ(n)c

)

− 2 logS
(

xn−1; ξ
(n)
a , ξ

(n)
b , ξ(n)c

)

= ρn + 2σn

where ρn = logR
(

ξ
(n)
a , ξ

(n)
b , ξ

(n)
c

)

are i.i.d. with mean π2

9
− 8

3
and σn =

− log S
(

xn−1; ξ
(n)
a , ξ

(n)
b , ξ

(n)
c

)

are some Fn−adapted random variables respec-

tively. Since 0 ≤ S(·) ≤ 1, we have σn ≥ 0, and also E (σn | Fn−1) ≤ κ due

to (4.9). Additionally, we have for any positive z

P(σn ≥ z | Fn−1) = P

(

S
(

xn−1; ξ
(n)
a , ξ

(n)
b , ξ(n)c

)

≤ e−z | Fn−1

)

≤ P(µ− ν ≤ e−z | Fn−1) = P(xn−1ξb + (1− xn−1)(1− ξa) ≤ e−z | Fn−1)

≤ P(1{xn−1>1/2}xn−1ξb + 1{xn−1≤1/2}(1− xn−1)(1− ξa)] ≤ e−z | Fn−1)

≤ P

(

ξb
2

≤ e−z | Fn−1

)

= 2e−z

since 1− ξa has the same uniform (0, 1) distribution as ξb.

The following statement is related to exponential inequalities involving

martingales; however since we did not find it in the form we needed, we

present its short proof later.

Lemma 2 Let Fn be an increasing family of σ−fields, and σn be Fn-adapted

random variables, possibly unbounded. Suppose that

E [σn | Fn−1] ≤ κ
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and for some z̄ ≥ 0 and c > 0 we have

P(|σn| ≥ z | Fn−1] ≤ e−cz for all z ≥ z̄.

Then

lim sup
n→∞

∑n
i=1 σi

n
≤ κ a.s.

Now from Lemma 2 and the strong law of large numbers it follows that

lim sup
n→∞

log yn
n

≤ lim sup
n→∞

∑n
i=1 ρn
n

+ 2 lim sup
n→∞

∑n
i=1 σn

n

≤ E ρn + 2κ =
π2

9
− 1− log 4

3
= −0.365 . . .

This established the result of Theorem 4.

Theorem 5 xn converges to Uniform [1/2, 1] distribution.

Proof. Since yn → 0 a.s., and xn+1 is continuous in yn near 0, it will suffice

to show that, given yn = 0, xn+1 has U [1/2, 1] distribution. This will follow,

in turn, from the following statement: put µ, ν, ξc in an increasing order, and

denote the resulting values 0 ≤ x(1) < x(2) < x(3) ≤ 1, then χ := x(2)−x(1)

x(3)−x(1) has

U [0, 1] distribution. Indeed, for any z ∈ (0, 1) we have

P(χ ≤ z) = P(χ ≤ z, ξc < ν) + P(χ ≤ z, ν ≤ ξc ≤ µ) + P(χ ≤ z, ξc > µ)

= (I) + (II) + (III).

We have

(I) =

∫ 1

0

dξb

∫ 1

0

dξa

∫ ν

0

1{ ξax−ξc
1−ξb(1−x)−ξc

<z
} dξc =

{

(3z−xz2−zx−x)x
6z(1−x)

if x < z;
(3x−zx2−xz−z)z

6x(1−z)
if x ≥ z,

(II) =

∫ 1

0

dξa

∫ 1

0

dξb

∫ µ

ν

1{ ξc−ξax
1−ξb(1−x)−ξax

<z
} dξc = z/2,

(III) =

∫ 1

0

dξa

∫ 1

0

dξb

∫ 1

µ

1{ 1−ξb(1−x)−ξax

ξc−ξax
<z

} dξc

=

{

3z2+z2x2−3z2x+zx2−3zx+x2

6z(1−x)
if x < z;

(1−x)2z2

6(1−z)x
if x ≥ z.
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As a result, P(χ ≤ z) = (I) + (II) + (III) = z and thus χ has a uniform

[0, 1] distribution.

4.1 Proof of Lemma 2

Proof. The result follows from the Borel-Cantelli lemma, once we establish

that for any ε > 0 there is a δ = δ(ε) > 0 such that

P

(

n
∑

i=1

σi ≥ (κ+ ε)n

)

≤ e−δn. (4.10)

First, by Markov inequality, for any λ > 0

P

(

n
∑

i=1

σi ≥ (κ+ ε)n

)

= P

(

eλ
∑n

i=1 σi ≥ eλn(κ+ε)
)

≤ e−λn(κ+ε)
E

[

eλ
∑n

i=1 σi

]

= e−λn(κ+ε)
EE

[

eλ
∑n

i=1 σi | Fn−1

]

= e−λn(κ+ε)
E

[

eλ(
∑n−1

i=1 σi)E [eλσn | Fn−1]
]

.

Now to show (4.10) by induction, it suffices to demonstrate that there are

λ > 0 and δ > 0 such that E [eλσn | Fn−1] < eλ(κ+ε)−δ for all n.

Indeed, (see e.g. [4], Lemma 5.7 in Section 1)

E

[

λk|σn|k
k!

| Fn−1

]

=
λk

k!

∫ ∞

0

kzk−1
P(|σn| > z | Fn−1) dz

≤ λk

k!

[

z̄k +

∫ ∞

z̄

kzk−1e−cz dz

]

≤ λk

k!

[

z̄k + k!c−k
]

=
(λz̄)k

k!
+

(

λ

c

)k

,

therefore, assuming λ < min(c, 1), by Dominated convergence theorem we
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have

E [eλσn | Fn−1] = 1 + λE [σn | Fn−1] +

∞
∑

k=2

λk
E [σk

n | Fn−1]

k!

≤ 1 + λκ+

∞
∑

k=2

E

[

λk|σn|k
k!

| Fn−1

]

(4.11)

≤ 1 + λκ+

∞
∑

k=2

(

λ

c

)k

+

∞
∑

k=2

(λz̄)k

k!

≤ 1 + λκ+
λ2

c(c− λ)
+ λ2[ez̄ − 1− z̄]

Now by choosing λ > 0 sufficiently small, we can make (4.11) smaller than

eλ(κ+ε)−δ > 1 + λκ+ (λε− δ) for some δ > 0, thus finishing the proof.
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