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GRAPH BOOTSTRAP PERCOLATION

JÓZSEF BALOGH, BÉLA BOLLOBÁS, AND ROBERT MORRIS

Abstract. Graph bootstrap percolation is a deterministic cellular automaton which was
introduced by Bollobás in 1968, and is defined as follows. Given a graph H , and a set
G ⊂ E(Kn) of initially ‘infected’ edges, we infect, at each time step, a new edge e if
there is a copy of H in Kn such that e is the only not-yet infected edge of H . We say
that G percolates in the H-bootstrap process if eventually every edge of Kn is infected.
The extremal questions for this model, when H is the complete graph Kr, were solved
(independently) by Alon, Kalai and Frankl almost thirty years ago. In this paper we study
the random questions, and determine the critical probability pc(n,Kr) for the Kr-process
up to a poly-logarithmic factor. In the case r = 4 we prove a stronger result, and determine
the threshold for pc(n,K4).

1. Introduction

Cellular automata, which were introduced by von Neumann (see [32]) after a suggestion of
Ulam [34], are dynamical systems (defined on a graph G) whose update rule is homogeneous
and local. We shall study a particular cellular automaton, called H-bootstrap percolation,
which was introduced over 40 years ago by Bollobás [13]. This model is a substantial gen-
eralization of r-neighbour bootstrap percolation (see below), an extensively studied model
related to statistical physics. We shall determine the critical probability for Kr-percolation
up to a poly-logarithmic factor for every r > 4 and moreover, using a completely different
method, we shall determine the threshold for percolation in the case r = 4.

Given a graph H , we define H-bootstrap percolation (or H-edge-bootstrap percolation) as
follows. Given a set G ⊂ E(Kn) of initially ‘infected’ edges on vertex set [n] (that is, given
a graph), we set G0 = G and define, for each t > 0,

Gt+1 := Gt ∪
{

e ∈ E(Kn) : ∃H with e ∈ H ⊂ Gt ∪ {e}
}

.

In words, this says that an edge e becomes infected at time t + 1 if there exists a copy of
H in Kn for which e is the only uninfected edge at time t. Let 〈G〉H =

⋃

t Gt denote the
closure of G under the H-bootstrap process, and say that G percolates (or H-percolates) in
Kn if 〈G〉H = E(Kn).

The H-bootstrap process was introduced over 40 years ago by Bollobás [13] (see also [15]),
under the name ‘weak saturation’. He conjectured that if a graph G percolates in the Kr-
process, then G has at least

(

n
2

)

−
(

n−r+2
2

)

edges, and, building on work in [12], proved his
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conjecture when r 6 7. For general r, the conjecture was proved using linear algebraic
methods by Alon [1], Frankl [23] and Kalai [30]. See [9] for more recent extremal results, on
a closely related process, using such methods.

In this paper, we shall study the H-bootstrap process in the random setting, i.e., when
the initial graph G is chosen to be Gn,p. Apart from its intrinsic interest, this question is
motivated by the following, closely related cellular automaton, which was introduced in 1979
by Chalupa, Leath and Reich [18] in the context of disordered magnetic systems, and for
which our process is named. Given an underlying graph G, an integer r and a set of infected
vertices A ⊂ V (G), set A0 = A and let

At+1 := At ∪
{

v ∈ V (G) : |N(v) ∩ At| > r
}

for each t > 0; that is, we infect a vertex if it has at least r already-infected neighbours. Say
that the set A percolates if the entire vertex set is eventually infected. This process is known
as r-neighbour bootstrap percolation, and has been extensively studied by mathematicians
(see, for example, [3, 5, 17, 27, 28, 33]), physicists (see [2], and the references therein) and
sociologists [25, 35], amongst others. It has moreover found applications in the Glauber
Dynamics of the Ising model (see [22, 31]).

The r-neighbour bootstrap model is usually studied in the random setting, where the
main question is to determine the critical threshold at which percolation occurs. To be
precise, if V (G) = [n] and the elements of A ⊂ V (G) are chosen independently at random,
each with probability p, then one aims to determine the value pc of p = p(n) at which
percolation becomes likely. Sharp bounds on pc have recently been determined in several
cases of particular interest, such as [n]d (see [5, 6, 7, 8, 26, 27]), on a large family of ‘two-
dimensional’ graphs [19], on trees [10, 21], and on various types of random graph [11, 29].
In each case, it was shown that the critical probability has a sharp threshold.

Motivated by these results, let us define the critical threshold for H-bootstrap percolation
on Kn as follows:

pc(n,H) := inf
{

p : P
(

〈Gn,p〉H = Kn

)

> 1/2
}

,

where Gn,p is the Erdős-Rényi random graph, obtained by choosing each edge independently
with probability p. (For background on the theory of Random Graphs, see [14].) We remark
that, by a general result of Bollobás and Thomason [16], the event 〈Gn,p〉H = Kn has a
threshold, i.e., if p ≪ pc(n,H) then the probability of percolation is o(1), and if p ≫ pc(n,H)
then it is 1− o(1). Moreover, a general result of Friedgut [24, Theorem 1.4], combined with
Theorem 2, below, shows that this event has a sharp threshold1 when H = K4, and we
expect this to hold for all Kr. However, it is not hard to see that if H = Kr + e (i.e., H is
Kr plus a pendant edge) then the events 〈Gn,p〉H = Kn and Kr − e ⊂ Gn,p differ by a set of
measure o(1) at p = pc, so in this case the event has a coarse threshold.

Our aim is to determine pc(n,H) for every graph H . Here we shall study the case H = Kr,
the complete graph; our main theorems partially solve Problem 1 of [15]. In order to aid
the reader’s intuition, let us first consider the case H = K3, which follows easily from
classical results. Indeed, it is easy to see that G percolates in the K3-process if and only if

1An event A has a sharp threshold if the ‘window’ (in p) in which A has probability between ε and 1 − ε
has size o(pc); otherwise it has a coarse threshold.
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G is connected. It is well-known (see [14]) that, with high probability, Gn,p is connected if
and only if it has no isolated vertex; thus, a straightforward calculation gives the following
theorem of Erdős and Rényi [20], which was one of the first results on random graphs:

pc(n,K3) =
log n

n
+ Θ

(

1

n

)

.

In fact Erdős and Rényi proved even more: that if p = (logn + c)/n, then the probability

that Gn,p percolates in the K3-process converges to e−e−c

as n → ∞. We remark that the
same result holds for the Ck-process for any k > 3, see Section 5.

For r > 4, the problem is more challenging, since there seems to be no simple description
of the closed sets under the Kr-process. Set

λ(r) :=

(

r
2

)

− 2

r − 2
.

The following theorem is our main result.

Theorem 1. For every r > 4, there exists a constant c = c(r) > 0 such that

n−1/λ(r)

c log n
6 pc(n,Kr) 6 n−1/λ(r) logn

for every sufficiently large n ∈ N.

In fact we shall prove slightly stronger bounds (see Propositions 3 and 8); however, we do
not expect either of our bounds to be sharp. The proof of the lower bound in Theorem 1 is
based on an extremal result on graphs which cause a given edge to be infected (see Lemma 9).
Although it is not long, the proof of this lemma is delicate, and does not seem to extend
easily to other graphs. The upper bound, on the other hand, holds for a much wider family
of graphs H (see Section 2), which we call ‘balanced’.

In the case r = 4 we shall prove the following stronger result, which determines the sharp
threshold of pc(n,K4) up to a constant2 factor.

Theorem 2. If n is sufficiently large, then

1

4

√

1

n log n
6 pc(n,K4) 6 24

√

1

n log n
.

The proof of Theorem 2 is completely different from that of Theorem 1, and is based on
ideas from two-neighbour bootstrap percolation on [n]d.

The rest of the paper is organized as follows. In Sections 2 and 3 we shall prove the upper
and lower bounds in Theorem 1, respectively. In Section 4 we shall prove Theorem 2, and
in Section 5 we shall discuss other graphs H , and state some open problems.

2In the published version of this article, we stated a slightly stronger upper bound than that claimed here.
This was due to a small error in the proof of Proposition 23, below. We would like to thank Brett Kolesnik
for pointing out this error to us.
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2. An upper bound for balanced graphs

In this section we shall prove the upper bound in Theorem 1; in fact we prove a stronger
bound for a more general family of graphs, H . Throughout, we shall assume that v(H) > 4,
since otherwise the problem is trivial. We make the following definition.

Definition 1. We call a graph H balanced if e(H) > 2v(H)− 2, and

e(F )− 1

v(F )− 2
6 λ(H) :=

e(H)− 2

v(H)− 2

for every proper subgraph F ⊂ H with v(F ) > 3.

It is straightforward to check that the complete graph Kr is balanced for every r > 4.
Thus, the upper bound in Theorem 1 follows immediately from the following proposition.

Proposition 3. If H is a balanced graph, then

pc(n,H) 6 C

(

log n

log log n

)2/λ(H)

n−1/λ(H),

for some constant C = C(H) > 0.

Note that λ(Kr) = λ(r) is increasing, and satisfies

r

2
6 λ(r) 6

r + 1

2
(1)

if r > 4 (we shall use these bounds several times during the proof), so Proposition 3 actually
implies the following slightly stronger upper bound than that stated in Theorem 1:

pc(n,Kr) 6 n−1/λ(H)
(

logn
)4/r

.

We begin by sketching the proof of Proposition 3. We shall describe one way in which an
edge can be infected after d steps, and then show that (with high probability) most edges will
be infected in this way (if they are not already infected sooner). Indeed, for each d ∈ N we
shall define a graph Hd with (v(H)−2)d+2 vertices and (e(H)−2)d+1 edges, and an edge

e ∈
(

V (Hd)
2

)

\ E(Hd) (which we call the root of Hd) such that e ∈ 〈Hd〉H , and Hd is minimal
subject to this condition. In other words, Hd causes e to be infected in the H-bootstrap
process, and no subgraph of Hd has this property.

To define the graphs Hd, first choose a sequence of edges (e1, e2, . . .) of H such that for
every j ∈ N, ej and ej+1 do not share an endpoint. Let (H(1), H(2), . . . , H(d)) be a sequence
of copies of H and, for each 1 6 j 6 d − 1, identify the endpoints of the edge ej+1 in H(j)

and H(j+1) (see Figure 1). Finally, remove the edge e1 from H(1) and, for each 1 6 j 6 d−1,
remove the edge ej+1 from H(j) ∩H(j+1).
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Figure 1: The graph H5
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For each 1 6 j 6 d, let Vj = V (Hj), so |Vi∩Vj | = 2 if |i−j| = 1, and |Vi∩Vj | = 0 otherwise.
Note that E(Hd) = E(Hd[V1]) ∪ . . . ∪ E(Hd[Vd]), that E

(

Hd[Vj ]
)

= E(H) \
{

ej , ej+1

}

for

every 1 6 j 6 d − 1, and that E
(

Hd[Vd]
)

= E(H) \ {ed}. Finally, set root(Hd) = e1. We
remark that although the definition of Hd depends on the choice of (e1, e2, . . .), the proof
below will work for any such sequence.

We shall use the following simple properties of Hd.

Observation 4. For every d ∈ N,

(a) v(Hd) = (v(H)− 2)d+ 2 (b) e(Hd) = (e(H)− 2)d+ 1 (c) root(Hd) ∈ 〈Hd〉H .
Proof. Properties (a) and (b) follow immediately from the definition, since the edge sets of
Hd[Vj ] are all disjoint. To prove (c), simply note that the edge ed−j+1 is infected after j steps
of the H-bootstrap process on Hd, since it completes a copy of H on vertex set Vd−j+1, and
hence e1 ∈ 〈Hd〉H , as claimed. �

Let Xd(e) be the random variable which counts the number of copies of Hd in Gn,p, rooted
at a given edge e ∈ E(Kn). It is straightforward (using properties (a) and (b)) to show that
the expected value of Xd is large if p

λ(H)n > (log n)2 (see Lemma 5); the main challenge will
be to bound the variance of Xd. The key step is therefore Lemma 6, below, which controls
the number of edges in the intersection of two copies of Hd with the same root: this will
enable us to prove Lemma 7. Having bounded the variance of Xd, the proposition follows
easily by Chebyshev’s inequality.

We begin by bounding the expected value of the counting function Xd(e).

Lemma 5. Let H be a balanced graph, and e ∈ E(Kn). If p = p(n) and d = d(n) are chosen

so that pλ(H)n > ωv(H)d and ω(v(H)−2)d > n for some function ω = ω(n), and pn → ∞,

then

E
(

Xd(e)
)

→ ∞
as n → ∞.

Proof. Recall that Hd has (v(H)− 2)d+ 2 vertices and (e(H)− 2)d+ 1 edges. Thus

E
(

Xd(e)
)

>

(

n

v(Hd)− 2

)

pe(Hd) >

(

n

v(H)d

)(v(H)−2)d

p(e(H)−2)d+1.

Since e(H)− 2 = λ(H)(v(H)− 2), and using our bounds on ω, it follows that

E
(

Xd(e)
)

> p

(

pλ(H)n

v(H)d

)(v(H)−2)d

> p · ω(v(H)−2)d > pn → ∞,

as required. �

We shall next bound the variance of Xd(e); the following lemma is the key step.

Lemma 6. Let H be a balanced graph, and let d ∈ N. If F ( Hd contains the endpoints of

the root of Hd, then

e(F ) 6
(

v(F )− 2
)

λ(H).
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Proof. We shall use induction on d. The case d = 1 is trivial, since F contains the endpoints
of the root of Hd, so either v(F ) = 2 and e(F ) = 0, or v(F ) > 3 and F + e ( H , in which
case the bound follows by Definition 1. Let d > 2, and assume that the result holds for every
d′ < d. For each j ∈ [d], let Fj = H(j)[V (F ) ∩ Vj] be the subgraph of H(j) induced by the
vertices of F .

Suppose first that v(Fj) 6 1 for some j ∈ [d], and let F ′ and F ′′ be the subgraphs of Hd

induced by V (F ) ∩
(

V1 ∪ . . . ∪ Vj−1

)

and V (F ) ∩
(

Vj+1 ∪ . . . ∪ Vd

)

, respectively. Applying
the induction hypothesis to F ′, we see that

e(F ) = e(F ′) + e(F ′′) 6
(

v(F ′)− 2
)

λ(H) + e(F ′′),

so it will suffice to prove that e(F ′′) 6 v(F ′′)λ(H). Now, applying the induction hypothesis
to F ∗, the subgraph of Hd induced by V (F ′′) ∪ (Vj ∩ Vj+1), we get either

e(F ∗) 6
(

v(F ∗)− 2
)

λ(H) 6 v(F ′′)λ(H)

as required, or V (F ∗) = Vj+1 ∪ . . . ∪ Vd. But in the latter case e(F ∗) − e(F ′′) > 1, since
v(Fj) 6 1 implies that v(F ∗) > v(F ′′), and δ(H) > 2 (since H is balanced), so the new
vertex adds at least one new edge. It follows that

e(F ′′) 6 e(F ∗)− 1 =
(

v(F ∗)− 2
)

λ(H) 6 v(F ′′)λ(H),

as required. Hence we may assume that v(Fj) > 2 for every j ∈ [d].
Next, suppose that V (F ) = V (Hd). In this case the lemma is easy, since F 6= Hd (by

assumption), and so

e(F ) 6 e(Hd)− 1 =
(

e(H)− 2
)

d =
(

v(H)− 2
)

λ(H) · d =
(

v(F )− 2
)

λ(H)

as required, since v(F )− 2 = v(Hd)− 2 = (v(H)− 2)d.
Thus we may assume that v(F ) < v(Hd), and that v(Fj) > 2 for every j ∈ [d]. Now, for

each j ∈ [d − 1], let Ej denote the event that Vj ∩ Vj+1 ⊂ V (F ), and let 1[·] denote the
indicator function. Then, recalling that Fj = H(j)[Vj ∩ V (F )], we have

e(F ) 6

( d
∑

j=1

e(Fj)

)

− 1− 2

d−1
∑

j=1

1[Ej ],

by the definition of Hd, and since F contains the endpoints of the root of Hd. We next claim
that, since H is balanced and v(F ) < v(Hd), it follows that

e(F ) 6

d
∑

j=1

(

(

v(Fj)− 2
)

λ(H) + 2
)

− 2− 2

d−1
∑

j=1

1[Ej]

=

( d
∑

j=1

v(Fj)− 2d

)

λ(H) +
(

2d− 2
)

− 2

d−1
∑

j=1

1[Ej ].

To see this, observe that e(Fj) 6
(

v(Fj)−2
)

λ(H)+1 holds for every Fj ( H with v(Fj) > 2,
by Definition 1, and that Fj 6= H for some j ∈ [d], since v(F ) < v(Hd).
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Finally, observe that

v(F ) >

d
∑

j=1

v(Fj)− (d− 1)−
d−1
∑

j=1

1[Ej],

and so

e(F ) 6

(

v(F )− d− 1 +
d−1
∑

j=1

1[Ej ]

)

λ(H) +
(

2d− 2
)

− 2
d−1
∑

j=1

1[Ej ].

But
(

d− 1−
d−1
∑

j=1

1[Ej ]

)

λ(H) > 2d− 2− 2

d−1
∑

j=1

1[Ej ],

since λ(H) > 2, by Definition 1. Hence

e(F ) 6
(

v(F )− 2
)

λ(H)

for every F ( H , as required. �

It is now straightforward to deduce the required bound on the variance of the counting
function Xd(e).

Lemma 7. Let H be a balanced graph, and e ∈ E(Kn). If p = p(n) and d = d(n) are chosen

so that v(Hd)
−2pλ(H)n → ∞ as n → ∞, then

Var
(

Xd(e)
)

E
(

Xd(e)
)2 → 0

as n → ∞.

Proof. Let ℓ(Hd) denote the number of copies of Hd, rooted at e, which have the same vertex
set. Then

E
(

Xd(e)
)

=

(

n

v(Hd)− 2

)

ℓ(Hd) · pe(Hd).

Moreover, we claim that

Var
(

Xd(e)
)

6

v(Hd)−2
∑

m=1

ℓ(Hd)
2

(

n

m

)(

n

v(Hd)−m− 2

)2

p2e(Hd)−λ(H)m. (2)

To see this, we simply count (ordered) pairs (A,B), where A and B are copies of Hd in Gn,p

with root e. Let F = Hd[A∩B] and m = |V (A) ∩ V (B)| − 2, so F is the intersection of the
edge sets of A and B, and m is the number of vertices in their intersection, not counting the

endpoints of e. Note that we expect at most E
(

Xd(e)
)2

such pairs (A,B) with m = 0.
By Lemma 6, if A 6= B then e(F ) 6 λ(H)m, and so e(A ∪ B) > 2e(Hd) − λ(H)m.

Moreover, given m, there are at most

ℓ(Hd)
2

(

n

m

)(

n

v(Hd)−m− 2

)2

choices for A and B. This proves (2).
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Combining the bounds above, and setting k = v(Hd), it follows that Var(Xd(e))
/

E(Xd(e))
2

is at most
k−2
∑

m=1

(

n
m

)(

n
k−m−2

)2

(

n
k−2

)2 · p−λ(H)m 6

k−2
∑

m=1

nm

m!
· (k − 2)!2

(k −m− 2)!2
·
(

1

n− k

)2m

· p−λ(H)m.

Since k = o(n) (by assumption), it follows that

Var
(

Xd(e)
)

E
(

Xd(e)
)2 6

k−2
∑

m=1

2m ·m!

(

k − 2

m

)2(
2

pλ(H)n

)m

6

k−2
∑

m=1

(

4k2

pλ(H)n

)m

→ 0

as n → ∞, as required. �

We can now deduce Proposition 3 using Chebyshev’s inequality and sprinkling.

Proof of Proposition 3. LetH be a balanced graph, suppose that p ≫
(

logn
log logn

)2/λ(H)

n−1/λ(H),

and let

d(n) =

⌊

log n

log logn

⌋

.

We claim that p(n) and d(n) satisfy the conditions of Lemmas 5 and 7. Indeed, setting
ω(n) = d(n) we have pλ(H)n ≫ ωd and ω2d ≫ n, so Lemma 5 holds, and pλ(H)n ≫ d2, so
Lemma 7 holds. Thus, by Chebyshev’s inequality,

P
(

Xd(e) = 0
)

6
Var
(

Xd(e)
)

E
(

Xd(e)
)2 → 0

as n → ∞. Moreover, if Xd(e) 6= 0 then e ∈ 〈Gn,p〉H , since if e is the root of some copy of
Hd then it is infected after at most d steps of the H-process. Hence, by Markov’s inequality,

if pλ(H)n ≫
(

logn
log logn

)2

then, with high probability, all but o(n2) edges of Kn are infected in

the H-process on Gn,p.
To finish the proof, we shall show that by sprinkling O(n logn) extra edges, we shall infect

all of the remaining edges, with high probability. We use the following easy claim.

Claim: If v(G) = n and e(G) >
(

n
2

)

− o(n2), then there is a clique of size n− o(n) in 〈G〉H .
Proof of Claim. Let 0 < c < 1/2 be arbitrary, and let

D :=
{

x ∈ V (G) : dG(x) > (1− c)n
}

.

By our assumption, |D| = n− o(n); we claim that D is a clique in 〈G〉H .
Indeed, if x, y ∈ D then by Turán’s Theorem there is a (v(H)−2)-clique in NG(x)∩NG(y),

since |NG(x) ∩ NG(y)| > (1 − 2c)n and o(n2) edges are missing. But then xy ∈ 〈G〉H, and
so D is a clique of size n− o(n) in 〈G〉H, as claimed. �

Continuing our proof of Proposition 3, let us sprinkle edges with density p; that is, let us
take a second copy of Gn,p and consider the union of the two random graphs. We obtain a
random graph Gn,p∗ of density p∗ = 1 − (1 − p)2 < 2p. Let K be the clique found in the
claim, and observe that if every vertex outside K has at least v(H)− 1 neighbours in K (in
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the second copy of Gn,p) then Gn,p∗ will percolate. Since pn ≫ logn, this occurs with high
probability, and hence

pc(n,H) 6 C

(

log n

log log n

)2/λ(H)

n−1/λ(H),

if C = C(H) is sufficiently large, as required. �

3. Lower bound for Kr-percolation

In this section we shall prove the following proposition, which shows that, if r > 4 and
(p logn)λ(r)n = o(1), then with high probability o(n2) edges are infected in the Kr-bootstrap
process with initial set Gn,p.

Proposition 8. Let r > 4, and let e ∈ E(Kn). If pn
1/λ(r) log n 6 1/(2e), then

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0

as n → ∞.

The idea of the proof is as follows. If e ∈ 〈G〉Kr
for some graph G, then there must exist

a ‘witness set’ of edges of G which caused e to be infected. We shall describe an algorithm
which finds such a set F = F (e) of edges, and show that this set has two useful properties:

(a) e(F ) > λ(r)
(

v(F )− 2
)

+ 1 (see Lemma 9).

(b) If e(F ) >
(

r
2

)

L, then L 6 e(F (f)) 6
(

r
2

)

L for some f ∈ 〈G〉Kr
(see Lemma 13).

Property (a) will allow us to bound the expected number of such sets when G = Gn,p and
e(F ) = O(logn); combining it with property (b) will allow us to do so when e(F ) is larger
than this.

3.1. Extremal results. Let r > 4 be fixed for the remainder of this section, and let G be
an arbitrary graph. We begin by describing the algorithm which finds F (e).

The Witness-Set Algorithm. We assign a graph F = F (e) ⊂ G to each edge e ∈ 〈G〉Kr

as follows:

1. If e ∈ G then set F (e) = {e}.
2. Choose an order in which to infect the edges of 〈G〉Kr

, and at each step identify which
r-clique was completed (if more than one is completed then choose one).

3. Infect the edges one by one. If e is infected by the r-clique K, then set

F (e) :=
⋃

e 6=e′∈K

F (e′).

We call the graph F (e) a witness set for the event e ∈ 〈G〉Kr
.

Since every e 6= e′ ∈ K is either in G, or was infected earlier in the process, the algorithm
is well-defined. Note that the graphs F (e) depend on the order in which we chose to infect
the edges (that is, they depend on Step 2 of the algorithm); the results below hold for every
possible such choice.
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We shall say that a graph F is an r-witness set if there exists a graph G, an edge e, and
a realization of the Witness-Set Algorithm (i.e., a choice as in Step 2) such that F = F (e).
The key lemma in the proof of Proposition 8 is the following extremal result.

Lemma 9. Let F be a graph and r > 4, and suppose that F is an r-witness set. Then

e(F ) > λ(r)
(

v(F )− 2
)

+ 1.

We shall prove Lemma 9 using induction; in order to do so, we shall need to state a more
general version of it (see Lemma 10, below). The statement is slightly technical, and we shall
need some preparatory definitions. We shall use the following algorithm, which is simply a
restatement of the Witness-Set Algorithm.

The Red Edge Algorithm. Let G be a graph, let r > 4, and let e ∈ 〈G〉Kr
\G.

1. Run the Witness-Set Algorithm until edge e is infected.
2. Let (e1, e2, . . . , em) be the infected edges which satisfy F (ej) ⊂ F (e) and ej 6∈ G,

written in the order in which they are infected, where em = e.
3. For each 1 6 j 6 m, let K(j) be the r-clique which is completed by ej .
4. Colour the edges {e1, . . . , em} red, and note that ej ∈ K(j) \

(

K(1) ∪ . . . ∪K(j−1)
)

.

The key observation is that F (e) =
(

K(1) ∪ . . . ∪K(m)
)

\
{

e1, . . . , em
}

, or, in words, F (e)
consists of all the non-red edges of the cliques which led to its infection. Indeed, the red
edges were infected during the process, and so cannot be in F (e); on the other hand, for each
1 6 j 6 m the condition F (ej) ⊂ F (e) implies that K(j) \

{

e1, . . . , em
}

⊂ F (f) for some

f ∈ K(m). The reader should think about the Red Edge Algorithm in the following way: at
each step an r-clique is added, and one of the new edges of this clique is coloured red.

We shall bound the number of non-red edges after t steps of the Red Edge Algorithm.
Thus, given a realization of the algorithm and t ∈ [m], define

Bt :=
(

K(1) ∪ . . . ∪K(t)
)

\
{

e1, . . . , et
}

.

Note that Bt 6= F (et) in general, since the condition F (ej) ⊂ F (e) for each j ∈ [m] does not
imply that F (ei) ⊂ F (et) for every i ∈ [t]. In order to state Lemma 10, we need to define
two more parameters of the model, which will both play a key role in the induction step.

Definition 2. Let Gt denote the graph, obtained using the Red Edge Algorithm, whose
vertices are the cliques

{

K(1), . . . , K(t)
}

, and in which two cliques are adjacent if they share
at least two vertices.

Let ℓ = ℓt denote the number of components of Gt, let c(v) = ct(v) denote the number of
components of Gt containing the vertex v ∈ V (G), and set

k = kt =
∑

v∈V (Bt)

(

ct(v)− 1
)

.

Here, and throughout, we treat components of Gt as subsets of V (G), and trust that this
will not cause confusion.

The following lemma implies Lemma 9, since the graph Gm is connected (see below), and
so ℓm = 1 and hence km = 0.
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Lemma 10. e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + k − ℓr
)

+ ℓ

((

r

2

)

− 1

)

.

We shall prove Lemma 10 by induction on t. The induction step will be relatively straight-
forward when ℓt > ℓt−1; when ℓt < ℓt−1 we shall need the following lemma.

Say that a (multi-)family of sets A is a double cover of X if every element of X is in at
least two members of A.

Lemma 11. Let m > 2 and r > 4, and let A be a multi-family of subsets of [m]. If A is a

double cover of [m], and |A| 6 r, then
∣

∣

∣

∣

{

{A,B} ∈
(A
2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

6 λ(r)

(

∑

A∈A

|A| − 2m

)

+ m. (3)

Proof of Lemma 11. We shall use induction on m. Suppose first that m = 2, and let A
consist of x sets of size two and y sets of size one. If x > 2, then we have

(

x

2

)

+ xy +

(

y

2

)

=

(

x+ y

2

)

= λ(x+ y)(x+ y − 2) + 2 6 λ(r)
(

2x+ y − 4
)

+ 2,

since 2x+ y > 4 and x+ y 6 r. Similarly, if x = 1 then y+
(

y−1
2

)

6 λ(r)(y− 2)+2 for every

2 6 y 6 r − 1, and if x = 0 then 1 +
(

y−2
2

)

6 λ(r)(y − 4) + 2 for every 4 6 y 6 r.3

So let m > 3, and let A be a multi-family as described, let T = {A ∈ A : m ∈ A}, and
apply the induction hypothesis to the multi-family A′ obtained by removing m from each
element of T . Letting t = |T |, assume first that t < r. This gives

∣

∣

∣

∣

{

{A,B} ∈
(A
2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

6

∣

∣

∣

∣

{

{A,B} ∈
(A′

2

)

: A ∩B 6= ∅
}

∣

∣

∣

∣

+

(

t

2

)

6 λ(r)

(

∑

A∈A′

|A| − 2m+ 2

)

+ (m− 1) +

(

t

2

)

= λ(r)

(

∑

A∈A

|A| − 2m

)

+ (m− 1) +

(

t

2

)

− λ(r)(t− 2),

so it will suffice to show that λ(r)(t− 2) >
(

t
2

)

− 1. But
(t
2
)−1

t−2
= t+1

2
, and λ(r) > r

2
if r > 4,

so we are done unless t = r.
Finally, suppose that t = r. Then the left-hand side of (3) is equal to

(

r
2

)

, and the
right-hand side is at least

λ(r)
(

r + 2(m− 1) − 2m
)

+ m =

(

r

2

)

− 2 + m >

(

r

2

)

,

since A is a double cover of [m] and m > 2. The induction step, and hence the lemma,
follows. �

In fact, the following reformulation of Lemma 11 will be more convenient for us in the
proof below. Here N0 = {0, 1, 2, . . .}, and P(m) denotes the non-empty subsets of [m].

3In each case, note that it suffices to check the extreme values of y, and recall that λ(r) > r/2.
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Lemma 12. Let m > 2 and r > 4. Given any function a : P(m) → N0 such that
∑

S aS 6 r
and

∑

S∋j aS > 2 for every j ∈ [m], we have

∑

S∈P(m)

(

aS
2

)

+
∑

{S,T}∈J

aSaT 6 λ(r)

(

∑

S∈P(m)

aS|S| − 2m

)

+ m, (4)

where J =
{

{S, T} ∈
(

P(m)
2

)

: S ∩ T 6= ∅
}

.

Proof. We apply Lemma 11 to the multi-family A which contains exactly aS copies of S for
each S ⊂ [m]. The condition

∑

S∋j aS > 2 implies that A is a double cover, and
∑

S aS 6 r

implies that |A| 6 r. Thus (3) holds, which is clearly equivalent to (4). �

We can now deduce Lemma 10.

Proof of Lemma 10. We shall prove the lemma by induction on t. When t = 1 we have
v(B1) = r and e(B1) =

(

r
2

)

− 1. Clearly ℓ1 = 1 and k1 = 0, and

e(B1) =

(

r

2

)

− 1 = λ(r)
(

v(B1)− r
)

+

(

r

2

)

− 1,

so in fact equality holds. For the induction step we divide into three cases. Let t > 2, and
assume that the lemma holds for smaller values of t.

Case 1: ℓt = ℓt−1 + 1.

Since Gt has one more component than Gt−1, it follows that K(t) intersects every other
clique in at most one vertex. Hence all of the edges of K(t) are new, and so

e(Bt) = e(Bt−1) +

(

r

2

)

− 1.

Now let b be the number of vertices of K(t) which are not new, and hence intersect other
components of M . Then v(Bt) = v(Bt−1) + r − b and kt = kt−1 + b, so, by the induction
hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

=

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr
)

+ ℓt

((

r

2

)

− 1

)

as required.

Case 2: ℓt = ℓt−1.

Since Gt and Gt−1 have the same number of components, it follows that K(t) must intersect
some component, C1, in at least two vertices, and intersects every clique not in C1 in at most
one vertex. Thus, the only edges ofK(t) which are not new have both endpoints in C1. Hence,
letting a = |K(t) ∩ C1|, we have

e(Bt) > e(Bt−1) +

(

r

2

)

−
(

a

2

)

− 1.
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Now, let b be the number of vertices of K(t) \ C1 which are not new, and hence intersect
other components of Gt. Then v(Bt) = v(Bt−1) + r − a − b and kt = kt−1 + b, so, by the
induction hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

−
(

a

2

)

>

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr − r + a
)

+
(

ℓt + 1
)

((

r

2

)

− 1

)

−
(

a

2

)

.

If a 6 r − 1 then
(

r

2

)

− 1−
(

a

2

)

− (r − a)

(

(

r
2

)

− 2

r − 2

)

> 0,

since the worst cases are the extremes (a = 2 and a = r− 1), and using the fact that r > 4.
But if a = r, then our bound on e(Bt) can be improved to e(Bt) > e(Bt−1) (which is trivial
since we are not allowed to colour edges of Bt−1 red), and v(Bt) = v(Bt−1), so we are done
in this case as well.

Case 3: ℓt < ℓt−1.

This case is more difficult: to prove it, we shall use Lemma 12. Set m = ℓt−1 − ℓt + 1,
and observe that m > 2, and that K(t) intersects m components C1, . . . , Cm in at least two
vertices each, and intersects every clique not in these components in at most one vertex.
Define, for each S ∈ P(m),

aS =
∣

∣

{

v ∈ K(t) : v ∈ Cj ⇔ j ∈ S
}
∣

∣,

and note that
∑

S aS 6 r and
∑

S∋j aS = |K(t) ∩ Cj | > 2. Moreover, set

e(A) =
∑

S∈P(m)

(

aS
2

)

+
∑

{S,T}∈J

aSaT ,

where J =
{

{S, T} ∈
(

P(m)
2

)

: S ∩ T 6= ∅
}

, as in Lemma 12. We claim that

e(Bt) > e(Bt−1) +

(

r

2

)

− e(A)− 1.

Indeed, if an edge of K(t) was already present in Bt−1, then there must be a clique (and
hence a component Cj) which contains both of its endpoints. Moreover, e(A) counts exactly
the number of pairs of vertices of K(t) which are both in some component Cj.

Let a =
∑

S aS denote the number of vertices of K(t) ∩
(

C1 ∪ . . . ∪ Cm

)

, and let b denote

the number of vertices of K(t) \
(

C1∪ . . .∪Cm

)

which intersect other components of Gt. Then
v(Bt) = v(Bt−1) + r − a− b, and recall that ℓt = ℓt−1 − (m− 1). Also, let

c =
∑

S∈P(m)

aS
(

|S| − 1
)

,

and observe that kt 6 kt−1 + b − c, since K(t) unifies the components C1, . . . , Cm, and so if
{j ∈ [m] : v ∈ Cj} = S then ct(v) = ct−1(v)− |S|+ 1.
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Thus, by the induction hypothesis for t− 1,

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt−1) + kt−1 − ℓt−1r
)

+
(

ℓt−1 + 1
)

((

r

2

)

− 1

)

− e(A)

>

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr −mr + a + c
)

+
(

ℓt +m
)

((

r

2

)

− 1

)

− e(A).

Recall that a 6 r and
∑

S∋j aS = |K(t) ∩ Cj | > 2. Hence, by Lemma 12,

e(A) 6 λ(r)

(

∑

S∈P(m)

aS|S| − 2m

)

+m = λ(r)
(

a+ c
)

− m

(

λ(r)r −
(

r

2

)

+ 1

)

,

since 2λ(r)− 1 = λ(r)r −
(

r
2

)

+ 1. Thus

e(Bt) >

(

(

r
2

)

− 2

r − 2

)

(

v(Bt) + kt − ℓtr
)

+ ℓt

((

r

2

)

− 1

)

,

as required. This completes the induction step, and hence the proof of the lemma. �

For completeness, let us quickly note formally that Lemma 9 follows immediately from
Lemma 10.

Proof of Lemma 9. Let F be an r-witness set for the graph G and the edge e, and run the
Red Edge Algorithm. We claim that the graph Gm is connected. To see this, first observe
that if f ∈ F (e), then there must be a path in Gm from K(m) to a clique K(t) containing f ;
indeed, this follows immediately from the definition of the Witness Set Algorithm, working
backwards from e. Now let j ∈ [m], and note that since F (ej) is non-empty and F (ej) ⊂ F (e),
there exists an edge f ∈ F (ej)∩F (e). By the previous observation, it follows there is a path
in Gm from K(m) to a clique K(t) containing f , and a path in Gm from K(j) to a clique K(t′)

containing f . Since f ∈ K(t) ∩K(t′), these cliques are neighbours in Gm, and hence there is
a path from K(j) to K(m) in Gm for any j ∈ [m], as claimed.

It follows that ℓm = 1, and so cm(v) = 1 for every v ∈ V (Bm), which means that km = 0.
Hence, by Lemma 10,

e(F ) >

(

(

r
2

)

− 2

r − 2

)

(

v(F )− r
)

+

((

r

2

)

− 1

)

= λ(r)
(

v(F )− 2
)

+ 1,

as required. �

3.2. Bootstrap methods. To deduce Proposition 8, we shall borrow a simple but impor-
tant idea from the theory of bootstrap percolation. The following lemma is based on an idea
of Aizenman and Lebowitz [3].

Lemma 13. Let F be an r-witness set on a graph G, and let L ∈ N. If e(F ) > L, then
there exists an edge f ∈ E(G) with

L 6 e
(

F (f)
)

6

(

r

2

)

L

in the same realization of the Witness-Set Algorithm.



GRAPH BOOTSTRAP PERCOLATION 15

Proof. Run the Witness-Set Algorithm, and observe that the maximum size of e(F (f)), over
all infected edges, increases by at most a factor of

(

r
2

)

at each step of the process. It follows
immediately that a graph F (f) as described must have been created, at some point in the
process. Moreover, such a graph exists with F (f) ⊂ F . �

We have finally finished with our deterministic preliminaries, and it is time to reintroduce
randomness. There is, however, little left to do: the bound we require will follow easily from
Lemmas 9 and 13 by Markov’s inequality.

For each m ∈ N and every e ∈ E(Kn), let

Ym(e) :=
∣

∣

∣

{

F ⊂ Gn,p : e ⊂ V (F ), and e(F ) = m > λ(r)
(

v(F )− 2
)

+ 1
}
∣

∣

∣

be the random variable which counts the number of subgraphs F of Gn,p whose vertex set
contains the endpoints of the edge e, and have m > λ(r)

(

v(F )−2
)

+1 edges. We first bound
the expected size of Ym(e).

Lemma 14. For every r > 4, there exists a C(r) > 0 such that the following holds. If n ∈ N

and p > 0 satisfy pn1/λ(r) log n 6 1/(2e), and n is sufficiently large, then

E
(

Ym(e)
)

6

(

m+ C(r)

2
(

r
2

)

log n

)m−λ(r)

for every e ∈ E(Kn) and every λ(r) + 1 6 m 6
(

r
2

)

logn.

Proof. Let ℓ ∈ N be maximal such that m > λ(r)
(

ℓ− 2
)

+ 1. Then v(F ) 6 ℓ, and hence

E
(

Ym(e)
)

6

( ℓ−2
∑

j=0

(

n

j

))(

ℓ2/2

m

)

pm 6
2 · nℓ−2

(ℓ− 2)!

(

epℓ2

2m

)m

≪
(

n1/λ(r) · epℓ
2

2m

)λ(r)(ℓ−2)

where the last inequality follows since m−λ(r)
(

ℓ−2
)

> 1 and pℓ2 6 n−1/2λ(r) = o(1). Next,
observe that

ℓ2

2m
6

m+ C(r)
(

r
2

)

if C(r) is sufficiently large, since m
(

m + C(r)
)

>
(

m + 2λ(r)
)2

>
(

λ(r)ℓ
)2

> r2ℓ2

4
. Hence,

recalling that λ(r)
(

ℓ− 2
)

> m− λ(r) and m 6
(

r
2

)

logn, we obtain

E
(

Ym(e)
)

6

(

n1/λ(r)ep · m+ C(r)
(

r
2

)

)λ(r)(ℓ−2)

6

(

m+ C(r)

2
(

r
2

)

logn

)m−λ(r)

if n is sufficiently large, as required. �

We can now easily deduce Proposition 8.

Proof of Proposition 8. Let r > 4, let n ∈ N, and let p = p(n) > 0 satisfy pn1/λ(r) log n 6

1/(2e). We claim that, for every e ∈ E(Kn),

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0
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as n → ∞. Indeed, suppose that e ∈ 〈Gn,p〉Kr
, run the Witness-Set Algorithm, and consider

the graph F = F (e) ⊂ Gn,p.
Suppose first that e(F ) 6 log n. By Lemma 9, we have

e(F ) > λ(r)
(

v(F )− 2
)

+ 1,

and thus either e ∈ Gn,p, or Ym(e) > 1 for some

λ(r)(r − 2) + 1 6 m 6 log n.

By Lemma 14, this has probability at most

p +

logn
∑

m=λ(r)(r−2)+1

E
(

Ym(e)
)

6 p +

logn
∑

m=λ(r)(r−2)+1

(

m+ C(r)

2
(

r
2

)

log n

)m−λ(r)

→ 0,

as n → ∞, as claimed.
So suppose next that e(F ) > log n. By Lemma 13, there must exist an edge f in Kn

such that logn 6 e(F (f)) 6
(

r
2

)

logn, which means that Ym(f) > 1 for some logn 6 m 6
(

r
2

)

log n. By Lemma 14, the expected number of such edges f is at most

(

n

2

) (r
2
) logn
∑

m=log n

(

m+ C(r)

2
(

r
2

)

logn

)m−λ(r)

6 n2

(

2

r2

)logn−λ(r)

→ 0,

as n → ∞, since r2/2 > 8 > e2. This proves the proposition. �

We finish by noting that Theorem 1 follows immediately from Propositions 3 and 8.

Proof of Theorem 1. By Proposition 3, we have

pc(n,H) ≪
(

logn
)2/λ(H)

n−1/λ(H)

for every balanced graph H . Moreover Kr is balanced, since

(

r−1
2

)

− 1

r − 3
6

(

r
2

)

− 2

r − 2

for every r > 4, and λ(Kr) = λ(r) > 2, so the upper bound follows.
For the lower bound, suppose that pn1/λ(r) log n 6 1/(2e), and n is sufficiently large. By

Proposition 8, we have

P
(

e ∈ 〈Gn,p〉Kr

)

→ 0

for every edge e ∈ E(Kn). Thus Gn,p does not percolate, with high probability, as required.
�
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4. The threshold for K4-percolation

In this section we shall prove Theorem 2, which determines the threshold forK4-percolation
on Kn. The proof is quite different from that of Theorem 1, and uses ideas from the study
of 2-neighbour bootstrap percolation on [n]d (see [3, 4], or the more recent improvements
in [8, 26, 27]).

We begin with a simple but key observation. A collection K of cliques is said to be
triangle-free if there do not exist distinct vertices u, v, w and cliques A,B,C ∈ K such that
u ∈ V (A) ∩ V (B), v ∈ V (B) ∩ V (C) and w ∈ V (A) ∩ V (C).

Observation 15. For every graph G, the graph 〈G〉K4
consists of a triangle-free collection

of edge-disjoint cliques.

Proof. To show that 〈G〉K4
is a collection of edge-disjoint cliques, simply note that if two

cliques A and B share more than one vertex, then the closure 〈A∪B〉K4
is a clique on vertex

set V (A)∪V (B). To prove that this collection is triangle-free, observe that if A, B and C form
a triangle, then the closure 〈A∪B ∪C〉K4

is a clique on vertex set V (A)∪V (B)∪V (C). �

Say that a clique K is internally spanned by a graph G if 〈G∩K〉K4
= K. We shall study,

for each ℓ ∈ N and p > 0, the probability

P (ℓ, p) := P
(

Kℓ is internally spanned by Gn,p

)

.

In order to do so, we shall introduce a simple algorithm for filling Kn, which we call the
Clique-Process. It is analogous to the ‘rectangle process’ in two-neighbour bootstrap perco-
lation on [n]d (see Proposition 30 of [27] or Theorem 11 of [4]).

The Clique Process. Let G be a graph on n vertices, and run the K4-process as follows:

0. At each step of the process, we will maintain a collection (R1, A1), . . . , (Rm, Am),
where Rj is a clique and Aj ⊂ E(G), such that 〈Aj〉K4

= Rj for each j ∈ [m].

1. At time zero, set Rj = Aj = {ej} for each j ∈ [m], where E(G) = {e1, . . . , em}.
2. At time t ∈ 2Z, choose a pair {i, j} such that |Ri ∩ Rj | > 2, if such a pair exists.

Delete (Ri, Ai) and (Rj , Aj), and replace them with (〈Ai ∪Aj〉K4
, Ai ∪ Aj).

3. At time t ∈ 2Z+1, choose a triple {i, j, k} such that Ri, Rj, and Rk form a triangle in
the hypergraph defined by the cliques, if such a triple exists. Delete (Ri, Ai), (Rj , Aj)
and (Rk, Ak), and replace them with (〈Ai ∪ Aj ∪ Ak〉K4

, Ai ∪Aj ∪ Ak).

4. Repeat steps 2 and 3 until the collection (R1, A1), . . . , (Rm, Am) stabilizes, that is,
until there are no more pairs as in step 2, or triples as in step 3.

The algorithm terminates by the proof of Observation 15. Observe moreover that the Aj

are in fact disjoint sets of edges of G. We can now easily deduce the following bound, which
was first proved by Bollobás [13].

Lemma 16. If G internally spans Kℓ then e(G) > 2ℓ− 3.

Proof. We shall use induction on ℓ; for ℓ 6 3 the result is trivial. Now suppose that G
internally spans R = Kℓ, and run the Clique Process for G. At the penultimate step we
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have either two or three disjointly internally spanned proper sub-cliques of R, which together
span R. If these cliques are S = 〈A〉K4

and T = 〈B〉K4
, then

e(G) > e(A) + e(B) > 2
(

v(S) + v(T )
)

− 6 > 2ℓ− 2,

since A∩B = ∅ and |S ∩ T | > 2, so v(S) + v(T ) > ℓ+ 2. If they are S = 〈A〉K4
, T = 〈B〉K4

and U = 〈C〉K4
, then we have

e(G) > e(A) + e(B) + e(C) > 2
(

v(S) + v(T ) + v(U)
)

− 9 > 2ℓ− 3,

since A,B,C are pairwise disjoint and (S, T, U) form a triangle, so v(S) + v(T ) + v(U) >

ℓ+ 3. �

The following bounds on P (ℓ, p) now follow easily.

Lemma 17. For every 3 6 ℓ ∈ N and p ∈ (0, 1) with pℓ2 6 1,
(

1

2e2

)ℓ

(ℓp)2ℓ−3 6 P (ℓ, p) 6 43
(

e

4

)2ℓ
(

ℓp
)2ℓ−3

.

Proof. For the lower bound, simply count the graphs on vertex set [ℓ], and with 2ℓ−3 edges,
in which every vertex j > 3 sends exactly two edges ‘backwards’ in the order induced by
Z. It is easy to see, by induction on t, that the clique Kt with vertex set [t] is internally
spanned, for each t ∈ [ℓ]. The number of such graphs is

ℓ
∏

j=3

(

j − 1

2

)

>
(ℓ!)2

2ℓℓ3
>

2πℓ2ℓ−3

(2e2)ℓ
,

by Stirling’s formula, and each is an induced subgraph of Gn,p with probability at least

p2ℓ−3(1 − p)ℓ
2

> p2ℓ−3/2π, where the bound (1 − p)ℓ
2

> e−3/2 > 1/2π follows since pℓ2 6 1
and ℓ > 3. Since these events are mutually exclusive, the lower bound follows.

For the upper bound, recall that, by Lemma 16, if a graph G internally spans Kℓ then

e(G) > 2ℓ− 3. Since
(

4ℓ
4ℓ−6

)2ℓ−3
6 e3, it follows that

P (ℓ, p) 6

(

ℓ2/2

2ℓ− 3

)

p2ℓ−3 6

(

eℓ

4ℓ− 6

)2ℓ−3
(

ℓp
)2ℓ−3

6 43
(

e

4

)2ℓ
(

ℓp
)2ℓ−3

,

as required. �

4.1. The lower bound. The following lemma, like Lemma 13, it is based on an idea of
Aizenman and Lebowitz [3], who proved the corresponding result in the context of two-
neighbour bootstrap percolation on [n]d. The lower bound in Theorem 2 will follow by
combining it with Lemma 17.

Lemma 18. Suppose that 〈G〉K4
= Kn, and let 1 6 L 6 n. There exists a clique K ⊂ Kn

which is internally spanned by G, with

L 6 v(K) 6 3L.
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Proof of Lemma 18. Suppose that 〈G〉K4
= Kn, and run the Clique Process for G. At each

step of the process, the value of maxj∈[m] v(Rj) increases by a factor of at most three. Hence,
for every L ∈ [n], there exists a clique K ⊂ Kn with

L 6 v(K) 6 3L,

which is internally spanned by G, as claimed. �

We remark that this result does not generalize to Kr-percolation for r > 5. In fact, it is
not hard to construct a graph G for which 〈G〉Kr

= Kn, but no clique Kℓ with r < ℓ < n is
internally spanned.

We can now prove the lower bound on pc(n,K4) in Theorem 2. It follows easily from
Lemmas 17 and 18, using Markov’s inequality.

Proposition 19. If p2n logn 6 16/e5, then

P
(

〈Gn,p〉K4
= Kn

)

→ 0

as n → ∞.

Proof. Let p2n log n = 16/e5 and L = log n. By Lemma 18, if 〈Gn,p〉K4
= Kn then there

exists an internally spanned clique R with L 6 v(R) 6 3L. By Lemma 17, the expected
number of such cliques is at most

43
3L
∑

ℓ=L

(

n

ℓ

)(

e

4

)2ℓ
(

ℓp
)2ℓ−3

6

3L
∑

ℓ=L

(

4

ℓp

)3(
en

ℓ
· e

2

16
· ℓ2p2

)ℓ

6

3L
∑

ℓ=L

n3/2

(

ℓ

e2 log n

)ℓ

,

since ℓp ≫ n−1/2. Thus

3L
∑

ℓ=L

n3/2

(

ℓ

e2 log n

)ℓ

6 3L · n3/2e−2L → 0

as n → ∞, as required. �

4.2. The upper bound. We shall use the second moment method (and Lemma 17) in order
to show that Gn,p internally spans a clique of order ∼ logn with high probability. We will
then deduce the upper bound in Theorem 2 using sprinkling.

Let X(ℓ, p) denote the random variable which counts the number of copies of Kℓ which
are internally spanned by Gn,p. We first bound the expected value of X(ℓ, p).

Lemma 20. For every n ∈ N, 3 6 ℓ ∈ N and p ∈ (0, 1) with pℓ2 6 1,

E
(

X(ℓ, p)
)

>

(

p2nℓ

2e2

)ℓ(
1

ℓp

)3

.

Proof. By Lemma 17, we have

E
(

X(ℓ, p)
)

>

(

n

ℓ

)(

1

2e2

)ℓ

(ℓp)2ℓ−3 >

(

n

ℓ
· 1

2e2
· ℓ2p2

)ℓ(
1

ℓp

)3

as required. �
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To bound the variance of X(ℓ, p), we shall use the following extension of Lemma 16. Given
cliques S ⊂ R, let

D(S,R) :=
{

〈

(Gn,p ∪ S) ∩R
〉

K4

= R
}

denote the event that R is internally spanned by Gn,p ∪ S. Lemma 16 is equivalent to the
case v(S) = 3 of the following lemma.

Lemma 21. If D(S,R) holds, then e
(

(Gn,p \ S) ∩ R
)

> 2
(

v(R)− v(S)
)

.

Proof. We shall use induction on ℓ = v(R). Suppose thatD(S,R) holds, and apply the Clique
Process, except starting with the clique S already formed. Suppose at the penultimate step
we have two disjointly internally spanned cliques, T = 〈A ∪ S〉K4

and U = 〈B〉K4
, where

A ∩ S = A ∩ B = ∅. (That A and B may be taken to be disjoint follows by the comment
after the Clique Process.) By the induction hypothesis, we have

e
(

(Gn,p \ S) ∩ R
)

> e(A) + e(B) > 2
(

v(T )− v(S)
)

+ 2v(U)− 3 > 2
(

v(R)− v(S)
)

,

since |T ∩ U | > 2. The case of three cliques T = 〈A ∪ S〉K4
, U = 〈B〉K4

and W = 〈C〉K4
is

similar; we obtain

e
(

(Gn,p \ S) ∩R
)

> e(A) + e(B) + e(C)

> 2
(

v(T )− v(S)
)

+ 2
(

v(U) + v(W )
)

− 6 > 2
(

v(R)− v(S)
)

,

as required, since T , U and W form a triangle, so v(T ) + v(U) + v(W ) > v(R) + 3. �

We can now bound the variance of X(ℓ, p). Let P (k, ℓ) = P
(

D(Kk, Kℓ)
)

.

Lemma 22. Let n ∈ N, 4ℓ 6 log n, pℓ2 6 1 and p2n log n > 33/e. Then

Var
(

X(ℓ, p)
)

≪ E
(

X(ℓ, p)
)2

as n → ∞.

Proof. We first claim that

Var
(

X(ℓ, p)
)

6

ℓ
∑

k=2

E
(

X(ℓ, p)
)

(

ℓ

k

)(

n

ℓ− k

)

P (k, ℓ).

This follows by considering ordered pairs (S, T ) of internally spanned ℓ-cliques which intersect
in a k-clique. By Lemma 21, if D(S ∩ T, T ) holds then there are at least 2(ℓ − k) edges of
Gn,p in T \ S, and so

P (k, ℓ) 6

(

(ℓ2 − k2)/2

2ℓ− 2k

)

p2(ℓ−k) 6

(

e(ℓ + k)p

4

)2(ℓ−k)

.

Thus, by Lemma 20,

P (k, ℓ) 6

(

e(ℓ+ k)p

4

)2(ℓ−k)(
2e2

p2nℓ

)ℓ

(ℓp)3 E
(

X(ℓ, p)
)

.

Now, using the facts that k 6 ℓ and (ℓ+k)ℓ−k 6 e2k(ℓ−k)ℓ−k, an easy calculation gives that
(

ℓ

k

)(

n

ℓ− k

)(

e(ℓ+ k)p

4

)2(ℓ−k)(
2e2

p2nℓ

)ℓ
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is at most
(

en · e
2(ℓ+ k)p2

16
· 2e2

p2nℓ

)ℓ(

e2 · eℓ
k

· 1

en
· 16

e2(ℓ+ k)p2

)k

6

(

e5

4

)ℓ(
16

kp2n

)k

,

and hence

Var
(

X(ℓ, p)
)

6 E
(

X(ℓ, p)
)2

(ℓp)3
(

e5

4

)ℓ ℓ
∑

k=2

(

16

kp2n

)k

.

Finally, recall that 4ℓ 6 log n and p2n log n > 33/e, and observe that therefore (ℓp)3
(

e5

4

)ℓ ≪
1/
√
n. Thus, using the fact that (1/Cx)x 6 e1/Ce, we obtain

Var
(

X(ℓ, p)
)

6 E
(

X(ℓ, p)
)2 · ℓ√

n
exp

(

16

ep2n

)

≪ E
(

X(ℓ, p)
)2
,

as required. �

Using Chebyshev’s inequality, and sprinkling, we can now deduce the following result.

Proposition 23. If p2n logn > (24)2, then

P
(

〈Gn,p〉K4
= Kn

)

→ 1

as n → ∞.

Proof. Set 4ℓ = log n and p2n logn = 16 > 33/e, and observe that the conditions of Lem-
mas 20 and 22 are satisfied. By Lemma 20, we obtain

E
(

X(ℓ, p)
)

>

(

p2nℓ

2e2

)ℓ(
1

ℓp

)3

>

(

2

e2

)logn/4

n3/2−o(1) → ∞

as n → ∞. Thus, by Lemma 22 and Chebyshev’s inequality, with high probability there
exists a copy of Kℓ which is internally spanned by Gn,p.

Now let G0 = Gn,p be a random graph with density p, and for each j ∈ N set pj = 2−j+2p
and let Gj = Gn,pj be a random graph with density pj, chosen independently of all others.
We make the following claim.

Claim 1: There exists an ε > 0 such that the following holds. If t := 22j−2ℓ 6 εn, then
〈Gj ∪Kt〉K4

contains a clique of size 4t with probability at least 1− e−t/8.

Proof of Claim 1. Observe that every vertex v that has at least two neighbours in Kt (in the
graph Gj) is added to the clique in 〈Gj ∪Kt〉K4

. It therefore suffices to show that there are
at least 3t such vertices, with high probability. The expected number of such vertices is at
least

3n

4
·
(

t

2

)

p2j (1− pj)
t−2 > tp2nℓ = 4t

since pjt = 2jℓp = 2p
√
ℓt = O(

√
ε).

This event (having two neighbours) is independent for each vertex. Thus, by Chernoff’s
inequality, with probability at least 1 − e−t/8, the number of such vertices is at least 3t, as
required. �
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We apply the claim for each j > 0. It follows that, with high probability, 〈G0∪
⋃∞

j=1Gj〉K4

contains a clique of order εn, for some ε > 0. Finally, let G′
0 be another independent copy

of Gn,p.

Claim 2: For every ε > 0, if t > εn then 〈Gn,p ∪Kt〉K4
= Kn with high probability.

Proof of Claim 2. We apply the same argument as in the proof of Claim 1. Indeed, the
probability that a vertex v has at most one neighbour in Kt is at most

(1− p)t + tp(1− p)t−1 6
(

1 + 2tp
)

e−tp ≪ 1

n2

as n → ∞. Hence, by Markov’s inequality, the probability that there exists such a vertex is
at most 1/n, as required. �

To complete the proof, we simply note that the graph G = G0∪G′
0∪
⋃∞

j=1Gj is a random
graph Gn,p∗ of density

p∗ 6 2p+
∞
∑

j=1

2−j+2p = 6p,

and Gn,p∗ percolates in the K4-process with high probability, as required. �

Theorem 2 follows immediately from Propositions 19 and 23.

5. Other graphs, and open problems

In this section we shall mention some simple results for graphs other than Kr, and state
several of the many open problems relating to this model. Since the results will all be fairly
straightforward, we shall only sketch the proofs. We being by stating a simple extension of
the (trivial) result for the K3-process mentioned in the Introduction.

Proposition 24. Let H = Ck for some k > 3, or H = K2,3. Then,

pc(n,H) =
log n

n
+ Θ

(

1

n

)

.

Sketch of proof. We shall show that, with high probability, the graph Gn,p percolates in the
H-bootstrap process if and only if it is connected. The bounds on pc(n,H) then follow by
standard results, see [14].

Indeed, first let H = Ck and consider a path of length at least k attached to a triangle; we
claim that this graph spans a clique (on its vertex set). To see this, identify the vertices with
[ℓ] so that the edges are {i(i+1) : i ∈ [ℓ−1]}∪{13}, and say that ij is a t-edge if |i− j| = t.
The edges are infected in the following order: (k − 1)-edges, k-edges, 2-edges, 3-edges, 4-
edges, and so on. Finally, observe that if Gn,p is connected then, with high probability, every
vertex has a path of length at least k leading to a triangle.

For H = K2,3 the proof is similar. Let x, y ∈ V (Gn,p), and suppose that there exist vertex
disjoint paths from x and y to adjacent vertices of a copy of C4. Then it is easy to see that
the percolation process works its way along these paths and eventually infects the edge xy.
This gives a large complete bipartite graph, and if there is an edge in each part then the
closure is a complete graph. Since Gn,p is connected, every vertex is eventually swallowed
by this clique. �
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The case H = K2,3 is the first we have seen for which pc(n,H) 6= n−1/λ(H)+o(1). We shall
now determine a large family of such graphs. Define

λ∗(H) := min
e∈E(H)

max
F⊂H−e

{

e(F )

v(F )

}

.

This parameter gives us a general lower bound on pc(n,H).

Proposition 25. For every graph H, there exists a constant c(H) such that

pc(n,H) > c(H)n−1/λ∗(H)

for every n ∈ N.

Sketch of proof. We shall show that if p 6 c(H)n−1/λ∗(H) then, with probability at least 1/2,
no new edges are infected in the H-bootstrap process. To do so, for each e ∈ E(H) choose a
subgraph F = F (e) ⊂ H−e which maximizes e(F )/v(F ), and note that e(F )/v(F ) > λ∗(H).
Thus, the expected number of copies of F in Gn,p is at most

nv(F )pe(F ) 6 c(H)nv(F )−e(H)/λ∗(H) 6 c(H).

Summing over edges of H , we obtain

P
(

F (e) ⊂ Gn,p for some e ∈ E(H)
)

6 e(H)c(H) <
1

2
,

if c(H) is sufficiently small. But if F (e) 6⊂ Gn,p for every e ∈ E(H) then H − e 6⊂ Gn,p for
every e ∈ E(H), and hence no new edges are infected, as claimed. �

We next show that Proposition 25 is sharp for a large class of graphs H .

Proposition 26. If H has a leaf, then

pc(n,H) = Θ
(

n−1/λ∗(H)
)

.

Sketch of proof. The lower bound follows from Proposition 25. For the upper bound, let p ≫
n−1/λ∗(H) and recall (see [14]) that, with high probability, H − e ⊂ Gn,p for some e ∈ E(H).
(To see this, let e and F ⊂ H−e be such that e(F )/v(F ) = maxF ′⊂H−e e(F

′)/v(F ′) = λ∗(H),
find a copy of F in Gn,p by the second moment method, and then find H − e by sprinkling.)
Let v1 be the neighbour of a leaf in H , and observe that we can infect every edge which is
incident with v1 (and is not in our copy of H − e).

Now, take a second, independent copy of Gn,p, and apply the same argument inside the
neighbourhood of v1. We find a vertex v2 such that we can add (almost) all edges incident
with v2. Repeating this process v(H) times, we find (with high probability) a clique on v(H)
vertices in 〈Gn,p∗〉H , where p∗ = v(H)p.

Finally, observe that 〈Kv(H)〉H = Kn, since we may add the remaining vertices to the

clique one by one. Thus p = O
(

n−1/λ∗(H)
)

, as claimed. �

A slightly less trivial case, which lies somewhere between a clique and a tree, also matches
the general lower bound in Proposition 25. Say that H is an r-clique-tree if (for some
2 6 ℓ ∈ N) it is composed of ℓ vertex-disjoint copies of Kr, plus ℓ − 1 extra edges, and is
connected.
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Proposition 27. Let H be an r-clique tree. Then

c(H)n−1/λ∗(H) 6 pc(n,H) 6 n−1/λ∗(H) log n

for some c(H) > 0.

Sketch of proof. The lower bound again follows by Proposition 25. For the upper bound, we
begin by observing that

λ∗(H) =
e(H)− 1

v(H)
=

(

r
2

)

r
+

ℓ− 2

ℓr
,

where v(H) = ℓr. To see this, simply observe that every tree T has a vertex whose removal
leaves no component of side larger than v(T )/2, and remove an edge from the corresponding
clique; λ∗(H) is certainly at least this large since we may always take F = H − e.

Assume first that ℓ > 3, and let p ≫ n−1/λ∗(H) (we shall prove a stronger result in this
case). Note that, as in the previous proof, H − e ⊂ Gn,p for some e ∈ E(H) with high
probability; in fact, there exist at least v(H) copies of H − e. Moreover, setting ε = ℓ−2

ℓr
,

there exist at least nε copies of Kr in Gn,p. Let X denote the union of those copies of Kr

which do not intersect a copy of H − e.
From each copy of H − e, pick a clique R which is the neighbour of a leaf (in the tree-

structure of H), and observe that we may infect every edge between R and X . We thus
obtain a complete bipartite graph, with parts of size v(H) and nε. Moreover, each part
consists of r-cliques, and thus these edges span a clique on the same vertex set.

Finally, sprinkling edges with density p, we see that every vertex in a copy of Kr minus an
edge, and with a neighbour in X , is added to the clique. With high probability there are n2ε

such vertices. Repeating this process 1/ε times, we infect the entire edge set, as required.
For the case ℓ = 2 we prove the weaker bound in the statement. Let p be as above, and

take log n copies of Gn,p. By the same proof as above, in the first we span a clique of order
C, for some large constant C; in the second a clique of order C2; in the third C3, and so on.
In the first step this is just the union of copies of Kr; in later steps it is the union of copies
of Kr minus an edge which have a neighbour in the clique formed in the previous step. The
proposition now follows. �

We give one final cautionary example, whose purpose is just to point out that λ(H) and
λ∗(H) are not the only possible values of

− lim
n→∞

log n

log pc(n,H)
.

Let DDr denote the ‘double-dumbbell’, the graph consisting of two disjoint copies of Kr,
plus two extra (disjoint) edges between the two cliques. Note that λ(DDr) = r/2 and
λ∗(DDr) = (2

(

r
2

)

+ 1)/2r, and therefore

λ∗(DDr) <

(

r
2

)

+ 1

r
< λ(DDr).

Proposition 28. For every r > 4,

− lim
n→∞

log n

log pc(n,DDr)
=

(

r
2

)

+ 1

r
.
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Sketch of proof. The key observation is that if H = DDr and e ∈ E(DDr), then 〈H− e〉H =
K|H|, i.e., a copy of DDr spans a clique on its vertex set. Moreover, two (> 2r)-cliques which
overlap in two (or more) points span a clique on their union. We shall use these observations,
plus the usual ‘critical droplet’ argument from bootstrap percolation on [n]d.

We begin with the (easier) upper bound. Let nrp(
r

2)+1 ≫ log n, and consider m = log n
copies G1, . . . , Gm of Gn,p. We claim that their union percolates with high probability. To
see this, first observe that Gn,p contains an r-clique R1 with high probability. Next, note
that the expected number of copies of Kr plus a pendant edge, with its endpoint in R1, is

at least |R1|
(

n−|R1|
r

)

p(
r

2
)+1 ≫ log n. Using Chebyshev’s inequality, it follows that there exist

at least log n such copies with high probability, and the closure of these is a clique R2 on
at least logn vertices. Now, simply repeat this procedure for each graph G3, . . . , Gm. A
straightforward calculation shows that, with high probability, at each step the clique Rj (at
least) doubles in size, until it reaches size 1/p. But now a positive fraction of the vertices
have r neighbours in Rm−2, so |Rm−1| > εn, and thus |Rm| = n with high probability, as
required.

To prove the lower bound, we define a process analogous to the Clique Process in Section 4.
To be precise, we can break up the process into steps of the following two types: (a) if two
(> 2r)-cliques share two vertices then merge them, and (b) if an edge is infected then consider
the copy of H it completes, and merge the (> 2r)-cliques which provided the edges of H− e.
To see that this works, recall that 〈DDr − e〉DDr

= K2r.
Using this process, we can easily prove a result analogous to Lemma 18, except with 3

replaced by e(H). Indeed, at each step the size of the largest clique increases by at most a
factor of e(H). Moreover, by considering the penultimate step of the process, as in Lemma 16,
and using induction, we can prove the following extremal result: If 〈G〉DDr

= Kn and n > r,
then

e(G) >

(

(

r
2

)

+ 1

r

)

n− 1.

The result now follows by a straightforward (and standard) calculation (using Markov), as
in the proof of Proposition 19. �

We now turn to some open problems. The ultimate aim of this line of research is to
understand the H-bootstrap process for every graph H ; a solution to the following problem
would represent a major step in this direction.

Problem 1. Determine lim
n→∞

log pc(n,H)

logn
for every graph H.

The next problem is probably less difficult, but would still be very interesting. Recall that
by a result of Friedgut [24], together with Theorem 2, the event 〈Gn,p〉H = Kn has a sharp
threshold when H = K4, and a coarse threshold when H = Kr + e.

Problem 2. Characterize the graphs H for which the event 〈Gn,p〉H = Kn has a sharp

threshold.

Returning to cliques, we would also like to have sharper versions of Theorems 1 and 2.

Problem 3. Determine pc(n,Kr) up to a constant factor.
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Problem 4. Find 1/4 6 α 6 24, if it exists, such that

pc(n,K4) =
(

1 + o(1)
) α√

n log n
.

Note that the sharpness of the threshold for H = K4 does not imply the existence of such
a constant α; it would thus be interesting to show that such a constant exists, even without
calculating it.

Since Problem 1 is likely to be hard, we mention two natural families of graphs for which
we do not have good bounds on the critical probability pc(n,H): the complete bipartite
graphs, and the random graph.

Problem 5. Determine pc(n,Ks,t), at least up to a poly-logarithmic factor, for all s, t ∈ N.

Problem 6. Give bounds on pc(n,Gk,1/2) which hold with high probability as k → ∞.

Finally, we mention a substantial generalization of the problem we have considered in this
paper. Given graphs G and H , define H-bootstrap percolation on G by only allowing edges
of G to be infected, and say that a graph F percolates if, starting with F , eventually all
edges of G are infected. (Or, in other words, replace Kn by G.) It seems likely that there
are many beautiful theorems to discover about this very general bootstrap process.
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