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Abstract

We study various models of random non-crossing configurations consisting of diagonals
of convex polygons, and focus in particular on uniform dissections and non-crossing trees.
For both these models, we prove convergence in distribution towards Aldous’ Brownian
triangulation of the disk. In the case of dissections, we also refine the study of the maximal
vertex degree and validate a conjecture of Bernasconi, Panagiotou and Steger. Our main
tool is the use of an underlying Galton-Watson tree structure.
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Introduction

Various models of non-crossing geometric configurations involving diagonals of a convex polygon
in the plane have been studied both in geometry, probability theory and especially in enumerative
combinatorics (see e.g. [10]). Three specific models of non-crossing configurations – triangula-
tions, dissections and non-crossing trees – have drawn particular attention. Let us first recall the
definition of these models.

Let Pn be the convex polygon inscribed in the unit disk of the complex plane whose vertices
are the n-th roots of unity. By definition, a dissection of Pn is the union of the sides of Pn
and of a collection of diagonals that may intersect only at their endpoints. A triangulation is a
dissection whose inner faces are all triangles. Finally, a non-crossing tree of Pn is a tree drawn
on the plane whose vertices are all vertices of Pn and whose edges are non-crossing line segments.
See Fig. 1 for examples.
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Figure 1: A dissection, a triangulation and a non-crossing tree of the octogon.

Graph theoretical properties of uniformly distributed triangulations have been recently in-
vestigated in combinatorics. For instance, the study of the asymptotic behavior of the maximal
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vertex degree has been initiated in [7] and pursued in [12]. Afterwards, the same random variable
has been studied in the case of dissections [4].

We shall continue the study of graph-theoretical properties of large uniform dissections and in
particular focus on the maximal vertex degree. Our method is based on finding and exploiting an
underlying Galton-Watson tree structure. More precisely, we show that the dual tree associated
with a uniformly distributed dissection of Pn is a critical Galton-Watson tree conditioned on
having exactly n − 1 leaves. This new conditioning of Galton-Watson trees has been studied
recently in [14] (see also [25]) and is well adapted to the study of dissections, see [15]. In particular
we are able to validate a conjecture contained in [4] concerning the asymptotic behavior of the
maximal vertex degree in a uniform dissection (Theorem 3.7). Using the critical Galton-Watson
tree conditioned to survive introduced in [13], we also give a simple probabilistic explanation
of the fact that the inner degree of a given vertex in a large uniform dissection converges in
distribution to the sum of two independent geometric variables (Proposition 3.6). We finally
obtain new results about the asymptotic behavior of the maximal face degree in a uniformly
distributed dissection.

As a by-product of our techniques, we give a very simple probabilistic approach to the fol-
lowing enumeration problem. Let A be a non-empty subset of {3, 4, 5, . . .} and D

(A)
n the set

of all dissections of Pn+1 whose face degrees all belong to the set A. Theorem 2.7 gives an
explicit asymptotic formula for #D

(A)
n as n→∞ (for those values of n for which D

(A)
n 6= ∅). In

particular when A0 = {3, 4, 5, . . .}, then Dn−1 := D
(A0)
n−1 is the set of all dissections of Pn and

#Dn−1 ∼
n→∞

1

4

√
99
√

2− 140

π
n−3/2(3 + 2

√
2)n.

This formula (Corollary 1.6) was originally derived by Flajolet & Noy [10] using very different
techniques.

From a geometrical perspective, Aldous [2, 3] proposed to consider triangulations of Pn as
closed subsets of the unit disk D := {z ∈ C : |z| ≤ 1} rather than viewing them as graphs.
He proved that large uniform triangulations of Pn converge in distribution (for the Hausdorff
distance on compact subsets of the unit disk) towards a random compact subset. This limiting
object is called the Brownian triangulation (see Fig. 2). This name comes from the fact that
the Brownian triangulation can be constructed from the Brownian excursion as follows: Let
e : [0, 1] → R be a normalized excursion of linear Brownian motion. For every s, t ∈ [0, 1], we
set s ∼ t if we have e(s) = e(t) = min[s∧t,s∨t] e. The Brownian triangulation is then defined as:

B :=
⋃
s∼t

[
e−2iπs, e−2iπt

]
, (1)

where [x, y] stands for the Euclidean line segment joining two complex numbers x and y. It turns
out that B is almost surely a closed set which is a continuous triangulation of the unit disk (in
the sense that the complement of B in D is a disjoint union of open Euclidean triangles whose
vertices belong to the unit circle). Aldous also observed that the Hausdorff dimension of B is
almost surely equal to 3/2 (see also [18]). Later, in the context of random maps, the Brownian
triangulation has been studied by Le Gall & Paulin in [18] where it serves as a tool in the proof of
the homeomorphism theorem for the Brownian map. See also [6, 15] for analogs of the Brownian
triangulation.
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Figure 2: A sample of the Brownian triangulation B.

Figure 3: Uniform dissection, triangulation and non-crossing tree of size 50. The same
continuous model?

However, neither large random uniform dissections, nor large uniform non-crossing trees have
yet been studied from this geometrical point of view.
In this work, we extend Aldous’ theorem by showing that both large uniform dissections and
large uniform non-crossing trees converge in distribution towards the Brownian triangulation
(Theorem 2.1). The maybe surprising fact that large uniform dissections (which may have non-
triangular faces) converge to a continuous triangulation stems from the fact that many diagonals
degenerate in the limit. For both models, the key is to use a Galton-Watson tree structure,
which was already described above in the case of dissections. In the case of non-crossing trees
this structure has been identified by Marckert & Panholzer [21] who established that the shape
of a uniform non-crossing tree of Pn is almost a Galton-Watson tree conditioned on having n
vertices (see Theorem 1.8 below for a precise statement).

We also consider other random configurations of non-crossing diagonals of Pn such as non-
crossing graphs, non-crossing partitions and non-crossing pair partitions, and prove the con-
vergence towards the Brownian triangulation, again by using an appropriate underlying tree
structure. We also show that a uniformly distributed dissection over D

(A)
n converges towards

B as n → ∞. The Brownian triangulation thus appears as a universal limit for random non-
crossing configurations. This has interesting applications: For instance, let χn be a random
non-crossing configuration on the vertices of Pn that converges in distribution towards B in the
sense of the Hausdorff metric. Then the Euclidian length of the longest diagonal of χn converges
in distribution towards the length of the longest chord of the Brownian triangulation with law

1

π

3x− 1

x2(1− x)2
√

1− 2x
1 1

3
≤x≤ 1

2
dx.

This has been shown in the particular case of triangulations in [3] (see also [7]).
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The paper is organized as follows. In the first section we introduce the discrete models and
explain the underlying Galton-Watson tree structures. The second section is devoted to the
convergence of different random non-crossing configurations towards the Brownian triangulation
and to applications. The final section contains the analysis of some graph-theoretical properties
of large uniform dissections, such as the maximal vertex or face degree.

Acknowledgments. We are indebted to Jean-François Le Gall for a very careful reading of a
first version of this article and for useful suggestions. We thank the participants of the ANR A3
meeting in Nancy (March 2011) for stimulating discussions and especially Jean-François Marckert
for telling us about non-crossing trees.

1 Dissections, non-crossing trees and Galton-Watson trees

1.1 Dissections and plane trees

Throughout this work, for every integer n ≥ 3, Pn stands for the regular polygon of the plane
with n sides whose vertices are the n-th roots of unity.

Definition 1.1. A dissection D of the polygon Pn is the union of the sides of the polygon and of
a collection of diagonals that may intersect only at their endpoints. A face f of D is a connected
component of the complement of D inside Pn; its degree, denoted by deg(f), is the number of
sides surrounding f . See Fig. 4 for an example.

Let Dn be the set of all dissections of Pn+1. Given a dissection D ∈ Dn, we construct
a (rooted ordered) tree φ(D) as follows: Consider the dual graph of D, obtained by placing a
vertex inside each face of D and outside each side of the polygon Pn+1 and by joining two vertices
if the corresponding faces share a common edge, thus giving a connected graph without cycles.
Then remove the dual edge intersecting the side of Pn+1 which connects 1 to e

2iπ
n+1 . Finally, root

the tree at the corner adjacent to the latter side (see Fig. 4).
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Figure 4: The dual tree of a dissection of P8, note that the tree has 7 leaves.

The dual tree of a dissection is a plane tree (also known as rooted ordered tree in the
literature). We briefly recall the formalism of plane trees which can be found in [16] for example.
Let N = {0, 1, . . .} be the set of nonnegative integers, N∗ = {1, . . .} and let U be the set of labels

U =
∞⋃
n=0

(N∗)n,
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where by convention (N∗)0 = {∅}. An element of U is a sequence u = u1 · · ·um of positive
integers, and we set |u| = m, which represents the “generation” of u. If u = u1 · · ·um and
v = v1 · · · vn belong to U, we write uv = u1 · · ·umv1 · · · vm for the concatenation of u and v.
Finally, a plane tree τ is a finite or infinite subset of U such that:

1. ∅ ∈ τ ,

2. if v ∈ τ and v = uj for some j ∈ N∗, then u ∈ τ ,

3. for every u ∈ τ , there exists an integer ku(τ) ≥ 0 (the number of children of u) such that,
for every j ∈ N∗, uj ∈ τ if and only if 1 ≤ j ≤ ku(τ).

In the following, by tree we will always mean plane tree. We denote the set of all trees by T. We
will often view each vertex of a tree τ as an individual of a population whose τ is the genealogical
tree. If τ is a tree and u ∈ τ , we define the shift of τ at u by σuτ = {v ∈ U : uv ∈ τ}, which
is itself a tree. If u, v ∈ τ we denote by Ju, vK the discrete geodesic path between u and b in τ .
The total progeny of τ , which is the total number of vertices of τ , will be denoted by ζ(τ). The
number of leaves (vertices u of τ such that ku(τ) = 0) of the tree τ is denoted by λ(τ). Finally,
we let T(`)

n denote the set of all plane trees with n leaves such that there is no vertex with exactly
one child.

The following proposition is an easy combinatorial property, whose proof is omitted.

Proposition 1.2. The duality application φ is a bijection between Dn and T
(`)
n .

Finally, we briefly recall the standard definition of Galton-Watson trees.

Definition 1.3. Let ρ be a probability measure on N such that ρ(1) < 1. The law of the
Galton-Watson tree with offspring distribution ρ is the unique probability measure Pρ on T such
that:

1. Pρ(k∅ = j) = ρ(j) for j ≥ 0,

2. for every j ≥ 1 with ρ(j) > 0, conditionally on {k∅ = j}, the subtrees σ1τ, . . . , σjτ are
i.i.d. with distribution Pρ.

It is well known that if ρ has mean less than or equal to 1 then a ρ-Galton-Watson tree is almost
surely finite. In the sequel, for every integer j ≥ 1, Pρ,j will stand for the probability measure
on Tj which is the distribution of j independent trees of law Pρ. The canonical element of Tj

will be denoted by f. For f = (τ1, . . . , τj) ∈ Tj , let λ(f) = λ(τ1) + · · ·+λ(τj) be the total number
of leaves of f.

1.2 Uniform dissections are conditioned Galton-Watson trees

In the rest of this work, Dn is a random dissection uniformly distributed over Dn. We also set
Tn = φ(Dn) to simplify notation. Remark that Tn is a random tree which belongs to T

(`)
n .

Fix c ∈ (0, 1/2) and define a probability distribution µ(c) on N as follows:

µ
(c)
0 =

1− 2c

1− c , µ
(c)
1 = 0, µ

(c)
i = ci−1 for i ≥ 2.

It is straightforward to check that µ(c) is a probability measure, which moreover has mean equal
to 1 when c = 1 − 2−1/2. In the latter case, we drop the exponent (c) in the notation, so that
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µ := µ(1−1/
√
2). The following theorem gives a connection between uniform dissections of Pn and

Galton-Watson trees conditioned on their number of leaves. This connection has been obtained
independently of the present work in [24].

Proposition 1.4. The conditional probability distribution Pµ(c)( · | λ(τ) = n) does not depend
on the choice of c ∈ (0, 1/2) and coincides with the distribution of the dual tree Tn of a uniformly
distributed dissection of Pn+1.

Proof. We adapt the proof of [15, Proposition 1.8] in our context. By Proposition 1.2, it is
sufficient to show that for every c ∈ (0, 1/2) the probability distribution Pµ(c)(· | λ(τ) = n) is

the uniform probability distribution over T
(`)
n . If τ is a tree, we denote by u0, . . . , uζ(τ)−1 the

vertices of τ listed in lexicographical order and recall that kui stands for the number of children
of ui. Let τ0 ∈ T

(`)
n . By the definition of Pµ(c) , we have

Pµ(c)(τ = τ0 | λ(τ) = n) =
1

Pµ(c)(λ(τ) = n)

ζ(τ0)−1∏
i=0

µ
(c)
kui
.

Using the definition of µ(c), the product appearing in the last expression can be written as

ζ(τ0)−1∏
i=0

µ
(c)
kui

=

(
1− 2c

1− c

)λ(τ0)
cζ(τ0)−1−(ζ(τ0)−λ(τ0)) = c−1

(
c(1− 2c)

1− c

)λ(τ0)
.

Thus Pµ(c)(τ = τ0 | λ(τ) = n) depends only on λ(τ0). We conclude that Pµ(c)( · | λ(τ) = n) is

the uniform distribution over T(`)
n .

In the following, we will always choose c = 1 − 2−1/2 for µ(c) = µ to be critical. Hence, the
random tree Tn has law Pµ(· | λ(τ) = n). A general study of Galton-Watson trees conditioned
by their number of leaves is made in [14]. In particular, we will make an extensive use of the
following asymptotic estimate which is a particular case of [14, Theorem 3.1]:

Lemma 1.5. We have

Pµ (λ(τ) = n) ∼
n→∞

n−3/2

2
√
π
√

2
. (2)

Let us give an application of Proposition 1.4 and Lemma 1.5 to the enumeration of dissections.
There exists no easy closed formula for the number #Dn of dissections of Pn+1. However, a
recursive decomposition easily shows that the generating function

D(z) :=
∑
n≥3

zn#Dn−1,

is equal to z
4(1 + z−

√
z2 − 6z + 1), see e.g. [4, Section 3] and [10]. Using classical techniques of

analytic combinatorics [11], it is then possible to get the asymptotic behavior of #Dn, see [10].
Here, we present a very short “probabilistic” proof of this result.

Corollary 1.6 (Flajolet & Noy, [10]). We have

#Dn−1 ∼
n→∞

1

4

√
99
√

2− 140

π
n−3/2(3 + 2

√
2)n.
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Proof. Let n ≥ 3 and let τ0 = {∅, 1, 2, . . . , n− 1} be the tree consisting of the root and its n− 1
children. By Proposition 1.4, we have

1

#Dn−1
= Pµ(τ = τ0 |λ(τ) = n− 1) =

Pµ(τ = τ0)

Pµ(λ(τ) = n− 1)
=

µn−1µ
n−1
0

Pµ(λ(τ) = n− 1)
.

Thus

#Dn−1 =
Pµ(λ(τ) = n− 1)

(2−
√

2)n−1
(
2−
√
2

2

)n−2 =
(2−

√
2)3

4

Pµ(λ(τ) = n− 1)

(3− 2
√

2)n
. (3)

The statement of the corollary now follows from (2) and (3).

1.3 Non-crossing trees are almost conditioned Galton-Watson trees

Definition 1.7. A non-crossing tree C of Pn is a tree drawn in the plane whose vertices are
all the vertices of Pn and whose edges are Euclidean line segments that do not intersect except
possibly at their endpoints.

Every non-crossing tree C inherits a plane tree structure by rooting C at the vertex 1 of Pn
and keeping the planar ordering induced on C . The children of the root vertex are ordered by
going in clockwise order around the point 1 of Pn, starting from the edge connecting 1 to e−2iπ/n,
which may or may not be in C. As in [21], we call this plane tree the shape of C and denote it by
S(C ). Obviously ζ(S(C )) = n. Note that the mapping C 7→ S(C ) is not one-to-one. However,
we will later see that large scale properties of uniform non-crossing trees are governed by their
shapes.

In the following, we let Cn be uniformly distributed over the set of all non-crossing trees of
Pn. We also set Tn = S(Cn) to simplify notation. We start by recalling a result of Marckert
and Panholzer stating that Tn is almost a Galton-Watson tree. Consider the two offspring
distributions:

ν∅(k) = 2 · 3−k, for k = 1, 2, 3, ...

ν(k) = 4(k + 1)3−k−2, for k = 0, 1, 2, ...

Following [21], we introduce a modified version of the ν-Galton-Watson tree where the root vertex
has a number of children distributed according to ν∅ and all other individuals have offspring
distribution ν. We denote the resulting probability measure on plane trees obtained by P̃ν . The
following theorem is the main result of [21] and will be useful for our purposes:

Theorem 1.8 (Marckert & Panholzer, [21]). The random plane tree Tn is distributed according
to P̃ν(· | ζ(τ) = n).

2 The Brownian triangulation: A universal limit for random non-
crossing configurations

Recall that Dn is a uniform dissection of Pn+1 and that Tn stands for its dual plane tree. Recall
also that Cn is a uniform non-crossing tree of Pn and that Tn stands for its shape. In the
following, we will view both Dn and Cn as random closed subsets of D as suggested by Fig. 1.
Recall that the Hausdorff distance between two closed subsets of A,B ⊂ D is

dHaus(A,B) = inf
{
ε > 0 : A ⊂ B(ε) and B ⊂ A(ε)

}
,

7



where X(ε) is the ε-enlargement of a set X ⊂ D. The set of all closed subsets of D endowed with
the Hausdorff distance is a compact metric space. Recall that the Brownian triangulation B is
defined by (1). The main result of this section is:

Theorem 2.1. The following two convergences in distribution hold for the Hausdorff metric on
closed subsets of D:

(i) Dn
(d)−−−→

n→∞
B, (ii) Cn

(d)−−−→
n→∞

B.

The main ingredient in the proof of Theorem 2.1 is a scaling limit theorem for functions
coding the trees Tn and Tn. In order to state this result, let us introduce the contour function
associated to a plane tree.

Fix a tree τ and consider a particle that starts from the root and visits continuously all the
edges of τ at unit speed (assuming that every edge has unit length). When leaving a vertex, the
particle moves towards the first non visited child of this vertex if there is such a child, or returns
to the parent of this vertex. Since all the edges will be crossed twice, the total time needed to
explore the tree is 2(ζ(τ) − 1). For 0 ≤ t ≤ 2(ζ(τ) − 1), Cτ (t) is defined as the distance to
the root of the position of the particle at time t. For technical reasons, we set Cτ (t) = 0 for
t ∈ [2(ζ(τ)− 1), 2ζ(τ)]. The function Cτ (·) is called the contour function of the tree τ . See [16]
for a rigorous definition. For t ∈ [0, 2(ζ(τ) − 1)] and u ∈ τ , we say that the contour process
visits the vertex u at time t if the particle is at u at time t. Similarly, if we say that the contour
process visits an edge e if the particle belongs to e at time t.

Let e bet the normalized excursion of linear Brownian motion. The following convergences
in distribution will be useful for our purposes:(

CTn(2ζ(Tn)t)√
ζ(Tn)

)
0≤t≤1

(d)−−−→
n→∞

(
(3
√

2− 4)−1/2e(t)
)
0≤t≤1

, (4)

(
CTn(2nt)√

n

)
0≤t≤1

(d)−−−→
n→∞

(
2

√
2

3
e(t)

)
0≤t≤1

. (5)

The convergence (4) has been proved by Kortchemski [14, Theorem 5.9], and (5) has been
obtained by Marckert and Panholzer [21, Proposition 4].

The proof of Theorem 2.1 will be different for dissections and non-crossing trees, although the
main ideas are the same in both cases. Notice for example that in the case of non-crossing trees,
there is no need to consider a dual structure since the shape of the non-crossing tree already
yields a plane tree.

2.1 Large uniform dissections

2.1.1 The Brownian triangulation is the limit of large uniform dissections

In [15], a general convergence result is proved for dissections whose dual tree is a conditioned
Galton-Watson tree whose offspring distribution belongs to the domain of attraction of a stable
law. Since our approach to the convergence of large uniform non-crossing trees towards the
Brownian triangulation will be similar in spirit, we reproduce the main steps of the proof in our
particular finite variance case.

8



The following lemma, which is an easy consequence of [14, Corollary 3.3], roughly says that
leaves are distributed uniformly in a conditioned Galton-Watson tree. Formally, if τ is a plane
tree, for 0 ≤ t ≤ 2ζ(τ)− 2, we let Λτ (t) be the number of leaves among the vertices of τ visited
by the contour process up to time t, and we set Λτ (t) = λ(τ) for 2ζ(τ)− 2 ≤ t ≤ 2ζ(τ).

Lemma 2.2. We have

sup
0≤t≤1

∣∣∣∣ΛTn (2ζ(Tn)t)

n
− t
∣∣∣∣ (P)−−−→

n→∞
0, (6)

where (P) stands for the convergence in probability.

Proof of Theorem 2.1 part (i). We can apply Skorokhod’s representation theorem (see e.g. [5,
Theorem 6.7]) and assume, without loss of generality, that the convergences (4) and (6) hold
almost surely and we aim at showing that Dn converges almost surely towards the Brownian
triangulation B defined by (1). Since the space of compact subsets of D equipped with the
Hausdorff metric is compact, it is sufficient to show that the sequence (Dn)n≥1 has a unique
accumulation point which is B. We fix ω such that both convergences (4) and (6) hold for this
value of ω. Up to extraction, we thus suppose that (Dn)n≥1 converges towards a certain compact
subset D∞ of D and we aim at showing that D∞ = B.

We first show that B ⊂ D∞. Fix 0 < s < t < 1 such that e(s) = e(t) = min[s∧t,s∨t] e. We
first consider the case when we have also e(r) > e(s) for every r ∈ (s, t). Let us prove that
[e−2iπs, e−2iπt] ⊂ D∞. Using the convergence (4), one can find an edge of Tn such that if sn is
the time of the first visit of this edge by the contour process and if tn is the time of its last visit,
then sn/(2ζ(Tn))→ s and tn/(2ζ(Tn))→ t as n→∞, see Fig. 5.

tn

sn
e−2iπ

ΛTn
(sn)

n+1

e−2iπ
ΛTn

(tn)

n+1

Figure 5: The arrows show the first visit time sn and last visit time tn of an edge of
Tn.

Since the sides of Pn+1, excepting the side connecting 1 to e2iπ/(n+1), are in one-to-one
correspondence with the leaves of Tn we have (see Fig. 5):[

e−2iπ
ΛTn

(sn)

n+1 , e−2iπ
ΛTn

(tn)

n+1

]
∈ Dn.

We refer to [15] for a complete proof. From Lemma 2.2, we can pass to the limit and obtain
[e−2iπs, e−2iπt] ⊂ D∞.
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Let us now suppose that e(s) = e(t) = min[s∧t,s∨t] e and, moreover, there exists r ∈ (s, t)
such that e(r) = e(s). Since local minima of Brownian motion are distinct, there exist two
sequences of real numbers (αn)n≥1 and (βn)n≥1 taking values in [0, 1] such that αn → s, βn → t
as n → ∞ and such that for every n ≥ 1 and r ∈ (αn, βn) we have e(r) > e(αn) = e(βn).
The preceding argument yields [e−2iπαn , e−2iπβn ] ⊂ D∞ for every n ≥ 1. Since D∞ is closed, we
conclude that B ⊂ D∞.

The reverse inclusion is obtained by making use of a maximality argument. More precisely,
it is easy to show that D∞ is a lamination, that is a closed subset of D which can be written as a
union of chords that do not intersect each other inside D. However, the Brownian triangulation
B, which is also a lamination, is almost surely maximal for the inclusion relation among the
set of all laminations of D, see [18]. It follows that D∞ = B. This completes the proof of the
theorem.

2.1.2 Application to the study of the number of intersections with a given chord

We now explain how the ingredients of the previous proof can be used to study the number of
intersections of a large dissection with a given chord. For α, β ∈ [0, 1], we denote by Iα,βn the
number of intersections of Dn with the chord [e−2iπα, e−2iπβ], with the convention Iα,βn = 0 if
[e−2iπα, e−2iπβ] ⊂ Dn.

Proposition 2.3. For 0 < α < β < 1 we have

Iα,βn√
n

(d)−−−→
n→∞

e(β − α)√
3
√

2− 4
,

where e is the normalized excursion of linear Brownian motion.

Proof. For 1 ≤ i ≤ n, denote by ln(i) the i-th leaf of Tn in the lexicographical order. Then,
for 1 ≤ i < j ≤ n, the construction of the dual tree shows that for every s ∈

(
i−1
n+1 ,

i
n+1

)
and

t ∈
(
j−1
n+1 ,

j
n+1

)
, Is,tn is equal to the graph distance in the tree Tn between the leaves ln(i) and

ln(j). Indeed, the edges of Tn that intersect the chord [e−2iπα, e−2iπβ] are exactly the edges
composing the shortest path between ln(i) and ln(j) in Tn. However, the situation is more
complicated when e−2iπs or e−2iπt coincides with a vertex of Pn+1. To avoid these particular
cases, we note that for ε, ε′ ∈ (− 1

n+1 ,
1

n+1) we have∣∣∣Is+ε,t+ε′n − Is,tn
∣∣∣ ≤ 2∆(n),

where ∆(n) is the maximal number of diagonals of Dn adjacent to a vertex of Pn+1. We claim
that

∆(n)

√
n

(P)−−−→
n→∞

0. (7)

We leave the proof of the claim to the reader since a (much) stronger result will be given in
Theorem 3.7. Let 0 < α < β < 1. Set in = b(n + 1)αc + 1 and jn = b(n + 1)βc + 1. Choose n
sufficiently large so that jn < n. The preceding discussion shows that∣∣∣Iα,βn − dgr(l

n(in), ln(jn))
∣∣∣ ≤ 2∆(n), (8)

10



where dgr stands for the graph distance between two vertices in Tn. Now note that the graph
metric of the tree Tn can be recovered from the contour function of Tn, see [9]: If un, vn are two
vertices of Tn such that the contour process reaches un (resp. vn) at the instant sn (resp. tn),
then

dgr(un, vn) = CTn(sn) + CTn(tn)− 2 inf
u∈[sn∧tn,sn∨tn]

CTn(u). (9)

If we choose un = ln(in) and vn = ln(jn) with respective first visit times sn and tn, Lemma 2.2
shows that sn/2ζ(Tn) → α and tn/2ζ(Tn) → β in probability as n → ∞. Consequently, using
(7),(8), together with (4), and (9) we finally obtain

Iα,βn√
n

(d)−−−→
n→∞

(3
√

2− 4)−1/2
(
e(α) + e(β)− 2 inf

[α∧β,α∨β]
e

)
.

To conclude, observe that by the re-rooting property of the Brownian excursion (see [20, Propo-
sition 4.9]), the variable e(α) + e(β)− 2 inf [α∧β,α∨β] e has the same distribution as e(β−α).

Remark 2.4. The preceding proof can be adapted easily to show the following functional con-
vergence in distribution(

Iα,βn√
n

)
0≤α≤1
0≤β≤1

(d)−−−→
n→∞

(3
√

2− 4)−1/2 ·
(
e(α) + e(β)− 2 inf

[α∧β,α∨β]
e

)
0≤α≤1
0≤β≤1

.

2.2 Large uniform non-crossing trees

In order to study large uniform non-crossing trees, the following lemma will be useful. It roughly
states that the location of a vertex in a non-crossing tree C can be deduced from its location in
the shape of C up to an error that is bounded by its height. Recall that if τ is a tree and u ∈ τ ,
ku denotes the number of children of u.

Lemma 2.5. Let C be a non-crossing tree with n vertices and shape S(C ) = τ . Fix a vertex u ∈ τ
and let a ∈ {0, 1, . . . , n − 1} be such that the vertex in C corresponding to u is exp(−2iπa/n).
Then there exists i0 ∈ {1, ..., ku + 1} such that

|a−#{v ∈ τ : v ≺ ui0}| ≤ |u|,

where ≺ stands for the strict lexicographical order on U.

Proof. Let u ∈ τ\{∅}. Consider the discrete geodesic path from ∅ to u in τ and its image L in C .
There exists 1 ≤ i0 ≤ ku+1 such that, in C , the first i0−1 chidren of u as well as their descendants
are folded on the left of L (oriented from the root) and the rest of the descendants of u are folded
on the right of L, see Fig. 6. Now, consider the set E = {1, exp(−2iπ/n), ..., exp(−2iπa/n)} of
all the vertices of Pn that are between 1 and exp(−2iπa/n) in clockwise order. A geometric
argument (see Fig. 6) shows that if a vertex x of C belongs to E, then its corresponding vertex
in the tree τ must belong to the set {v ∈ τ : v ≺ ui0}. On the other hand, if w ∈ {v ∈ τ : v ≺ ui0}
and if, moreover, w is not a strict ancestor of u in τ then its corresponding vertex in C belongs
to E. Consequently, we have

#{v ∈ τ : v ≺ ui0} − |u|+ 1 ≤ #E = a+ 1 ≤ #{v ∈ τ : v ≺ ui0}.

The lemma follows (the case u = ∅ being trivial).

11



1
Le

−2iπa
n

L

Figure 6: Illustration of the proof of Lemma 2.5. We represent the non-crossing tree
C with curved chords for better visibility. The left-hand side of L is in gray whereas its
right-hand side is in white.

For our purpose, it will be convenient to reinterpret this lemma using the contour function.
Fix a tree τ , and define Zτ (j) as the number of distinct vertices of τ visited by the contour
process of τ up to time j, for 0 ≤ j ≤ 2ζ(τ)− 2. For technical reasons, we set Zτ (j) = ζ(τ) for
j = 2ζ(τ) − 1 and j = 2ζ(τ), and then extend Zτ (·) to the whole segment [0, 2ζ(τ)] by linear
interpolation. Note that a vertex u ∈ τ with ku children is visited exactly ku + 1 times by the
contour function of τ , and that if t(0), ..., t(ku) are these times, then for every i0 ∈ {0, ..., ku} we
have

#{v ∈ τ : v ≺ u(i0 + 1)} = Zτ

(
t(i0)

)
. (10)

The idea of the proof of Theorem 2.1 part (ii) is the following. Let C be a large non-crossing
tree with shape S(C ). Pick a vertex u ∈ S(C ) corresponding to the point exp(−2ia/n) in C .
The goal is to recover a (with error at most o(n)) from the knowledge of S(C ) and u. Assume
that u is a leaf of S(C ). Then u is visited only once by the contour process, say at time tu.
By Lemma 2.5 the quantity |a − ZS(C )(tu)| is less than the height of the tree S(C ) which is
small in comparison with n by (5). Hence a in is known up to an error o(n). We will see that
the control by the leaves of S(C ) is sufficient for proving the convergence towards the Brownian
triangulation.

The next lemma is an analogous to Lemma 2.2.

Lemma 2.6. We have

sup
0≤t≤1

∣∣∣∣ZTn(2nt)

n
− t
∣∣∣∣ (P)−−−→

n→∞
0. (11)

Proof. This is a standard consequence of (5), see e.g. [16, Section 1.6].

Proof of Theorem 2.1 part (ii). Similarly to the proof of part (i) of the theorem, we can apply
Skorokhod’s theorem and assume that the convergences (5) and (11) hold almost surely. We fix
ω such that both convergences (5) and (11) hold for this value of ω. Up to extraction, we thus

12



suppose that (Cn)n≥1 converges towards a compact subset C∞ of D and we aim at showing that
C∞ = B.

We first show that B ⊂ C∞. Fix 0 < s < t < 1 such that e(s) = e(t) = min[s∧t,s∨t] e and
assume furthermore that e(r) > e(s) for r ∈ (s, t). Let us show that [e−2iπs, e−2iπt] ⊂ C∞. To
this end, we fix ε > 0 and show that [e−2iπs, e−2iπt] ⊂ C

(6ε)
n for n sufficiently large (recall that

X(ε) is the ε-enlargement of a closed subset X ⊂ D). Using the convergence (5), for every n
large enough, one can find integers 0 ≤ sn < tn ≤ 2n − 2 such that if un (resp. vn) denotes the
vertex of Tn visited at time sn (resp. tn) by the contour process, the following three properties
are satisfied:

• sn/2n→ s, tn/2n→ t,

• un and vn are leaves in Tn,

• for every vertex wn in Jun, vnK (the discrete geodesic path between un and vn in Tn) and
every visit time rn of wn by the contour process, we have

min
(∣∣∣ rn

2n
− s
∣∣∣ , ∣∣∣ rn

2n
− t
∣∣∣) ≤ ε. (12)

For the second property, we can for instance use the fact that local maxima of e are dense in
[0, 1]. We now claim that under these assumptions, for n large enough, the image Ln in Cn of
the discrete geodesic path Jun, vnK in Tn lies within Hausdorff distance 6ε from the line segment
[e−2iπs, e−2iπt].

Indeed, let wn ∈ Jun, vnK and let an ∈ {0, 1, . . . , n−1} such that the vertex of Cn correspond-
ing to wn is zn = exp(−2iπan/n). Applying Lemma 2.5 to u = wn and using (10) we can find a
time rn at which the contour process is at wn and such that

|an − ZTn(rn)| ≤ |wn|.

By the convergence (11) and the bound (12), there exists an integer N ≥ 1, independent of the
choice of wn, such that for n ≥ N

min

(∣∣∣∣ZTn(rn)

n
− s
∣∣∣∣ , ∣∣∣∣ZTn(rn)

n
− t
∣∣∣∣) ≤ 2ε.

On the other hand, thanks to the convergence (5) we have

1

n
sup
u∈Tn

|u| = 1√
n

1√
n

sup
0≤t≤1

CTn(2nt) −−−→
n→∞

0.

We conclude that there exists an integer N ′ ≥ 1, independent of the choice of wn, such that for
n ≥ N ′, we have min(|ann −s|, |ann − t|) ≤ 3ε and thus that min

(∣∣zn − e−2iπs|, |zn − e−2iπt∣∣) ≤ 6ε.
It follows that for large n, we have

Ln ⊂ [e−2iπs, e−2iπt](6ε). (13)

On the other hand, un and vn are leaves, so they are visited at a unique time by the contour
process. By the same arguments, for every n sufficiently large, we deduce that their images αn
and βn in Cn satisfy |αn− e−2iπs| ≤ 6ε and |βn− e−2iπt| ≤ 6ε. Consequently, since Ln is a finite
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union of line segments connecting αn to βn, we deduce from (13) that for every n sufficiently
large enough

[e−2iπs, e−2iπt] ⊂ L(6ε)
n ⊂ C (6ε)

n . (14)

The case when there exists r ∈ (s, t) such that e(s) = e(r) = e(t) (this r is then a.s. unique
by standard properties of the Brownian excursion) is treated exactly as in the proof of the first
assertion of this theorem. We conclude that B ⊂ C∞. The reverse inclusion is obtained by
making use of a maximality argument, see part (i).

2.3 Universality of the Brownian triangulation and applications

The convergence in distribution of random compact subsets towards the Brownian triangula-
tion yields information on their asymptotic geometrical properties that are preserved under the
Hausdorff convergence. Let us give an example of application of this fact.

Let χn be a random configuration on the vertices of Pn, that is a random closed subset made
of line segments connecting some of the vertices of the polygon. Assume that χn converges in
distribution towards B in the sense of the Hausdorff metric. Let diag(χn) be the Euclidean length
of the longest diagonal of χn. Then, as n → ∞, the law of diag(χn) converges in distribution
towards the length of the longest chord of the Brownian triangulation, given by:

1

π

3x− 1

x2(1− x)2
√

1− 2x
1 1

3
≤x≤ 1

2
dx.

This distribution has been computed in [3] (see also [7]). The preceding convergence follows from
the fact that the length of the longest chord is a continuous function of configurations for the
Hausdorff metric. Similar limit theorems hold for a large variety of other functionals, such as
the area of the face with largest area, etc.

It is plausible that many other uniformly distributed non-crossing configurations (see [10])
converge towards the Brownian triangulation in the Hausdorff sense. We give here a few instances
of this phenomenon.

Dissections with constrained face degrees.

Theorem 2.7. Let A be a non-empty subset of {3, 4, 5, . . .}. Let D(A)
n be the set of all dissections

of Pn+1 whose face degrees all belong to the set A. We restrict our attention to the values of n
for which D

(A)
n 6= ∅.

(i) There exists a probability distribution νA on N such that if σ2A denotes the variance of νA,
we have

#D
(A)
n−1 ∼

n→∞

√
νA(2)4νA(0)3

2πσ2A
· n−3/2

(νA(2)νA(0))n
.

(ii) Let D(A)
n be uniformly distributed over D

(A)
n . Then D

(A)
n converges towards the Brownian

triangulation.

Note that the case A = {3} corresponds to uniform triangulations and the case A =
{3, 4, 5, . . .} corresponds to uniform dissections.
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Proof. The proof of this statement goes along the very same lines as the proofs of Corollary 1.6
and Theorem 2.1 (i) by noticing that the dual tree φ(D

(A)
n ) is a Galton-Watson tree conditioned

on having n leaves for a certain finite variance offspring distribution νA. More precisely, if we
denote the set {a− 1 : a ∈ A} by A− 1, let cA ∈ (0, 1) be the unique real number in (0, 1) such
that ∑

i∈A−1
ici−1A = 1.

Then νA is defined by

νA(0) = 1−
∑
i∈A−1

ci−1A , νA(i) = ci−1A for i ∈ A− 1.

Note that νA(2) = cA and that νA automatically has a finite variance σ2A > 0.

Non-crossing graphs. A non-crossing graph of Pn is a graph drawn on the plane, whose
vertices are the vertices of Pn and whose edges are non-crossing line segments. Let Gn be
uniformly distributed over the set of all non-crossing graphs of Pn. Note that Gn can be seen as
a compact subset of D. Then Gn converges in distribution towards the Brownian triangulation.

This fact easily follows from the convergence of uniform dissections towards the Brownian
triangulation. Indeed, if G is a non-crossing graph of Pn, let ψ(G) be the compact subset of D
obtained from G by adding the sides of Pn. As noticed at the end of Section 3.1 in [10], ψ(G) is
a dissection, and every dissection has 2n pre-images by ψ. It follows that the random dissection
ψ(Gn) is a uniform dissection of Pn. The conclusion follows, since the Hausdorff distance between
ψ(Gn) and Gn tends to 0.

Non-crossing partitions and non-crossing pair partitions. A non-crossing partition of Pn
is a partition of the vertices of Pn (labeled by the set {1, 2, . . . , n}) such that the convex hulls of its
blocks are pairwise disjoint (see Fig. 7 where the partition {{1, 2, 4, 8}, {3}, {5}, {6, 7}} is repre-
sented). A non-crossing pair-partition of Pn is a non-crossing partition of Pn whose blocks are all
of size 2 (see Fig. 7 where the pair-partition {{1, 16}, {2, 3}, {4, 7}, {5, 6}, {8, 15}, {9, 10}, {11, 14},
{12, 13}} is represented).

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

1

2

3

4

5

6

7

8

Figure 7: A non-crossing partition of P8 and a non-crossing pair-partition of P16

together with its dual tree.
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Let P
(2)
n be a uniformly distributed random variable on the set of all non-crossing pair-

partitions of P2n, seen as a compact subset of D. Then P
(2)
n converges towards the Brownian

triangulation.
To establish this fact, we rely once again on a coding of P(2)

n by a critical Galton-Watson tree.
One easily sees that the dual tree of P(2)

n (see Fig. 7) is a uniform tree with n edges, which is also
well known to be a Galton-Watson tree with geometric offspring distribution, conditioned on
having n edges. One can then show the convergence of Pn towards the Brownian triangulation
using the same methods as in the case of uniform dissections. Details are left to the reader.

Let us now discuss non-crossing partitions. Let Pn be a uniformly distributed random variable
on the set of all non-crossing partitions of Pn, and view Pn as a random compact subset of D.
Then Pn converges towards the Brownian triangulation.

This follows from the convergence of non-crossing pair-partitions. Indeed, given a non-
crossing pair-partition of P2n, we get a non-crossing partition of Pn by identifying the n pairs of
vertices of the form (2i− 1, 2i) for 1 ≤ i ≤ n (see Fig. 7 where the non-crossing partition of P8

is obtained by contraction of vertices from the non-crossing pair-partition of P16). This identi-
fication gives a bijection between non-crossing partitions of Pn and non-crossing pair partitions
of P2n and the desired result easily follows.

Figure 8: Uniform non-crossing partition and pair-partition of P100.

At first sight, it may seem mysterious that Galton-Watson trees appear behind many different
models of uniform non-crossing configurations. In [10], using suitable parameterizations, Flajolet
and Noy manage to find a Lagrange inversion-type implicit equation for the generating functions
of these configurations. Generating functions verifying a Lagrange inversion-type implicit equa-
tion are those of simply-generated trees, which are very closely related to Galton-Watson trees
(see [1, Section 2.1]). This explains why Galton-Watson trees are hidden behind various models
of uniformly distributed non-crossing configurations.

3 Graph-theoretical properties of large uniform dissections

In this section, we study graph-theoretical properties of large dissections using the Galton-Watson
tree structure identified in Proposition 1.4. Let us stress that as in Proposition 2.7, all the
results contained in this section can be adapted easily to uniform dissections constrained on
having all face degrees in a fixed non-empty subset of {3, 4, . . .} (and in particular to uniform
triangulations).

As previously, Dn is a uniformly distributed dissection of Pn+1 and Tn denotes its dual tree
with n leaves. We start by recalling the definition and the construction of the so-called critical
Galton-Watson tree conditioned to survive.
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3.1 The critical Galton-Watson tree conditioned to survive

If τ is a tree and k is a nonnegative integer, we let [τ ]k = {u ∈ τ : |u| ≤ k} denote the tree
obtained from τ by keeping the vertices in the first k generations. Let ξ = (ξi)i≥0 be an offspring
distribution with ξ1 6= 1 and

∑
iξi = 1. We denote by Tn a Galton-Watson tree with offspring

distribution ξ conditioned on having height at least n ≥ 0. Kesten [13, Lemma 1.14] showed that
for every k ≥ 0, we have the following convergence in distribution

[Tn]k
(d)−−−→

n→∞
[T∞]k ,

where T∞ is a random infinite plane tree called the critical ξ-Galton-Watson tree conditioned to
survive.

We denote the law of the ξ-Galton-Watson tree conditioned to survive by P̂ξ. Let us describe
this law (see [13, 19]). We let ξ be the size-biased distribution of ξ defined by ξk = kξk for k ≥ 0.
The random variable T∞ distributed according to P̂ξ is described as follows. Let (Di)i≥0 be a
sequence of i.i.d. random variables distributed according to ξ. Let also (Ui)i≥1 be a sequence
of random variables such that, conditionally on (Di)i≥0, (Ui)i≥1 are independent and Uk+1 is
uniformly distributed over {1, 2, ..., Dk} for every k ≥ 0. The tree T∞ has a unique spine, that is a
unique infinite path (∅, U1, U1U2, U1U2U3, ...) ∈ N∗N

∗
and the degree of U1U2...Uk is Dk. Finally,

conditionally on (Ui)i≥1 and (Di)i≥0 all the remaining subtrees are independent ξ-Galton-Waton
trees.

∅
1 12

122 1224

12241

GWξ GWξ

GWξ

GWξ

GWξ

GWξ

GWξ

GWξ

GWξ GWξ

GWξ

GWξ

GWξ

GWξ

∞

Figure 9: An illustration of T∞ under P̂ξ.

The critical Galton-Watson tree conditioned to survive also arises in other conditionings of
Galton-Watson trees. Recall that Tn is a µ-Galton Watson tree conditioned on having n leaves.

Theorem 3.1. For every k ≥ 0, we have the convergence in distribution

[Tn]k
(d)−−−→

n→∞
[T∞]k ,

where T∞ is the critical Galton-Watson tree with offspring distribution µ conditioned to survive.
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Remark 3.2. Theorem 3.1 is true when µ is replaced by any finite variance offspring distribution
ν such that Pν (λ(τ) = n) > 0 for every n large enough.

Proof. This follows from another description of the law P̂µ: If τ0 is a plane tree and k ≥ 0 is an
integer, we denote by Lk(τ0) the number of individuals of τ0 at height exactly k. Then we have
from [13, Lemma 1.14]:

P̂µ([τ ]k = τ0) = Lk(τ0)Pµ([τ ]k = τ0).

Fix an integer k ≥ 1 as well as a tree τ0 ∈ T of height k. In order to prove the theorem, it is
thus sufficient to show that

Pµ([τ ]k = τ0 |λ(τ) = n) −→
n→∞

Lk(τ0)Pµ([τ ]k = τ0).

Denote by q the number of leaves of τ0 that have a height strictly smaller than k. By the
branching property of Galton-Watson trees, we have

Pµ([τ ]k = τ0 |λ(τ) = n) = Pµ([τ ]k = τ0)
Pµ,Lk(τ0)(λ(f) = n− q)

Pµ(λ(τ) = n)
,

where we recall that Pµ,i denotes the probability distribution of a forest of i independent Galton-
Watson trees with law Pµ. Since q and Lk(τ0) are fixed, it is thus sufficient to show that for a
fixed integer i ≥ 1, as n→∞

Pµ,i(λ(f) = n) ∼
n→∞

i× Pµ(λ(τ) = n).

This follows from the next lemma, which we state in a more general form than needed here in
view of further applications.

Lemma 3.3. There exists ε > 0 such that if (in)n≥1 is a sequence of positive integers such that
in ≤ nε for every n ≥ 1, we have

Pµ,in(λ(f) = n) ∼
n→∞

in · Pµ(λ(τ) = n).

Proof. We show that the conclusion of the lemma holds for any ε ∈ (0, 1/9). To simplify notation,
we set pk := Pµ(λ(τ) = k) for every integer k ≥ 1 and write i = in in the proof. By the definition
of Pµ,i, we have

Pµ,i(λ(f) = n) =
∑

k1+...+ki=n

i∏
j=1

pkj .

We will show that when n is large, the main contribution in the previous sum is obtained when
the indices k1, ..., ki are such that only one of them is of order n and the others are small in
comparison. Let A ≥ 1. Firstly, notice that at least one of the indices k1, ..., ki is larger than
n/i. Secondly, let us evaluate the contribution of the sum when k1 ≥ n/i and k2 is larger than
A. By Lemma 1.5,

∑
k1+···+ki=n
k1≥n/i
k2≥A

i∏
j=1

pkj ≤ sup
k1≥n/i

pk1 ·

∑
k2≥A

pk2

 · i∏
j=3

 ∞∑
kj=1

pkj

 ≤ C(n/i)−3/2A−1/2,
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for some constant C > 0 which is independent of n and i. Hence, provided that A < n1−ε,∣∣∣∣∣∣
 ∑
k1+···+ki=n

i∏
j=1

pkj

− i
 ∑

1≤k1,...,ki−1≤A
pn−

∑
j kj

i−1∏
j=1

pkj

∣∣∣∣∣∣ ≤ Ci7/2n−3/2A−1/2. (15)

We apply this to A = A(n) = n8ε in such a way that the right-hand side of the above inequality
is negligible in comparison with ipn. Then note that for 1 ≤ k1, ..., ki−1 ≤ A, we have

n− n9ε ≤ n−
i−1∑
j=1

kj ≤ n.

Moreover, since 9ε < 1, Lemma 1.5 gives pj/pn → 1 uniformly in n − n9ε ≤ j ≤ n as n → ∞.
Thus, using Lemma 1.5 again

i

 ∑
1≤k1,...,ki−1≤A

pn−
∑
j kj

i−1∏
j=1

pkj

 ∼ ipn
n8ε∑
k=1

pk

i−1

∼ ipn

(
1− n−4ε√

π
√

2

)i
∼ ipn,

which completes the proof of the lemma.

3.2 Applications

The “local convergence” given in Theorem 3.1 allows us to study “local” properties of large uniform
dissections by reading them directly on the critical Galton-Watson tree conditioned to survive.
We will focus our attention on the following two local properties of random uniform dissections:
Vertex degrees and face degrees.

Let us introduce some notation. Recall that Dn stands for a uniformly distributed dissection
of Pn+1. Denote by δ(n) the degree of the face adjacent to the side [1, e2iπ/(n+1)] in the random
dissection Dn and by D(n) the maximal degree of a face of Dn. Similarly, denote by ∂(n) the
number of diagonals adjacent to the vertex corresponding to the complex number 1 in Dn and
by ∆(n) the maximal number of diagonals adjacent to some vertex of Pn+1. Finally, for b > 0,
we write logb(·) for ln(·)/ ln(b).

We shall establish that δ(n) and ∂(n) converge in distribution, and read their limiting distri-
butions on the random infinite tree T∞. We also provide sharp concentration estimates on D(n)

and ∆(n), confirming in particular a conjecture of [4] concerning ∆(n).

3.2.1 Face degrees

Proposition 3.4. As n goes to infinity, δ(n) converges in distribution to the random variable X
with distribution

P(X = k) = (k − 1)µk−1 = (k − 1)

(
2−
√

2

2

)k−2
, k ≥ 3.

Proof. This is an immediate consequence of Theorem 3.1 and the construction of the critical
Galton-Watson tree conditioned to survive, after taking into account the fact that δ(n)− 1 is the
number of children of ∅ in the dual tree of Dn.
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Proposition 3.5. Set β = 1/µ2 = 2 +
√

2. For every c > 0, we have

P
(

logβ(n)− c logβ logβ(n) ≤ D(n) ≤ logβ(n) + c logβ logβ(n)
)
−−−→
n→∞

0.

Proof. By construction of the dual tree Tn of Dn, we have D(n) − 1 = maxu∈Tn ku. Thus, by
Proposition 1.4, for every measurable function F : R+ → R+ we have

E
[
F (D(n) − 1)

]
= Eµ

[
F
(

max
u∈τ

ku

)
|λ(τ) = n

]
.

The result now follows from [14, Remark 7.3].

3.2.2 Vertex degrees

We are now interested in another graph-theoretical property of large uniform dissections, namely
vertex degrees. Since these vertex degrees are read on the dual tree in a more complicated fashion
than face degrees, the arguments are slightly more involved.

Recall that ∂(n) stands for the number of diagonals adjacent to the vertex corresponding to
the complex number 1 in the uniform dissection Dn.

Proposition 3.6. As n goes to infinity, ∂(n) converges in distribution to the sum of two in-
dependent geometric random variables of parameter 1 − µ0 =

√
2 − 1, i.e. for any k ≥ 0 we

have

P(∂(n) = k) −−−→
n→∞

(k + 1)µ20(1− µ0)k.

See also [4] for a closely related result.

Proof. If τ is a plane tree, we introduce the length `(τ) of the left-most path in τ starting at ∅
(that is following left-most children until we reach a leaf),

`(τ) = max{i ≥ 0 : 1i ∈ τ}, where 1i = 1...1 (i times) with 10 = ∅.

Using the bijection between a dissection and its dual tree, it is easy to see that the number of
diagonals adjacent to the vertex 1 of the random dissection Dn is `(Tn)−1. By Theorem 3.1, for
every k ≥ 1, [Tn]k → [T∞]k as n→∞. It follows that ∂(n) = `(Tn)− 1 converges in distribution
towards `(T∞)− 1. Let us identify the distribution of this variable using the first description of
the law P̂µ: The length `(T∞)− 1 can be decomposed into

`(T∞)− 1 = (`1 − 1) + `2,

where `1 is the smallest integer i ≥ 1 such that the element 1i = 1...1 (i times) is not on the spine
of T∞ and `2 = `(T∞)−(`1−1) is the length of the left-most path in the critical µ-Galton-Watson
tree grafted on the left of 1i. By the description in Section 3.1, the two variables `1 − 1 and `2
are independent. It is straightforward that `2 is distributed according to a geometric variable of
parameter

√
2− 1. Let us now turn to `1− 1. Recall the notation introduced in Section 3.1. For

k ≥ 0, we have:

P(`1 ≥ k + 1) = P(U1 = 1, U2 = 1, . . . , Uk = 1)

=
k−1∏
i=0

 ∞∑
j=1

P(Di = j)P(Ui+1 = 1 | Di = j)


=

 ∞∑
j=2

(1− 2−1/2)j−1

k

= (1− µ0)k.
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We thus see that `1−1 is also geometric with parameter
√

2−1 and the desired result follows.

Recall that ∆(n) stands for the maximal number of diagonals adjacent to a vertex of Pn+1.
The following theorem proves a conjecture of [4].

Theorem 3.7. Set b = 1/(1− µ0) =
√

2 + 1. For every c > 0, we have

P
(

∆(n) ≥ logb(n) + (1 + c) logb logb(n)
)
−−−→
n→∞

0.

Proof. Let p, n ≥ 1 be integers. By rotational invariance, the degrees of the vertices of Dn are
identically distributed random variables. It follows that

P
(

∆(n) ≥ p
)
≤ (n+ 1)P

(
∂(n) ≥ p

)
.

We have already noticed that the number of diagonals adjacent to the vertex 1 of the random
dissection Dn corresponds to `(Tn)− 1, where `(Tn) denotes the length of the left-most path in
Tn starting at ∅. Thus, by Proposition 1.4,

(n+ 1)P
(
∂
(n)
0 ≥ p

)
= (n+ 1)Pµ (`(τ) ≥ p+ 1 | λ(τ) = n)

We now estimate the right-hand side and show that it tends to 0 when n → ∞ and p = pn =
logb(n) + (1 + c) logb logb(n) for c > 0. If `(τ) = p, define θ(τ) = k∅ + k1 + k12 + ...+ k1p−1 − p
(θ(τ) can be interpreted as the total number of those children of vertices in the left-most path
that are not in that path). Note that under Pµ, `(τ) is distributed according to a geometric
random variable of parameter

√
2− 1. In particular, for α = |4/ log(1− µ0)|,

n3Pµ (`(τ) ≥ α log(n)) −→
n→∞

0. (16)

Note also that for positive integers j, k we have Pµ (θ(τ) = j | `(τ) = k) = P(Y ∗k = j), where
Y ∗k is distributed as the sum of n independent random variables distributed according to γ(j) =
µj+1/µ([1,∞]).

Choose ε > 0 such that the conclusion of Lemma 3.3 holds. We first claim that if An =
{θ(τ) ≤ nε}, then Pµ (An) ≥ 1− n−3 for n large enough. To this end, write

n3Pµ (θ(τ) > nε) ≤ n3Pµ (`(τ) > α log(n)) + n3
bα log(n)c∑

j=1

Pµ (θ(τ) > nε | `(τ) = j)Pµ (`(τ) = j)

≤ n3Pµ (`(τ) > α log(n)) + n3α log(n)Pµ (θ(τ) > nε | `(τ) = bα log(n)c) .

The first term tends to zero by (16), and the second one as well by the previous description of
the law of θ(τ) under the conditional probability distribution Pµ ( · | `(τ) = k) and a standard
large deviation inequality. Thus our claim holds at it follows that, for n large enough,

(n+ 1)Pµ(Acn | λ(τ) = n) ≤ (n+ 1)n−3/Pµ(λ(τ) = n) −−−→
n→∞

0 (17)

by Lemma 1.5. We now consider the event An. We have

Pµ ({`(τ) = p} ∩An |λ(τ) = n)

≤ µ0
∑

r0,...,rp−1≥0∑
rj≤nε

µr0+1 · · ·µrp−1+1
Pµ,r0+r1+···+rp−1 (λ(τ) = n− 1)

Pµ(λ(τ) = n)
.
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We can then apply Lemma 3.3 to get that the quotient in the last display is bounded above by
some constant C2 times θ(τ) = r0 + ...+ rp, so that

Pµ (`(τ) = p, θ(τ) ≤ nε |λ(τ) = n) ≤ C2µ0
∑

r0,...,rp−1≥0
µr0+1 · · ·µrp−1+1(r0 + . . .+ rp−1)

= C2pµ
2
0(1− µ0)p−1,

where we have successively calculated these sums by using

∞∑
k=1

µk+1 = 1− µ0,
∞∑
k=1

kµk+1 = µ0.

Consequently, setting pn = logb(n)+(1+c) logb logb(n) we deduce from the above estimates that

(n+ 1)Pµ (`(τ) ≥ pn, θ(τ) ≤ nε | λ(τ) = n) −−−→
n→∞

0,

which together with (17) completes the proof of the theorem.

Remark 3.8. It is possible to simplify the proof of the preceding theorem by using the fact that
there exists C > 0 such that for every integers i, n ≥ 1

Pµ,i(λ(f) = n) ≤ Ci× Pµ(λ(τ) = n).

The proof of this fact easily follows from results contained in [14]. However, we have preferred to
prove a weaker form of this inequality by elementary arguments without relying on more involved
results.

In [4], it is shown that for every c > 0

P
(

∆(n) ≤ logb(n)− (2 + c) logb logb(n)
)
−−−→
n→∞

0.

Using the connection between uniform dissections and Galton-Watson trees conditioned on their
number of leaves, it is possible to refine the above lower bound and to replace (2 + c) by c.
However, we believe that the optimal concentration result is given by the following conjecture:

Conjecture 3.9. For every c > 0 we have

P
(∣∣∣∆(n) − (logb(n) + logb logb(n))

∣∣∣ > c logb logb(n)
)
−−−→
n→∞

0.

If the degrees of vertices in Dn were independent, this concentration result would hold.
However, the difficulty comes from the fact that this independence property does not exactly
hold. Let us mention that this conjecture (for a different value of b) has been proved in the
particular case of triangulations using generating function methods [12].

It is worth pointing out that although δn and ∂(n) have a similar limiting distribution (roughly
speaking a size-biased geometric distribution), the maximal degree of a face and the maximal
degree of a vertex in a random uniform dissection possess a different concentration behavior:
D(n) is strongly concentrated around logβ(n) + o(log log(n)), whereas ∆(n) is (conjecturally)
strongly concentrated around logb(n)+logb logb(n)+o(log log(n)). This comes from the heuristic
observation that a “typical” vertex has a limiting distribution which is given by a sized-biased
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geometric distribution, whereas a “typical” face of Dn has a limiting distribution which is a
geometric distribution (which is not size-biased). Let us give some details.

We start with the vertex degree. By Proposition 3.6 and by rotational invariance, a “typical”
vertex has a limiting distribution which is given by a sized-biased geometric distribution. This
is why ∆(n) should have the same concentration behavior as n independent random variables
distributed as size-biased geometric laws, that is, ∆(n) should be concentrated around logb(n) +
logb logb(n) + o(log log(n)).

The situation is however different is the case of face degrees. Choosing the face adjacent to
[1, e2iπ/(n+1)] introduces a size-biasing in the distribution of a "typical" face (indeed, the face
containing a given side of Pn is not a typical face but a size-biased one; a typical face would be a
face chosen "uniformly" among all faces of the dissection). In other words, a typical face of Dn

follows a geometric distribution, but δ(n) is a size-biased distribution of a typical face of Dn. This
is why D(n) follows the same concentration behavior as n independent geometric variables (which
are not size-biaised), and hence explains why D(n) is concentrated around logβ(n) + o(log log n).
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