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Abstract

We describe and analyse a simple greedy algorithm 2GREEDY that finds a good 2-matching
M in the random graph G = Gfﬁci when ¢ > 15. A 2-matching is a spanning subgraph of
maximum degree two and G is drawn uniformly from graphs with vertex set [n], cn edges and
minimum degree at least three. By good we mean that M has O(logn) components. We then
use this 2-matching to build a Hamilton cycle in O(n'*+°()) time w.h.p..

1 Introduction

There have been many papers written on the existence of Hamilton cycles in random graphs.
Komlés and Szemerédi [17], Bollobas [5], Ajta, Komlés and Szemerédi [I] showed that the question
is intimately related to the minimum degree. Loosely speaking, if we are considering random graphs
with n vertices and minimum degree at least two then we need Q(nlogn) edges in order that they
are likely to be Hamiltonian.

For sparse random graphs with O(n) random edges, one needs to have minimum degree at least
three. This is to avoid having three vertices of degree two sharing a common neighbour. There
are several models of a random graph in which minimum degree three is satisfied: Random regular
graphs of degree at least three, Robinson and Wormald [21], [22] or the random graph Gs3_,u,
Bohman and Frieze [4]. Bollobas, Cooper, Fenner and Frieze [7] considered the classical random
graph G, ,, with conditioning on the minimum degree k i.e. each graph with vertex set [n] and
m edges and minimum degree at least k is considered to be equally likely. Denote this model of
a random graph by Gi%ﬁ. They showed that for every k > 3 there is a ¢ < (k + 1) such that
if ¢ > ¢, then w.h.p. GZ?C’,Z has (k — 1)/2 edge disjoint Hamilton cycles, where a perfect matching
constitutes half a Hamilton cycle in the case where k is even. It is reasonable to conjecture that
¢k = k/2. The results of this paper and a companion [14] reduce the known value of ¢3 from 64 to

below 15. It can be argued that replacing one incorrect upper bound by a smaller incorrect upper
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bound does not constitute significant progress. However, the main contribution of this paper is to
introduce a new greedy algorithm for finding a large 2-matching in a random graph and to give a
(partial) analysis of its performance and of course to apply it to the Hamilton cycle problem.

One is interested in the time taken to construct a Hamilton cycle in a random graph. Angluin and
Valiant [2] and Bollobas, Fenner and Frieze []] give polynomial time algorithms. The algorithm in
[2] is very fast, O(n log? n) time, but requires Knlogn random edges for sufficiently large K > 0.
The algorithm in [§] is of order n3t°M) but works w.h.p. at the exact threshold for connectivity.

Frieze [12] gave an O(n3+°(1)) time algorithm for finding large cycles in sparse random graphs and
G523

nen 0 this time for sufficiently large c¢. Another

this could be adapted to find Hamilton cycles in
aim of [14] and this paper is reduce this running time. The results of this paper and its companion
[14] will reduce this to nt-5+e() for sufficiently large ¢, and perhaps in a later paper, we will further
reduce the running time by borrowing ideas from a linear expected time algorithm for matchings

due to Chebolu, Frieze and Melsted [10].

The idea of [10] is to begin the process of constructing a perfect matching by using the Karp-Sipser
algorithm [I6] to find a good matching and then build this up to a perfect matching by alternating
paths. The natural extension of this idea is to find a good 2-matching and then use extension-
rotation arguments to transform it into a Hamilton cycle. A 2-matching M of G is a spanning
subgraph of maximum degree 2. Each component of M is a cycle or a path (possibly an isolated
vertex) and we let k(M) denote the number of components of M. The time taken to transform
M into a Hamilton cycle depends heavily on x(M). The aim is to find a 2-matching M for which
k(M) is small. The main result of this paper is the following:

Theorem 1. There is an absolute constant ¢y > 0 and such that if ¢ > co then w.h.p. 2GREEDY
finds a 2-matching M with k(M) = O(logn). (This paper gives an analytic proof that ¢y < 15. We
have a numerical proof that co < 2.5).

Given this theorem, we will show how we can use this and the result of [14] to show

Theorem 2. Ifc> ¢y then w.h.p. a Hamilton cycle can be found in O(n1'5+°(1)) time.

Acknowledgement: I would like to thank my colleague Boris Pittel for his help with this paper.
He ought to be a co-author, but he has declined to do so.

2 Outline of the paper

As already indicated, the idea is to use a greedy algorithm to find a good 2-matching and then
transform it into a Hamilton cycle. We will first give an over-view of our greedy algorithm. As
we proceed, we select edges to add to our 2-matching M. Thus M consists of paths and cycles
(and isolated vertices). Vertices of the cycles and vertices interior to the paths get deleted from
the current graph, which we denote by I'. No more edges can be added incident to these interior
vertices. Thus the paths can usefully be thought of as being contracted to the set of edges of a
matching M* on the remaining vertices of I'. This matching is not part of I'. We keep track of the
vertices covered by M* by using a 0/1 vector b so that for vertex v, b(v) is the indicator that v is



covered by M*. Thus when v is still included in I'" and b(v) = 1, it will be the end-point of a path
in the current 2-matching M.

The greedy algorithm first tries to cover vertices of degree at most two that are not covered by
M or vertices of degree one that are covered by M. These choices are forced. When there are no
such vertices, we choose an edge at random. We make sure that one of the end-points u,v of the
chosen edge has b-value zero. The aim here is to try to quickly ensure that b(v) = 1 for all vertices
of I". This will essentially reduce the problem to that of finding another (near) perfect matching in
I". The first phase of the algorithm finishes when all of the vertices that remain have b-value one.
This necessarily means that the contracted paths form a matching of the graph I' that remains
at this stage. Furthermore, we will see that I' is distributed as G,%f for some v, and then we
construct another (near) perfect matching M** of I' by using the linear expected time algorithm
of [I0]. We put M and M™** together to create a 2-matching along with the cycles that have been
deleted. Note that some vertices may have become isolated during the construction of M and these
will form single components of our 2-matching. The union of two random (near) perfect matchings

is likely to have O(logn) components. Full details of this algorithm are given in Section [

Once we have described the algorithm, we can begin its analysis. We first describe the random
graph model that we will use. We call it the Random Sequence model. It was first used in Bollobés
and Frieze [9] and independently in Chvatél [II]. We used it in [3] for our analysis of the Karp-
Sipser algorithm. We prove the truncated Poisson nature of the degree sequence of the graph I' that
remains at each stage in Section [B We then, in Section [, give a detailed description of 2GREEDY.
In Section [0l we show that the distribution of the evolving graph I' can be succinctly described
by a 6-component vector v = (y1, 2, 21,¥, 2, ) that evolves as a Markov chain. Here y;,j = 1,2
denotes the number of vertices of degree j that are not incident with M and z; denotes the number
of vertices of degree one that are incident with M. y denotes the number of vertices of degree at
least three that are not incident with M and z denotes the number of vertices of degree at least two
that are incident with M. p denotes the number of edges. It is important to keep ¢ = y1 + y2 + 21
small and 2GREEDY will attempt to handle such vertices when ¢ > 0. In this way we keep ¢ small
w.h.p. throughout the algorithm and this will mean that the final 2-matching produced will have
few components. Section [f] first describes the (approximate) transition probabilities of this chain.
There are four types of step in 2GREEDY that depend on which if any of y1, y2, 21 are positive. Thus
there are four sets of transition probabilities. Given the expected changes in v, we first show that
in all cases the expected change in ( is negative, when ( is positive. This indicates that ¢ will not
get large and a high probability polylog bound is proven.

We are using the differential equation method and Section [7 describes the sets of differential equa-
tions that can be used to track the progress of the algorithm w.h.p.. The parameters for these
equations will be v = (91, 92, 2,7, 2, fi). There are four sets of equations corresponding to the four
types of step in 2GREEDY. It is important to know the proportion of each type of step over a small
interval. We thus consider a sliding trajectory i.e. a weighted sum of these four sets of equations.
The weights are chosen so that in the weighted set of equations we have ¢} = g5 = 2; = 0. This
is in line with the fact that ¢, 2, i > ( for most of the algorithm. We verify that the expressions
for the weights are non-negative. We then verify that w.h.p. the sliding trajectory and the process
parameters remain close.



Our next aim is to show that w.h.p. there is a time T such that y(7') = 0,2(T) = Q(n). It
would therefore be most natural to show that for the sliding trajectory, there is a time T such
that §(T) = 0, 2(T) = Q(n). The equations for the sliding trajectory are complicated and we have
not been able to do this directly. Instead, we have set up an approximate system of equations (in
parameters ¢, Z, fi) that are close when ¢ > 15. We can prove these parameters stay close to g, Z, i
and that there is a time 7' such that §(7) = 0,2(T) = Q(n). The existence of 1" is deduced from
this and then we can deduce the existence of T'. We then in Section [0 show that w.h.p. 2GREEDY
creates a matching with O(logn) components, completing the proof of Theorem [

Section shows how to use an extension-rotation procedure on our graph G to find a Hamilton
cycle within the claimed time bounds. This procedure works by extending paths one edge at a time
and using an operation called a rotation to increase the number of chances of extending a path. It
is not guaranteed to extend a path, even if it is possible some other way. There is the notion of a
booster. This is a non-edge whose addition will allow progress in the extension-rotation algorithm.
The companion paper [I4] shows that for ¢ > 2.67 there will w.h.p. always be many boosters. To
get the non-edges we first randomly choose s = n'/21log™2 n random edges X of G, none of which
are incident with a vertex of degree three. We then write G = G’ + X and argue in Section [I0.]
that the pair (G', X) can be replaced by (H,Y) where H = sz,zciz—s and Y is a random set of
edges disjoint from F(H). We then argue in Section [[0.3] that w.h.p. Y contains enough boosters
to create a Hamilton cycle within the claimed time bound.

Section [TI] contains some concluding remarks.

3 Random Sequence Model

A small change of model will simplify the analysis. Given a sequence X = x1, s, ...,z € [n]*M
of 2M integers between 1 and N we can define a (multi)-graph Gx = Gx (N, M) with vertex set
[N] and edge set {(x2i—1,x2;) : 1 <i < M}. The degree dx(v) of v € [N] is given by

dx(v) = [{j € 2M] : 25 = v} |.

If x is chosen randomly from [N]?* then Gy is close in distribution to G . Indeed, conditional
on being simple, G is distributed as G'x ar. To see this, note that if G« is simple then it has vertex
set [N] and M edges. Also, there are M!2M distinct equally likely values of x which yield the same
graph.

Our situation is complicated by there being lower bounds of 2,3 respectively on the minimum
degree in two disjoint sets Jo,J3 C [N]. The vertices in Jy = [N] \ Jo U J3 are of fixed degree
bounded degree and the sum of their degrees is D = o(N). So we let

[N p = {x € INPM dye(j) > i for j € J;, i =2,3 and Y _ dx(j) = D}.
j€Jo
Let G = G(N, M, Jy, J3; D) be the multi-graph Gx for x chosen uniformly from [N]?]]Z\fljg;[). It is
clear then that conditional on being simple, G(n,m,(,[n];0) has the same distribution as
It is important therefore to estimate the probability that this graph is simple. For this and other



reasons, we need to have an understanding of the degree sequence dyx when x is drawn uniformly
from [N, . Let
2,J3;

for k > 0.

Lemma 3.1. Let x be chosen randomly from [NBJQV’IJS;D. Fori=2,3let Z; (j € [J;]) be independent
copies of a truncated Poisson random wvariable P;, where

)\t
P(Pi=t)= ——, t=4,i+1,... .
(P ) t!fi()\) 1,1+
Here \ satisfies

3 .
;V#;()A)u,-\:zM—D. (1)

For j € Jo, Zj = dj is a constant and 3_;c ;. dj = D. Then {dx(j)}je(n) is distributed as {Z;}jen
conditional on Z =} ;1 Zj = 2M.

Proof Note first that the value of A in () is chosen so that
E(Z) =2M.
Fix Jo, J2, J3 and & = (&1,&2, ... ,&n) such that §; = d; for j € Jy and & > k for k = 2,3. Then,

oo (2 ey

x€[NJ2M

Jo,J3;D
On the other hand,
P\ (Z1, 22y, Zn) = €| Y Zj=2M | =
J€[N]
1 ASi 1L AT
e [T 5 e ) /| S eI I s
jedo 7 i=2jer; TNV xe[NZM, jedo 7 i=2jer; TNV

:<H§:2fi<x>-ww> [ x Dep e

51'62'51\[' [N]2M 33‘1!:1}2!...33‘]\/!
Jo,J3;D

- (dx = E)

0

To use Lemma [B1] for the approximation of vertex degrees distributions we need to have sharp
estimates of the probability that Z is close to its mean 2M. In particular we need sharp estimates
of P(Z = 2M) and P(Z — Zy = 2M — k), for k = o(N). These estimates are possible precisely



because E(Z) = 2M. Using the special properties of Z, we can refine a standard argument to show
(Appendix 1) that where Ny = |Jy| and N* = Ny + N3 and the variances are
)2 foaN) + A e (V) = N i (V)? A (Afz_1()\)>

fe(N)

o} = -

fe(N)? —Td

3
1
and 02 = N ZN@U% (2)
=2

that if N*0? — oo and k = O(v/N*o) then

P(Z:2M—k):ﬁ<1+o<%>>. 3)

A proof for Jy = [N] was given in the appendix of [3]. We need to modify the proof in a trivial
way. Given (B and
o? =0(\), (=23,

we obtain

Lemma 3.2. Let x be chosen randomly from [N]?]é\f[JS;D.

(a) Assume that log N* = O((N*A\)Y/2). For every j € J; and £ < k < log N*,

‘ Ak k%41
Furthermore, for all {1,0y € {2,3} and j1 € Jy,, j2 € Juy, j1 # Jo2, and £; < k; <log N*,

k1 ko o 2 nT*
P(de(it) = b1, dalie) = ho) = 17 o = 5 <1+o (1 e )) (5)
b
( ) d () < & Sﬁl (6)
*J) = (loglog N)1/2 ¢

for all j € JoU Js3.
Proof Assume that j =1 ¢ Jy. Then
P (21 =kand ©), 7 = 2M)
P (XN, 2 =2M)
N P(SN,Zi=2M k)
BN (SN, zi=2M)

Likewise, with j; = 1,jo = 2,

Mo ok P(SN,Zi=2M — k)
ke (M) ka! e, (V) P (Ef\il 7 = QM)

]P)(dx(l) = k17dx(2) = k2)

'An event € = £(N*) occurs quite surely (q.s., in short) if P(§) =1 — O(N~®) for any constant a > 0



Statement (a) follows immediately from (B]) and (b) follows from simple estimations. O

Let v%(s) denote the number of vertices in Jy,¢ = 2,3 of degree s in Gx. Equation (@) and a
standard tail estimate for the binomial distribution shows

Lemma 3.3. Suppose that log N* = O((N*\)'/2) and Ny — oo with N. Let x be chosen randomly

from [N]%JQV’IJS;D. Then g.s.,
S\ 1/2
Ny 9 .
D(x) = < 1+<‘ > log? N, kE<j<logN ;. 7
(%) { ( ) )g J g} (7)
]

We can now show Gy, x € [n]%’f;ﬂ
that

NN
3N

vi(j) —

o 1s a good model for Gfl’zni’. For this we only need to show now

P(Gx is simple) = Q(1). (8)

For this we can use a result of McKay [19]. If we fix the degree sequence of x then x itself is
just a random permutation of the multi-graph in which each j € [n] appears dx(j) times. This
in fact is another way of looking at the Configuration model of Bollobés [6]. The reference [19]
shows that the probability Gy is simple is asymptotically equal to e~(1te(1)P(e+]) where p = my /m
and my = 3 cp, dx(4)(dx(j) — 1). One consequence of the exponential tails in Lemma B.3]is that
mg = O(m). This implies that p = O(1) and hence that (§) holds. We can thus use the Random
Sequence Model to prove the occurrence of high probability events in Gf%%.

With this in hand, we can now proceed to describe our 2-matching algorithm.

4 Greedy Algorithm

Our algorithm will be applied to the random graph G = G

023 and analysed in the context of Gy.

m
As the algorithm progresses, it makes changes to G and we let I' denote the current state of G.
The algorithm grows a 2-matching M and for v € [n] we let b(v) be the 0/1 indicator for vertex v
being incident to an edge of M. We let

e 1 be the number of edges in I,
o Vo, ={ven]:dr(v) =0, bv) =3}, =01,
o Vi ={ve[n]:dr(v)=kand b(v) =0}, k = 1,2,

Z1 ={v € [n]:dp(v) =1 and b(v) = 1},

Y ={v € [n]:dr(v) >3 and b(v) = 0}, This is J3 of Section

Z ={v € [n]:dr(v) > 2 and b(v) = 1}, This is Jo of Section [Bl

M is the set of edges in the current 2-matching.

e M™ is the matching induced by the path components of M i.e. if P C M is a path from x to
y then (z,y) will be an edge of M* and the internal edges of P will have been deleted from
I.



Observe that the sequence b = (b(v)) is determined by Vj o, Vo 1,Y1,Y2, Z1,Y, Z.

If Y1 # 0 then we choose v € Y7 and add the edge incident to v to M, because doing so is not a
mistake i.e. there is a maximum size 2-matching of I" that contains this edge. If Y1 = () and Y5 # ()
then we choose v € Y5 and add the two edges incident to v to M, because doing so is also not a
mistake i.e. there is a maximum size 2-matching of I" that contains these edges. Similarly, if Yo = ()
and Z; # () we choose v € Z; and add the unique edge of T" incident to v to M. When we add an
edge to M it can cause vertices of I' to become internal vertices of paths of M and be deleted from
I'. In particular, this happens to v € Z; in the case just described. WhenY; =Y = Z; =0 # Y we
choose a random edge incident to a vertex of Y. In this way we hope to end up in a situation where
Yo =21 =Y =0 and |Z| = Q(n). This has advantages that will be explained later in Section @ and
we have only managed to prove that this happens w.h.p. when ¢ > 15. When Y] =Y, =7, =Y = ()
we are looking for a maximum matching in the graph I' that remains and we can use the results of

[10].

We now give details of the steps of

Algorithm 2GREEDY:

Step 1(a) Y7 # 0
Choose a random vertex v from Y;. Suppose that its neighbour in T' is w. We add (v, w) to
M and move v to Vp 1.

(i) If b(w) = 0 then we add (v,w) to M*. If w is currently in Y then move it to Z. If it is
currently in Y7 then move it to V1. If it is currently in Y5 then move it to Z;. Call this
re-assigning w.

(i) If b(w) = 1 let u be the other end point of the path P of M that contains w. We remove

(w,u) from M* and replace it with (v,u). We move w to Vj 1 and make the requisite
changes due to the loss of other edges incident with w. Call this tidying up.

Step 1(b): Y; =0 and Yy # (0
Choose a random vertex v from Ys. Suppose that its neighbours in I' are wy, ws.

If wy = wy = v then we simply delete v from I'. (We are dealing with loops because we are
analysing the algorithm within the context of Gx. This case is of course unnecessary when
62k)

the input is simple i.e. for G757).

Continuing with the most likely case, we move v to Vj 1. We delete the edges
(v,w1), (v, we) from T" and place them into M. In addition,

(i) If b(wy) = b(wy) = 0 then we add (wq,ws) to M* and put b(wy) = b(wy) = 1. Re-assign
w1, wWa.

(ii) If b(w1) = b(we) = 1 let u;,i = 1,2 be the other end points of the paths Py, P, of M
that contain wy, ws respectively. There are now two possibilities:
(1) u3 = wy and uy = wi. In this case, adding the two edges creates a cycle C' =

(v,wq, P1,we,v) and we delete the edge (wq,wsy) from M*. Vertices wy,ws are
deleted from I'. The rest of C' has already been deleted. Tidy up.



(2) u; # wy and uy # wi. Adding the two edges creates a path
(u1, P{,wi,v,we, Py, us) to M, where P is the reversal of P;. We delete the edges
(w1, uq), (we,ug) from M* and add (u1,us) in their place. Vertices wy,wy are deleted
from I'. Tidy up.

(iii) If b(wy) = 0 and b(w2) = 1 let uy be the other end point of the path P of M that
contains wy. We delete (wg,us2) from M* and replace it with (wq,u2). We put b(w;) =1
and re-assign it and delete vertex wsy from I'. Tidy up.

Step 1(c): Yo =0 and Z; # 0
Choose a random vertex v from Z;. Let u be the other endpoint of the path P of M that
contains v. Let w be the unique neighbour of v in I'. We delete v from I and add the edge
(v,w) to M. In addition there are two cases.

(1) If b(w) = 0 then we delete (v,u) from M* and replace it with (w,u) and put b(w) =1
and re-assign w.

(2) If b(w) = 1 then let u be the other end-point of the path containing w in M. If u # v
then we delete vertex w and the edge (u,w) from M* and replace it with (u,v). Tidy
up. If u = v then we have created a cycle C' and we delete it from I" as in Step 1(b)(i)(1).

Step2: Vi=Yo=Z;=0and Y # ()
Choose a random edge (v, w) incident with a vertex v € Y. We delete the edge (v, w) from I'
and add it to M. We put b(v) = 1 and move it from Y to Z. There are two cases.

(i) If b(w) = 0 then put b(w) = 1 and move it from Y to Z. We add the edge (v, w) to M*.

(ii) If b(w) = 1 let u be the other end point of the path in M containing w. We delete vertex
w and the edge (u,w) from M* and replace it with (u,v). Tidy up.

Step 3: Y1:Y2221:Y:®
At this point I" will be seen to be distributed as G,%f for some v, pu where p = O(v). As such,
it contains a (near) perfect matching M** [I4] and it can be found in O(v) expected time

[10].

The output of 2GREEDY is set of edges in M U M™**.

No explicit mention has been made of vertices contributing to Vpo. When we we tidy up after
removing a vertex w, any vertex whose sole neighbour is w will be placed in Vj .

5 Uniformity

In the previous section, we described the action of the algorithm as applied to I". In order to prove
a uniformity property, it is as well to consider the changes induced by the algorithm in terms of x.

When an edge is removed we will replace it in x by a pair of x’s. This goes for all of the edges
removed at an iteration, not just the edges of the 2-matching M. Thus at the end of this and
subsequent iterations we will have a sequence in A = ([n] U {x})?™ where for all i, x9; 1 = x if and
only if x9; = . We call such sequences proper.



We use the same notation as in Section Bl Let S = S(x) = {i : 29;_1 = 2z2; = *}. Note that the
number of edges p in Gy is given by

w=m—|S|.
For a tuple v = (Vo 0, V0.1, Y1,Y2, Z1,Y, Z,S) we let A, denote the set of pairs (x,b) where x € A
is proper and

o Voy = {ve [n]: du(v) = 0, b(v) = j}, j = 0,1,
o Vi = {ven]: d(v) =k and b(v) =0}, k = 1,2,
o Z1={ven]:de(v) =1and b(v) = 1},

oV ={ve[n]:dy(v) >3 and b(v) = 0},

o Z=1{ve[n]: dg(v)>2and b(v) = 1}.

o 5= S(x).

(Re-call that b is determined by v).

For vectors x,b we define v(x,b) by (x,b) € Ay(xp). We also use the notation x € Ay () when
the second component b is assumed.

Given two sequences x,x’ € A, we say that x" C x if #; = x implies 2. = x. In which case we define

y =x—x by

* Otherwise

_{a;j If 2j # % = 2
Yj =

Thus y records the changes in going from x to x’.

" = %. In which

Given two sequences x,x’ € A we say that x,x" are disjoint if z; # » implies that ]

case we define y = x + x’ by
x; Ifx; #x%
yi=qz; Il #£x
*  Otherwise

Thus,
if x’ C x then x" and x — x’ are disjoint and x = x’ 4+ (x — x'). 9)

Suppose now that (x(0), b(0)), (x(1),b(1)),. .., (x(t), b(t)) is the sequence of pairs representing the
graphs constructed by the algorithm 2GREEDY. Here x(i — 1) D x(4) for ¢ > 1 and so we can define
y(i) = x(i — 1) — x(i). Suppose that v(i) = v(x(i)) for 1 < i <t where v(0) = (0,0,0,0,[n],0,0)
and b(0) = 0.
Let

Aypp = {x: (x,b) € Ay}.

Lemma 5.1. Suppose that x(0) is a random member of Ay(oy(0)- Then given
v(0),v(1),...,v(t), the vector x(t) is a random member of Ay for all t > 0, that is, the
distribution of x(t) is uniform, conditional on the edges deleted in the first t steps. (Note that b(t)
is fizved by v(t) here).

10



Proof We prove this by induction on ¢. It is trivially true for ¢ = 0. Fix t > 0,x(t), b(t), x(t +
1),b(t + 1). We define a sequence x(t) = z1,29,...,%s = x(t + 1) where z;;; is obtained from z;
by a basic step

Basic Step: Given x,b and v = v(x,b) we create new sequences x' = A;(x),b’ = Bj(b) and
v = v(x/,b’). Let w = x — x. A basic step corresponds to replacing the edge (wzj_1,ws;) by an
edge of the matching M, for some index j. Let u = waj_1,v = wy;.

Case 1: Here we assume b(u) = b(v) = 0.
Replace x9j_1,22; by s and put b(u) = b(v) = 1.

Case 2: Here we assume b(u) = 0, b(v) = 1.
Replace zok_1, x9 by *’s for every k such that v € {zor_1, 29} and put b(u) = 1.

Case 3: Here we assume b(u) = b(v) = 1.
Replace wop_1,wor by *’s for every k such that {u,v} N {wor_1,wor} # 0.

aim 2.1. Suppose that x' = A;j(X) andy = x — X an = B;(b). en the map ¢ : z €
Clai s hat X' = A, d " and b = Bj(b). Then th &
Az(x b) (z —y,b’) is 1-1 and each (z',b') € Ay vy is the image under ¢ of a unique member

of Az(va)’ where Az(x,b) = {(Z,b) € Av(x,b) tz2 Y}-

Proof of Claim 2.1l Equation (@) implies that ¢ is 1-1. Let v = v(x,b) and v/ = v(x/,b’).
Choose (w,b’) € Ay,. Because S’ is determined by v/, we see that y and w are necessarily disjoint
and we simply have to check that if x* = w + y then (x*,b) € A,. But in all cases, v(x*,b) is
determined by v/ and y and this implies that v(x*,b) = v(x,b).

This statement is the crux of the proof and we should perhaps justify it a little more. Suppose
then that we are given v’ (and hence b’) and y and b. Observe that this determines dyx«(v) for all
v e VygU Vg, UY  UYyUZ]. Together with b(v) this determines the place of v in the partition
defined by v. Now Y’ C Y and it only remains to deal with v € Z’. If dy(v) > 0 thenv € Y U Z
and b(v) determines which of the sets v is in. If dy(v) = 0 and b(v) = 1 then v € Z. If dy(v) = 0
and b(v) = 0 then v € Y. This is because b(v) = 0 and ¥'(v) = 1 implies that we have put one of
the edges incident with v into M.

End of proof of Claim [2.7]

The claim implies (inductively) that if x is a uniform random member of Ay, and we do a sequence
of basic steps involving the “deletion” of y1,y2,...,ys where y;11 € x —y; — ---y;, then x' =
X —y1— - —Ys is a uniform random member of Ay, where v/ = v(x’, b’) for some b’. This will
imply Lemma 5.1l once we check that a step of 2GREEDY can be broken into basic steps.

First consider Step 1(a). First we choose a vertex in x € Y;. Then we apply Case 1 or 2 with
probabilities determined by v.

Now consider Step 1(b). First we choose a vertex in = € Y. We can then replace one of the edges
incident with x by a matching edge. We apply Case 1 or Case 2 with probabilities determined by
v. After this we apply Case 2 or Case 3 with probabilities determined by v.

For Step 1(c) we apply one of Case 2 or Case 3 with probabilities determined by v.
For Step 2, we apply one of Case 1 or Case 2 with probabilities determined by v.

11



This completes the proof of Lemma [5.11 O

As a consequence

Lemma 5.2. The random sequence v(t), t =0,1,2,..., is a Markov chain.

Proof Slightly abusing notation,

P(v(t+1) | v(0),...,v(t)
= > PW[v(0),...,v(t)

W EAy(141)

- Z Z P(w',w | v(0),...,v(t))

W EA (1 +1) WEA (1)

= > D PW[v(0),...,v(t—1),w)P(w | v(0),...,v(t))

X,GAV(t+1) WEAV(t)

= > > PW | wW)Avpl!, using Lemma Bl

w EAv(t+1) WEAV(t)

which depends only on v(t),v(t + 1). O

We now let
v = {IVool, Voal, IYal, [Yal, |21, [Y], | Z], S} -

Then we let A}y denote the set of (x,b) € A with |v(x,b)| = |[v| and we let
A‘V‘ b = {X : (X, b) S A\v\}

It then follows from Lemma that by symmetry,

Lemma 5.3. The random sequence |v(t)|, t =0,1,2,..., is a Markov chain.

A component of a graph is trivial if it consists of a single isolated vertex.

Lemma 5.4. Whp the number of non-trivial components of the graph induced by M U M** is
O(logn).

Proof Lemma 3 of Frieze and Luczak [I3] proves that w.h.p. the union of two random (near)
perfect matchings of [n] has at most 3logn components. Lemma [5.1] implies that at the end of

Phase 1, T is a copy of G922, independent of M*. In which case the (near) perfect matching of T

v u )
is independent of M* and we can apply [13]. O

6 Conditional expected changes

We now set up a system of differential equations that closely describe the path taken by the
parameters of Algorithm 2GREEDY, as applied to Gx where x is chosen randomly from [n]%),%};o
We introduce the following notation: At some point in the algorithm, the state of I' is described
by x € [n ]J2 J5.p+ together with an indicator vector b. We let y; = [{v : dx(v) =i and b(v) = 0}
and let z; = [{v: dx(v) =7 and b(v) = 1}| for i > 0. Welet y = > ,oqsy; and z = ) ;5,2 and let

12



2u = ;50 4(yi + 2i) be the total degree. Thus in the notation of Section [l we have y; = [Y;|,i =
1,2, Js =Y,N3s =y, 21 = |Z1], Jo = Z,No = 2, D = y; + 2ya + 21, M = p. Then it follows from
Lemma [33] that as long as (y + 2)A = Q(log?n), we have q.s.,

Ak AF
W apoy B2 =S gy 22 1o
Here A is the root of A\ A (A
f((A))Jr f((A)) o=y — 2 — 1. (11)
]

Notational Convention: There are a large number of parameters that change as

2GREEDY progresses. Our convention will be that if we write a parameter £ then by default it
means £(t), the value of £ after ¢ steps of the algorithm. Thus the initial value of £ will be £(0).
When £ is evaluated at a different point, we make this explicit.

We now keep track of the expected changes in v = (y1,y2,y, 21, 22, ) due to one step of 2GREEDY.
These expectations are conditional on the current values of b and the degree sequence d. We let
N = y + z, which is a small departure from the notation of Section Bl In the following sequence
of equations, & = £(t + 1) represents the value of parameter ¢ after the corresponding step of
2GREEDY.

Lemma 6.1. The following are the expected one step changes in the parameters

(y1,Y2,Y, 21, 2, ). We will compute them conditional on the degree sequence d and on |v|. We give
both, because the first are more transparent and the second are what is needed. The error terms &9
are the consequence of multi-edges and we will argue that they are small. We take

N=y+z
Step 1. y1 +y2+ 21 > 0.
Step 1(a). y1 > 0.
Ely; =y | b,d = —1- £+Z@(k—1)£ +Zkzk —1@+ (12)
2= 2n) s 2
N fo(N) | yez N2fo(N) log” N
Bl o (Wl = 102 w2 o () 13
[y — w1 | vl] on 42 fo(N) 212 fo(N) AN (13)
- N (7R . o g 1)2
Elyh — ys | b,d] = 0 +kz>2 2 (=135, +kz>2 o k-Dg +qg (14
MR | vz X X2f(N) log® N
Bl —yo | [v] = 22922 — O =~ 15
[vo —y2 | [v]] w202 o) 8u? fs(A) fa(N) AN (15)
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E[z] — 21 | b,d] =

B[zt —z [ V] =

Ely' —y|Iv]] =
E[Z' —z|b,d] =

E[Z —z||v] =

El —p|v] =

? kzy, z
- <1+Z(k1)2;)

21

2 5 2

Z kyk Z k;zk

<k>3 k>

Step 1(b) Y1 = 072/2 > 0

Elyy —v1 | b,d] =

Elyy — v | |vl]] =

Elyy —y2 | b,d] =

Elyh —y2 | |vl]] =

E[z] — 21 | b,d] =

B[zt —z [ V] =

212 A2 fo(N)

2 4p* fof

2

e 1
A Ap® fo(N)?

2

k>2

)4

kzp,

— (k—=1)== + 9717

2p

2Z2
2p

AN

3y3
,U) + 3

0 <log2N> '

_ Y AR oy AN fo(N) L0 <log2N>
2u f3(A)  8u? f3(A)  f2(N) AN )
Z%_Zkzk Zk‘zk 2z2+€|m
k>3 H k>2 E>2 2p
i)‘f2( ) z AMfi(A ) 22 )\4f0( )+O<10g2N>
2u fs(N)  2u fo(N)  Ap® fo(N)? AN )
_1—2%@‘—1)%@2.
= 2K
_ _i/\zfo()\) O<10g2N>
2u f2(N) NaA
kzk 219
2 — 1 == 4+
kzm 2 " B
Y2z N fo(N) <log2N>
p? o fa(N) HO\N )
1-9 2y2 4 Z ka 2y2 " 22 ka 3y3
k>2 k>2 2p

-1—

z<

21

7

2y2 y2z>\2f0(/\) yz A3

pooom2 fa(N) T Ap

i_i_zk’z;g

20 15 2
212 )\2f0()\) i)‘4f0( )
2u2 f2(A)  2p2 fa(N)2

14

O(

22 fo(A)
N ROy

log? N
AN

) .

AN

o (1% N).

(20)

(21)



Ely —y|bd = -2 (Z kyr Z k’Zk 32@:3) -
k>3 k>2
;o vio= _Y Afa(N) Yz )\_3 A2 fo(N) <10g2N>
IVl = R T R Ry O\ )
E[z' —z|b,d] = (Z kys Z kzk Z kzk 222) T
k>3 k>2 k>2
/ oy ARAN) 2 AAN) #° A4fo(A) log® N
B 1 = S S ae w0 ()
E[/ — p|b,d] = —2—221“’“ k—1)+ 937

k>2

E[M/ Y ’ ’VH = L f2(A)

Step 1(c). y1 =y2=0,2; > 0.

1
Elyy —y1 |b,d] = O (N)

1
Elyy —wi | [vl] = O(ﬁ)'
kz 3
Elyy —y2 | b,d] = sz(k_ D y3+€|m
=2 P
AN fo(N) log® N
By v = P o (e,
o —y2 | [Vl] 8u2 fs(\)  fa(N) AN
ka 21 ka 222
E[z] — 2z | b,d] = D DY (S VELs Byt
/ ] o 2M( )2M kzzzzu( )2/~6 Yo
MR\ | 22 Xfo(N) log® N
2= 21 | v 2w HE R) T E R TO\ON
k kz 3
Ely' —y|b,d] = —Z " Z L ( y3+6@
k>3 k>2

15

2 A2fo(\) log? N
+0< 5 )

(30)

(31)

(32)

(33)

(43)



Ely —y|Ivl] =

E[ — 2 | b, d]

E[z' =z |v]

Elp' — p| b,d]

E[u — | |v]]

Step 2. y1 =ys = 21 = 0.

E[yy —y1 | b, d]

Elyy — 1 | [v]]

Ely, — y2 | b, d]

Elys — 2 | [v]]

B[z} — 2 | b,d]

Elz] — 21 | [v]]

Ely' —y|b,d]
Ely —y | |v]]
E[2' — z | b,d]

y Afa(N) yz A3

2u f3(A)  8u? f3(A)  fa(N)

2o (M) log® N
+0< AN).

k>3 k22
iAf2( )_i)\fl( )_i)\4fo( )+O<10g2N>
2i f3(N) 0 2u fo(N) 4p? f2(N)? AN )
—1—2@(k—1)+s@

k>2 2
IR (1)) O<10g2N>

21 fa(A) AN

kzy, 3y3
Z 24 (k- ) + 57
k>2

g N Vh() log? N
Eﬁhu>hu>+o< >

Z@(kz—l)%+m

= 2 2p
z_2 M fo(N) 0 log” N
4p? fa(N)? AN )7

kys kzp 3y3
Tl @
k>3 E>2

y Afa2(X) yz A AN2fo(\) log? N
TR T RERN A O( >

1_Zk‘zk Zkzk 2z2+zz_ik+€m'

E>2 E>2 2h k>3
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! — _i)‘fl()‘)_z_z)‘4f0()\) Yy Afa(N) log? N
BE -2V = 1- 2l B ) 1A +0< L ) (58)

Bl —plbd] = —1-3 2= 1)+ qp (59)
k>2
z 2 O2

Ely —p|lv]] = —1—5)}5(0)(\))—!-0(1 §NN> (60)

Proof The verification of (I2]) — (59) is long but straightforward. We will verify (I2) and (I3])
and add a few comments and hope that the reader is willing to accept or check the remainder by
him /herself.

Suppose without loss of generality that x is such that z1 = v = 1 € Y;. The remainder of x is a
random permutation of 2m — 2u *’s and 2 — 1 values from [n] where the number of times j occurs
is dx(j) for j € [n]. The term -1 accounts for the deletion of v from I". There is a probability
N = ﬂ + O <—) that :172 € Y7 and this accounts for the second term in (I2)). Observe next

2p—1
k > 2. In which case another £ — 1 edges will be

deleted. In expectation, the number of vertices in Y7 lost by the deletion of one Such edge is 32/;_;

and this accounts for the third term. On the other hand, each such edge has a 2
being incident with a vertex in Y5. The deletion of such an edge will create a Vertex in Y7 and this
explains the fourth term. We collect the errors from replacing u by p — 1 etc. into the last term.
This gives a contribution of order 1/N. The above analysis ignored the extra contributions due to
multiple edges. We can bound this by

=L 5T () () o

k>3 >3

To explain this, we assume x5 € Zj, which is accounted for by the first sum over k. Now, to create
a vertex in Y7, the removal of xo must delete £ — 1 of the edges incident with some vertex y in Y.
The term 2ﬁy_‘1 is the probability that the first of the chosen £ — 1 edges is incident with y € Y, and

the factor (ﬁ) bounds the probability that the remaining ¢ — 2 edges are incident with y.

To go from conditioning on b,d to conditioning on |v| we need to use the expected values of yx, 2
etc., conditional on v. For this we use ({) and (Hl).

We have, up to an error term O log? N
, up AN )

_ B N RO
. ék‘yk Vi = ,;skyk'f?, — f3(A ); - f3(A) 7 (62
I A N AR
E kg;kzk vI| = kzﬁkzk"fz 0N ); RO (©3)
_ N2 N RO
ke — Dulvl| = STk — _
];’ (k — Dyyx||v| ;3 ( 1)yk!f3( Y= ho ); ATV (64)
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E {Z k(k — 1)z

k>2

- A D2 N A2f(N)
"] = D Mk = A T = Koy )

k>2 >0

In particular, using (65]) in (I2) we get ([I3]). The other terms are obtained in a similar fashion. We
remark that we need to use (&) when we deal with products zxy,, kK > 2 and ¢ > 3.

Since, k,£ < logn in (GI]) we see, with the aid of (G2)) - (G3]) that E[nyg | v] = O(1/N). This bound
is true for all other 7. O

6.1 Negative drift for yq, vy, 21

Algorithm 2GREEDY tries to keep y1, 42,21 small by its selection in Step 1. We now verify that
there is a negative drift in

C=(t)=vy1+2y2+2

in all cases of Step 1. This will enable us to show that w.h.p. ( remains small throughout the
execution of 2GREEDY. Let

yz A3 A2fo(N) 22 M fo(N)

Q=QM =125 Al | HE HOP

(66)

Then simple algebra gives

y4 2 02
EC— | V] = —(1- Q) - <<+y2>(1 +m)+0<lg‘w) Case 1(a)  (67)

2u - AP fo(N) AN
1 2X2fo(\) log? N
E[(" = ¢ vl = (1—Q)—C<;+m> +O< N > Case 1(b) (68)
A2 002
E['—¢|[v]=-(1-Q)—¢ (% + 7422?2)23) + 0 <l fNN> Case 1(c) (69)

We will show

Lemma 6.2. [Pittel]

A > 0 implies Q < 1 (70)
and
o™, A\ — o0,
Q= ) (71)
—0(\%), A—0.
Proof Now, by (), @ < 1 is equivalent to
5 4 2
00 X000 (200 M)
P RNEMN f2(N) f3(A) f2(N)
or, introducing x = y/z,
7 A fo(N) _|_>\fo()
Fa,\) = LB RO g yy s 02 >0, (72)
( AR >\f1(>\)>
Ja(X) J2(N)
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In particular, F(co,\) = 0. Now

AN AN\
Falw, A) = ( Hy f2<A>> Gl ),
where
N fo(N) Afa(A)  Afi(N)
Glo,A) = jﬂ)MM<th)+ <>>
(

L) AN ) B CENEN T RO?

Notice that
G(0,A) = A fo(\) (V) L2002 f3(N) T (AN = 2f2(N) >0

as Afi(A) —2f2(X) > 0. Whence F,(0,A) > 0 and as a function of x, F'(x,\) attains its maximum
at the root of G(z,\) = 0, which is
[N (AN = 2f2(N))

o A2(A)? ' ™

Now, (3] implies that Z satisfies

S NN N H) N

(
BN T RN T BN
and (74]) implies that

A) (AN AN J3(A)
w5 (R ) < s L

fs(A) fa(A)
A2 LAWY 20 1(N) = f2(N)
fs) f2(A) fa() '
Substituting (75]), (76) into (72)), we see that

ep) RO y
F(z.) = VLN DAY X fo(N)

< VAR Afl@)) AR AN = V)

f3(N) f2(N)

Thus,
D(A)

Af2(N) (A1 (N) = f2(N)”

1—-F(z,\) =
where

D) =4f2(N) (Af1(N) = f2(N) = A fo(N)
=—4—4x— (A 4+ 44X = 8)eM + (4N — 4)eP

In particular,
1-F@E\)=1-00\"", \— . (78)

Expanding e*and e?*, we obtain after collecting like terms that

DN => 4 N,

1l
j>6 J:
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where
dj =27(j —2) — (j)a — 4(j)2 + 8.

Here dj = 0 for 0 < j < 5 and dg = 40,d7 = 280,dg = 1176,dy = 3864,d1p = 10992 and
d; > 0 for j > 11 is clear. Therefore D()) is positive for all A > 0. Since D(A) ~ dgA® and

4f2(A) (A fi(A) = fa(A) ~ A% as A — 0, we see that
1— F(z,\) ~dg)?, X—0.

This completes the proof of Lemma
It follows from (&), ([68), (69) and Lemma [6.2] that, regardless of case,

log? N
AN

¢ > 0implies E[¢ = ¢ | [v]] € —c1(1AN)? + O <

for some absolute constant ¢; > 0, where 1 A A = min {1, A}.

To avoid dealing with the error term in (80) we introduce the stopping time,

1 3
TeT:min{t:)\2§ o8 n}

AN

(This is well defined, since eventually N = 0).

The following stopping time is also used:

To=min{t : A <1lor N <n/2} <T,.

So we can replace (80) by
¢ > 0 implies E[¢' — ¢ | |[v]] € —c1/2, 0<t<Ty,

which holds for n sufficiently large.

There are several places where we need a bound on A:

Lemma 6.3. Whp A < 3ce fort <Tj.

(79)

Proof We will show that w.h.p. y1 4+ 2y2 + 21 = o(n) throughout. It follows from (II]) and the
inequalities in Section that if A is sufficiently large and if A(¢) > A then Y U Z contains y + z
vertices and at least A(y + z)/2 edges and hence has total degree at least A(y + z). We argue that
w.h.p. G does not contain such a sub-graph. We will work in the random sequence model. We can
assume that |Y U Z| > n/2. Now fix a set S C [n] where s = |S| > n/3. Let D denote the total

degree of vertices in S. Then

S )\dz )\d
PD=d)<0m'?) Y [[+7577<00") Y
dittds=di=1 Fs(A)ds! d'f3(A) dictotds=d

;>3 dj>
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Here A = A\(0) and we are using Lemma Bl The factor O(n'/?) accounts for the conditioning that
the total degree is 2cn. Now A(0) < 2c¢ and f3(A(0)) > 1. It follows that

n\ (2c)%s? nex s (2¢)sd
PEs: 4> a9 <00 T 3 (1) 55 <ow T 3 () S

s>n/3d>As s>n/3 d>As

The terms involving d in the second sum are uy = (228!)d and for d/s large we have ugy1/uqg = O(s/d)

and so we can put d = As in the second expression. After substituting d! > (d/e)? this gives

. . 12 3e(2ce)M\” o
P(3S : d > As) < Of )SZZW <7AA ) (1)

if A > 3ce. O

Our aim now is to give a high probability bound on the maximum value that ¢ will take during the

process. We first prove a simple lemma involving the functions ¢;(z) = m];{;(;()w), j=23.
Lemma 6.4.

1
¢j(x) is convex and increasing and j < ¢;(x) and P < ¢l(x) <1 for j=2,3. (83)
J

Proof Now, if H(x) = 2P@) then

G(x)
(e = ST ) Flo) 2P )6
and
H”(.Z’) —
20F (2)G'(2)? + G(2)?(2F' (z) + 2F"(2)) — G(x)(22F'(2)G' (z) + F(z)(2G' (x) + 2G" (x)))
G(z)3 ’
Case j = 2: . 2
(o) = S (5)
But, .
e — (22 4+ 2)e” +1 = Z 2 _j(j.'_ Dl 2wj
>4 7
and so ¢4 (z) > 0 for z > 0.
e2r (2?2 — Ax er (a3 + 2 T —
1) = ( dr+2)+ef@+a"+dr—4)+2 (5)

(e —1—1x)3

But

X (22 — 4o+ 2) + (2P +a? fdr —4)+2=

) Y260 - -8 +8) +i(I DG —2)+j( 1) +4j —4.
4!

Jj=6

21



and so ¢4 (z) > 0 for x > 0.
Case j = 3:
2% —e* (23 —2? +dzv+4) +2? + 4o+ 2

2(65”—1—95—%)2

¢3(7) =

(86)
But,

24 -G -2 i1 —4j 4

2€2x—€x($3—$2—|—4$+4)—|—:E2—|-433‘—|—2:Z 7

Jj=6

and so ¢4 (z) > 0 for x > 0.

#(z) = z(e¥ (222 — 122 + 12) + (2t + 822 — 24) + 222 + 122 + 12)' (87)

4(6“3—1—(5—%—2)3

But

e*® (207 — 122 4+ 12) + ®(2* + 822 — 24) + 22 + 122 + 12

5 PGE D) 12424 +5( - DG =2)( =3) +8j(i —1) =24 ;
! '

Jj=9
and so ¢4(z) > 0 for x > 0.

So ¢, ¢3 are convex and so we only need to check that ¢2(0) = 2, ¢5(0) = 1/3, ¢3(0) = 3, ¢5(0) =
1/4 and ¢h(c0) = ¢h(c0) = 1. O

Consider A as a function of v, defined by

yo3(A) + z¢2(A) =11 (88)

where Il =2 — y1 — 2y2 — 21.

We now prove a lemma bounding the change in A as we change v.
Lemma 6.5.

MWﬂ—MwM=O<ml%2m>, fort < T,

Proof We write vi = (y1,¥2,21,%,2,4) > 0 and vo = (y1 + 6y;, Y2 + Oy, 21 + 024,y + 6y, 2 +
Oz, ;0 +dy,) > 0 and IIIT 4 gy for the two values of II. Then

(4 + 0y)d3(A +0x) = yP3(A) + (2 + 02)P2(A + 63) — P2(A) = dmr. (89)
Convexity and our lower bound on qS;- implies that
Gj(A) = dj(A+0x) — 0agj(A+0x) > ¢5(A +0x) — da.
So from (89) we have

(4 +6y)(@3(A) + 0x) = yP3(A) + (2 +02)(d2(A) + 0x) — d2(A) = 0.
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This implies that

o — Oy$3(A) = 0x¢2(N)
o\ > .
Y+0oy+2+0,

So,

5y < 0 implies |5y = O (W) |

Note that we use Lemmal6.3] to argue that ¢;()), j = 2,3 are bounded within our range of interest.

To deal with 6, > 0 we observe that convexity implies
¢ (A+0x) = &5 (A) + o5 (N).
So from (B7) we have
(y +0y)(@3(A) + Ar5(N) — yd3(A) + (2 + 6:)(¢2(A) + x5 (M) — ¢2(A) < on.

This implies that

5)\ < 51'[ - 5y¢3(/\) - 5z¢2(/\)
T (W F ) d5(A) 4 (2 4 02)95(A)
So,
dx > 0 implies [05] = O <w> .
N
O
Lemma 6.6. If ¢ > 15 then q.s.
Al <t<Ty: ((t) >log’n.
Proof Define a sequence
X min {¢(i + 1) — {(i),logn} 0<i<Tp
Y a2 Ty<i<n
The variables X1, Xo,...,X,, are not independent. On the other hand, conditional on an event
that occurs q.s., we see that
Xop14+ ...+ X =C((t)—((s) for 0 < s <t <Ty
and
E[X; | X1,...,Xi—1] < —c1/2 for t <n.
Next, for 0 < s <t <Tj let
t
As,t)= > Ar)>
T=s5+1

Note that

(s, t) >t — s. (90)
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We argue as in the proof of the Azuma-Hoeffding inequality that for any 1 < s <t <n and u > 0,

_ 22
P(Xsp1+ -+ Xi > u—ci1A(s,1)/2) Sexp{—%}. (91)
(t—s)log”n

We deduce from this that

PE1<s<t<Tp:((s)=0<((r),s<7<t)<

3 2
R

Putting ¢t — s = L1 = log® n we see from ([@2) that q.s.
/HlSS<t—L1ST()—Ll:C(S):0<C(T),S<T§t. (93)

Suppose now that there exists 7 < Tj such that ((7) > L;. Then q.s. there exists t; < 7 <1+ L4
such that ((¢1) = 0. But then given 1,

2(c1L1/2 —1 2
P(Elh§T§t1+L1:§(7)2L1)§eXp{_ (e1L1/2 — logn) }

Lilog?n
Here we are using the generalisation of Hoeffding-Azuma that deals with max;<r, X1 +--- + Xj.

And then we get that q.s.
At <Ty:((1) = L. (94)

We do this in two stages because of the condition ¢ > 0 in (8I]). Remember here that {(0) = 0 and
[@3) says that ¢ cannot stay positive for very long. O

7 Associated Equations.
The expected changes conditional on v lead us to consider the following collection of differential

equations: Note that we do not use any scaling. We will put hats on variables i.e. g; etc. will be
the deterministic counterpart of y;. Also, as expected, the hatted equivalent of (88]) holds:

= 20 — i1 — 202 — A1 (95)

gAf2(N) n g1 (V)
f3(A) f2(N)

Step 1(a). y1 > 0.

djn _ i 3nE NG | geE MH(Y

dt 2 AR f(3) 2R () 0
diz _ 92 922 Nf 0@ 9z Xﬁi X 0@ (97)
dt o202 f(0) 8% () fa(N)

(N TR (10 BN\ (10 (98)
dt 20 AR fy(N) 47 fp(N)2
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dy
dt
dz
dt
dji
dt
Step 1(b). g1 = 0,32 > 0.

dj1 _
dt

dz _
dt
div _
dt

R0 3 R
20 f3(A) 8P f5(N) fo(N)
_ 9 AR 2 ARG) 2 MG
20 f5(N) 20 fo(N) AP (N2
RERYC

2ft fa(A)

22 M fo(N)
2 fo(N)
20, P22 Nfo(N) | 92 N NhR((NY
oo B2 f(N) AR2 f3(N) fa(N)
2 22 A2f(N) 22 M)
R L) 20 (A2
AR g2 N Ao
[ f3(A) AR f5(N) (V)
gAY 2AAG) 22 M)
Lofs(N) B fo(N) 207 fo(N)2
AN

i fa(A)

Step 1(c). 91 =2 = 0,21 > 0.

di

dt

=0,

djs 92 N Nfo(N)

dt 8% fy(3) fol))

9

d? . 5 %42 X2f0(i)+ 22 Mfo(N)

At 20 42 () 4R (V)2
dj g ARG gE N A f(N)

dt 20 fo() 8% (A fo(h)

2§ M) 2 AAK) 2 MR

dt 2 fo(3) 20 fo(h) AP f()
a2 A2 fo()

at 200 fo(N)
Step 2. gl = ng = 21 =0.
djn
o
djs 92 N Nfo(N)

dt

)

B2 (0 fo(A)

25

9

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)



dz 2 M)

& R (116)
T V7 V) arn
dt 20 f3(A) 847 f3(A)  fa(N)

dz . 2 A 2 MARG) g ARG

dt =1 20 fo(A) AR fo(N)2 i 20 f3(A) .
i 2 Xf(h)

W= ' ooy (119)

We will show that w.h.p. the process defined by 2GREEDY can be closely modeled by a suitable
weighted sum of the above four sets of equations. Let these weights be 0,,0y,0. and 1 —60, — 0, — 0.
respectively. It has been determined that y;,y2, 21 are all O(log2 n) w.h.p.. We will only need to
analyse our process up till the time y = 0 and we will show that at this time, z = Q(n) w.h.p..
Thus y1,¥y2,21 are "negligible” throughout. In which case 1,92, 22 should also be negligible. It
makes sense therefore to choose 6, = 0. The remaining weights should be chosen so that the
weighted derivatives of 91,92, 21 are zero. This has all been somewhat heuristic and its validity will
be verified in Section

7.1 Sliding trajectory

Conjecturally we need to mix Steps 1(a), 1(b) 1(c) and 2 with nonnegative weights 6, = 0, 0y, 0.,
0y = 1 — 6, — 0. respectively, chosen such that the resulting system of differential equations admits
a solution such that 9,(t) = 0 and 2 (t) = 0.

We will write the multipliers in terms of

R A5N5 £ () L 3234 R AN F (O R 532 £ ()
251G N SO 16 R A1V g 16} (120)
82 f2(A) f3(A) 42 f(N)? 2/1f3(A) 21f2(A)
Using, ([@0), (I02]), (I08]) and ([II4]) we see g1(t) = 0 implies that
di
0="gg =t
Equivalently
0, = 0. (121)
Using (@7)), (I09) and (II3]), we see that g2(t) = 0 implies that
_ dye
0="u
gz A N2fo(A )2 A Af(A iz A A
B S LA fo(M | LA fol )+(1—9b—90) b2 X fol )7
A7 f5(0) () 87 f3(A) f2(N) 87 f3(A)  fo(N)
=—(1—A)f,+ A. (122)
Equivalently R
Oy — — (123)
T1oA



Likewise, using (O8]), (II0) and (II6), z;(¢) = 0 implies

dzy
0=—
dt
22 M fo(A 22 M fo(A 22 M fo(A
= b ZA2 fOA( ) + 90 _1 + % fOA( ) + (]. - 9(, - 90) ZA2 fOA( ),
20 f2(A)? 4 f2(A)? 4 f2(A)?
= B6, — 6. + B. (124)
Equivalently R
0f=u+ewézl " (125)

From (I23)) it follows that 6, > 0 iff
A<,

in which case, by ([I23]), 6. > 0, as well. From ([24) and ([I25) it follows that 1 — 6, — 6. > 0 iff
2A+B<1. (126)

We conclude that 6;,0.,1 — 60, — 0. € [0,1] iff @ <1, see (GO). But this is implied by Lemma

It may be of some use to picture the equations defining 0,, 05, 0., 0:

-0, =0
(1—A), = A
/ . 12
—B6, +0. =B (127)
0q +6, +6. +62 =1.

If in the notation of Lemma we let Q1 = {v:{ < L;} then we may restrict our attention to v
in (I2) — (B9) such that v € Q7. In which case, the terms involving yi,ys2, 2z can be absorbed into
the error term fopr ¢ < Ty. The relevant equations then become, with

BNV 1OV o\ (1O SNSRI 2 1OV RO (1CV )
RN PR aRor C T msy DT hm
Step 1(a). y1 > 0.

bt - | v = 140 (5 (129

Bl —us|Iv] = A+0 <1°§jVN) (120)

B - n v = B0 (5. (130)

s -yl = —o-avo(REN). (31

Bl — 2 ||v|] = 0—(1—0)—B+0<1°§;N>. (132)

B —pllv] = -1-D+0 <1°§jVN> . (133)
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Step 1(b). y1 = 0,y2 > 0.
Elyy —y1 | [v]]
Elys —y2 | [v]]
Ele1 — 21 | |v]]
Ely' —y | |v]]
E[Z' — 2z [ |v]]
El —p| vl
Step 1(c). y1 =y2=0,21 > 0.
Elyy —y1 | [v]]
Elys —y2 | [v]]
Elz} — 21 | |v]]
Ely' —y | |v]]
E[Z' — 2z [ |v]]
E —p| |vl]
Step 2. y1 = ys = 21 = 0.
Elyy —y1 | [v]]
Elys —y2 | [V]]
Ele1 — 21 | |v]]
Ely' —y| v[]
E[Z'— 2| |v]]

E[p — ] |v]]

log? N

0<XN>.
log? N

—1+2A+O< N >

log? N>

AN

2
—20—2A+O<10g N>.

2540

AN

2C—2(1—C)—2B+O<

log? N
AN )

AN

—2—2D+O<

1
0<N>.
log? N
ivo(EE).
log? N
AN )

log? N
AN )

—1+B+O<

—C’—A—I—O(

1+C—(1—C)—B+O<

log? N
AN )

1-no(

28

log? N)

(134)
(135)
(136)
(137)
(138)

(139)

(140)
(141)
(142)
(143)
(144)

(145)

(146)
(147)
(148)
(149)
(150)

(151)



7.2 Closeness of the process and the differential equations

We already know that yq,yo, 21 are small w.h.p. up to time Ty. We now show that w.h.p. y, z,
are closely approximated by g, 2, i, which are the solutions to the weighted sum of the sets of
equations labelled Step 1(b), Step 1(c) and Step 2. These equations will be simplified by putting
y1 = y2 = z1 = 0. First some notation. We will use 1)¢, to denote the expression we have obtained
for the derivative of £ in Case 1 (1) or Case 2 in the case of n = 2. We are then led to consider the

equations:

Sliding Trajectory:
dy

dt - 9b¢b y(@ z /2) +907pc,y(gy27ﬂ) + (1 —91, )¢2,y(§ )
= Oy(— (C*+A))+90(—(C*+fl))+(1—9b—90)(—(1+(§+21))
—(C+ A) 20y + 0 +1—6,—0.) — (1 -6, —6,)
_B-c¢
1-A
E = eb’l/}b’z(y72 ILL) +96’l/}cz(y z ,u) + (1 _96_90)w2,2(y7271u)
=0,2(C—(1-C)=B)+0(C—1-C)=B)+(1—-6,-0)1+C—-1+C—B)
= (2C = B)(6p + 1) — 20, — 0.
2C—2A 2B
1-A
d_/; = 9b¢b,u(y7 2, M) + 90¢C,u(y7 Z, M) + (1 - 01) - 00)¢2,p(y7 2, M)

= 0(—2(1 + D)) + Oc(—(1+ D)) + (1 — 6, — 6c)(—(1 + D))
= —(1+D)(20, +0:.+1—60,—6,)

_ 1+D D
1-A
The starting conditions are
§(0) = n, 2(0) = 0, 4(0) = en. (152)
Summarising;: o R R R X
dg B-C dz 2C—-2A-2B dj 1+D
W _LoC g, oAb an 1t (153)
a  1-A dt 1-A dt 1-A
and o o
g fa (A 2N f1(A
PSA) AR, (154)
f3(A) f2(A)
We remark for future reference that (I53]) implies that
fi is decreasing with ¢ as long as A > 0 (155)
and (I54]) implies that
S 2p
J+2< T (156)
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Let u = u(t) denote (y(t), z(t), u(t)) and let @ = u(t) denote (y(t), 2(t), ii(t)). We now show that
u and G remain close:

Lemma 7.1.
lu(t) —a(t)[); < n®?, for1 <t <Tpy, wh.p.

Proof Let 6,(v),n = a,b,c,2 be the 0/1 indicator for the process 2GREEDY applying Step 1(7)
for n = a,b,c or Step 2 if n = 2 when the current state is v. For times t; < t5 we use the notation

to
Ay(v(ty,ta) =Y dy(v(t))
t=t1
Now let p = n® where a = 1/4. Tt follows from Lemma that for ¢t < Ty — p,

plogn

At) — (& < - 157
A =X+ 9)] < e (157)
Because A changes very little, simple estimates then give
Claim 2.2.
plogn plogn
At) — A(t =0(——"— B(t) — B(t =0 ——"— 158
A0 - b+l =0 (%) B0 - Bl =0 (B ass)
plogn plogn
C(t)—-C(t =0 —— D(t) — D(t =0 —— 159
cw-crnl=0(F2%) D0 -De+pl=0(5Es) ()

If |[u(t) — a(t)]]; < n®? then

40— Aty =0 (OO ) - sl = o (OZEOR) o

N(D)
o - cwl=o (MOZO) o) - by = o (O8Ol o

Proof The first expressions in (I58]) and (I59) are easy to deal with as the functions f; are
smooth and M\ is bounded throughout, see Lemma Thus the each f; changes by O(plogn/N)
and y, z, u change by O(plogn) and p = Q(N).

For (I60) and (IGI]) we use Lemma [6.5] to argue that

EOEL O}

\MQ—MW=O< =

Our assumption ¢ < Tp implies that u(t) = Q(n) and then u(t) ~ j(t) and N(t) ~ N(t) and we

can argue as for (I58) and (I59).
End of proof of Claim

Now fix t and define for & = y1, ys, 21,

X.():{€<t+i+1>—s<t+z'> t+i<Th
EEt+1)—&@) | v(®)] t+i=Tp
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Then,

log? N (t + 1) )

logn = E[X;(§) | v(t + )] = Z Oy (t + )ty e(alt +1)) + O <)\(t TON(t+1)

Tle{a7b7ci2}

It follows from ([IZ7) — (I59) that for all n,£ and i < p,

e (u(t +1)) = gy e(ut)) + O <1°g”> .

nl—a

It then follows from (IG2) that q.s.

logn > E[E(t+p) —&@) [u®) = D Ay(ult,t+p))eye(u(t)) + O (flg_w

ne{a7b7c72}

This can be written as follows: We let A, = Ay (u(t,t + p))/p etc. and A = A(t), B = B(t).

—A, =O(p~'logn)
(1-A)A, =A+O(p~tlogn)
—BA, +A. =B+ O(p~'logn)
AW +A, +A. +Ay =1

In comparison with (I27)) we see, using (I60), (I61) that

plla@) —a@)[h
N

|pfe((t)) — Ael = O <logn + ) for £ = a,b,c,2.

Note that 4, A < 1 /2, see (I26)). This will be useful in dealing with 0, and Ay.

We now consider the difference between 1 and u at times p, 2p,.... We write

E(ip) —EGip) = €((i = 1)p) —&(G = 1p) + Y ([E() — &t = 1)] = [E() — &t — 1))

t=(i—1)p+1
where £ =y, z, 4 and f =9, 2, i in turn. Then we write
§(8) =&t —1) = ar + By and £() — &(t — 1) = Gy + 5,

where
a= 3 Gpeult - ))ye(ult - 1)) and g = €(t) — &t — 1) — oy
ne{a,b,c,2}

and

dr= Y 6, (At 1)), (a(t—1)) and B = £(t) — £t — 1) — dr.

ne{a,b,c,2}
It follows from (I31)), (I32) etc. that

log? N (t) )

E[B: [ut-1)]=0 <W
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An easy bound, which is a consequence of the Azuma-Hoeffding inequality, is that

p
P ( Z By > p'/?log? n) < ¢~log”n) (168)

t=(i—1)p+1

We see furthermore that

P .
> b=

t=(i—1)p+1
ip
— Z gt —1+¢)) — Z 0, c(a(t - 1))5 (a(t — 1)))
t=(i—1)p+1 nef{a,b,c,2}

ne{a7b7ci2}

ip
- (é/<ﬁ<t1>>+0<1‘}gv”) S 0, - 1) <ﬁ<t1>>)

= o(p'/*1og® n), (169)

where 0 < ¢ <1 and é;?(t) is the derivative of £ in Case 7.

In this and the following claims we take N = N (ip), the number of vertices at time ip.

Now write

P ]

Y owe Y Y bt (vnctatti - 1) +0 (2567
t=(i—1)p+1 t=(i—1)p+1 ne{a,b,c,2}

21
= 3 A= i eui= D) +0 (“3E2) am)
and

ip

SR
t=(i—1)p+1

DS (One(a(i = 1) +0 (L)) (vne(a((i = 1)p) + 0 (%))

t=(i—1)p+1 ne{a,b,c,2}

2
= X shacati- Vel - vp) +0 (%) am)

ne{a7b7c72}

It follows that '
ip
Z (g —ay) =A1+As+o0 (p1/2 log? n) (172)
t=(i—1)p+1
where

A=) (A¢(u((i = p+ 1,ip)) = phye(a((i — 1)p)ne(ul(i = 1)p)

ne{a7b7c72}
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i~ 1)p) —a((i— 1
:OQ%H+MMW )mNuW >mm>_ (173)
dr=p Y nelulli - D)) (ne(u(li — 1)p) — tyelal(i - 1)p)
ne{a,b,c,2}
pllu((@ —1)p) —a((i —1)p)||y
= . 174
o - (174
It follows from (I60) to (I74) that w.h.p., ip < T implies that with
a; = [[u(ip) — u(ip)|| (175)
that for some C7 > 0,
a; < aj—1 <1 + Clp) + 2,01/2 log2n
N;
where N; = N(ip) > n/2.
Putting
Hz _ H <1 I Clp) < 62012p/n
=0 J
we see by induction that
i ‘
a; < 2p"?log? nz I < 202 log? n(i + 1)e21i/m, (176)
j=0""
Since i < n/p we have
lu(ip) — a(ip)|ls = O(np~"/*log” n).
Going from p|Ty/p] to Ty adds at most plogn to the gap and the lemma follows. O

8 Approximate equations

The equations ([I53)) are rather complicated and we have not made much progress in solving them.
Nevertheless, we can obtain information about them from a simpler set of equations that closely
approximate them when c is sufficiently large. The important observation is that when A is large,

A . 7> NP> N )
A<1. Bg1l. =2 paZt. 2
2 20 +

(177)

A

<>
Q>

We will therefore approximate equations (I53]) by the following equations in variables g, Z, i, A:

@z—gig—l (178)
e

y:gfg (179)

i 2%

/

i = (180)
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2

A= 181
Y+ =z (181)
The initial conditions for ¢, Z, fi, X are that they start out equal to 9, 2, i, A at time ¢t = 0 i.e.
§(0)=n; 20)=0; a(0)=ecn; X\=2c (182)
8.0.1 Analysis of the approximate equations
The first two approximate equations imply (7 + Z/2)" = —1, so that
i zZ ;
ytg=n—t
Using the second approximate equation and § = 1 —t — Z/2, we obtain
7= —"
n—t+z/2 "’
or, introducing 7 =n —t and B B
Z Z
X = = —
2(n—t) 27’
we get
X+1 1
———dX = ——dr. 183
X241 77 (183)
Integrating,
1
5 In(X? +1) +arctan X = —In7 + C.
Now, at t =0 we have T =n and X =0. So C =1Inn, i. e.
1
5 In(X? +1) + arctan X = —In(7/n).
Let T satisfy §(T) = 0. At t = T, we have X = 1, so
mn—In(n—T) = 2+~
nn—Inn—T)==In —
2 4
which implies
~ 1
_ _ - -m/4 ~
T= (1 51/3° > n =~ 0.677603n. (184)
Note that
2% 2 +7)
y+z (g+ 2)?
2 e 2fi < i 1)
g+ E (23 @+E2\g+z
B 2 2Z00
gtz (G+32)3
2 Z\
g+ : G+ )Y



which implies that \is decreasing with ¢, at least as long as ¥, 2, A > 0.

Here
Z B z
(G+2)2 (n—t+3/2)02
B Z
C(n—1)2(1+ X)2
B 2X
S (n—t)(1+X)%
Likewise 5 - 5
g+z (n—-tH(1+X)
So \ satisfies
A 2 2X A, A0) =2¢

X:_(n—t)(l—i—X) T =1+ X)? A

Using (I83]), we obtain

d\ 2 2X .
A(X)(XZO — 2.

= - A
aX 1+ X? (1+x)1+x2)7

Integrating this first-order, linear ODE, we obtain

(1+X)e—arctanX |: B /X( 2earctanx dx:| '
0

M) =" Vi

In which case
MT) ~ 1.53¢ — 1.418.

8.0.2 Simple Inequalities

We will use the following to quantify (I77):

1§f2(i\) =1+4¢, 1§f0(i\) =1+ eo, 1§f0(i\) =1+es.
f5(0) () Js(A)
where . . . "
A2 ED) _ 2242

Ty TRy T T ang

We use the above to verify the following sequence of inequalities for ¢, 2, fi, A:

24 24

(185)

(186)

(187)

(188)



222 2)\2

<D= 1 :
2% S 2;1( +&2)
where .
€1 (1—|—€2)(1 —1—63)/\3 /\2(1 —1—62)2
€4 = > €5 = = > €6 = — 7t -
I+e& 8fo(A) Jo(A)
(We use ([I50) to get §2 < i2/A? for use in defining e5).
For (I88) we use
AG +2) 1 f3(A) 1

> - = = — = .
20— o) [N A I+e1
max{fs(j\)’ f2(5\)} f2(%)

It follows from (IRB) that the initial value X of A satisfies
2¢> Ao > 2¢(1 — ey).
Now g4 < .0001 for 2 > 15 and so

2¢(1 —.0001) < Ag < 2c. (189)

8.0.3 Main Goal

Lemma (below) in conjunction with Lemma [ will enable us to argue that w.h.p. in the
process 2GREEDY, at some time T < Ty we will have

y(T) =0,2(T) = Q(n) and A(t) = Q1) for t <T. (190)

Define
Ty =min{t >0:9(t) <0or 2(t) <0org(t) <0or z(t) <0}.

We can bound this from below by a small constant as follows: Initially A, B are small C is close to
one for ¢ > 15 and so ([I53]) implies that Z is strictly increasing at the beginning. Also, 7,7 start
out large (= n) and so remain positive initially.

Next define

T; = min {T+,max {t :A(7)) > A* and min {§(7) 4+ 2(7), §(7) + 2(7)} > Bn for 7 < t}} (191)

where
B=—01+2T)/n=—01+2(n-T)/n=~ .63
and
N = \T) — 5.
Comparing (I87) and [I89) we see that Ao > A*.
Note that
T <T. (192)

This is because §(T) = 0 and ¢/ (T) = —1.



Lemma 8.1. For large enough c,

§(Ty) = 0 < 2(T1) = Q(n) and N(T1) = Q(1). (193)

Proof It follows from (I53]) and Section that

J < <Y g4
1 —e5 0+ 2z
B(14e) ;
g > 0 1> Y g (194)
1—e¢s5 g+ 2
200 1 2
2 < yA ] +51_ _ yA+258
200 1 —e¢5 y+z
5
2> =2y (195)
y+z
. 2
A< (196)
Y+ 2z
<20 2/
A>T ey > g (197)
Y+ 2 Y+ 2z
22 22] 22/
i< 1- < 1—eg)?<—-1— +e
S A G+27 "
1+ 52 (1 + &) 221
A T R L 198
w= 1—65 - (Z]—Fé)z 1 ( )
where
€4+ €5+ €6 €1+¢5 8
& = ———, €8 = ——, €9 = Aey,
1—65 1—65
. 2;\84 . ;\(62 +e5) + €5
10 = ) 11 =
1-— €4 (1 — 64)(1 — 65)

When t =0 we have gy =n,2 =0, i = cn and A satisfying (I89]), we see that 77 > 0 for ¢ > 15.
We can write ¢(0) = n, 2(0) =0, 4(0) = ¢n and

~/ y *
=——2_—-14+40 here |01] < 0™. 199
y P 1 where [0 | (199)
PR S where [6] < 26*. (200)
Y+ z o
25/i
0= —1 +40 here —e11 <03 <¢ 201
i G127 3 w 11 <03 <¢e10 (201)
< 2%
A= ——+0, where —eg <04 <0. (202)
y+z
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where
0" =max{e1,e9,...,68}.

It can easily be checked that the functions e1,...,e17 are all monotone decreasing for A > N\,
(A*(15) =~ 16.549). Furthermore, §*(16) < .00011 and our error estimates will mostly be §* times
a moderate size constant. The only exceptions contain a factor ¢, but if ¢ is large then §* will
decrease to compensate.

It follows from (I80) and (20I) that

fi, i both decrease for ¢ < Ty, since A5 < 1 for A > \*. (203)

The ensuing calculations involve many constants and the expressions [2I4]) and (2I6) claim some
inequalities that are tedious to justify. It is unrealistic to expect the reader to check these calcula-
tions. Instead, we have provided mathematica output in an appendix that will be seen to justify
our claims.

The reader will notice the similarity between these equations and the approximation (IT78) — (II]).
We will now refer to the equations (I99) — ([202) as the true equations and (I78) — ([I8I) as the
approzimate equations.

8.0.4 y,z and gy, 2 are close

We claim next that

max {|g(t) — y(t)],|2(t) — 2(t)|} < 0" Fi(t/n)n for 0 <t < Tj. (204)
where -
Fo(z) = B(e*®/P —1) for & < % (205)
for a > 0.
Note that

FL(t) = 2(aFa(t)/8 + 1).

In the proof of ([204)), think of n as fixed and h as a parameter that tends to zero. Think of ¢ as
small, but fixed until the end of the proof. In the display beginning with equation (207]), only A is
the quantity going to zero. Let

’[Li = ]](Zh),@l = 2(2}1),&2 = ﬂ(Zh),f}Z = Z(Zh) for 0 <1< ’I’L/h

Assume inductively that for ¢ <ig=T1/h

ﬁi — ﬁi‘, ”02 — ’lN)Z" < 5F1+E(z'h/n)n. (206)

This is true for 7 = 0.

Suppose that
. . h .
Fiie((i+ Dh/n) = Frae(ih/n) + —Fi,.((i + 0)h/n)
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for some 0 < 0 < 1.

Then by the inductive assumption and the Taylor expansion and uniform boundedness of second
derivatives,

uziv - ;ﬁiﬁi + 92(ih)> +O(h?) (207)
0;) — 20;(; — ;) ; 2
R T R h>> +OE)
2(u; + ;) max {|0; — 04, |u; — ul|}

(uz + 'Uz)(uz + 'Uz)
< §*Fryc(ih/n)n + 26k (Fy(ih/n) /B + 1) + O(h?)
= §*(Fi4e(ih/n)n + hE{(ih/n)) + O(h*)
= 6" (Fige((i + 1Dh/n)n + h(F{(ih/n) — F{, (i + §)h/n))) + O(h?)
< 6 (Fi4e((@ + 1)h/n)n — Q(eh),

(zh)> + O(h?)

completing the induction.

The remaining three cases are proved similarly. This completes the inductive proof of (206]). Letting
e — 0 we see for example that g(t) — g(t) < 6*Fy(¢t) for t < Tj. This completes the proof of (204]).

Let

g = Fl(T/n)
Observe next that -
~ ~\/ _ - < )
(g+2) 3 1<0 (208)
So for t < T7 we have
G+2>G(T)+2(T) = 2T) =2(n—T) = (8 + .01)n. (209)

Furthermore, putting X = 1 and going back to (IS0,

o (1 +T)€_ arctan T’ < /1 9earctan >
NT) = = 2c — dr | = ajc— ao. 210
" V14172 =0 (1 4+ 2)V1 + a2 (210)

8.0.5 Lower bounding A

We now show that A — X is small. We now use @0I)) and @) to write for ¢ < T7,

7 — i
202((7 + 2)% 4+ 40" Fy (t/n) (§ + 2)n 4+ 46*2Fy (t/n)?*n?) — 2() + 2)%(2 — 6*F1(t/n)n)
=16+ G+ 2% + 27
— |6s] + 22( + 2)* (i — 1) + 28" Fy(t/n)n(g + 2) (4412 + i + 2)) + 828" Fy (t/n)*n
- 6+ 275 + 2)°
Now, using (203)),
ApE+ A +2) _ Ap+p _ e
@+2)@+22 " @+2)? " Fn



and

812 8c
(422G +2)* ~ Bn?
So, o
where

10apc ~ 8ca3d*  (2c+1)6*
= +
N N TS 05
where the third term is an upper bound for £19,e17 and its validity rests on (I96) and (203]), with
which we bound \ < 2¢/p.

Integrating, we get that if ( = | — fi| then

a3

2¢

(= = < azd”

6n
and so

t
7 — | < agé*ezt/ﬁ"/ e 27/Bngr = agé*%(e%w” —1) < ayd*n.
7=0

for t < Ty, where
a4 = a0a3/2.
It then follows that as long as t < 717,
- 20(§ + 2) — 20( + 2
A= gy O - 20(F + )
@+2)G+2)
2(f+ agd*n) (g + 2) — 20(y + 2 — 2a00™n)
@+ 2) 1 +2)
200400%  deagd™
_|_
g B2
It follows from (I85]) that for t < T} we have

<egg+

<egg+

At) > NTy) — asd* (211)

where
2c  2a4  4deag
a5 = —

+ 20
g B pB?

We now argue that §(71) = 0 and A(T}) > A\*. This proves the LemmaRI] since (1} )+2(T1) > fn.
Suppose then to the contrary that (73) > 0. Recall that Ty < T (see (T%2)) and suppose first that
T < T. Now let

T, = min {T1 +en, (Ty + T)/2}
where 0 < £ < 10710 is such that
maX{T e [T, Ty : emax{|5\/(7')|, 15 (1), |z/(7)|} < 10—10} : (212)

The existence of such an ¢ follows by elementary propositions in real analysis.
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We will argue that 7 € [T1, T3] implies

5\(7') > N\ and min {g(7) + 2(7),9(7) + 2(7)} > pn and min{y(7), 2(7),y(7),2(7)} > 0,
which contradicts the definition of 73.

Fix 7 € [T}, Ty]. Now 7 < T implies that 7(7) > 0. Together with (I79) we see that Z increases for
t < T and hence 2(7) > 0. We have §/(t) > —2 (see (IT8))) and Z'(t) > 0 for t < Ty (see (I79)) and
so for some 71,79 € [T1,T5]

g(r) = g(T1) + (r = T1)§ (1) = §(T1) — 2en
(1) =z2(T) + (1 —Th)Z (1) > 2(Th).
It follows (using (208])) that
G(1) + 2(7) = §(Tp) + 2(Tp) — 2en > §(T) + 2(T) — 2en > fn. (213)

We have, for some 13,74 € [T1, T3],

y(1) + 2(1) = §(T1) + 2(T1) + (7 — Ta)(9(73) + 2(7a))’
> §(Ty) + 2(Th) — 2F (T /n)d*n — 2 x 10~ On
> (B+.01 — 2 (apd™ +1071))) n
2 fin (214)

We now argue that z2(7) > 0. Equation (I79) shows that Z is strictly increasing initially. Also, if
A > X\* then 63 < 1 /8. From (200]) we see that Z is strictly increasing at least until a time 79 when
§(10) < B*. On the other hand, we see from (2I4) that if y(7) < 86* then 2(7) > 0. So,

min {g(7), 2(7),y(7), 2(7)} > 0. (215)

Now we write

Z
y>

(T1) + (1 — Ty)N (73)
(Ty) — (A(T1) — A(T1)) — 1071, using (212,

. (216)

We must now deal with the case where 77 = T. Here we can just use (204) to argue that 2(T}) >
Z(T1) — apd*n > 0 and g(T1) + 2(T1) > y(T1) + 2(T1) — apd*n > (B + .01 — agd*)n > PBn and
MT) > MNT) — as6* > \*.

This completes the proof of Lemma O
It follows from Lemma [Z1] that w.h.p. y(T1) < n%/?, 2(T1) > Bn —n®/? and A(T1) > A*. We claim
that q.s., y becomes zero within the next v = n%1° steps of 2GREEDY. Suppose not. It follows
from Lemma that A changes by o(1) and by (@) that z changes by o(n) during these v steps.
Thus T1 +v < Tj. It follows from ([@3]) that q.s. at least vlog~2 n of these steps will be of type Step

2. But each such step reduces y by at least one, contradiction.

This verifies (T90).
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9 The number of components in the output of the algorithm

We will tighten our bound on ¢ from Lemma

Lemma 9.1. If ¢ > 15 then for every positive constant K there exists a constant co = co(K) such
that
PE1<t<T: C(t)>crlogn) <n K.

Proof We now need to use a sharper inequality than (@I]) to replace L; by what is claimed in
the statement of the lemma. This sharper inequality uses higher moments of the X;’s and we can
estimate them now that we have the estimate of the maximum of ((¢) given in ([@I). So, we now
have to estimate terms of the form

W& [m) =E[|(§' &) —E[E —&) [ ]l |n)

for £ = y1,y2,22,2 < j <lognand n =v or b,d.

We use the inequality
(a+b+c+dy <4(al + b + | + |dJ)

for j > 1.

We will also need to estimate, for 2 < j < logn,

| _ | | |

=~ k! = (k —2)! K e A G A
i\ 2 / ARV ARt 42 A ! J FIVEECINY
=2 < 2T\ < 2141\ .
A;{K}Ag(l{:_@!_ A e;{e}_ jINT2e

Here {%} is a Stirling number of the second kind and it is easy to verify by induction on j that the
Bell number Y)_, {7} < j.

Step 1. y1 +y2 + 21 > 0.
Step 1(a). y1 > 0.

0 kz Y1 kzy,  2y2
Uiy |byd) < 4| =+) (k-1 +Y ——(k—1/>"+qrn|. (217)
b= 2u 2u = e 21
o log? N
\I/j(yi’V) = O<233)\]e)‘j! <%—|— OfN >> (218)
2y kzy, 22 kzy 33
U(ys | b,d) < 49|22 2k (o — 1)7 Tk (g 1)y 223 .21
(y2 | b, d) (”+k>2 u( Y5 1;22“( )2u+ (219)
o log? N
Uye | V) = O<233/\]e*j! <>\3+%+ s >> (220)



] Zl ka .Zl ka 222
Uz | bd) < 4|24 -1yt Y o1y 2
. . 1 2N
U | V) = o(zwem <)\2+%+ L ))
Step 1(b). y1 = 0,32 > 0.
U(y1 | b,d) < & 22@(k_1)j2ﬂ+
J\J1 3 = k22 2M 2Iu .
o (¢ log?N
Uil | vl) = o(z?’uﬂekj!(W e )
Ui(y2 | b,d) < 4 ﬂJrQZﬁ( y2+22 Zk
: [ k>2
1 N
Wiy [ [v]) = 0<23w ( Og ))
k k
YEAINCRY ERES DL TORIE WS 3t TYE -
H k>2 k>2
NV ¢ log?N
(o | V) = o(zwewmw e M),

Step 1(c). y1 = y2 = 0,21 > 0.

ity [ V) = 32

1 ka 3y3
Uilys | byd) < 2|3 2R (k—1) '
J(y2 | ; ) = <k>2 2# (k,‘ ) 2,& + SRR

. ) C 10g2N
Uiy | V) = O<23JA]6)‘j! <)\3 &l )

43

(221)

(222)
(223)

(224)

(225)

. (226)
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oz k:zk kzp, 229
& b,d < 4| — —(k—1)—= . 2
j(=1 [ bd) < 2M+kZ>22M +kZ>2 (k=1) 3+ |- (239)

2
3ivi A (12 ¢ log® N
O<2 Metj! <)\ +—N+ N . (236)

Now let & = {C(T) <log?n:1<71< t}. Then let

Wz [ Iv])

v {<<<i +1) = C(@NLE) 0<i<T

_Cl/2 Tih<i<n
Then, q.s.
Yer1+ ...+, =((t) —((s) for 0 < s <t <Tj.
For some absolute constant ¢y, and with 6 = m and 1 < L,
E[e”*+ | Yiqa,. .., Ypio1] ZQkE SH Yotr1,-o o Yoqioa

<1—0c1/2+cy Yy 0F2FN)FT3eA) < e01/3,
k=2

where we have used (BI]) and we have used Lemma [6.3] to bound A(i).
It follows that for ¢ — s < Lq and real u > 0

P(Yog1 + -+ Yy > u) < e flutet=9)/3)

Suppose now that there exists 7 < T such that ((7) > Ls. Now q.s. there exists t; <7 <t; + L4

such that ¢(¢1) = 0. But then putting v = —logn and Ly = & log" we see that given t1,

]P’(Eltl <7<t1+L;: C(T) > L2) <P <—\U5t> 4 6—9(C1L2/3—logn) <n K

0

We get a new path for every increase in V ;, 7 < 1. If we look at equations (I2)) etc., then we see
that the expected number added to Vo ; at step ¢ is O(((t)/u(t)). So if Zp(t) is the number of
increases at time ¢ and Zp = ZtTiO Zp(t), where Ty is the time at the beginning of Step 3, then

E[Zp] = <<1ogntz; e ) <logn E [log < ;‘((ﬁ;)ﬂ)) . (237)

Now in our case u(73) = Q(n) with probability 1 — o(n~2) in which case E[Z,] = O(logn). We
will apply the Chebyshev inequality to show concentration around the mean. We will condition
on [|u(t) —a(t)||; < n®? for t < T} (see Lemma [Z1)). With this conditioning, the expected value
of Zp(t) is determined up to a factor 1 — O(n~?log?n) by the value of (t). In which case,
E[Zp(t) | Zp(s)] = (1 + o(1))E[Zp(t)] and we can apply the Chebychev inequality to show that
w.h.p. Zp = O(logn). We combine this with Lemma [5.4] to obtain Theorem [
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10 Hamilton cycles

We will now show how we can use Theorem[I}(a) to prove the existence and construction of Hamilton
G623

cycles. We will first need to remove a few random edges X from G = G373,

pair (G — X, X) is distributed very close to (H = G°=3

n,en—|X|?

disjoint from E(H). In which case we can apply Theorem [[lto H and then we can use the edges of

in such a way that the
Y) where Y is a random set of edges

Y to close cycles in the extension-rotation procedure.

10.1 Removing a random set of edges

Let
s =n'/? log™2n

and let

n,cn—s»

0= {(H,Y):Heg523 Y C <[Z]>,|Y|:sand E(H)ﬁYz@}

where gg?ﬂf = {Gg%ﬁ’b .

We consider two ways of randomly choosing an element of €.

(a) First choose G uniformly from gg?;; and then choose an s-set X uniformly from E(G)\ E5(G),

where E3(G) is the set of edges of G that are incident with a vertex of degree 3. This produces
a pair (G — X, X). We let P, denote the induced probability measure on €.

(b) Choose H uniformly from G°=3 _ and then choose an s-set Y uniformly from ([g‘}) \ E(H).

n,cn—s

This produces a pair (H,Y). We let P, denote the induced probability measure on €.

The following lemma implies that as far as properties that happen w.h.p. in GG, we can use Method
(b), just as well as Method (a) to generate our pair (H,Y).

Lemma 10.1. There exists 21 C Q) such that
(i) Pu(29) =1—o(1).

(il) w= (H,Y) € Qy implies that Py(w) = (1 4 o(1))Pp(w).

Proof We first compute the expectation of the number pus = ps3(G) of edges incident to a
g523

vertex of degree 3 in G chosen uniformly from G;=;. We will use the random sequence model of
Section Bl We will show that pug is highly concentrated in this model and then we can transfer this
result to our graph model. Observe first that if 13 is the number of vertices of degree 3 in Gx then

Lemma [3.3] implies that

)\3
TGV
Here A is the solution to Afa(\)/f3(A\) = 2cn.

To see how many edges are incident to these v3 vertices we consider the following experiment:

= 0(n'?logn), q.s..

Condition on v3 = pn where p will be taken to be close to p3 = #3()\) We take a random
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permutation 7 of [2¢n] and compute the number Z of i < ¢n such that {m(2i — 1), m(2i)} N[3v3] # 0.
This will give us the number of edges in Gx that are incident with a vertex of degree 3. Now

2cn — pn 2en — pn — 2

E|Z] = 1—
1] cn< 2cn 2cn — 2

> =cn(2p — p? +O(1/n)).

Now interchanging two positions in 7 can change Z by at most one and so applying the Azuma-
Hoeffding inequality for permutations (see for example Lemma 11 of Frieze and Pittel [I5] or Section
3.2 of McDiarmid [I8]) we see that P(|Z — E[Z]| > u) < e~/ for any u > 0. Putting this all
together we see that

P(|ju3(G) — p3(2 = ps)en| > w) < e/,

Now let
Gozh = {G € G5 1s(G) — pa(2 = py)en] < n'21ogn }
and

n,cn

Qa:{(H,Y)GQ:H+YGQA‘523}.

This satisfies requirement (a) of the lemma.

Suppose next that w € €,. Then

1 1 1+ O(log™'n)
Po(w) = : - (238)
a |gg’zc% (cn(l—p3)2;|:n1/2 log n) ’gz?c% . (cn(l;p3)2)
1 1
Pb(w) = T5>3 T Tn (239)
Grzen—s| ()
One can see from this that one has to estimate the ratio |g;§%§;| / |g,§?—§;_ |- For this we make estimates

of
M= [{(G1,G2) € G2 < G, B(G1) 2 B(G) } |

We have the following inequalities:

PN en(1 — p3)? —n'/?logn PN en(1— p3)? +n'/?logn
G < ) < M<|G0Z3 . .
n,cn
|u|>n1/2logn 5
n
=gz (W), 11
’ s

We get ([240) by summing p3(G1) over Gy € G223 and bounding u3(G1) according to whether or

n,cn
not G is in G923, Equation (24I)) is obtained by summing over Gy € gﬁ?—ci_ o

n,en the number of ways

of adding s edges to Ga.

Now

Z Cn(l - p3)2 + u> e—uz/cn <9 Z C?”L(l - p3)2>60(us/n)e—u2/0n
|u|>n1/2logn 5 u>nt/2logn 5
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2<cn(1 ; P3)2> Z o /2en _ <<C"(1 ; p3)2>e—9(1032 ")> .

u>nt/2logn

It follows from this and (240]) that

N2
v =gz (T (1 otog ).

By comparing with (241)) we see that

923 (B
|g5>3 | =(1+ 0(1))W-
The lemma follows by using this in conjunction with ([238]) and (239]). O

10.2 Connectivity of G923

n,cn

Lemma 10.2. Gfﬁc‘i s connected, w.h.p..

5>3 1,

Proof It follows from Lemma [[0.1] that we can replace G;=;, by Go=3 nen—s Plus s random edges.

: 6>3
We use the random sequence model to deal with G}, ;. Let Fix 4 <k <n/ log?® n. For K C [n],

¢(K) denotes the number of edges of Gy contained in K. Let £y = logn/(loglogn)'/?. Then with
A the solution to Afa(A)/f3(A\) = 2¢,

P(AK C [n] : e(K) > 5k/4) < o(1) + 5k< > ézoé d,Adkd (527; 4) ( d >5k/2. (242)

d=3k /2
ok d 9/45/27.1/4 k 9/45/27.1/4 ) k
<oy <ﬁ> i < Gtk | Lo WL (243)
Parrf d (5c/4)5/4 f3(\)nt/4 (5c/4)5/4 f3(\)nt/4

Explanation of (242)): Here 6 = 1 + o(1) for k& < log?n and O(n'/?) for larger k. The term
d,;dé\) bounds the probability that the total degree of K is d, see (82)). Given the degree sequence
we take a random permutation 7 of the multi-set {dx(j) x j: j € [n]} and bound the probability
that there is a set of 5k/4 indices ¢ such that 7(2i — 1), 7(2¢) € K. This expression assumes that
vertex degrees are independent random variables. We can always inflate the estimate by O(nl/ 2)
to account for the degree sum being fixed. This is what 5 does for k > log?n. For smaller k we

use [B)). The bound of d < lyk arises from Lemma B2(b).
Let o denote the RHS of ([243]). Then, we have En/log "o =o(1).

But if no G has minimum degree at least 3 and K contains at most 5K |/4 edges then there must
be edges with one end in K. So, we see that w.h.p. the minimum component size in G will be at
least n/log? n. We now use the result of Section I0.Il If we take H = Gfﬁ;’z o 5 =n?log™%n
then we know by the above that w.h.p. it only has components of size at least n/ log?® n. Now add

s random edges Y. Then
1 S
P(H +Y is not connected) = o(1) + log*’n <1 T) =o(1).
log™" n
Now apply Lemma I0.11 O
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10.3 Extension-Rotation Argument

We will as in Section [[0.2 replace G°=3 by fo?’ plus s random edges Y. Having run 2GREEDY

n,cn cn—s
we will w.h.p. have a two matching My say such that My has O(logn) components.
The main idea now of course is that of a rotation. Given a path P = (uj,us,...,u; and an edge
(ug,u;) where i < k — 2 we say that the path P’ = (uy,...,u;, ug, up_1,...,u;+1) is obtained
from P by a rotation. wuq is the fized endpoint of this rotation. We now describe an algorithm,
EXTEND-ROTATE that w.h.p. converts My into a Hamilton cycle in O(n!®+°() time.

Given a path P with endpoints a, b we define a restricted rotation search RRS(v) as follows: Suppose
that we have a path P with endpoints a,b. We start by doing a sequence of rotations with a as the
fixed endpoint. Furthermore

R1 We only do a rotation if the endpoint of the path created is not an endpoint of the paths that
have been created so far.

R2 We stop this process when we have either (i) created v endpoints or (ii) we have found a path
() with an endpoint that is outside ). We say that we have found an extension.

Let END(a) be the set of endpoints, other than a, produced by this procedure. The main result
of [14] is that w.h.p. that regardless of our choice of path P, either (i) we find an extension or (ii)

1-0(1)

we are able to generate n endpoints. We will run this procedure with v = n3/*1log? n.

Assuming that we did not find an extension and having constructed END(a), we take each x €
END(a) in turn and starting with the path P, that we have found from a to x, we carry out R1,R2
above with z as the fixed endpoint and either find an extension or create a set of v paths with x
as one endpoint and the other endpoints comprising a set EN D(x) of size v.

It follows from [2] that the above construction RSS(v) can be carried out in O(v?logn) time.

Algorithm EXTEND-ROTATE

Step 1 Choose a path component P of the current 2-matching M, with endpoints a, b.
If there are no such components and M is not a Hamilton cycle, choose a cycle C of M and
delete an edge to create P:

Step 2 Carry out RSS(v) until either an extension is found or we have constructed v + 1 endpoint
sets.

Case a: We find an extension. Suppose that we construct a path () with endpoints z,y
such that y has a neighbour z ¢ Q.
(i) If z lies in a cycle C' then let R be a path obtained from C' by deleting one of the
edges of C incident with z. Let now P = z,Q, vy, z, R and go to Step 1.
(ii) If z = u; lies on a path R = (u1,ug, ..., u,) where the numbering is chosen so that
Jj > k/2 then we let P = z,Q,y,2,uj_1,...,u; and go to Step 1.

Case b: If there is no extension then we search for an edge e = (p,q) € Y such that
p € END(a) and ¢ € END(p). if there is no such edge then the algorithm fails. If
there is such an edge, consider the cycle P + e. Now either C' is a Hamilton cycle and
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we are done, or else there is a vertex u € C' and a vertex v ¢ C such that (u,v) is an
edge of H. Assuming that H is connected, see Lemma [[0.21 We now delete one of the
edges, (u,w) say, of C incident with u to create a path @ from w to u and treat e as
an extension of this path. We can now proceed as Case a.

10.3.1 Analysis of EXTEND-ROTATE

We first bound the number of executions of RSS(v). Suppose that My has k < K log n components
for some K7 > 0. Each time we execute Step 2, we either reduce the number of components by one
or we halve the size of one of the components not on the current path. So if the component sizes
of My are ny,no,...,n, then the number of executions of Step 2 can be bounded by

K+ Zlog2 n; < K+ klogy(n/k) = O(lognloglogn).
i=1

(Re-call that log(ab) < 2log((a + b)/2) for a,b > 0 and you will see the first inequality here).

An execution of Step 2 takes O(v%logn) time and so we are within the time bound claimed by
Theorem 21

We first argue that EXTEND-ROTATE succeeds w.h.p.. Suppose that the edges of Y are ey, eo,. .., €;.
We can allow the algorithm to access these edges in order, never going back to a previously examined
()=s S log'n

2’2’ = onl/2
subtracted s because some of the useful edges might have been seen before the current edge in the

order). So the probability of failure is bounded by the probability that the binomial Bin (s 1°g4”>

’ 9nl/2

is less than K lognloglogn for some Ky > 0. And this tends to zero. This completes the proof of
Theorem 21

edge. The probably that an e; can be used in Case b is always at least (we have

11 Concluding remarks

The main open question concerns what happens when ¢ < 15. Is it true that (I93]) holds all the
way down to ¢ > 3/2? We have done some numerical experiments and here are some results from
these experiments:

c Yfinal Zfinal H final Afinal

3.0 0.000008 0.283721 0.398527 1.822428

2.9 0.000009 0.242563 0.326139 1.602749

2.8 0.000010 0.197461 0.253645 1.370798

2.7 0.000010 0.148901 0.182327 1.123928

2.6 0.000010 0.098344 0.114494 0.858355

2.5 0.000010 0.048976 0.054010 0.565840

These are the results of running Euler’s method with step length 107° on the sliding trajectory
([53). They indicate that (I93]) holds down to somewhere close to 2.5. This would indicate some
sort of phase transition in the performance of 2GREEDY at around this point. There is one for the
Karp-Sipser matching algorithm and so we are led to conjecture there is one here too.
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Can we prove anything for ¢ < 157 At the moment we can not even show that at the completion
of 2GREEDY the 2-matching M has o(n) components. This will be the subject of further research.

Finally, we mention once again, the possible use of the ideas of [I0] to reduce the running time of
our Hamilton cycle algorithm to O(n'+°(M)) time.

Our list of problems/conjectures arising from this research can thus be summarised:

(a) Find a threshold ¢; such that 2GREEDY produces a 2-matching in G2=3 with O(logn) compo-

n,cn

nents w.h.p. iff ¢ > ¢ .

(b) If ¢; > 3/2 then show that when ¢ € (3/2,¢1), the number of components in the 2-matching
produced is O(n®) for some constant a < 1.

(c) Analyse the performance of 2GREEDY on the random graph G, ¢, i.e. do not condition on
degree at least three. Is there a threshold ¢y such that if ¢ < ¢o then w.h.p. only Steps 1a,1b,1c
are needed, making the matching produced optimal.

(d) Can 2GREEDY be used to find a Hamilton cycle w.h.p. in O(n'*t°()) time when applied to
G623

n,cn

and c sufficiently large?

(e) How much of this can be extended to find edge disjoint Hamilton cycles in G3=F for k > 4.

n,cn
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Proof of (3

To find a sharp estimate for the probabilities in ([B)) we have to refine a bit the proof of the local

limit theorem, since in our case the variance of the Z; are not always bounded away from zero.

o1



2

However it is enough to consider the case where No“ — oo. There is little loss of generality in

assuming that D = 0 here. As usual, we start with the inversion formula

N 1 [ . e
ZZj =7 = 5 e TR <e”zj=1zj> dzx
=1 T
1t e ; N,
= 5 e T T [B(e7)] ™ da, (244)
o £=2

where 7 = 2M — k. Consider first || > (NX)~%/12. Using an inequality (see Pittel [20])

[ fe(m)| < e gy (Jn)),

we estimate

3 ix Ne
i e—iT:cH <fg(€ )‘)> dr
] (VA)~5/12 s\ feA)
< i eN)\(cosx—l)/4 dx

[a|>(VA)~5/12
< N M(eos(NN)7/12)=1) /4]

< e~ (N9, (245)

For |z| < (NA)~%12 putting n = X\e’* and using

NoA
Z ‘ fﬁ = 2M and d/dz = ind/dn

we expand Z?zz Nylog <;ﬁ Z%) as a Taylor series around z = 0 to obtain

3 ; 3
e N nin)
Z *Z;N”g< ) = e D<ZN%<>>

(=2 N n=A
iz 2 ’ nfé(??)
3 (Z; N hn) ' R

(246)

Here ) = Ae'®| with  being between 0 and z, and D = n(d/dn). Now, the coefficients of 22/2, 23 /3!
and 2% are No?, O(No?), O(No?) respectively, and o2 is of order A\. (Use () and consider the
effect of D on a power of 77.) So the second and the third terms in (246) are o(1) uniformly for

|z| < (NX)~%/12. Therefore
= /+/+/, (247)
|z|<(NA)—5/12 1 2 3
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where
/ 1”
1 2 ISC|<(N)\)75/12

1 k241
_ _ 24
\/27TN0'2+O<()\N)3/2>’ (248)

3
o | p? ZNZ )‘fé()‘) / :L,36—N02x2/2 dx
= ) ) Jz<on-on

= O <N)\/ \x!ge_Nasz/z dx)
|z <(NA)—5/12

= O(e W), (249)

der N 22
6zkx NO'SC/de

o
I

(a > 0 is an absolute constant), and

/ = O|NX $46_N02$2/2d$>
3 || <(NX)=5/12

_ o</2> (250)

Using (244]))-([250]), we arrive at
1 k? 41
P(Y z=r)= L« 1+0< >>
<§£: ‘ ) 2nNo? ( NA

B Mathematica Output

In the computations below, ,(A) is represented by ep[z] and «, is represented by Ap and S is
represented by B. The computation C} is the justification for (2I0]).

fo[x_]:=Exp|z]

fl[x ]:=f0[z] — 1

f2[x_|:=fl[z] -1 —=z

f3[x :=f2fz] —1 -z — &

el[x_]:=% -1

e2[x_]:=% -1

e3[x_]:=g[ﬁ -1

ed[x]:= lj_t[lm[]x]

e5[x ]:= (1+e2[z]8)f$)1[:]e3[x])x3

eb[x]:= 2%(L+e2(a])? (1$F:][z])2

eT [X_] — ed[z] Tifé[r’x]:;i-eG [z]

e8[x]:= —L]—[—i-lellf;ez L
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e9[x_]:=zed|[x]

elO[x] :=%I[£]]

. z(e2[z]+e5[z])+e5[z
ell[x-]‘_ ((1—[611[2])([11_)65[2][)]

d[x_]:=Max[el[z], €2[z], e3[z], e4[z], e5[z], €6[z], e7[x], e8[z]]

N{[d[16]]
0.000102752
— 1
T=1- 2172Exp[Pi/4]
1 e—m/4
Vz
B=-01+21-T)
0.634794
A0 = B(Exp[2T/B] — 1)
4.73302
_ 2(14+T)Exp[—ArcTan(T]|
Al= N | Al A
1.5312
_ (1+T)Exp[—ArcTan(T]] 2Exp[ArcTan|(z]]
A2=N [ (1+T2)1/2 Integrate [W, {:1:, 0, 1}]]
1.41846
2cd[z c x
A3e-,x J:=1050 + SAGdel | (Gl

Adc_,x]:=A0A3[c, z]/2

c 2A4[e,x
A5[c_,x ]:=% + % + 480
Cllc_,x]:=Alc — A2 — A5|[c, z]d|[x]
N[C1[15,16]]
20.1217
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