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1. Introduction

Our goal in this paper is the study of stochastic service systems, with an eye to two applications: models

for random interval graphs and the analysis of search algorithms. The systems we study are traditionally

designatedM/M/1 (independent exponentially distributed interarrival times, independent exponentially dis-

tributed service times and a single server) and M/M/∞ (independent exponentially distributed interarrival

times, independent exponentially distributed service times and infinitely many servers).

In a previous paper, Pippenger [P] introduced models for random interval graphs based on stochastic

service systems, and analyzed, among others, a model based on the M/M/∞ system. For this system,

idle periods (intervals of time during which all servers are idle) alternate with busy periods (intervals of

time during which at least one server is busy). A random graph can be constructed by considering a busy

period, letting the vertices correspond to customers served during this busy period, and putting an edge

between two vertices if the service intervals of the corresponding customers overlap. Since edges correspond

to intersections between intervals in a totally ordered set, the resulting graph is an interval graph, so this

procedure yields a model for random interval graphs. (Other models for random interval graphs have been

considered by Scheinerman [S1, S2] and by Godehardt and Jaworski [G2].)

Suppose that in the system M/M/∞ customers arrive at rate λ and are served at rate 1. Pippenger

[P] showed that the number N of vertices in the corresponding random graph (which corresponds to the

number of customers served during the busy period) is such that the distribution of N/eλ tends to that of

an exponential with mean 1 as λ → ∞. Furthermore, the chromatic number K of the graph (which for an

interval graph equals the number of vertices in the largest clique of the graph, and corresponds to the largest

number of customers simultaneously in the system during the busy period) is such that K/eλ tends to 1 in

probability as λ→ ∞.

Our first goal in this paper is to study the corresponding random interval graph model for the M/M/1

system. In this case we must have λ < 1 to ensure that the busy period is finite with probability one, and

that the number of customers served during the busy period has finite expectation, and we shall be interested

in asymptotics as λ→ 1. When there is only one server, customers who arrive when the server is busy must

wait for service, and a service discipline (which determines which of the waiting customers will be served

next when the current service interval ends) must be specified. As a result, the corresponding interval graph

will depend on the service discipline used. Consider, for example, a busy period consisting of six service

intervals, with two new customers arriving during the first interval and one new customer arriving during

each of the second, third and fourth intervals. Then if the service discipline is “first-come-first-served”, the

resulting graph will be
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whereas if the service discipline is “last-come-first served”, the resulting graph will be
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Nevertheless, the number of vertices and the chromatic number the resulting graph (in this example, 6 and

3, respectively) are independent of the service discipline. In Section 2, we shall derive asymptotic expansions

for the moments of these quantities. The leading terms of these expansions are

Ex[Nm] ∼ 2m−1 (2m− 3)!!λm−1

(1 − λ)2m−1
(1.1)

for m ≥ 1, where (2m− 3)!! = (2m− 3) · (2m− 5) · · · 3 · 1 and (−1)!! = 1,

Ex[K] ∼ log
1

1− λ
, (1.2)

and, for m ≥ 2,

Ex[Km] ∼ m! ζ(m)

(1− λ)m−1
, (1.3)

where ζ(m) =
∑

n≥1 1/n
m is the Riemann zeta function. It will be noted that Ex[K] grows quite slowly

as λ → 1. If the random variable J denotes the number of customers in the system in equilibrium, then

Ex[J ] = λ/(1−λ), which grows much more rapidly (see Cohen [C2], p. 181). It may appear paradoxical that

the maximum number of customers in the system grows more slowly than the mean number of customers, but

it must be borne in mind that Ex[K] is an average over busy periods, whereas Ex[J ] is an average over time.

Indeed, the majority of busy periods have K = 1: after the arrival initiating the busy period, the next event

determines whether K = 1 (if that event is a service termination) or K > 1 (if that event is another arrival).

Because λ < 1, the former (with probability 1/(1 − λ)) is more likely than the latter (with probability

λ/(1− λ)). We also note that, since ζ(2) = π2/6, we have Var[K] = Ex[K2]−Ex[K]2 ∼ π2/3(1− λ), which

grows much more rapidly than Ex[K] (or even Ex[K]2). For the chromatic number, corresponding to the

maximum number of customers in the system simultaneously during the busy period, the results involve

Lambert series that are generating functions for arithmetical functions arising in number theory: the sums

of powers of the divisors of positive integers. These are

Sl(λ) =
∑

n≥1

σl(n)λ
n, (1.4)

where σl(n) denotes the sum of the l-th powers of the divisors of n (see Hardy and Wright [H, p. 239]).

Our second goal in this paper is to analyze search algorithms connected with stochastic service systems.

Consider an infinite sequence S1,S2, . . . of servers in an M/M/∞ system. Suppose that each newly arriving

customer scans this sequence in order and engages the first currently idle server. We are interested in

the index L of the server SL engaged by a newly arriving customer in equilibrium. This system has been

extensively studied by Newell [N2], who suggests that L “is approximately uniformly distributed over the

interval” [1, λ], basing this assertion on the approximation

Pr[L > l] ≈
{

1− l

λ
, if l < λ,

0, if l > λ.
(1.5)

But no error bounds are given for this or other approximations stated by Newell, and not even the fact that

the first moment has the asymptotic behavior

Ex[L] ∼ λ

2
(1.6)
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that it would have under the uniform distribution is established rigorously. In Section 3 we shall give a

rigorous version of (1.5) that will suffice to establish not only (1.6), but also the next term,

Ex[L] =
λ

2
+

1

2
log λ+O(1), (1.7)

and more generally

Ex[Lm] =
λm

m+ 1
+
mλm−1 logλ

2
+O

(

λm−1
)

(1.8)

for m ≥ 1. In particular, we have
Var[L] = Ex[L2]− Ex[L]2

=
λ2

12
+
λ log λ

2
+O(λ).

Since the interval [0, 1] is bounded, formula (1.8) shows that the m-th moment of L/λ tends to 1/(m+1) as

λ→ ∞ for all m ≥ 1, and thus suffices to show that the distribution of L/λ tends to the uniform distribution

on the interval [0, 1]. We note that a problem that is in a sense dual to ours (finding the largest index of

a busy server, rather than the smallest index of an idle server) has been treated by Coffman, Kadota and

Shepp [C1].

Our final results concern the analogue of the preceding search problem for the M/M/1 system. Here

there is only a single server, but an infinite sequence W1,W2, . . . of waiting stations. A customer arriving

when the server is busy scans this sequence in order and waits at the first vacant station. When the server

becomes free and there is at least one customer waiting, it too scans this sequence in order, and serves the

customer waiting at the first occupied station. We are interested in the index I of the station WI at which

a newly arriving customer waits in equilibrium (taken to be zero if the server is idle at the time of arrival).

(The index of the first station which the server finds occupied (taken to be zero if the service interval initiates

a busy period) has, of course, the same distribution as I.) We shall show that the distribution of the random

variable I is closely related to that of the random variable K studied in Section 2, with Ex[Im] = λEx[Km].

This fact allows asymptotic expansions for the moments of I to be obtained from those of the moments of

K in a straightforward way, with the result that the leading terms are the same.

2. Random Interval Graphs

Our goal in this section is to determine asymptotic expansions for the moments of the size (number

of vertices) and chromatic number (number of vertices in the largest clique) for the random interval graph

corresponding to the M/M/1 system. These quantities correspond to the number N of customers served

during the busy period and the maximum number K of customers in the system simultaneously during the

busy period.

The random variable N has a Catalan distribution:

Pr[N = n] =
1

2n− 1

(

2n− 1

n

)

pn−1 qn, (2.1)

where p = λ/(1+λ) and q = 1/(1+λ) (see for example Cohen [C2, pp. 190–191], or Riordan [R1, pp. 64–65]).

This distribution can be derived as follows. Let J denote the number of customers in the system. When the

busy period begins, J = 1. During the busy period, J is incremented whenever a new customer arrives, and

3



J is decremented whenever a service interval ends and a customer departs, until J = 0, at which time the

busy period ends (see Figure 1).
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Figure 1. State transition diagram for determining

the number of customers served during the busy period in M/M/1.

When J ≥ 1, the probability that the next transition is an arrival is p = λ/(1 + λ), and the probability

that the next transition is a departure is q = 1/(1 + λ). If n customers are served during the busy period,

there must be n − 1 further arrivals (beyond the one that began the busy period) and n departures, and

these must occur in such an order that J = 0 for the first time immediately after the last of these n

departures. The number of such orders is An =
(

2n−1
n

)

/(2n− 1) =
(

2n−2
n−1

)

/n, the n-th Catalan number (see

for example Comtet [C3, p. 53]). Thus we have (2.1). Since the generating function for the Catalan numbers

is a(z) =
∑

n≥1An z
n =

(

1−
√
1− 4z

)

/2, the probability generating function gN(z) for N is

gN(z) =
∑

n≥1

Pr[N = n] zn

=
a(pqz)

p

=
1−√

1− 4pqz

2p
.

Since for m ≥ 1, we have dma(z)/dzm = 2m−1 (2m− 3)!!/(1 − 4z)(2m−1)/2, the factorial moments of N are

given by

Ex[N(N − 1) · · · (N −m+ 1)] =
1

p

dm

dzm
1−√

1− 4pqz

2

∣

∣

∣

∣

z=1

=
pm−1 qm 2m−1 (2m− 3)!!

√
1− 4pq

(2m−1)

=
2m−1 (2m− 3)!!λm−1

(1− λ)2m−1
,

because
√
1− 4pq = q−p = (1−λ)/(1+λ). Since xm =

∑

0≤l≤m

{

m
l

}

x(x−1) · · · (x− l+1), where the
{

m
l

}

are the Stirling numbers of the second kind, with the generating function
∑

m≥l≥0

{

m
l

}

yl zm

l! = ey(e
z−1) (see

for example Comtet [C3, pp. 206–207]), and
{

m
0

}

= 0 for m ≥ 1, the ordinary moments of N are given by

Ex[Nm] =
∑

1≤l≤m

{m

l

}

Ex[N(N − 1) · · · (N − l + 1)]

=
∑

1≤l≤m

{m

l

} 2l−1 (2l − 3)!!λl−1

(1− λ)2l−1
.

Since
{

m
m

}

= 1, this gives the asymptotic formula (1.1) as λ→ 1.
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We turn now to the random variableK, the maximum number of customers in the system simultaneously

during the busy period (counting the customer being served, so that K ≥ 1). The distribution of K is given

by

Pr[K > k] =
(1− λ)λk

1− λk+1
(2.2)

(see for example Cohen [C2, pp. 191–193]). This distribution can be derived as follows. Consider a game

played between two players: P , who begins with v dollars, and Q who begins with w dollars. At each step

of the game, a biassed coin is tossed; P wins with probability p, in which case Q pays P one dollar, and Q

wins with the complementary probability q = 1− p, in which case P pays Q one dollar. The game continues

until one of the players is ruined (that is, has no money left). It is known that (1) with probability one,

either P or Q is eventually ruined, and (2), if p 6= q, then the probability that Q is ruined is

Pr[Q ruined] =
(q/p)v − 1

(q/p)v+w − 1
(2.3)

(see for example Feller [F, p. 345]).

Now consider a busy period of the M/M/1 queue. The successive events of arrivals and terminations

of service intervals during the busy period correspond to steps in the game described above. The wealth of

player P will correspond to the number J of customers in the system, so v = 1. An arrival will correspond

to a win by player P , so p = λ/(1+ λ), and the termination of a service interval will correspond to a win by

player Q, so q = 1/(1 + λ). Suppose that player Q begins with w = k dollars. Then the event K > k will

correspond to Q being ruined. Substituting these values in (2.3) yields (2.2) (see Figure 2).
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Figure 2. State transition diagram for determining whether K ≤ k or K > k.

This correspondence also shows what happens for λ ≥ 1. For λ = 1 (in which case the busy period is

finite with probability one, but its expected length is infinite), we have take p = q = 1/2, and have

Pr[Q ruined] =
v

v + w
.

This result yields

Pr[K > k] =
1

k + 1
,

so that

Ex[K] =
∑

l≥0

Pr[K > k] (2.4)

diverges logarithmically. Of course, for λ > 1 (in which case the busy period is infinite with positive

probability), (2.3) shows that (2.4) diverges linearly.
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Our next goal is to determine the moments of K:

Ex[Km] =
∑

k≥0

km Pr[K = k].

Writing
∆m(k) = km − (k − 1)m

=
∑

0≤l≤m−1

(

m

l

)

(−1)m−1−l kl

for the backward differences of the m-th powers, and setting

Tm(λ) =
∑

n≥1

nmλn

1− λn
, (2.5)

summation by parts yields

Ex[Km] =
∑

k≥0

km Pr[K = k]

=
∑

k≥0

∆m(k + 1) Pr[K > k]

= (1 − λ)
∑

k≥0

∆m(k + 1)λk

1− λk+1

=
1− λ

λ

∑

j≥1

∆m(j)λj

1− λj

=
1− λ

λ

∑

j≥1

∑

0≤l≤m−1

(

m

l

)

(−1)m−1−l jl λj

1− λj

=
1− λ

λ

∑

0≤l≤m−1

(

m

l

)

(−1)m−1−l Tl(λ). (2.6)

Since Ex[Km] is a linear combination of the Tl(λ), it will suffice to determine the asymptotic behavior of

the sums Tm(λ). The sums Tl(λ) are in fact the Lambert series Sl(λ) given by (1.4); we have

Tl(λ) =
∑

j≥1

jl λj

1− λj

=
∑

j≥1

jl
∑

i≥1

λij

=
∑

i≥1

∑

j≥1

jl λij

=
∑

n≥1

λn
∑

d|n
dl (2.7)

=
∑

n≥1

σl(n)λ
n,

= Sl(λ)

where the inner sum in (2.7) is over integers d dividing n.
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We note that the sums Tl(λ) can be expressed in terms of known (albeit exotic) functions of analysis.

We define the q-gamma function by

Γq(x) = (1− q)1−x
∏

n≥0

1− qn+1

1− qn+x

(see for example Gasper and Rahman[G1, p. 16]). (This function gets its name from the fact that

limq→1 Γq(x) = Γ(x), where Γ(x) is the Euler gamma function; see for example Whittaker and Watson

[W, pp. 235–264].) If we define the q-digamma function ψq(x) as the logarithmic derivative

ψq(x) =
∂

∂x
log Γq(x)

= − log(1 − q) + log q
∑

n≥0

qn+x

1− qn+x

of the q-gamma function, then we have

T0(λ) =
ψλ(1) + log(1 − λ)

log λ
.

To go further, we define the l-th q-polygamma function ψ
(l)
q as the l-th derivative

ψ(l)
q (x) =

(

∂

∂x

)l

ψq(x)

of the q-digamma function. If we set z = qn+x, then

(

z
∂

∂z

)

=

(

1

log q

∂

∂x

)

.

Since
∑

i≥1

ilzi =

(

z
∂

∂z

)l
z

1− z
,

we have
∑

i≥1

il qi(n+x) =
1

logl q

(

∂

∂x

)l
qn+x

1− qn+x
.

Summing over n ≥ 0 yields

∑

i≥1

il qix

1− qix
=

∑

i≥1

il
∑

n≥0

qi(n+x)

=
1

logl q

(

∂

∂x

)l
∑

n≥0

qn+x

1− qn+x

=
1

logl q

(

∂

∂x

)l
ψq(x) + log(1− q)

log q
.

Thus for l ≥ 1 we have

Tl(λ) =
ψ
(l)
λ (1)

logl+1 λ
.
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Our next goal is to derive the leading terms (1.2) and (1.3) of the asymptotic expansion of the moments

of K. To establish (1.2) and (1.3), we begin by deriving

T0(λ) ∼
1

1− λ
log

1

1− λ
(2.8)

and, for l ≥ 1,

Tl(λ) ∼
l! ζ(l + 1)

(1− λ)l+1
. (2.9)

Once these formulas are established, it will be clear that the sum in (2.6) is dominated by the term for which

l = m− 1, so that Ex[Km] ∼ mSm−1(λ), and (1.2) and (1.3) follow from (2.8) and (2.9), respectively.

Our strategy for proving (2.8) and (2.9) will be to approximate the sums Sl(λ) by integrals

Il(λ) =

∫ ∞

1

xl λx dx

1− λx
,

then then to show that the difference Sl(λ)−Il(λ) is negligible in comparison with Il(λ). It will be convenient

to write λ = e−h. The limit λ→ 1 then corresponds to h→ 0. We have

h = log
1

λ

= log
1

1− (1 − λ)

∼ 1− λ. (2.10)

For l = 0, we have

I0(λ) =

∫ ∞

1

λx dx

1− λx

=

∫ ∞

1

∑

l≥1

λlx dx

=
∑

l≥1

∫ ∞

1

e−hlx dx

=
∑

l≥1

e−hl

hl

=
1

h

∑

l≥1

λl

l

=
1

h
log

1

1− λ
.

Substituting (2.10) in this result yields

I0(λ) ∼
1

1− λ
log

1

1− λ
. (2.11)

We bound |S0(λ) − I0(λ)| by the total variation of f(x) = λx/(1− λx). Since f(x) decreases monotonically

from λ/(1− λ) to 0 as x increases from 1 to ∞, we have |S0(λ)− I0(λ)| ≤ λ/(1− λ) ∼ 1/(1− λ). Since this

difference is negligible in comparison with (2.11), we obtain (2.8).
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For l ≥ 1, we have

Il(λ) =

∫ ∞

1

xl λx dx

1− λx

=

∫ ∞

0

(y + 1)l λy+1 dy

1− λy+1

=

∫ ∞

0

∑

0≤i≤l

(

l

i

)

yi λy+1 dy

1− λy+1

=

∫ ∞

0

∑

0≤i≤l

(

l

i

)

yi
∑

j≥1

λj(y+1) dy

=

∫ ∞

0

∑

0≤i≤l

(

l

i

)

yi
∑

j≥1

e−hj(y+1) dy

=
∑

0≤i≤l

(

l

i

)

∑

j≥1

∫ ∞

0

yi e−hj(y+1) dy

=
∑

0≤i≤l

(

l

i

)

∑

j≥1

i! e−hj

(hj)i+1

=
∑

0≤i≤l

(

l

i

)

i!

hi+1

∑

j≥1

λj

ji+1

=
∑

0≤i≤l

(

l

i

)

i!

hi+1
Lii+1(λ), (2.12)

where Lik(λ) =
∑

n≥1 λ
n/nk is the k-th polylogarithm. Since Li1(λ) = log

(

1/(1− λ)
)

and Lik(λ) → ζ(k) as

λ→ 1 for k ≥ 2, the sum in (2.12) is dominated by the term for which i = l, and we have

Il(λ) ∼
l! ζ(l + 1)

hl+1

∼ l! ζ(l + 1)

(1− λ)l+1
(2.13)

We bound |Sl(λ)− Il(λ)| by the total variation of f(x) = xl λx/(1−λx) for 0 ≤ x <∞. As x increases, f(x)

increases monotonically from 0 to a maximum, then decreases monotonically to 0. Thus the total variation

of f(x) is twice the maximum. This maximum is

max
0≤x<∞

f(x) = max
0≤x<∞

xl e−hx

1− e−hx

= max
0≤x<∞

xl

ehx − 1

=
1

hl
max

0≤y<∞

yl

ey − 1
.

Furthermore, yl/(ey − 1) ≤ l!, because ey − 1 =
∑

n≥1 y
n/n! ≥ yl/l!. Thus |Sl(λ) − Il(λ)| ≤

2max0≤x<∞ f(x) ≤ 2 l!/hl ∼ 2 l!/(1 − λ)l. Since this difference is negligible in comparison with (2.13),

we obtain (2.9).

We shall now show how asymptotic expansions, with error terms of the form O
(

(1 − λ)R
)

for any R,

can be derived for all of the moments Ex[Km]. The essence of the argument is to use the Euler-Maclaurin
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formula to estimate the difference between Sl(λ) and Il(λ). This is most conveniently done using a result

of Zagier [Z]. Indeed, for l ≥ 1, Zagier gives the expansion for Sl(λ), in terms of the parameter h = − logλ

rather than 1−λ. All that remains for us to do is substitute an expansion for h in terms of 1−λ. For l = 0,

the expansion for S0(λ) in terms of h has been given by Egger (né Endres) and Steiner [E1, E2], again using

the result of Zagier. We shall proceed differently, to obtain an expansion involving − log(1− λ) rather than

− logh.

Proposition: (Zagier [Z, p. 318]) Let f(x) be analytic at x = 0, with power series f(x) =
∑

r≥0 br x
r about

x = 0. Suppose that
∫∞
0 |f (r)(x)| dx < ∞ for all r ≥ 0, where f (r)(x) denotes the r-th derivative of f(x).

Define F =
∫∞
0
f(x) dx. Let g(x) =

∑

n≥1 f(nx). Then g(x) has the asymptotic expansion

g(x) ∼ F

x
+
∑

r≥0

br Br+1 (−1)rxr

(r + 1)
, (2.14)

where Br is the r-th Bernoulli number, defined by t/(et − 1) =
∑

r≥0Br t
r/r!.

This result is proved by using the Euler-Maclauren formula,

∫ N

0

f(y) dy =
f(0)

2
+

∑

1≤n≤N−1

f(n) +
f(N)

2
+

∑

1≤r≤R−1

(−1)rBr+1

(r + 1)!

(

f (r)(N)− f (r)(0)
)

+ (−1)R
∫ N

0

f (R)y
BR({y})

R!
dy,

where Br(y) is the r-th Bernoulli polynomial, defined by teyt/(et−1) =
∑

r≥0Br(y) t
r/r!, and {y} = y−⌊y⌋

denotes the fractional part of y . (For the Euler-Maclauren formula, the Bernoulli numbers and the Bernoulli

polynomials, see for example Whittaker and Watson [W, pp. 125–128], where, however, the indexing of the

numbers and polynomials is different.) The condition
∫∞
0

|f (r)(y)| dy <∞ allows us to let N → ∞, obtaining

∫ ∞

0

f(y) dy =
∑

n≥1

f(n)−
∑

0≤r≤R−1

(−1)rBr+1

(r + 1)!
f (r)(0) + (−1)R

∫ ∞

0

f (R)(y)
BR({y})

R!
dy.

If we now write f(xy) instead of f(y), we obtain

∫ ∞

0

f(xy) dy =
∑

n≥1

f(nx)−
∑

0≤r≤R−1

(−1)rBr+1

(r + 1)!
f (r)(0)xr + (−1)R xR

∫ ∞

0

f (R)(xy)
BR({y})

R!
dy.

Changing the variable of integration from y to y/x then yields

1

x

∫ ∞

0

f(y) dy =
∑

n≥1

f(nx)−
∑

0≤r≤R−1

(−1)rBr+1

(r + 1)!
f (r)(0)xr + (−1)R xR−1

∫ ∞

0

f (R)(y)
BR({y/x})

R!
dy.

The integral on the left-hand side is F , the first sum on the right-hand side is g(x), f (r)(0) = r! br, and the

last term on the right-hand side is O(xR−1). Thus

F

x
= g(x)−

∑

0≤r≤R−1

br Br+1 (−1)rxr

(r + 1)
+O(xR−1),

which yields the expansion (2.14).
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For l ≥ 1, we define

f(x) =
xl

ex − 1
.

Then f(x) is analytic at x = 0 with the Taylor series

f(x) =
∑

r≥0

Br x
r+l−1

r!

and the integral

F =

∫ ∞

0

xl e−x dx

1− e−x

= l! ζ(l + 1)

(see for example Whittaker and Watson [W, p. 266]). Furthermore, f (r)(x) is a rational function of x and

ex, in which the degree of the numerator in ex is r, while the denominator is (ex− 1)r+1. Thus f(x) satisfies

the conditions of the proposition, and we have the asymptotic expansion

g(x) ∼ l! ζ(l + 1)

x
+
∑

r≥0

(−1)r+l−1Br Br+l x
r+l−1

r! (r + l)
.

Recalling that λ = e−h, so that h = − logλ, we therefore have

Tl(λ) =
∑

n≥1

nl e−hn

1− e−hn

=
1

hl

∑

n≥1

(nh)l

enh − 1

=
1

hl

∑

n≥1

f(nh)

=
g(h)

hl

∼ l! ζ(l + 1)

hl+1
+
∑

r≥0

(−1)r+l−1Br Br+l h
r−1

r! (r + l)
. (2.15)

We note that, if l is odd, then this expansion has only finitely many terms (because Br = 0 for odd r ≥ 3).

To obtain an asymptotic expansion in terms of 1− λ, we must substitute the expansion for 1/h:

1

h
=

1

− logλ

=
−1

log
(

1− (1− λ)
)

=
1

1− λ

−(1− λ)

log
(

1− (1− λ)
)

=
1

1− λ

∑

r≥0

(−1)r Cr (1 − λ)r

r!
, (2.16)

where Cr is the r-th Bernoulli number of the second kind, defined by t/ log(1 + t) =
∑

r≥0Cr t
r/r! (see for

example Roman [R2, p. 116]). (These numbers are also called the Cauchy numbers of the first kind, and are

given by Cr =
∫ 1

0
x(x − 1) · · · (x− r + 1) dx; see for example Comtet [C2, pp. 293–294].)

11



For l = 0, we must proceed differently, because

f(x) =
1

ex − 1

has a pole at x = 0. We define

f∗(x) = f(x)− e−x

x

=
1

ex − 1
− e−x

x
.

Then f∗(x) is analytic at x = 0 with the Taylor series

f∗(x) =
∑

r≥0

(

Br+1 − (−1)r+1
)

xr

(r + 1)!

and the integral

F ∗ =

∫ ∞

0

(

1

ex − 1
− e−x

x

)

dx

= γ

(see for example Whittaker and Watson [W, p. 246]). Furthermore, f∗(R)(x) is a rational function of x and

ex, in which the degree of the numerator in ex is R, while the denominator is
(

(ex − 1)x
)R+1

. Thus f∗(x)

satisfies the conditions of the proposition, and we have the asymptotic expansion

g∗(x) ∼ γ

x
+
∑

r≥0

(−1)r Br+1

(

Br+1 − (−1)r+1
)

xr

(r + 1) (r + 1)!
.

We therefore have

T0(λ) =
∑

n≥1

e−nh

1− e−nh

=
∑

n≥1

1

enh − 1

=
∑

n≥1

e−nh

nh
+

∑

n≥1

1

enh − 1
− e−nh

nh

=
1

h
log

1

1− λ
+

∑

n≥1

f∗(nh)

=
1

h
log

1

1− λ
+ g∗(h)

∼ 1

h
log

1

1− λ
+
γ

h
+
∑

r≥0

(−1)r Br+1

(

Br+1 − (−1)r+1
)

hr

(r + 1) (r + 1)!
. (2.17)

To obtain asymptotic expansions for the moments of K, we substitute (2.16) into (2.15) and (2.17),

then substitute the results into (2.6), using the expansion

1− λ

λ
=

1− λ

1− (1− λ)

=
∑

r≥1

(1− λ)r .

12



Retaining only terms that do not vanish as λ→ 1, we obtain

Ex[K] = log
1

1− λ
+ γ +O

(

(1− λ) log
1

1− λ

)

and

Ex[K2] =
π2

3

1

1− λ
+ log

1

1− λ
+ (γ − 1) +O

(

(1 − λ) log
1

1− λ

)

for the first two moments. Thus we have

Var[K] = Ex[K2]− Ex[K]2

=
π2

3

1

1− λ
− log2

1

1− λ
+ (1− 2γ) log

1

1− λ
− γ2 +O

(

(1− λ) log2
1

1− λ

)

.

3. Search Algorithms

In this section we shall analyze search algorithms for M/M/∞ and M/M/1 systems. We begin by

studying the distribution of the random variable L, defined as the index of the first idle server S found by

an arriving customer in the M/M/∞ system. Our goal is to prove (1.8), which gives the first two terms in

the asymptotic expansions of the moments of L. The key to our results is the probability Pr[L > l], which

is simply the probability that the first l servers S1, . . . ,Sl are all busy. It is well known that this probability

is given by the Erlang loss formula

Pr[L > l] =
λl/l!

∑

0≤k≤l λ
k/k!

=
1

Dl
,

where

Dl =
∑

0≤k≤l

l!

(l − k)!λk
(3.1)

(see for example Newell [N, p. 3]). The sum Dl can be expressed as an integral,

Dl =

∫ ∞

0

(

1 +
x

λ

)l

e−x dx

(see for example Newell [N, p. 7]), and most of Newell’s analysis is based on such a representation. But we

shall work directly with the expression of Dl as the sum in (3.1). We shall partition the values of l into

two ranges. The first, which we shall call the “body” of the distribution, will be 0 ≤ l ≤ l0 = λ − s, where

s =
√
λ. The second, which we shall call the “tail”, will be l > l0.

We begin with the body. We shall establish the estimate

Pr[L > l] = (1− l/λ) +
1

λ(1− l/λ)
+O

(

1

λ

)

+O

(

1

λ2(1− l/λ)3

)

(3.2)

for l ≤ l0 = λ − s, where s =
√
λ. We begin by using the principle of inclusion-exclusion to derive bounds

on the denominator Dl.

13



We begin with a lower bound. Since

l(l − 1) · · · (l − k + 1) ≥ lk −





∑

0≤j≤k−1

j



 lk−1

= lk −
(

k

2

)

lk−1,

we have

Dl =
∑

0≤k≤l

l(l − 1) · · · (l − k + 1)

λk

≥
∑

0≤k≤l

(

l

λ

)k

− 1

λ

∑

0≤k≤l

(

k

2

)(

l

λ

)k−1

.

For the first sum we have
∑

0≤k≤l

(

l

λ

)k

=
1 +O

(

(l/λ)l
)

1− l/λ
.

We note that the logarithm of (l/λ)l has a non-negative second derivative for l ≥ 1. Thus (l/λ)l assumes

its maximum in the interval 0 ≤ l ≤ l0 for l = 0, l = 1 or l = l0. Its values there are 0, 1/λ and

(1 − s/λ)λ−s = (1 − 1/
√
λ)λ−

√
λ ≤ e−

√
λ+1, respectively. As λ → ∞, the largest of these values is 1/λ, so

we have O
(

(l/λ)l
)

= O(1/λ) for 0 ≤ l ≤ l0. Thus the first sum is

∑

0≤k≤l

(

l

λ

)k

=
1 +O(1/λ)

1− l/λ
.

For the second sum we have
∑

0≤k≤l

(

k

2

)(

l

λ

)k−1

=
1 +O

(

l2(l/λ)l
)

(1− l/λ)3
.

The logarithm of l2(l/λ)l has a non-negative second derivative for l ≥ 3, so an argument similar to that used

for the first sum shows that O
(

l2(l/λ)l
)

= O(1/λ) for 0 ≤ l ≤ l0. Thus we have

∑

0≤k≤l

(

k

2

)(

l

λ

)k−1

=
1 +O(1/λ)

(1 − l/λ)3

and the lower bound

Dl ≥
1 +O(1/λ)

1− l/λ
− 1 +O(1/λ)

λ(1 − l/λ)3
. (3.3)

For an upper bound, we have

l(l − 1) · · · (l − k + 1) ≤ lk −





∑

0≤j≤k−1

j



 lk−1 +





∑

0≤i<j≤k−1

ij



 lk−2

≤ lk −
(

k

2

)

lk−1 +
1

2

(

k

2

)2

lk−2

(because
∑

0≤i<j≤k−1 ij =

(

(

∑

0≤j≤k−1 j
)2

−∑

0≤j≤k−1 j
2

)/

2 ≤
(

∑

0≤j≤k−1 j
)2

/

2 =
(

k
2

)2
/2). Thus

we have

Dl ≤
∑

0≤k≤l

(

l

λ

)k

− 1

λ

∑

0≤k≤l

(

k

2

)(

l

λ

)k−1

+
1

2λ2

∑

0≤k≤l

(

k

2

)2 (
l

λ

)k−2

.
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For the third sum we have
∑

0≤k≤l

(

k

2

)2 (
l

λ

)k−2

≤
∑

k≥0

(

k

2

)2 (
l

λ

)k−2

= O

(

1

(1− l/λ)5

)

.

and thus the upper bound

Dl ≤
1 +O(1/λ)

1− l/λ
− 1 +O(1/λ)

λ(1 − l/λ)3
+O

(

1

λ2(1− l/λ)5

)

.

Combining this upper bound with the lower bound (3.3) yields

Dl =
1 +O(1/λ)

1− l/λ
− 1 +O(1/λ)

λ(1 − l/λ)3
+O

(

1

λ2(1− l/λ)5

)

.

To obtain Pr[L > l], we take the reciprocal of Dl:

Pr[L > l] =

(

1 +O(1/λ)

1− l/λ
− 1 +O(1/λ)

λ(1 − l/λ)3
+O

(

1

λ2(1 − l/λ)5

))−1

=
(

1 +O(1/λ)
)

(1− l/λ)

(

1− 1

λ(1− l/λ)2
+O

(

1

λ2(1− l/λ)4

))−1

=
(

1 +O(1/λ)
)

(1− l/λ)

(

1 +
1

λ(1− l/λ)2
+O

(

1

λ2(1− l/λ)4

))

=
(

1 +O(1/λ)
)

(

(1− l/λ) +
1

λ(1 − l/λ)
+O

(

1

λ2(1− l/λ)3

))

.

Observing that O(1/λ) (1 − l/λ) = O(1/λ) and O(1/λ)/λ(1 − l/λ) = O
(

1/λ2(1 − l/λ)3
)

, we obtain (3.2).

We turn now to the tail. We shall establish the estimate

Pr[L > l] = O(e−λ λl/l!) (3.4)

for l ≥ λ − s, where s =
√
λ. To obtain an upper bound on Pr[L > l], we obtain a lower bound on Dl. We

have

Dl =
∑

0≤k≤l

l!

(l − k)!λk

≥ l!

⌊λ− s⌋!λl−⌊λ−s⌋ + · · ·+ l!

⌊λ− 2s⌋!λl−⌊λ−2s⌋ , (3.5)

because l − ⌊λ − s⌋ ≥ l − (λ − s) ≥ 0 by assumption and ⌊λ − 2s⌋ ≥ 0 for all sufficiently large λ. There

are ⌊λ − 2s⌋ − ⌊λ − 2s⌋ + 1 ≥ s terms in the sum (3.5). Furthermore, the smallest of these terms is the

last, because its denominator contains factors of λ where the preceding terms contain factors smaller than

λ. Thus we have

Dl ≥
s l!

⌊λ− 2s⌋!λl−⌊λ−2s⌋ .

For the factorial in the denominator of this bound, we shall use the estimate n! ≤ e
√
n e−n nn, which holds

for all n ≥ 1 (because the trapezoidal rule underestimates the integral
∫ n

1 log x dx of the concave function

log x). This estimate yields

Dl ≥
s l! e⌊λ−2s⌋

e
√

⌊λ− 2s⌋ ⌊λ− 2s⌋⌊λ−2s⌋ λl−⌊λ−2s⌋
. (3.6)
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We have

e⌊λ−2s⌋ ≥ eλ−2s−1,

⌊λ− 2s⌋⌊λ−2s⌋ ≤ (λ− 2s)⌊λ−2s⌋

= λ⌊λ−2s⌋ (1− 2s/λ)⌊λ−2s⌋

≤ λ⌊λ−2s⌋ (1− 2s/λ)λ−2s−1

≤ λ⌊λ−2s⌋ e(−2s/λ)(λ−2s−1)

≤ λ⌊λ−2s⌋ e−2s+4s2/λ+1

≤ λ⌊λ−2s⌋ e−2s+5

and
√

⌊λ− 2s⌋ ≤ s.

Substituting these bounds into (3.6) yields

Dl ≥
l! eλ

e7 λl
.

Taking the reciprocal of this bound yields (3.4).

We shall now use (3.2) and (3.4) to prove (1.8). We write

∆m(l) = lm − (l − 1)m

= mlm−1 +O(lm−2)

for the backward differences of the m-th powers of l. Then partial summation yields

Ex[Lm] =
∑

l≥0

lm Pr[L = l]

=
∑

l≥0

∆m(l) Pr[L > l]

=
∑

l≥0

mlm−1 Pr[L > l] +O





∑

l≥0

lm−2 Pr[L > l]



 (3.7)

This formula shows that we should evaluate sums of the form

Un =
∑

l≥0

ln Pr[L > l]. (3.7)

We shall show that

Un =
λn+1

(n+ 1)(n+ 2)
+
λn logλ

2
+O(λn). (3.8)

Substitution of this formula into (3.7) will then yield (1.8).

We shall break the range of summation in (3.7) at l0 = λ − s, where s =
√
λ, using (3.2) for 0 ≤ l ≤ l0

and (3.4) for l > l0. Summing the first term in (3.2), we have

∑

0≤l≤l0

ln(1 − l/λ) =
1

λ

∑

0≤l≤l0

(λ ln − ln+1)

=
1

λ

((

λ ln+1
0

n+ 1
+O(ln0 )

)

−
(

λn+2

n+ 2
+O(ln+1

0 )

))

=
1

λ

((

λ (λn+1 − (n+ 1)λns)

n+ 1
+O(λn)

)

−
(

λn+2 − (n+ 2)λn+1s

n+ 2
+O(λn+1)

))

=
λn+1

(n+ 1)(n+ 2)
+O(λn).
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Summing the second term in (3.2), we have

∑

0≤l≤l0

ln

λ− l
=

∑

s≤k≤λ

(λ− k)n

k

=
∑

s≤k≤λ

(

λn

k
+O(λn−1)

)

= λn log
λ

s
+O(λn)

=
λn logλ

2
+O(λn),

where we have used
∑

1≤k≤n 1/k = logn + O(1). Summing the third term in (3.2) of course yields O(λn).

Summing the last term in (3.2), we have

λ
∑

0≤l≤l0

ln

(λ− l)3
= λ

∑

s≤k≤λ

(λ− k)n

k3

≤ λn+1
∑

s≤k≤λ

1

k3

≤ λn+1
∑

k≥s

1

k3

= λn+1

(

2

s2
+O

(

1

s3

))

= O(λn),

where we have used
∑

k≥n 1/k3 = 2/n2 +O(1/n3). Combining these estimates, we obtain

∑

0≤l≤l0

ln Pr[L > l] =
λn+1

(n+ 1)(n+ 2)
+
λn logλ

2
+O(λn). (3.9)

Finally, summing (3.4) we have
∑

l>l0

ln e−λ λl

l!
≤

∑

l≥0

ln e−λ λl

l!

= O(λn),

because the summation on the right-hand side is the n-th moment of a Poisson random variable with mean

λ, which is a polynomial of degree n in λ. Thus

∑

l>l0

ln Pr[L > l] = O(λn).

Combining this estimate with (3.9) yields (3.8) and completes the proof of (1.8).

Our final goal is to study the distribution of the random variable I, defined as the index of the first

vacant waiting station WI found by a customer in the M/M/1 system, when the server, upon becoming free

when at least one customer is waiting, serves the customer at the first occupied waiting station. We shall

show that the distribution of I is given by

Pr[I > i] =
(1− λ)λi+1

1− λi+1
. (3.10)
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The event I > i is simply the event that the first i waiting stations W1, . . . ,Wi are all occupied; we have

I = 0 when the server is idle. Letting the random variable J denote the number of customers in the system,

as before, we observe that the event J > i is necessary for the event I > i: if stations W1, . . . ,Wi are

occupied and the server is busy, there are at least i+ 1 customers in the system. Thus we can write

Pr[I > i] =
∑

j>i

Pr[I > i | J = j] Pr[J = j].

We shall show that

Pr[I > i | J = j] =
1− λ

1− λi+1
(3.11)

for all j > i. Since Pr[J > i] = λi+1, it will then follow that

Pr[I > i] =
1− λ

1− λi+1

∑

j>i

Pr[J = j]

=
1− λ

1− λi+1
Pr[J > i]

=
(1 − λ)λi+1

1− λi+1
,

confirming (3.10)

Before proving (3.11) in the general case, it will be helpful to consider two special cases. If i = 0,

then the event J > i is sufficient as well as necessary for the event I > i: if the server is busy, an arriving

customer must wait. Thus Pr[I > i | J = j] = 1 for all j > 0, confirming (3.11) in this case. For i = 1, we

assume that J = j > 1 and ask for the conditional probability that W1 is occupied. If the current arrival

occurs at time t0, we consider the latest transition in the embedded Markov chain for J that precedes t0.

Suppose this previous transition occurs at time t1. If this previous transition was an arrival, then W1 will

be occupied by it (if it was not already occupied) and thus will be occupied at t0. If on the other hand this

previous transition was a departure, then W1 will be vacated by it (if it was not already vacant) and thus

will be vacant at t0. Thus we must determine the probability that this previous transition was an arrival.

We claim that the previous transition was an arrival is q = 1/(1 + λ) and the probability that it was a

departure is p = λ/(1 +λ). To prove this claim, we note that the Markov chain for J is reversible; that is, if

a movie is made of its transitions, the movie run backward is stochastically indistinguishable from the movie

run forward. (Reversibility follows from the fact that in this Markov chain, transitions occur only between

adjacent states; that is, J is incremented by an arrival and decremented by a departure.) The previous

transition was an arrival if and only if it appears as a departure when the movie is run backward, and by

reversibility this event occurs with probability q = 1/(1 + λ) provide that the transition does not involve

the state J = 0. (When J = 0, the next transition is an arrival with probability one, rather than with

probability p = λ/(1 + λ).) But since J > 1 at t0, we have J > 0 at t1. This proves our claim. We therefore

have Pr[I > i | J = j] = q = 1/(1 + λ) = (1− λ)/(1 − λ2), again confirming (3.11).

We are now ready to prove (3.11) in the general case. We assume that J = j > i and ask for the

conditional probability that W1, . . . ,Wi are all occupied. To determine whether this event occurs, we shall

again trace backward in time through the transitions preceding the current arrival at time t0. In this case

we may have to trace back through arbitrarily many transitions. As we trace backward, we keep track of the

difference d(t) between the number of arrivals and the number of departures in the interval [t, t0). We shall

continue tracing as long as −1 < d(t) < i, stopping at the latest time t1 such that d(t1) = −1 or d(t1) = i.
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First, we claim that if d(t1) = i, then W1, . . . ,Wi are all occupied at time t0. To prove this claim, we

match each departure in [t1, t0) with a later arrival “like parentheses”. That is, we associate each departure

in this interval with a left parenthesis and each arrival with a right parenthesis. Since d(t) ≥ 0 for t1 ≤ t ≤ t0,

there are at least as many right parentheses as left parentheses in any suffix of the resulting string, so all

the left parentheses can be matched to right parentheses, leaving d(t1) = i right parentheses unmatched.

We thus have i unmatched arrivals. These arrivals occupy the stations W1, . . . ,Wi (if they were not already

occupied), and any stations that are vacated by subsequent departures are reoccupied by the matching

arrivals, so these stations all remain occupied at time t0. This proves our first claim.

Next, we claim that if d(t1) = −1, then at least one of the stations W1, . . . ,Wi is vacant at time t0.

To prove this claim, we define m = max{d(t); t1 ≤ t ≤ t0}. We have m < i. We define t2 = max{t : t1 <
t ≤ t0 and d(t) = m}. Since d(t) ≤ m for t1 ≤ t ≤ t2, we can match arrivals with later departures in this

interval, leaving at least m+1 departures unmatched. These departures will vacate stations W1, . . . ,Wm+1

(if they were not already vacant), and any of these stations that are occupied by subsequent arrivals in this

interval will be revacated by the matching departures, so that these stations will all be vacant at time t2. For

each of these m + 1 stations Wj , let e(j) denote the difference between the number of arrivals that occupy

Wj and the number of departures that vacate Wj . We have 0 ≤ e(j) ≤ 1, because arrivals that occupy a

given station alternate with departures that vacate it. Since d(t2) = m, we have
∑

1≤j≤m+1 e(j) = m. It

follows that e(j) = 0 for at least one value of j, and so Wj remains vacant at time t0 for this value of j.

This proves our second claim.

Finally, we claim that as we trace backward, the probability that the next transition is an arrival is

always q = 1/(1 + λ), and the probability that the next transition is a departure is always p = λ/(1 + λ).

To prove this claim, we observe that there are at least i+ 1 customers in the system at time t0, and thus at

least i+1−d(t) customers in the system at any time t for t1 < t < t0. Furthermore i+1−d(t) ≥ 2, because

d(t) < i for t1 < t < t0. Thus there are at least two customers in the system at every time t ∈ (t1, t0). It

follows that as we trace backward, none of the transitions we encounter involve the state J = 0. Thus as

we trace backward, the probability that the next transition is an arrival is always q = 1/(1 + λ), and the

probability that the next transition is a departure is always p = λ/(1 + λ). This proves our third claim.

These three claims show that the process of determining whether I > i (given that J = j > i) is as

shown in Figure 3.
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Figure 3. State transition diagram for determining whether I ≤ i or I > i (given that J = j > i).

Comparison with Figure 2 shows that this process is the same at the process of determining whether

K > k, except that the roles of p and q are exchanged. This exchange is equivalent to the substitution of
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1/λ for λ, so Pr[I > i | J = j] is obtained by making this substitution in the expression (2.2) for Pr[K > k];

Pr[I > i | J = j] =
(1− 1/λ) (1/λ)i
(

1− (1/λ)i+1
)

=
1− λ

1− λi+1
.

This again confirms (3.11), which completes the proof of (3.10). It follows that the moments of I differ from

those of K by a factor of λ = 1 − (1 − λ). This fact allows asymptotic expansions for the moments of I to

be obtained from those of K, with the result that the leading terms are the same.

4. Conclusion

We observe that the search algorithm described in the preceding section for the M/M/1 system defines

a deterministic service discipline distinct from both first-come-first-served and last-come-first-served. It

would be of interest to determine the distribution of the waiting time W experienced by a customer for this

discipline, or even the moments of this distribution. We hope to address this question in a future paper.
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