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Abstract

We consider two random graphs G1, G2, both on the same vertex set. We ask whether there
is a non-trivial set of vertices S, so that S induces a connected subgraph both in G1 and in
G2. We determine the threshold for the appearance of such a subset, as well as the size of the
largest such subset.

1 Introduction

The giant component dates back to the earliest days of random graph theory[5] and still remains as
one of the most studied phenomena in the field. In this paper, we consider a very natural variation
on the giant component which, somewhat surprisingly, does not appear to have been studied before:
giant vertex sets that are connected in two different random graphs, simultaneously.

Consider two random graphs, G1, G2, each drawn from the model Gn,p=c/n for some constant
c > 1, and each on the same vertex set, V = {1, ..., n}. We say that S ⊆ V is a doubly connected
set of (G1, G2) if S induces a connected subgraph in G1 and S induces a connected subgraph in
G2. We consider a doubly connected set to be trivial if it has size at most 2.

A simple argument shows that w.h.p.1 a non-trivial doubly connected set S must lie in the
intersection of the giant components of G1 and G2 (this follows, eg, from Lemma 3.1 below). It
does not take long to realize that their intersection is w.h.p. not doubly connected. Indeed, it
will contain a linear number of vertices which were, e.g. connected to the giant component of G1

through a path of vertices that are not all in the giant component of G2. At first thought, it is not
clear whether there will be a non-trivial doubly connected set at all, even for very large constant c.
In this paper, we show that there is. We determine the threshold for the appearance of a non-trivial
doubly connected set, and we determine its size.

Define

c∗ = min
ξ>0

ξ

(1− e−ξ)2
= 2.4554...,

∗Dept of Computer Science, University of Toronto, molloy@cs.toronto.edu. Research supported by an NSERC
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1We say that a property holds w.h.p. (with high probability) if the probability tends to 1 as n grows.
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and define α = α(c) to be the greatest solution to

α = (1− e−αc)2.

Substituting ξ = αc, we obtain c = ξ/(1− e−ξ)2 and so α(c) > 0 iff c > c∗.

Theorem 1.1 (a) For any c < c∗, w.h.p. (G1, G2) does not have a doubly connected set of size
greater than 2.

(b) For any c > c∗, w.h.p. (G1, G2) has a doubly connected set, and the largest such set has size
α(c)n+ o(n).

At c = c∗, α = .5116... and α increases with c. So for c > c∗, w.h.p. the largest doubly connected
set is on more than half the vertices. In comparison, the giant component of Gn,p=c∗/n has size
roughly .8866n and squaring tells us that the intersection of the giant components of G1, G2 would
have size roughly .786n.

Remark: A doubly connected set of size 2 is an edge that is selected for both graphs. The
expected number of such edges is c2/2, and a straightforward Method of Moments argument (see
e.g. [8]) shows that the number is asymptotically distributed like a Poisson variable. Thus, for
c < c∗, the probability that there is a doubly connected set of size 2 is 1− e−c2/2 + o(1).

Our proof extends to several copies of Gn,p with varying edge-probabilities. Consider random
graphs G1, ..., Gt, on the same vertex set, where Gi is from Gn,p=ci/n. If there is a solution to:

α =
t∏
i=1

(1− e−ciα),

then w.h.p. there is a set S of size αn+ o(n) such that S induces a connected subgraph in each of
G1, ..., Gt. If there is no such solution, then w.h.p. there is no such S on more than two vertices
(in fact, on more than one vertex if t ≥ 3). We omit the details of the proof adaptation.

The proof of our theorem will be reminiscent of studies of the k-core, the pure literal rule, and
other similar problems [14, 11, 6, 7, 9]. There, one repeatedly removes vertices (literals, etc.) that
have small degree, until a core remains. Here, we will repeatedly remove vertices that lie in small
components of at least one of the two graphs. Analysis of the k-core process is enabled by the fact
that, at each iteration, what remains is a random graph conditioned on certain degree sequence
properties, which we know how to analyze. In our process, at each iteration, we find that what
remains is, roughly, the giant component of a random graph on a smaller vertex set. This enables
us to continue to analyze it.

The techniques developed in this paper are applied in [12], where we need to analyze a similar
structure on the union of random bipartite graphs. In that setting, we have vertex sets A1, ..., Ak
and a random bipartite graph on each pair (Ai, Aj). The freezing threshold for k-colourings of Gn,p
(see [12] for a definition) is determined via the threshold for the appearance of sets Si ⊂ Ai such
that for each i, j, the bipartite subgraph induced by (Si, Sj) is connected.

2 Some intuition

We begin with a short intuitive explanation for α and c∗.
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Lemma 3.1, below, shows that any non-trivial doubly connected set of (G1, G2) must have linear
size. So we can determine whether such a set exists by using an iterative stripping process. At each
step, every vertex that is in a small (i.e. sublinear) component of either graph is removed from both
graphs. We will show that w.h.p., at each stage each graph contains at most one component that
is not small (i.e. the giant component). Lemma 3.1 implies that w.h.p. if this process removes all
vertices then there is no doubly connected set; otherwise, the vertices that remain form the largest
doubly connected set.

Let Θ1,Θ2 be the vertices that are removed, at any point during the procedure, because at the
time of removal they lay in small components of G1, G2, respectively. Thus, the doubly connected
component that we find is S = V \(Θ1 ∪ Θ2). Note that S is the giant component of G1\Θ2 (the
graph remaining after removing Θ2 from G1) and is also the giant component of G2\Θ1.

Now make a leap of faith and suppose that, somehow, G1 and G2 come up with Θ1,Θ2 inde-
pendently.

Suppose |Θ1| = (1−ρ)n+o(n) for some constant ρ > 0; by symmetry, it is reasonable to assume
that we also have |Θ2| = (1 − ρ)n + o(n). S is the vertex-set of the giant component of G1\Θ2,
and also of the giant component of G2\Θ1. Since Θ2 is independent of G1, we can treat G1\Θ2 as
Gn′,p=c/n where n′ = n− |Θ2| = ρn+ o(n). So by Lemma 3.4 (below), |S| = αn+ o(n) where

α = ρ(1− e−αc). (1)

By the independence of Θ1,Θ2, our leap of faith can also lead us to assume that Θ1 intersects
V \Θ2 in the same proportion that it intersects V . Θ1\Θ2 is simply the set of vertices not appearing
on the giant component of G1\Θ2, and so

|Θ1\Θ2|
|V \Θ2|

=
|Θ1|
|V |

→ ρ− α
ρ

= 1− ρ → α = ρ2. (2)

(1) and (2) yield α = (1− e−αc)2 and hence the definition of c∗.

Of course, in our process, Θ1,Θ2 are not formed independently. However, our proof can be
viewed as building a different pair of sets Θ′1,Θ

′
2 with Θi ⊆ Θ′i, which yields the same doubly

connected set; i.e. where Θ1 ∪Θ2 = Θ′1 ∪Θ′2 and S = V \(Θ′1 ∪Θ′2) is the giant component of both
G1\Θ′2 and G2\Θ′1. Furthermore, Θ′1,Θ

′
2 will be formed (essentially) independently, enabling an

analysis similar to that above.

3 A stripping procedure

We start by proving that w.h.p. every doubly connected set with more than 2 vertices must have
linear size.

Lemma 3.1 For every c > 0, there exists a constant φ = φ(c) > 0 such that w.h.p. (G1, G2) does
not have a doubly connected set of size greater than 2 and less than φn.

Proof This is a very standard argument, using the principle that w.h.p. the subgraph
induced by any small set of vertices must have very low edge-density.
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Let Xa denote the number of doubly connected sets of size a. Each such set must contain a
spanning tree in G1 and in G2. There are aa−2 spanning trees on a vertices, and each has exactly
a− 1 edges. So:

E(Xa) ≤
(
n

a

)
(aa−2)2

(
c

n

)2a−2
<

n2

a4c2

(
en

a
a2
(
c

n

)2
)a

<
n2

a4c2

(
ec2a

n

)a
.

From this, it is straightforward to obtain
∑φn
a=3E(Xa) = o(1) for φ < 1

ec2
. 2

Lemma 3.1 implies that any doubly connected set of size at least 3 must be contained in the
intersection of the giant components of G1 and G2. Furthermore, the following procedure will
w.h.p. find it.

At each iteration i, we will have a set of vertices Vi ⊂ {1, ..., n}. We define Si, resp. Ti, to be
the vertex set of the largest component of the subgraph of G1, resp. G2, induced by Vi.

STRIP:
Initialize V1 = {1, ..., n}.
For i = 1 to ∞

Expose the vertices of Si.
Expose the vertices of Ti.
if Si = Ti = Vi then HALT SUCCEED.
else
Vi+1 := Si ∩ Ti.
if Vi+1 = ∅ then HALT FAIL.

To clarify: at each iteration, we only expose the vertices in Si, Ti; we do not expose any of the
edges amongst those vertices. This will be important for our analysis (see e.g. Observation 4.1).
Informally, suppose that an oracle sees all of G1 and G2, and at each iteration, only tells us which
vertices are in Si, Ti; any probabilistic analysis that we carry out is conditioned on the information
that the oracle has given us thus far. Note that the information the oracle provides is enough for
us to carry out the procedure.

More formally, Si ⊂ Vi is a random set of vertices, such that the probability that Si = S is the
probability that S is the vertex set of the largest component of G1 induced by Vi; after Si = S is
selected we then condition all remaining random choices on the event that that vertex set is equal
to S. (And similarly for Ti.)

We will prove that w.h.p.: If we halt Fail, then there is no doubly connected set of linear size.
If we halt Succeed then Si = Ti is doubly connected, and is the maximum doubly connected set in
(G1, G2).

This is the iterative procedure described in Section 2. If it halts Succeed, then Θ1,Θ2 are
∪i≥1Vi\Si,∪i≥1Vi\Ti.

To analyse STRIP, we define:
ρ1 = 1,

for i ≥ 1, γi is the greatest solution to

γi = ρi(1− e−γic), (3)
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and
ρi+1 = γi/ρi = 1− e−γic.

Note: If ρi ≤ 1/c then γi = 0, and if ρi > 1/c then there is only one positive solution to (3).

Lemma 3.2 The sequences γ1, ... and ρ1, ... are both strictly decreasing and

(a) For any c < c∗, there exists I such that γI = ρI = 0.

(b) For any c > c∗, limi→∞ γi = α(c) and limi→∞ ρi =
√
α(c).

Proof It is easy to confirm that ρ2 < 1 = ρ1. Suppose ρi < ρi−1. Then it is straightforward
to check that γi < γi−1 (in fact, the proof of Lemma 3.4 below implies this). Note that ρi+1 =
1− e−γic and so γi < γi−1 implies ρi+1 < ρi. So both sequences are decreasing. Since they are both
positive, they have a limit. That limit must be a fixed point of the recursive equations. At that
fixed point (ρ, γ), we have ρ = γ/ρ and so γ = ρ2. This yields:

ρ = 1− e−cρ2 (4)

For c < c∗ the only solution to (4) is ρ = 0, and so ρi, γi tend to 0. Therefore, there exists I such
that ρI−1 ≤ 1/c and hence γI−1 = ρI = γI = 0.

For c ≥ c∗, the largest solution to (4) is ρ =
√
α. A simple induction shows that ρi ≥

√
α for

each i, and this yields part (b). Indeed, define f(x) = 1 − e−yc where y = y(x) is the greatest
solution to y = x(1− e−yc). Thus ρi+1 = f(ρi). Now y(x) is non-decreasing and hence so is f(x).
Also note that f(

√
α) =

√
α. So if ρi ≥

√
α then ρi+1 = f(ρi) ≥ f(

√
α) =

√
α. Since ρ1 = 1 >

√
α,

this completes the induction. 2

In the next section, we will prove:

Lemma 3.3 For any constant i, and any constant φ > 0, w.h.p.

(a) |Vi| = ρ2in+ o(n);

(b) |Si|, |Ti| = γin+ o(n);

(c) every vertex in Vi\Vi+1 lies in a component of size less than φn in either G1 ∩ Vi or G2 ∩ Vi.

Lemmas 3.2, 3.3 show us that, by taking a sufficiently high constant number of iterations, Si, Ti
get quite close to what Theorem 1.1 would predict. Lemma 3.3(c) and Lemma 3.1 imply inductively
that every vertex not in Vi does not lie in a non-trivial doubly connected set. Lemma 3.1 completes
the proof of Theorem 1.1(a), by considering i high enough so that γi < φ. The proof of Theorem
1.1(b) requires more work.

We close this section with some useful facts about the size of a giant component. We say
X ∈ Y ± Z to mean that X is in the range [Y − Z, Y + Z].

Lemma 3.4 For cτ > 1, w.h.p. the size of the largest component of Gn′,p=c/n where n′ = τn is in

βn± n3/5, where β is the positive solution to β = τ(1− e−βc).
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Proof Note that Gn′,p=c/n is Gn′,p=cτ/n′ . So the classical result by Erdős and Rényi[5]
on the size of the giant component in Gn,p, along with the fact that the distribution of the size is
asymptotically normal[16, 15, 3] implies that w.h.p. the size of the largest component is in bn′±n3/5
where b is the positive solution to b = 1− e−cτb. The lemma follows by noting that β = bτ . 2

We are interested in how β changes with τ near τ =
√
α.

Lemma 3.5 For every c > c∗, at τ =
√
α we have

∂

∂τ
β < 2

√
α.

Proof We use β′ to denote ∂
∂τ β. So

β′ = (1− e−βc) + τ
∂

∂τ
(1− e−βc) = (1− e−βc) + τce−βcβ′.

Solving for β′ yields:

β′ =
1− e−βc

1− τce−βc
.

Recall that c∗ is a minimum of ξ
(1−e−ξ)2 . It is easy to check that ξ

(1−e−ξ)2 is increasing above c∗ and

so, since c > c∗, the derivative with respect to ξ is postive. Differentiating and simplifying yields:

1− e−ξ > 2ξe−ξ.

Applying ξ = αc, and
√
α = 1 − e−αc, this yields

√
α > 2αce−αc so 1

2 >
√
αce−αc. Noting that at

τ =
√
α we have β = α, yields that at τ =

√
α:

∂

∂τ
β =

1− e−αc

1−
√
αce−αc

<

√
α

1− 1
2

= 2
√
α.

2

We close this section with the Chernoff Bound[4]. We use the version presented in [13]. Here,
BIN(n, p) is the sum of n independent variables, each equal to 1 with probability p and 0 otherwise.

The Chernoff Bound For any 0 ≤ t ≤ np:

Pr (|BIN(n, p)− np| > t) < 2e
− t2

3np .

4 Proof of Lemma 3.3

It is useful to consider what STRIP looks like from the perspective of G1. At each iteration, G1

removes all its small components, then is given a list Ti of vertices and removes all remaining
vertices which are not in Ti. The following observation about Ti is crucial to our analysis:
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Observation 4.1 Given Vi and ti = |Ti|, the set Ti is a uniformly random set of ti vertices from
Vi, and the choice of these vertices is independent of G1.

Proof At each step j < i of STRIP, we expose the vertex sets Sj , Tj without exposing the
edges. This implies that for any potential graph H = G2 ∩ Vi, every graph obtained by permuting
the vertices of H is equally likely to be G2 ∩ Vi, and this holds even after conditioning on G1 being
equal to any particular graph. So consider any two vertex sets T, T ′ ⊂ Vi, both of size ti, and any
graph H such that if G2∩Vi = H then |Ti| = ti. By symmetry, the number of ways to permute the
vertices of H to obtain a new graph for which Ti = T is equal to the number of ways to permute the
vertices of H to obtain Ti = T ′ (the number is ti!(|Vi| − ti)!). Summing over all possibilities for H
yields that Pr(Ti = T ) = Pr(Ti = T ′), even after conditioning on G1. This yields the observation.

2

This implies that if we are only viewing things from the perspective of G1, then at each iteration,
instead of exposing Ti and then deleting Vi\Ti from Vi, we can instead just expose ti = |Ti| and
remove `i = |Vi| − ti uniformly random vertices from Vi.

It will be convenient to keep track of an additional set Ui ⊇ Vi. Vertices are removed from Ui
at the same proportional rate that G2 causes vertices to be removed from Vi. G1 does not cause
any vertices to be removed from Ui. This set is useful because it extracts the effect that G2 has on
Vi and hence on Si. Moreover, Ui is close to being independent of G1; close enough to be useful.
Very roughly speaking, in the limit as i→∞, V − Ui can be thought of as Θ′2 from Section 2.

We specify Ui using the following modification of STRIP.

As before, at each iteration i, we will have a set of vertices Vi ⊂ {1, ..., n}, and we define Si,
resp. Ti, to be the vertex set of the largest component of the subgraph of G1, resp. G2, induced by
Vi.

Again, we only expose the vertices of Si, Ti. This time, in order to expose Ti, we will first expose
|Ti| and then choose a uniformly random set of |Ti| vertices of Vi, making use of Observation 4.1.
Equivalently, we expose `i = |Vi\Ti| and obtain Ti by deleting `i uniformly random vertices from
Vi. We choose those vertices in an unusual manner, to facilitate the specification of Ui+1.

STRIP1:
Initialize V1 = U1 = {1, ..., n}.
For i = 1 to ∞

Expose the vertices of Si.
Expose `i = |Vi\Ti|.
If Si = Vi and `i = 0 then HALT SUCCEED
Else

Initialize Li = ∅.
Repeat `i times:

Repeat until we choose a u ∈ Vi
Choose a uniformly random vertex u ∈ Ui (without replacement).
Place u into Li.

Ti := Vi\Li.
Vi+1 := Si\Li. (Note that Si\Li = Si ∩ Ti.)
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Ui+1 := Ui\Li.
If Vi+1 = ∅ then HALT FAIL.

Note that, for each i, the `i vertices of Li that are in Vi are uniformly random members of Vi.
So by Observation 4.1, we can couple the choice of Ti in STRIP with the choice of Vi\Li in STRIP1.
Under this coupling, STRIP and STRIP1 produce the same sets Si, Ti, Vi. More precisely:

We run STRIP and STRIP1 in parallel. At iteration i, we first expose the vertex sets Si =
S, Ti = T for STRIP. Then we carry out iteration i of STRIP1 as follows: We set `i = |Vi\T |. Each
time we select u ∈ Ui we first determine whether u ∈ Vi. If u ∈ Vi then we pick u to be a uniformly
random member of T (without replacement). If u /∈ Vi then we pick u to be a uniformly random
member of Ui\Vi (without replacement). Note that, by Observation 4.1, u is a uniformly random
member of Ui (without replacement) and so this is a valid coupling; i.e. u is chosen with the correct
distribution for STRIP1. Note also that this coupling ensures that we select Si = S, Ti = T for
STRIP1, and so STRIP and STRIP1 produce the same sets.

Intuition: So long as Si has linear size, Si will be the largest component of G1 ∩Ui. The reason
is that all vertices in Ui\Vi were removed from Vi because they were not in Sj for some j < i;
i.e. they were in small components of G1 ∩ Vj . Inductively, this means that they were in small
components of G1 ∩ Uj and hence are in small components of G1 ∩ Ui, as Ui ⊆ Uj . Therefore, all
vertices in the giant component of G1 ∩ Ui are in Vi, and so the largest component of G1 ∩ Ui is
also the largest component of G1 ∩ Vi.

This allows us to analyze |Si| by instead analyzing the largest component of G1 ∩ Ui, which is
much easier. To do so, we determine the size of Ui:

Lemma 4.2 For any constant i, w.h.p. |Ui| = ρin+ o(n).

Intuition: Suppose that we were to define another set U ′i which is analagous to Ui but from the
perspective of G2. Note that a simple induction shows Vi = Ui ∩ U ′i : Indeed, every vertex in Vi\Ti
is in Li and hence is not in Ui+1; similarly every vertex in Vi\Si is not in U ′i+1. Since Vi+1 = Si∩Ti
and Vi+1 ⊆ Ui, U

′
i , we have Vi+1 = Ui ∩ U ′i . By symmetry, |U ′i | = ρin + o(n). Now Ui and U ′i are

not independent, but they are very close - close enough that we have |Ui ∩ U ′i | = ρ2in+ o(n). This
is why |Vi| = ρ2i + o(n) (Lemma 3.3).

Proof of Lemmas 3.3, 4.2: We analyze STRIP1; by our coupling, this suffices to prove
Lemma 4.2.

We will prove the lemmas by induction. More specifically, we prove there are two sequences of
constants η1, η2, ... and η′1, η

′
2, ... such that w.h.p.

|Si|, |Ti| ∈ γin± ηin2/3 (5)

|Vi| ∈ ρ2in± η′in2/3 (6)

|Ui| ∈ ρin± η′in2/3. (7)

We will also prove:

Every v ∈ Ui\Vi is in a component of size o(n) in G1 ∩ Ui (8)
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We start with η′1 = 0; η1 will be implicitly defined below. Our base cases are that (6), (7) and
(8) hold trivially for i = 1. Now we proceed by induction.

Suppose that Vi, Si, `i are chosen. Si ⊆ Vi and Li ∩ Vi is a set of `i uniformly random vertices
of Vi, so E(|Si ∩ Li|) = |Si|`i

|Vi| . Since Vi+1 = Si\Li, we have

E(|Vi+1|) = |Si|(1−
`i
|Vi|

) =
|Ti||Si|
|Vi|

,

which is in the range
γ2i
ρ2i
n± 1

2η
′
i+1n

2/3, for sufficiently large η′i+1 so long as (5) and (6) hold for i.

For any 0 ≤ a ≤ |Si|, the probability that |Vi+1| = |Si| − a is(
|Si|
a

)(
|Vi| − |Si|
`i − a

)
/

(
|Vi|
`i

)
.

From this, it is straightforward to show that w.h.p. |Vi| is within 1
2η
′
in

2/3 of its mean. Recalling

ρi+1 = γi
ρi

, this establishes that w.h.p. |Vi+1| ∈ ρ2i+1n± η′i+1n
2/3; i.e. this yields (6) for i+ 1.

The induction step for Ui+1 is similar. This time, we have E(|Ui+1|) = |Ti||Ui|
|Vi| which is in the

range γi
ρi
n± 1

2η
′
i+1n

2/3 for sufficiently large η′i+1, so long as (5), (6) and (7) hold for i.

|Ui+1| is determined by the number of uniformly random vertices of Ui that we select for Li
before selecting `i from Vi. The probability that this number is a is

`i
a

(
|Vi|
`i

)(
|Ui| − |Vi|
a− `i

)
/

(
|Ui|
a

)
.

Explanation: consider the first a vertices selected for Li. The event occurs iff (i) exactly `i of them
are from Vi and (ii) one of the vertices from Vi is the ath vertex removed.

Again, from this it is straightforward to show that w.h.p. |Ui| is within 1
2η
′
in

2/3 of its mean.

Recalling ρi+1 = γi
ρi

, this establishes that w.h.p. |Ui+1| ∈ ρi+1n ± η′i+1n
2/3; i.e. this yields (7) for

i+ 1.

Suppose that (8) holds for i. We will argue below that this implies that Si is the largest
component of G1 ∩ Ui, so long as that component has linear size; we will focus on the latter
component. It would be convenient if G1 ∩ Ui were distributed like Gn′,p=c/n where n′ = |Ui|. But
it is not, since there is some dependency between G1 and |Ui|. So instead, we sandwich G1 ∩ Ui
between two graphs which really are from the Gn,p model.

Suppose that (7) holds for i. We consider two sets of vertices U−, U+, which are defined to be
uniformly random subsets of {1, ..., n} of sizes x− = bρin − 2η′in

2/3c, x+ = dρin + 2η′in
2/3e. We

couple these two sets with our process as follows:

Choose a sequence A = a1, ..., an−x− uniformly random vertices from {1, ..., n}, without replace-
ment. Set U− to be the set of x− vertices that are not in A. Set U+ to be the set of x+ vertices
that are not amongst the first n − x+ members of A. Thus U− is a uniformly random set of x−

vertices, U+ is a uniformly random set of x+ vertices, and U− ⊂ U+. During the first i iterations
of STRIP1, each time we choose a uniform member of Uj , j < i to place into Lj , we simply take the
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next member of A; this is permissable unless the total number of such selections exceeds n − x−,
i.e. unless |Ui| < x−. Note that this chooses the member of Uj with the correct (i.e. uniform)
distribution.

If x− ≤ |Ui| ≤ x+, then our coupling succeeds and U− ⊆ Ui ⊆ U+; by our induction hypothesis,
this is indeed the case w.h.p. and so we can assume that the coupling succeeds.

Because the vertices of U− are selected uniformly at random, we can select them before
exposing the edges of G1 ∩ U−. Therefore, we see that G1 ∩ U−, G1 ∩ U+ are distributed as
Gx−,p=c/n, Gx+,p=c/n.

Case 1: ρi > 1/c. Let S−, S+ be the giant components of G1 ∩ U−, G1 ∩ U+ respectively; our
coupling implies S− ⊆ S+. We argue that w.h.p. S− ⊆ Si ⊆ S+, which will easily yield (5) for Si.
First we analyze the sizes of S−, S+.

Lemma 3.4 yields w.h.p. |S−| ∈ βn± n3/5 where β is the positive solution to

β = τ(1− e−βc), with τ = x−/n = ρi − 2η′in
−1/3.

Recalling that γi is the positive solution to γi = ρi(1 − e−γic), we see that for ηi sufficiently
large (in terms of η′i and the value of ∂

∂τ β at τ = ρi), we have β ≥ γi − 1
2ηin

−1/3 and so w.h.p.

|S−| ≥ γin− ηin2/3. Similarly, we obtain that w.h.p. |S+| ≤ γin+ ηin
2/3.

Next we argue that w.h.p. S− ⊆ Si ⊆ S+. By our coupling, S− is contained in a component
Q of G1 ∩ Ui. We showed above that w.h.p. S− has linear size. So, assuming that (8) holds for i,
all vertices of Q must lie in Vi, and hence Q is a component of G1 ∩ Vi. Since Vi ⊆ Ui ⊆ U+, all
vertices of every other component X of G1 ∩ Vi lie in components of G1 ∩U+. If X does not lie in
S+ then w.h.p. X lies in a component of size o(n) in G1 ∩U+. If X does lie in S+ then X has size
at most |S+| − |Q| ≤ |S+| − |S−| = o(n). Therefore w.h.p. every component of G1 ∩ Vi other than
Q has size o(n) and so Si = Q. This yields w.h.p. S− ⊆ Si ⊆ S+, and hence (5) for Si. The proof
of (5) for Ti follows by symmetry.

We have also shown that every vertex in Ui\Si lies in a component of size o(n) in G1 ∩ Ui and
hence must lie in a component of size o(n) in G1 ∩Ui+1. Since Ui+1\Vi+1 ⊆ Ui\Si, this establishes
(8) for i+ 1.

Case 2: ρi < 1/c. In this case, γi = 0. W.h.p. all components of Gx+,p=c/n have size O(log n)[5].
Since Vi ⊆ Ui ⊂ U+, it follows that w.h.p. every component of G1 ∩ Vi also has size O(log n) and
so |Si| = O(log n) < ηin

2/3 for any ηi (and large n). The same bound holds w.h.p. for |Ti| by
symmetry, thus yielding (5) for i.

Since Ui+1 ⊆ Ui ⊆ U+, every component of G1 ∩Ui+1 also has size O(log n). This yields (8) for
i+ 1.

Case 3: ρi = 1/c. In this case, again we have γi = 0. Note that p = 1
x+ +O

(
(x+)−4/3

)
. It is well-

known then that the largest component of Gx+,p=c/n w.h.p. has size Θ
(
(x+)2/3

)
= Θ(n2/3)[2, 10, 8].

The rest follows as in Case 2, yielding (5) for i and (8) for i+ 1.

To recap, we have shown that the bounds hold:

• (7) and (8) for i imply that w.h.p. (5) holds for i and (8) holds for i+ 1;
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• (5), (6) and (7) for i imply that w.h.p. (6) and (7) hold for i+ 1.

Recall that (6), (7) and (8) hold trivially for i = 1. For any constant i, this induction requires that
O(i) events hold where each such event holds w.h.p. Since i is a constant, the union of those events
holds w.h.p. This completes the induction and hence proves Lemma 3.3(a,b) and Lemma 4.2.

We close by noting that the arguments above imply Lemma 3.3(c). In particular, we showed
that w.h.p. every vertex of Vi\Si lies in a component of size o(n) in G1 ∩ U+ and hence lies in a
component of size o(n) in G1∩Vi. By symmetry, the same argument shows that w.h.p. every vertex
of Vi\Ti lies in a component of size o(n) in G2 ∩ Vi. Since Vi+1 = Si ∩ Ti, this yields Lemma 3.3(c).

2

5 Proof of Theorem 1.1

Proof of Theorem 1.1(a): Suppose c < c∗. By Lemma 3.2 we can take I large enough that
ρ2I = 0; thus w.h.p. |VI | = o(n).

By Lemma 3.3(c), every vertex v ∈ V1\V2 lies in a component of either G1 or G2 which has size
less than φn, where φ = φ(c) comes from Lemma 3.1. Thus Lemma 3.1 implies that v cannot lie
in any non-trivial doubly connected component. The same argument, applied inductively, shows
that no vertex in Vj\Vj+1 can lie in a non-trivial doubly connected component, for j < I. W.h.p.
|VI | = o(n) < φn and so no vertex of VI can lie in a non-trivial doubly connected component. This
yields Theorem 1.1(a). 2

To prove part (b), we will run STRIP1 until some large constant I so that |VI |, |SI | are very
close to their limits α, and |UI | is very close to its limit

√
α. From this point on, Lemma 3.5 implies

that each time we delete a vertex u from Ui, we expect to remove fewer than 2
√
α vertices from the

giant component, Si. Note that the probability that u itself is in Si is |Si||Ui| ≈
√
α. So each time we

delete a vertex from Si we expect to reduce the size of Si by less than 2; i.e. the expected number
of additional vertices to be removed from Si is less than one. Because Si, Vi are almost the same
size, each time we delete a vertex from Vi, we expect to cause |Vi\Si| to increase by less than one.

It follows that w.h.p. STRIP1 will halt very soon. We can view the vertices of Vi\Ti as a queue
of vertices that must be removed from G1 and the vertices of Vi\Si as a queue of vertices that
must be removed from G2. Each time we process a vertex from one queue, it results in an expected
increase in the other queue of less than one. So the total size of these queues has a negative drift
and with high probability the queues empty quickly. Forthwith the details.

Inspired in part by the approach in [6], we consider a process that, after we find a doubly
connected set, continues to remove vertices from Ui (Si, Ti, Vi will remain unchanged). We will
then consider an iteration that is greater than the time we expect STRIP1 to halt and show that
we must indeed have found a doubly connected set before that iteration. Allowing ourselves to
consider an iteration that is significantly larger than the actual stopping time of STRIP1 makes
this task easier.

As before, at each iteration i, we will have a set of vertices Vi ⊂ {1, ..., n}, and we define Si,
resp. Ti, to be the vertex set of the largest component of the subgraph of G1, resp. G2, induced by
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Vi.

KEEP-STRIPPING:
Initialize V1 = U1 = {1, ..., n}.
For i = 1 to ∞

Expose the vertices of Si.
Expose `i = |Vi\Ti|.
If Si = Vi and `i = 0 then

(*) Repeat until Ui = ∅ :
Pick a uniform vertex u ∈ Ui
Li := {u}
Ui+1 := Ui\Li
Si+1 := Si;Ti+1 := Ti;Vi+1 := Vi and so these sets remain unchanged.
i := i+ 1.

Else
Initialize Li = ∅.
Repeat `i times:

Repeat until we choose a u ∈ Vi
Choose a uniformly random vertex u ∈ Ui (without replacement).
Place u into Li.

Ti := Vi\Li.
Vi+1 := Si\Li.
Ui+1 := Ui\Li.
If Vi+1 = ∅ then HALT FAIL.

So once the procedure enters (*), we simply remove vertices from Ui one-at-a-time. Si, Ti, Vi
remain unchanged, and because we entered (*), we have Si = Ti = Vi.

Lemma 5.1 For any c > c∗ and δ > 0, there exist constants I = I(c, δ) such that w.h.p.

(a) αn < |VI | < (α+ δ)n;

(b) STRIP halts after removing at most δn+ o(n) vertices from VI .

Proof Note that to prove (b), it suffices to prove that w.h.p. KEEP-STRIPPING enters
(*) within I + δn+ o(n) iterations. This is because (i) KEEP-STRIPPING is identical to STRIP1
up until the point that STRIP1 halts and KEEP-STRIPPING enters (*); and (ii) STRIP1 and
STRIP can be coupled to produce the same sets Si, Ti, Vi.

Recall from Lemma 3.4 that if τc > 1 then w.h.p. the size of the largest component in Gn′,p=c/n
where n′ = τn is in βn ± n3/5 where β = β(τ) is the solution to β = τ(1 − e−βc). By Lemma 3.5
and the continuity of ∂

∂τ β, there exists ξ, ζ > 0 such that:

∀τ ∈ [
√
α− ξ,

√
α+ ξ], we have

∂

∂τ
β < (2− ζ)

√
α. (9)
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We can assume that δ < ξ and is sufficiently small in terms of ζ. By Lemma 3.2, we can choose
constant I so that

√
α ≤ ρI <

√
α + δ

2 , α ≤ γI < α + δ
2 , ρI−1 − ρI < δ2 and γI−1 − γI < δ2.

By Lemmas 3.3 and 4.2, we have that w.h.p. |UI | = ρIn + o(n), |VI | = ρ2In + o(n) and both
|SI |, |TI | = γIn+ o(n).

We define U∗ to be equal to Ui at the time where Ui has size exactly (ρI − δ)n. We have to be
careful what we mean by this, since all the vertices in Li are removed from Ui at once. So:

Definition 5.2 If, at any point during any iteration i, |Li| = b(ρI − δ)nc − |Ui| then we set:

• L∗ is the set of vertices that are in Li at that point;

• U∗ = Ui\Li.

• S∗ is the set of vertices in the largest component of G1 ∩ U∗.

We let J denote the iteration during which U∗ is formed. By Lemma 3.3, w.h.p. J ≥ I.

We will see that S∗ has linear size. Note that this implies S∗ ⊆ SI . This is because, as argued in
the proof of Lemmas 3.3 and 4.2, SI is the largest component of G1∩UI , and every other component
in G1 ∩ UI has size o(n). Since U∗ ⊂ UI , every component of G1 ∩ U∗ that is not contained in SI
has size o(n). Therefore if S∗ has linear size then S∗ ⊆ SI .

Throughout all iterations of KEEP-STRIPPING, each vertex of Li was selected uniformly from
Ui. Therefore, U∗ is a uniformly random set of b(ρI − δ)nc vertices from U1 = {1, ..., n}. Thus,
we can expose the subgraph of G1 induced by U∗ by first choosing the vertices of U∗ and then
choosing the edges; i.e. we can treat it as Gn′=b(ρI−δ)nc,p=c/n.

We will prove that w.h.p. we enter line (*) before forming U∗; i.e. that w.h.p. we find a doubly
connected set before removing δn + o(n) vertices from UI . So suppose that we form U∗ before
entering line (*); we will reach a contradiction by bounding |SI−1\S∗| in two different ways.

Since α(c) is increasing with c, ρI ≥
√
α(c), and c > c∗, we have cρI > c∗

√
α(c∗) = (2.4554...)×

(.5116..)1/2 > 1. So by taking δ > 0 sufficiently small, we have c(ρI − δ) > 1, and so Lemma 3.4
yields that w.h.p. |S∗| = gn+ o(n) where g = (ρI − δ)(1− e−gc).

Since δ < ξ, and ρI−1 < ρI + δ2 <
√
α+ δ

2 + δ2, we have
√
α ≤ ρI−1 ≤

√
α+ ξ. So (9) yields:

g ≥ γI−1−(2−ζ)
√
α(ρI−1−(ρI−δ))+o(1) > γI−1−(2−ζ)

√
α(δ+δ2)+o(1) > γI−1−(2− 2

3
ζ)
√
αδ,

for δ sufficiently small in terms of ζ. W.h.p., |SI−1| = γI−1n+ o(n). Therefore w.h.p.

|S∗| = gn+ o(n) ≥ |SI−1| − (2− ζ

2
)
√
αδn. (10)

Consider the set
A =

(
∪J−1i=I Li ∩ Vi

)
∪ (L∗ ∩ VJ) .

Note that A ⊆ SI−1\S∗ since: (a) for each i ≥ I, we have Vi ⊆ VI , and so A ⊆ VI ⊆ SI−1; (b)(
L∗ ∪J−1i=I Li

)
∩ U∗ = ∅ so A ∩ S∗ = ∅.
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Note that |(∪J−1i=I Li) ∪ L∗| = |UI | − |U∗| = δn+ o(n). The vertices of Li are selected uniformly
from Ui. Since |Vi| ≥ |VI | − δn, each choice is a member of Vi with probability at least

VI − δn+ o(n)

UI
=

(ρ2I − δ)n+ o(n)

ρIn+ o(n)
> ρI −

2δ

ρI
>
√
α− 2δ√

α
,

since ρI >
√
α. So the number of these vertices that are in Vi is dominated from below by the

binomial variable BIN(δn+ o(n),
√
α− 2δ√

α
). The Chernoff Bound implies that w.h.p.

|A| ≥ δ(
√
α− 3δ√

α
)n. (11)

Recall that STRIP1, KEEP-STRIPPING and Ui were based on viewing STRIP from the per-
spective of G1. Now consider defining analogous procedures that view it from the perspective of G2;
i.e. we define L′i, U

′
i , (L

∗)′, (U∗)′, T ∗, and KEEP-STRIPPING′ by replacing G1 by G2 throughout
the definitions of Ui, STRIP1 and KEEP-STRIPPING. We define J ′ to be the analogue of J .

We couple KEEP-STRIPPING and KEEP-STRIPPING′. Thus, they run in parallel and pro-
duce the same sets Si, Ti, Vi. To be specific, note that we enter (*) during the same iteration
in KEEP-STRIPPING and KEEP-STRIPPING′. Until that iteration, both these procedures are
coupled with STRIP in the same way that STRIP1 is coupled with STRIP; thus they are coupled
together. After entering (*), they are decoupled and Ui, U

′
i evolve independently.

By symmetry, the same proof used for (10) yields that w.h.p.

|T ∗| ≥ |TI−1| − (2− ζ

2
)
√
αδn. (12)

We define
A′ =

(
∪J ′−1i=I L

′
i ∩ Vi

)
∪
(
(L∗)′ ∩ VJ ′

)
.

By symmetry, the same proof used for (11) yields that w.h.p.

|A′| ≥ δ(
√
α− 3δ√

α
)n. (13)

Note that if J ≥ J ′ and we do not enter (*) before iteration J then A′ ⊆ SI−1\S∗. This is
because: (a) A′ ⊆ VI ⊆ SI−1 for the same reason that A ⊆ VI above. (b) For each iteration i
before entering (*), Si = Vi\L′i, just as Ti = Vi\Li. So every vertex in A′ is in Vi\Si for some
I ≤ i ≤ J ′ ≤ J and hence is not in SJ ⊇ S∗

Similarly, if J ≤ J ′ and we do not enter (*) before iteration J ′ then A,A′ ⊆ TI−1\(S∗)′.
Finally, we wish to bound the number of vertices in A ∩ A′. If J ≥ J ′ and we do not enter (*)

before iteration J , then we argued above that A′ ⊆ ∪Ji=IVi\Si. It follows that every member of
A ∩A′ is a member of Li ∩ (Vi\Si) for some I ≤ i ≤ J − 1 or L∗ ∩ (VJ\SJ).

Similarly, if J ≤ J ′ and we do not enter (*) before iteration J ′, then every member of A∪A′ is
a member of L′i ∩ (Vi\Ti) for some I ≤ i ≤ J ′ − 1 or (L∗)′ ∩ (VJ ′\TJ ′).
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Recall that Vi\Si ⊆ SI−1\S∗ for I ≤ i ≤ J . So applying (10), we find that during iteration i,
each of the |Li| (or |L∗| if i = J) vertices chosen from Ui is in Vi\Si with probability

|Vi\Si|
|Ui|

<
|SI−1\SJ |
|U∗|

<
(2− ζ

2)
√
αδn

(ρI − δ)n
< 3δ.

So
∣∣∣(∪J−1i=I Li ∩ (Vi\Si)

)
∪ (L∗ ∩ (VJ\SJ))

∣∣∣ is dominated from above by the binomial variableBIN(δn+

o(n), 3δ). So the Chernoff Bound yields that w.h.p.∣∣∣(∪J−1i=I Li ∩ (Vi\Si)
)
∪ (L∗ ∩ (VJ\SJ))

∣∣∣ ≤ 4δ2n. (14)

Similarly, w.h.p. ∣∣∣(∪J ′−1i=I L
′
i ∩ (Vi\Ti)

)
∪
(
(L∗)′ ∩ (VJ ′\TJ ′)

)∣∣∣ ≤ 4δ2n. (15)

If J ≥ J ′ then |A∩A′| is bounded by (14), and if J ≤ J ′ then |A∩A′| is bounded by (15). Therefore,
w.h.p.

|A ∩A′| ≤ 4δ2n. (16)

If J ≥ J ′ and we do not enter (*) before iteration J , then A ∪ A′ ⊆ SI−1\S∗ and (11), (13),
(16) imply that w.h.p.

|S∗| ≤ |SI−1| − 2× δ(
√
α− 3δ√

α
)n+ 4δ2n < |SI−1| − (2− ζ

4
)
√
αδn,

for δ sufficiently small in terms of ζ, which contradicts (10).

Similarly, if J ≤ J ′ and we do not enter (*) before iteration J ′, then A ∪ A′ ⊆ TI−1\T ∗ and
(11), (13), (16) contradict (12).

Thus, w.h.p. KEEP-STRIPPING must enter (*) before max(J, J ′) iterations, and thus either
before δn + o(n) vertices are removed from UI or before δn + o(n) vertices are removed from U ′I .
Either way, this is before δn+ o(n) < 2δn vertices are removed from VI . This proves the lemma. 2

The remaining part of our main theorem follows immediately:

Proof of Theorem 1.1(b): For any δ > 0, Lemma 5.1 yields that STRIP will w.h.p. Halt
Succeed and produce a set S = T = V of size at most (α+ δ)n and at least (α− δ)n− o(n). This
will be a doubly connected set of (G1, G2).

Take δ < φ = φ(c) (from Lemma 3.1). The argument from the proof of Theorem 1.1(a) implies
that no vertex outside of VI is in a doubly connected set. Since |VI\V | < δn + o(n) < φn, every
vertex in Vj\Vj+1, j ≥ I is in a component of size less than φn in either G1 ∩ Vj or G2 ∩ Vj . This,
Lemma 3.3(c), and the same argument from the proof of Theorem 1.1(a) implies that no vertex
outside of V is in a doubly connected set. Therefore V is the largest doubly connected set of
(G1, G2).

Taking δ to be arbitrarily small yields Theorem 1.1(b). 2
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