arXiv:1105.5806v1 [cs.CC] 29 May 2011

A Combination of Testability and Decodability by Tensor éuots

Michael Vidermar
Computer Science Department
Technion — Israel Institute of Technology
Haifa 32000, Israel

viderman@cs.technion.ac.il

March 24, 2022

Abstract

Ben-Sasson and Sudan (RSA 2006) showed that repeated peadacts of linear codes with a very
large distance are locally testable. Due to the requiremieatvery large distance the associated tensor
products could be applied only over sufficiently large fielllsen Meir (SICOMP 2009) used this result
(as a black box) to present a combinatorial constructionadlly testable codes that match best known
parameters. As a consequence, this construction was ebtauer sufficiently large fields.

In this paper we improve the result of Ben-Sasson and Sudaslaw that formanylinear codes the
associated tensor products are locally testable. Cona#dgube construction of Meir can be taken over
any field, including the binary field.

Moreover, a combination of our result with the result of $pien (IEEE IT, 1996) implies a con-
struction of linear codes (over any field) that combine tHefzng properties:

e have constant rate and constant relative distance;
¢ have blocklength: and testable witlh¢ queries, for any constaat> 0;
e linear time encodable and linear-time decodable from ataom&action of errors.

Furthermore, a combination of our result with the result af@wami et al. (STOC 2009) implies a
similar corollary regarding the list-decodable codes.

1 Introduction

Locally testable codes (LTCs) are error correcting codashhve a tester, which is a randomized algorithm
with oracle access to the received wardThe tester reads a sublinear amount of information froemd
based on this local view decidesiife C or not. It should accept codewords with probability one, esjelct
words that are far (in Hamming distance) from the code witticeable probability.

Such codes are of interest in computer science due to theieraus connections to probabilistically
checkable proofs (PCPs) and property testing (see theysuf2@&, 13] for more information). By now
several different constructions of LTCs are known inclgdaodes based on low-degree polynomials over
finite fields R1, 1], constructions based on PCPs of proximity/assignmeieref, 11] and sparse random
linear codes §, 18, 19]. In this paper we study a different family of LTC constracts, namelytensor
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codes Given two linear error correcting codés C F*, R C F™2 over a finite fieldF, we define their
tensor producto be the subspack ® C' C F"1*"2 consisting ofn; x no matricesM with entries inF
having the property that every row 8f is a codeword of? and every column ot/ is a codeword of’. If
C = R we useC”? to denoteC' ® C' and fori > 2 defineC’ = C ® C*~!. Note that the blocklength af"
isnj.

Recently, tensor products were used to construct new feendf LTCs p, 22], new families of list-
decodable coded §], to give an alternative proof (se2d]) for IP=PSPACE theorem o2}, 25] etc.

Ben-Sasson and Sudab] uggested to use tensor product codes as a means to comdiisecom-
binatorially. A natural hope would be to expect that giverodeeC' C F™', whenever the task is to test
whether a word\ € Fi is in C2, the tester folC2 can choose a random row (or column)af: and if
M was far fromC?, its typical row/column is far fronC' and hence can be tested on bein@’inAs was
shown in 8, 14, 9] this approach fails in general and is known to work only fug base codes having some
non-trivial properties12, 6, 7].

Nevertheless, Ben-Sasson and Sudgrsiowed that taking the repeated tensor products of any code
C C F™ with sufficiently large distance results in a locally testatode with sublinear query complexity.

More formally, they showedd, Theorem 2.6] that for every, > 3 if (%)m > % thenC"™ is locally

testable using:? queries. Note that the blocklength 6f" is »™ and query complexity is?. Hence, for
example, ifm = 10 we obtain a code with blocklengtN = n'? and query complexityv%-? = n?2, under
assumption tha(%)w > T

Let us explain some issues that remained open. First oft alias remained unclear if the assumption
about a very large distance of the base codes is necessamngoWo, the requirement on the distance of
the base code is dependent on the number of tensor produtisng should apply. Note that less query
complexity (relatively to the blocklength) one should gedrmtensor product operations should be applied.
Thus the requirement about the distance of the base coderesased when the number of queries one
should get is decreased. We notice also that the largendisienplies the larger underlying field. It follows
that this result can not provide (via tensor products) eabjitlow sublinear query complexity\¢ for every
constantk > 0) over a fixed field.

In this paper we ask the following question: is it possiblatbieve a similar result t&] but with no
requirements about the base codes at all. A positive restitis question might seem surprising since it
would imply thatany linear error-correcting code can be involved in the comsitpn of LTCs via tensor
products.

We give a positive answer on this question and show that nangstsons about the base codes (or
underlying fields) are not needed. Our result does not makeassumptions about the base codes, and
in particular we do not assume that the base codes involvéengor products have very large distance
and hence it holds over any fields. This contrasts with presagorks on the combinatorial constructions of
LTCs due to Ben-Sasson and Sudajrgind Meir [22] which required very large base-code distance implying
large field size. The constructions of best known LTEsLD, 22] were obtained over the large fields (when
finally, the field size can be decreased through code coratigeip Our improvement ofy] implies that
the construction of Meird?2] (which achieves LTCs of best known parameters) can be tekently over
any field (including the binary field). We think that this inopement has a non-negligible role since the
LTCs construction of Meir is combinatorial and the combameti constructions of LTCs (or PCPs) should
be independent, as much as possible, of the algebraic teiwhsas “polynomials”, “field size”, “extension
field” etc.

Given the fact that error-correcting codes play an impamale in a complexity theory, and in particular,



in different iterative protocols, it might be helpful to ddep a general scheme for constructing the error-
correcting codes that combine several different properfieg., it might be helpful to have a high-rate codes
which combine such properties as local testing, efficienbdimg and decoding from a constant fraction of
errors.

We show that a combination of our results with the result26f 15] implies the construction of high-
rate codes which are both testable with sublinear query ity linear-time encodable and efficiently
decodable (or list-decodable) from the constant fractioermrs.

Organization of the paper. In the following section we provide background regardingst# codes and
locally testable codes. In Secti@nwe state our main results. We prove our main theoréheorem 3.2in
Sectiond. Finally, in Sectiorb we prove our auxiliary statements.

2 Preliminaries

Throughout this papef is a finite field, [n] denotes the seftl, ... ,n} andF" denotesF[™. All codes
discussed in this paper will be a linear. &tC F” be a linear code over.

Forw € F" let supp(w) = {i|w; # 0}, |w| = |supp(w)| andwt(w) = % We define thelistance
between two words:,y € F" to beA (z,y) = |{i | z; # v;}| and the relative distance to bér,y) =
Ay The distance of a code is defined hy(C) = ming,cc A (z,y) and its the relative distance is

n

denoted)(C') = %. A [n, k, d)rp-code is &-dimensional subspace C F" of distancei. The rate of the
codeC is defined byrate(C) = dimT(C). Forz € F" andC C F", letdo(z,C) = dc(x) = mi}} {6(x,y)} to
ye

denote the relative distance offrom the codeC'. We note thatA (C) = Iélgllo} {wt(c)}. If 6(z,C) > ¢
ce

we say thate is e-far from C' and otherwiser is e-close toC. We letdim(C') denote the dimension @f.

The vector inner product between= (uy,us,...,u,) € F*andv = (vy,vs,...,v,) € F" is defined

to be (u,v) = 3 ;e ui - vi. We letC+ = {u € F" |Vece C: (u,c) = 0} be the dual code of’ and
C = {u € Ct | |ul = t}. In a similar way we defin€s, = {u e C*||u| <t}. Fort € F* and
T C F"wesaythat L Tif (t,¢') =0forallt’ € T.

Forw e F™ andS = {ji1,J2,...,Jm} C [n], Wherej; < ja < ... < jm, weletw|s = (wj,, ..., wj,,)
be therestriction of w to the subseb. We letC|s = {c|s | ¢ € C'} denote the restriction of the codéto
the subsesb.

2.1 Tensor Product Codes

The definitions appearing here are standard in the literaintensor-based LTCs (e. 42 5, 22, 7, 29]).
Forz € Fl andy € F’ we letz ® y denote the tensor product ofandy (i. e., the matrix)/ with
entriesM; ;) = x; - y; where(i,j) € I x J). Let R C F/ andC C F” be linear codes. We define the
tensor product cod® @ C to be the linear space spanned by words ¢ € F/*/ forr € Randc € C.

Some known facts regarding the tensor products (see 4.,

e The codeR ® C consists of alll x J matrices ovelF whose rows belong t& and whose columns
belong toC.

o dim(R® C) = dim(R) - dim(C)



e rate(R ® C) = rate(R) - rate(C)
e 5(R®C) = §(R)-5(C)

We letC! = C andC! = O~ ® C for t > 1. Note by this definitionC?" = C andC? = ¢2 " @ C2'
for ¢ > 0. We also notice that for a cod@ C F” andm > 1 it holds thatrate(C™) = (rate(C))™,
J(C™) = (6(C))™ and the blocklength of™ is n"™.

The main drawback of the tensor product operation is thatdperation strongly decreases the rate and
the distance of the base codes. We refer the read@2janfhich showed how to use tensor products and
avoid the decrease in the distance and the strong decretimerate.

2.2 Locally testable codes and Robustly Testable Codes

A standardg-query testerfor a linear codeC' C F” is a randomized algorithm that on the input word
w € F" picks non-adaptively a subsétC [n] such that/| < ¢g. ThenT reads all symbols ofv|; and
accepts ifw|; € C|;, and rejects otherwise (se& [Theorem 2]). Hence gquery tester can be associated
with a distribution over subsefsC [n] such that| < q.

For purposes of composition we want to define a generaliztdrt®efinition 2.1 which does not make
queries, but selects and returns a “view” (a suliset[n]) which can be considered as a code by its€lf{.

Definition 2.1 (Tester ofC' and Test View) A g-query testerD is a distributionD over subsetd C [n]
such that/| < ¢. Letw € F™ (think of the task of testing whether € C) and let/ C [n] be a subset.
We callw|; theviewof a tester. Ifw|; € C|; we say that this view isonsistenwith C', or whenC' is clear
from the context we simply say|; is consistent

When considering a tensor cod&” C F*™", an associated tester will be a distribution over subsets
I C [n]™. Although the tester does not outpattcept or reject, the way a standard tester does, it can be
converted to outpuaccept, reject as follows. Whenever the task is to test whethere C and a subset
I C [n] is selected by the tester, the tester can ougaept if w|; € C|; and otherwise outpukject.

Definition 2.2 (LTCs and strong LTCs)A codeC' C F" is a(q, €, d)-LTC if it has ag-query testeiD such
that for allw € F, if 6(w,C) > 6 we haveIPrD[w|1 ¢ Clr] > e.

A codeC C F"is a(q,¢)-strong LTC if it has ag-query testeiD such that for alkv € F", we have
Prlwl ¢ Cli] = ¢ 6(w, 0).

We notice that dq, ¢)-strong LTC is &g, €4, §)-LTC for everyd > 0. Note that given a codé' C F",
the subsef C [n] uniquely define€’|;. Moreover, the linearity of’ implies thatC|; is a linear subspace of
F!. In the rest of this section we formally define the notionaifustnesgDefinition 2.4 as was introduced
in [5]. To do that we start from the definition ddcal distance(Definition 2.3, which will be used in
Definition 2.4and later in our proofs.

Definition 2.3 (Local distance) Let C' be a code and|; be the view on the coordinate seobtained from

the wordw. Thelocal distanceof w from C' with respect tal (also called the-distance ofw from C) is

A (w|r,Clr) = Iniél {A (w1, c|r)} and similarly therelative local distancef w from C' with respect tal
ce

(relative I-distance ofw from C) is §(w|;, C|r) = mig{é(wh, cln}t-
ce



Informally, robustness implies that if a word is far from tt@de then, on average, a test’s view is far
from any consistent view that can be accepted on the samdinate set/. This notion was defined for
LTCs following an analogous definition for PCF% [LO]. We are ready to provide a general definition of
robustness.

Definition 2.4 (Robustness)Given a tester (i. e., a distributio) for the codeC' C F”, we let

pP(w) = E [0(w|r,C|;)] be the expected relative local distance of input
I~D

~

We say that the testdd has robustnessP (C') on the codeC if for every w € F" it holds thatp®P (w) >
pP(C) - dc(w).

Let {C),},, be a family of codes wher€, is of blocklengthn andD,, is a tester foiC,,. A family of
codes{C), },, is robustly testablevith respect to testerffD,, },, if there exists a constant > 0 such that for
all n we havepP»(C,,) > a.

3 Main Results

The tester we consider in this paper is the plane tester éstigd in b]).

Definition 3.1 (Plane Tester)Let m > 3. Let M € F™" be an input word and think of testing whether
M € C™. The plane testeP picks (non-adaptively) a randome [3] and randomi € [n], and returns
(b,7)-plane (the corresponding local view g ;)). Note that ifM is a candidate word to be @™ then
M|, is a candidate word to be i~

Now we state our main technical theorem which says that theoteproduct of any base code (with
constant relative distance) is robustly testable. Thisreds the result ofg] which showed that this claim
holds for base codes with a very large distance.

Theorem 3.2(Main Theorem) LetC' C F” be a linear code aneh > 3. LetD be the plane tester far'™.
Then
()™

2m?2

The proof of Theoren8.2 is postponed to Sectioh. Theorem3.2 extends the main result of Ben-
Sasson and Sudag][since it implies that then-wise tensor product of linear codes is robust for any linear
base codes with constant relative distance. In partictiartensor product can be applied over any field,
including the binary field. So, as explained in the introthutt the combinatorial construction of LTCs in
[22] can be taken over any field (regardless of the field size).

Ben-Sasson and Sud&b] pxplained that plane testers can be composed and the melsssif the plane
testers implies the strong local testability. For the sakeomnpleteness we state this claim formally in
Corollary 3.3 and provide a proof-sketch in Sectiér(see b, 6] for more information about composition
of the testers).

pP(C™) >

Corollary 3.3. LetC C F" be alinear code and: > 3 is a constant. Thet is a(n2, oy )-strong LTC,
whereq,,, > 0 is a constant that depends only onandd(C'). Note that the blocklength 6f"™ is n'.

Corollary 3.3implies that any linear code can be used to define a localtaliks code with sublinear
query complexity.Claim 3.4shows that if a linear cod€’ is linear-time encodable then so@¥ for any
constant. Later we will use this claim together withorollary 3.3to showCorollary 3.5
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Claim 3.4. Letm > 1 be a constant. " € F" is a linear-time encodable linear code thér™ is
linear-time encodable.

The proof ofClaim 3.4is postponed to Sectioh. Now, we combineCorollary 3.3and Claim 3.4to
show a simple construction of strong LTCs with arbitrary Breablinear query complexity and arbitrary
high rate from any linear code with sufficiently high rate.

Corollary 3.5. LetC C F™ be a linear code and let» > 3 be a constant. The@” C F*" is a(n2, )~
strong LTC, wherey,, > 0 is a constant that depends only pnandd(C').
In particular, for everye > 0, m = [1], N = n™ andC C F" such thatrate(C) > (1 — e)t/™ we

haveC™ C FV is a(N¢,a)-strong LTC andrate(C™) > 1 — ¢, wherea > 0 is a constant that depends
only one. Moreover, ifC' is a linear-time encodable thefi” is a linear-time encodable.

Usually, in the areas of locally testable and locally detbel@odes the main interest was given to the
constant query complexity. Recently, Kopparty et &0] [showed the construction of high-rate locally de-
codable codes with sublinear query complexity (8 for the motivation behind this range of parameters).
Since then, the interest to the other range of parametetdnguarticular, to sublinear query complexity was
increased.

We would like to stress th&@orollary 3.5is quite powerful for this range of parameters (sublineargu
complexity and high rate). First of all, there are differeohnstructions of linear-time encodable codes
with constant rate and constant relative distaridg 17, 26|, and them all can be involved to define high-
rate LTCs with sublinear query complexity that are linéaret encodable. The other advantage of such
constructions is that the repeated tensor product of the bade is known to inherit some properties of
the base codes besides local testability. E.g., Gopalah Et% showed that the tensor product operation
preserves list-decodability properties. Furthermore km@wv about nice constructions of error-correcting
codes that can be efficiently encoded and decoded (listegeddrom a constant fraction of errors (see e.g.,
[16, 17)).

In Section3.1we show how testing with sublinear query complexity can belioed with a linear time
encoding and decoding. Then, in Sect®@we show thaCorollary 3.5can be combined with the result of
[15] to define asymptotically good codes that can be encodabiegar time, testable with sublinear query
complexity and list-decodable in polynomial time.

3.1 Linear-time decodable codes

Proposition 3.&hows that the tensor product operation preserves thetemgighbor” decoding property.
In particular, if C is a linear code that is linear time unique-neighbor decledfiom a constant fraction
of errors then so i€2. Hence this observation, together with a result of, e.86],[can result in the
construction of asymptotically good locally testable coaath sublinear query complexity that can be
linear-time encoded and decoded to the closest neightmraftonstant fraction of errors.

Proposition 3.6. Assume” C F" is a linear code that is linear-time decodable fram n errors. Then
. . . . . 2
C? = C @ C'is alinear code that is linear-time decodable frq?a% -n? errors.

Proof. Let Decc be a linear-time decoder for the codethat can correct ang - n errors. Note that in
particular,Decc correct anyw - n erasures in the linear time. We define the linear-time decbde,» for
the codeC? that will correct any% -n? errors.

To do this, letM € F™*" be an input word. The decodélec-» will decode every row of\/ using
Dece and every column o/ using Decc. Note that every entry al/ is contained in (exactly) one row
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and one column. Call the entty, j) of M an inconsistent if row decoding gives d|; ;) a different value
from column decoding, and otherwise the entry is called isterst.

We call the row (column) of\/ bad if it contains at leastvn inconsistent entries. LeBad, be a
number of bad rows an®ad,. be a number of bad columns. It holds tHadd, - an < % and hence
Bad, < an/100. Similarly, Bad. < an/100.

The decodeDec» removes all bad rows and bad columns that have at teag&2 inconsistent entries
and obtains a large submatrix of size at ldast a/100)n x (1—«/100)n. Itis easy to see that all consistent
entries in the above large submatrix were decoded correctly

In the last step, the decodérec» decodes, usin@ecc, every row of the large submatrix @i/ (of
size at leasfl — «/100)n x (1 — «/100)n) from at mostan /100 erasures and obtains a submatrix of size
atleast(1 — «/100)n x n. Now, it decodes every column of the submatrix to the fullnimait can be easily
verified that the decoddPec» obtains a correct codeword 6f and runs in linear time. O

While the results of26] were improved, for our purpos€prollary 3.8 this result is sufficient.

Theorem 3.7([26]). There exists an (explicit) family of linear error correagicodesC’ C F5 such that
rate(C) = Q(1), §(C) = Q(1), C'is alinear-time encodable and linear-time decodable frben ¢onstant
fraction of errors.

A combination ofTheorem 3.7Proposition 3.GandClaim 3.4results in the following corollary.

Corollary 3.8. For every constant > 0 there exists an (explicit) family of linear error correajrcodes
C C FY (obtained by tensor products on the codes ffbneorem 3.ythat

e have constant rate and constant relative distance,
e linear time encodable and linear time decodable from thestamt fraction of errors,

e are (N, a)-strong LTCs, where: = a(e) > 0 is a constant.

3.2 Locally testable and list-decodable codes

In this section we recall some constructions of the listediable codes. We start by defining the list-
decodable codes.

Definition 3.9 (List-decodable codes)A code C' is a («, L)-list decodable if for every wordy € F",
d(w,C) < awe havel{c e C|d(c,w) < a}| < L. The code is said to by, L)-list decodable in tim&
if there exists algorithm which on the input € F" such that(w,C) < « outputs all codewords € C
such that(c, w) < « (at mostL codewords).

Guruswami et al. I5] showed that the list-decodability is preserved in the aeqsoduct operation.
More formally, they showed the following theorem statedli, [Theorem 5.7].

Theorem 3.10([15]). LetF be a finite field andy = |F|. Given two linear code§’;, C; C F™, for every

e > 0, the number of codewords 6f, ® Cy within distancen™ = min(d172, d271) — 3e of any received
1, 811(n1)1 8lz(n2)

word is bounded by(Cy @ Cy,7*) < 4q*1<*

Further, if C7 and Cy can be efficiently list decoded up to error rates n, and Cs is a linear code,
thenCy ® C can be list decoded efficiently up to error rajé. Specifically, ifl’” denotes the time com-
plexity of list decoding’; and Cs, then the running time of the list decoding algorithm 6y ® C is

1 811 (n1) 1, 8l2(n2)

O(4q46%52 n € € 'T'anLQ).




Then, Gopalan et al. used Theor8MO0to conclude the following theorem, appearing 15[ Theorem
5.8].

Theorem 3.11([15]). LetC be alinear code with distancg list decodable up to an error rate. For every
§ > 0, them-wise tensor product codé™ can be list decoded up to an error ra#& 'y — e with a list
sizeexp((O(%))m). Moreover, ifm > 1 is constant and’' is polynomial-time list decodable then the

€

running time of the list decoding algorithm f6f™ is polynomial (depending om).
The next fact is known due to the several constructions btlksodable codes.

Fact 3.12. There exist linear error-correcting codes of constant aate constant relative distance that can
be encoded in linear time and list-decoded in polynomiaktim

We use the combination dtheorem 3.11Fact3.12 Claim 3.4andCorollary 3.5to conclude the fol-
lowing corollary.

Corollary 3.13. Let F be any field. For every constaat> 0 there exists a cod€’ C F¥ such that
C’" = C™, whereC' C F" is a linear coderate(C') = Q(1), 6(C) = Q(1) andC is (p, L)-list decodable
in polynomial time.

e ('isa(N¢ «a)-strong LTC, wherex = a(e) > 0 is a constant,
e (' islinear time encodable and list-decodable in polynoniiaktfrom the constant fraction of errors,

o rate(C’) > Q(1) andd(C") = Q(1).

4 Proof of Theorem3.2

Throughout this paper we assume that F" is a linear code. We shall consideranwise tensor product,
i.e.,C™ C F"". Note that the blocklength af is n™. Throughout this paper we assume that> 3
and for the case o, = 2 we refer a reader td®] 7, 12, 28, 14, 9, 9]). We start this section by defining the

concepts of points, lines and planes (some of the terms vegirged following B]).

4.1 Preliminary notations: Points, Lines and Planes

A point in such a code can be associated witmatuple (i1, i, ..., i, ) sSuch thati; € [n]. Next we define
an axis parallel line, or shortly, a line which can be asgediavith a subset of points. Fére [m] and
i € [n] we say that is a(b, (1,72, ..., tp—1, lpt1s -5 i) )-liN€ if

= {(’il,ig, '--7ib—1>i7ib+17---7im) | forall j € [’I’)’L] \ {b} we havez'j = ’L]}

Note that(b, (i1, 2, ..., ip—1, ip+1, ---, im ) )-lin€ is parallel to thé-th axis. A linel contains a poinp if p € .
Note that &b, (i1, %2, ..., ip—1, lp+1, ---, i ) )-liN€ CcONtains a poinp = (j1, 2, ..., jm ) if for all k € [m] \ {b}
we havei, = ji. Two (different) lines intersects on the pojnif both lines contain the poini.

We say thapl is a(b, 1)-plane if

pl = {(i1,12,...,1m) | iy = ¢ andfor allj € [m]\ {b} we havei; € [n]}.

A (b,i)-plane contains a poipt= (i1, i2, ..., i) if i, = 1, i.e.,b-th coordinate of the pointis A (b,1)-
plane contains a linkif it contains all points of the line. We say that two (diffetgplanes are intersected if
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both planes contain at least one common point. Note thatdiffeient) planes{b,, i, )-plane andbs, is)-
plane are intersected iff; # by, moreover, they are intersected on all poipts= (i4,...,,) such that
i1 = 1ip, andig = 1,, I.€., are intersected o™ 2 points.

Assume thapl; is a (b, i1)-plane andls is a(be,i2)-plane such thali; < by (in particularb; # bo).
Letply Nplo = {(i1,...,im) | @, = 41,1, = 2} be an intersection of two planes a@®*|,;, ~,., be a code
C™ restricted to the points ipl; N pla. Note thats(C™ |, ~pi,) = §(C™72) = §(C)™ 2.

Given awordM € F™", b € [m] andi € [n] we let)M, ;) be a restriction of\/ to the(b, i)-plane, i.e.,
to all points of the plane. We say thaf, ;) is a(b,i)-plane of M. Similarly, for the pointp = (i1, ..., i)
let M|, be a restriction of\/ to the pointp and for the linel we let M |; be a restriction of\/ to the linel.
We say thatV/|; is a linel of M.

4.2 The proof itself
Let M € F"™ be an input word. We prove thaP (A1) > G 5ar cm).

2m
For every planel of M let r(pl) be the closest codeword 6f"~! to M]|,, (if there are more than one
such codewords fix anyone arbitrarily). Intuitively, theupépl of M “thinks” that the symbols of\/|,;

should be changed te(pl). In this sense every plane 81 has its own “opinion”. Then we have

pP(M) = E_[§(M]p,7(pl))]. (4.1)
pl~D

We say that theb,, i, )-plane and théb,, i2)-plane disagree on the poipt= (i1,..., %) if (b1,i1)-
plane andb,, i2)-plane are intersected, both contain the ppiaindr(pl;)|, # r(pl2)|,. We say that two
planes disagree on the liné both planes are intersected, both contain the linadr(ply)|; # r(pl2)|;-

Note that if (b1, 41 )-planepl; and (bs,i2)-planepl, are intersected and disagree on at least one point
then lettingreg = ply N plo we haver(ply)|req # r(pl2)|reg @and moreoverd(r(pli)|reg, 7(pl2)|reg) >
(6(C))™=2. This is true sincer(ply)|req, 7(pl2)|reg € C™ 2 are non-equal codewords 6f™~2 and
B(C™2) = (3(C))™ 2.

Let E € F§" be a binary matrix such thdt|, = 1 if at least two planes disagree on the pginand
otherwiseE|, = 0. For the pointp we say that the point is almost fixed |, = 0 butp is contained in
some plane! such that-(pl)|, # M|,. Intuitively, a pointp is almost fixed if all planes containing this
point agree on this point but “think” that its value Md (1 |,) should be changed (te(pl)|,).

We letToFix = {p = (i1,12,...,im) | pis almost fixed and letNumToFixz = |ToFix|.

Proposition 4.1. It holds thaty? (M) > YUE) | NumTol'iz,

nm

Proof. Equation4.1 says thatp” (M) is a relative distance of a typical plane df (which is a word in
F"""") from C"~!. Note that for every poinp = (i1, ...,in): if E|, # 0thenp ¢ NeedToFiz. That
means for every point at most one condition is satisfied}|, # 0 orp € NeedT oFix.

Note also that for every point € NeedT'oFiz, for all planespl of M we have(M|y)|, # r(pl)|p-
Now, every poinip is contained inn different planes. Hence |, # 0 then for at least one plang (of m
planes containing the poip) it holds thatr(pl)|, # M]|,.

Hence a relative distance between a typical plaedf A andr(pl) is at least?E) 4 NumToFiz

m nm

Next we define an important concept of “heavy planes (lingsifie inconsistency matrik. Intuitively,
a heavy plane (line) of the matriX is a plane (line) where many inconsistencies occur, i.enyman-zero
symbols.



Definition 4.2 (Heavy lines and planes) line [ of £ is called heavy if E|;| > §(C) - n. A plane(b, i) of
E'is called heavy if E|, ;)| > (5(0)-3)’”*1.

Lemmad4.3is our main observation in the proof of Theor@2. It says that any non-zero elementiof
is located in some heavy plane bf

Lemma 4.3(Main Lemma) Letp = (41,42, ...,%,,) be a point such that’, # 0. Thenp is contained in
some heavy plane df.

The proof of Lemmat.3is postponed to Sectich2.1 Corollary 4.4shows that it is sufficient to remove
at mostwt(E) - (6(C))™~*/2 - 2 planes fromE to get a zero submatrix.

Corollary 4.4. There exists$1, ..., S, C [n] suchthath—|S1|+n—|Sa|+...+n—|Sn| < % m

and lettingS = S; x Sy x ... x S, we haveE|g = 0.

Proof. Let HeavyPlanes = {(b,17) | (b,7) is a heavy plangto be a subset of pairs associated with heavy
planes. Fob € [m] let S, = {i € [n] | (b,i) € HeavyPlanes} andSy = [n] \ Sp.

We claim that H eavy Planes| < # -m. This is true since every heavy plane contains at least
M non-zero elements df and the total number of non-zero elementstols |E|. Furthermore,

every non-zero element @ is contained in at most: (heavy) planes. Thus — |S1| +n — [Sa| + ... +
— S | = ? < 2|E| .
n—|Sp| = Zbe[m} S| < GC)ynym=1 M-

Now, note that Lemma.3 implies that for every poinp = (i1,42,...,%y,) such thatE|, # 0 is
contained in some heavy plane, i.e., in some plane ffdeavyPlanes. Hence if all heavy planes are
removed fromFE we obtain a zero submatrix. So, it follows thats = 0. O

Proposition 4.5ays that if after removing small fraction of planes framwe obtain a submatrix that
is close to the legal submatrix théd is close toC™.

Proposition 4.5. Let Sy, Sa, ..., Sy, C [n] be such that — |S1| +n—|Sa|+...4+n— S| < mn <4(C)-n
and letS = 57 X S X ... x Sp,. LetC’ = Clg, ® Clg, ® ... ® C|g,,. Recall thatM |g is a submatrix
of M obtained by removing at mostfraction of planes. Assume thdt (M|s,C’) < « - n™. Then
(M, C™) <1+

The proof of Propositiod.5appears in Sectiof.2.2 Let us prove Theorer8.2

Proof of Theoren8.2 By Propositiond.1we havey? (M) > YUE) 4 NumToFiz f () > OCN then
we are done. Otherwise, assume thatFE) < M
Corollary4.4implies that it is sufficient to remove at mo&% m < 6(C) - n planes fromE to

get a zero submatrlx Propositidnsimplies thats (M, C™) < % -m + NumToliz,

Letp = ridffemr. ThenpP (M) 5 > (*E 4 Munelie) . 5 > 6(M, O™) andpP (M) > 50—

nm 2m?2

5(M,C™). O

4.2.1 Proof of Main Lemma4.3

In this section we prove Lemnm&3,
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Proof od Main Lemmd.3. By definition of £ we know that there are (at least) two planes that disagree on
the pointp. Assume without loss of generality (symmetry) that the etan = (1,71) andpy = (2,42)
disagree on the point We will prove that eithep; is a heavy plane gy, is a heavy plane.

Consider the intersection of andp,, i.e.,reg = ply N pla = {(i1,42, 73, Ja, - - -+ Jm) | & € [n]}. Note
thatp € reg. Letin be a line, which is parallel to the ax3sand contains a point (recall thatm > 3). Then
the planes; andp, disagree on this line (since they disagree on the potuntained in the linén), i.e.,
r(pl)’ln 75 T(pg)’ln. BUtT(pl)’lmT(pg)‘ln eC by definition. This |mplles that\ (T(pl)‘ln,r(pg)‘ln) >
d(C) - n,i.e., foratleast(C) - n pointsp € in it holds thatr(p1)|, # r(p2)|p-

Let BadPoints = {p € In | p; andp, disagree onp}. Note that| BadPoints| > 6(C') - n. Note that
|BadPoints| > §(C)-n. Let BadPlanes = {(3,i) — plane| i € [n],3p € BadPoints s.t. p € (3,i) — plang.
Note that| BadPlains| > §(C) - n.

We claim that for everylane € BadPlanes we have that eitheslane disagrees witlp; on some point
p € BadPoints or with po on some poinp € BadPoints. Hence at least one ¢f, po disagrees with at
Ieast% - |BadPlanes| > % - 0(C)n planes fromBadPlanes. Without loss of generality assume that
disagrees with at least- 6(C) - n planes fromBadPlanes.

Let BadPlanes,, = {plane € BadPlanes | plane disagrees withp;}. Note that all planes from
BadPlanes are non-intersecting and thus all planes frémd Planes,, are non-intersecting. Every plane
pl € BadPlanes,, disagrees with the plang on some point and hence disagree on at |5t )n )™ >
points in their intersection regiopi(N p1) sincer (pl) |pinp, 7 7(P1)|pinp, € C™ 2.

Lettotal = {p = (i1, j2,- .., jm) | Iplane € BadPlanes,, S.t.p € p; N plane,r(plane)|, # r(p1)|p}-
We havejtotal| > (§(C)n)™=2. 5(?'" = (5(0)5‘)%1 since every intersection region (as above) contains at
least(5(C))n)™~2 inconsistency points and there are at Ias#(C) - n such regions. We stress that we do
not count any inconsistency point more than once, sinceltivep inBadPlanes),, are non-intersecting.

Hence the plang; disagree with other planes in at Ieé%&%m points (on the plane). Thus|,,

has at Ieasf%”)w1 non-zero symbols. We conclude thatis a heavy plane ol and the poinp is
contained in the plang;. O

4.2.2 Proof of Proposition4.5

In this section we prove Propositiaghs.

Proof of Propositiomd.5. Note that for everyi € [n] we have|S;| > n — §(C) - n. The following simple
claim was proven ing, Proposition 3.1]. For the sake of completeness we provaderoof.

Every codeword”’ of C’ can be extended to a unique codewerdf C™. To see this note that the
projection ofC to C|g, is bijective. Itis surjective because it is a projectiord &rns injective becausgs;| >
n — A (C). So, the projection of to C” is bijection, because both codes are of dimengitim(C'))™.
Thus, every word irC’ has a unique preimage (.

We turn to prove Propositiof.5. We know that\/ can be modified in at most-fraction of pointgp € S
to getM|g € C’. Then, by the claim abové/ can be modified (outside the submattik|s) to a codeword
of C™ by changing at most-fraction of symbols (since all symbols outside the subixatf|s are at most
T-fraction of all symbols). We conclude th&tM, C™) < 7 + «. O

5 Proofs of Auxiliaries Corollaries and Claims

In this section we first prodCorollary 3.3
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Proof Sketch:Fori > 3 let D; be the plane tester for the codé. Note that the testeP,, returns a local
view that is a candidate to be in the cad&—!. HenceD,,,_; can be invoked on the local view &f,,,, etc.
So, the tester®,,,, D,,,_1, . . ., D3 can be composed to result ima-query teste.,,, for the codeC™.

The robustness of the composed tester wilpBe» (C™) > pPm(C™) . pPm-1(C™=1) ... pP3(C3).
To see this letv € F*" be a word such thai(w,C™) = 4. Then the local view of the testép,, is
expected to be?m (C™) - § far from C™~1. WhenD,,,_; will be invoked, its local view will bgpP (C™) -
pPm=1(C™=1) . § far from C™=2, etc. Finally, the local view oDs will be (pPm(C™) - pPm-1(C™-1) .

.- pP3(C?3)) - § far from C2.

Theorem3.2 says thap®m (C™) > % Hence for constant: > 3 it holds thatpPeemr (C™) > 0
is a constant that depends only &) andm.

Now, leta,,, = pPem»(C™) and note that the query complexity Bomp isn?. Let M € F™" such
thaté(M,C™) = § and think of testing whethe¥/ in C™. We argue thaPr;.p.,,,,[M|r € C™|1] > an.
This is true since otherwis®r;..p.,,.,[M|r ¢ C™|1] < am,, and then the robustneg8eomr (C™) < ayy, -1
(even assuming that whenevef|; ¢ C™|; we haves (M|, C™|r) = 1). Contradiction.

This proves thaC™ is a(n?, a,, )-strong LTC. O

Now we proveClaim 3.4

Proof of Claim3.4. Let k£ = dim(C). Let Ec be an encoder for the codg, which receives a message
z € F* and outputs a codeworBic(z) € C such thatC = {Ec(z) |2z € F¥}. Assume thatEc has
running time7" = O(k). Note that this implies that < 7" = O(k) since the blocklength can not exceed
the running time of the encoder.

For everyi > 1 we defineE.: to be the encoder fat?, i.e.,C* = {ECZ- () |z € F’“} We will argue

that the running time of: isi - n'~! - T. Sincen < T = O(k) we will conclude that for any constant
i > 1 the running time ofZ is linear (ink?).

We prove the claim by induction oih The encodelFc = FE1 was defined and its running time is
T =1-n'"!.T. Assume that we defined the encodgs. for the codeC?~! and its running time is
(i —1) -nt-D-1.T,

Let us define the encodd?,: for the codeC’. Note that the cod€® has message lengt and its
blocklength isn’. Hence the messagec F** can be viewed as a matrixx k'~! and the encodeE: will
first encode (by the encodéi.—1) every row of the matrix, obtaining the matrixx n‘=!. ThenE.: will
encode every column of the obtained matrix to get a codewbéd oThe running time of the encodéF is
E-((G—1)-n'2T)+n 1T < (1) -0 M) 40T =i -n=1 - T. O
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