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Abstract

Let Z(F ) be the number of solutions of a random k-satisfiability formula F with n variables
and clause density α. Assume that the probability that F is unsatisfiable is O(1/ log(n)1+ε) for
ε > 0. We show that (possibly excluding a countable set of ‘exceptional’ α’s) there exists a non-
random function φ(α) such that, for any δ > 0, (1/n) logZ(F ) ∈ [φ−δ, φ+δ] with high probability.
In particular, the assumption holds for all α < 1, which proves the above concentration claim in
the whole satisfiability regime of random 2-SAT. We also extend these results to a broad class of
constraint satisfaction problems.

The proof is based on an interpolation technique from spin-glass theory, and on an application
of Friedgut’s theorem on sharp thresholds for graph properties.

1 Introduction and main results

Over the last twenty years, a considerable effort has been devoted to understanding the typical
properties of random k-satisfiability (k-SAT) instances. This line of work was initially motivated by
the empirical discovery of a striking relation between the running time of standard solvers and the
proximity to the ‘satisfiability threshold’. Since then, an important motivation for these investigations
has been to develop better heuristics to cope with hard constraint satisfaction problems.

Significant progress has been made along this path. In particular, it was estabilished early on
that, indeed, the probability that a random instance is unsatisfiable increases sharply from 0 to
1 when the ‘clause density’ (number of clauses per variable) crosses a critical threshold [Fri99].
This phenomenon is referred to as the satisfiability phase transition or satisfiability threshold. The
critical density might a priori depend on the number of variables, although upper and lower bounds
are known to match up to a multiplicative constant that goes to 1 when k increases [ANP05].

On the other hand, a significantly more detailed picture has been conjectured, building on non-
rigorous techniques from statistical physics such as the replica and cavity methods [MZK+99, MPZ03,
KMRT+07, MM09]. In particular, not only an n-independent critical density is conjectured to exist,
but explicit values (depending on k) were computed in [MPZ03]. This type of analysis also lead
to an intriguing picture of the geometry of the set of solutions of a random satisfiability instance
[MPZ03, KMRT+07, MM09]. While only a small subset of these results have been estabilished
rigorously, they provided guidance and stimulus for exciting rigorous developments [ACO08].
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In this paper we explore the most basic property of the set of solutions of a random k-SAT
instance: its cardinality. The problem of computing the number of solution of a k-satisfiability
(k-SAT) formula is well known to be #P-complete for any k ≥ 2. Even worse, there is no fully
polynomial randomized approximation scheme (FPRAS) to approximapte the number of solutions
unless NP = RP [DGGJ03].

Here we are instead interested in asymptotic estimates of the number of solutions of a random
formula, in the following sense. Let F (n, α) denote a formula on n variables with clause density
α (each clause having k literals) and let Z(F (n, α)) be the number of solution of F (n, α). From a
statistical physics viewpoint, one of the most basic conjectures is that Z(F (n, α)) concentrates on the
exponential scale. Namely, for each α < αs(k) (the satisfiability threshold), there exists φ = φ(α)
non-random such that, for any δ > 0, 2n(φ−δ) ≤ Z(F (n, α)) < 2n(φ+δ) with high probability. In
formula

lim
n→∞

P{2n(φ−δ) ≤ Z(F (n, α)) < 2n(φ+δ)} = 1 . (1.1)

While for arbitrary k ≥ 3 we cannot establish this conjecture for any α below the satisfiable threshold
(which would imply in particular the existence of an n-independent satisfiability threshold), we are
able to prove that (1.1) holds for any α such that P{Z(F (n, α)) = 0} (the unsatisfiability probability)
is upper bounded by 1/(log n)1+ε for some ε > 0 and all n large enough. In particular, this establishes
the conjecture for k = 2 (in the entire satisfiable phase), and for k ≥ 3 and α < 1. A verification of
previous assumption for arbitrary values of k and α up to the so-called ‘dynamic threshold’ is also
discussed.

We further generalize these results to a broad family of constraint satisfaction problems.
One basic difficulty in estabilishing (1.1) is that the concentration of logZ(F ) cannot be proved

using standard martingale methods. Such an argument typically requires to control the difference
| logZ(F ′) − logZ(F )| for F and F ′ differing in a single clause [Led01]. Unfortunately, adding a
single clause can change the value of Z(F ) from exponentially large to Z(F ′) = 0.

In order to overcome this difficulty, we use Friedgut’s theorem to prove that the property Z(F ) ≤
2nφ has a sharp threshold. We then translate this result into a concentration statement by proving
that (1/n)E log(1 + Z(F )) converges, using an interpolation technique. This is where the condition
on the decay of the unsatisfiability probability is used, since the interpolation technique does not
lead to a formal superadditivity property in this setting.

The interpolation method we use was first developed by Francesco Guerra and Fabio Toninelli in
the context of spin glass theory [GT02] and then generalized to a number of problems from statistical
physics, computer science [FL03, FLT03, PT04] and coding theory [Mon05, KM09]. A nice suite of
combinatorics applications were recently presented in [BGT10].

In particular, the interpolation technique was applied to random k-SAT in [FL03, FLT03], to show
that a suitable normalized log-partition function has a limit for n → ∞. The same work implies
that the minimum number of unsatisfied clauses per variable has a limit as well. Let us emphasize
a crucial difference between such results and the conjecture (1.1): The quantities (normalized log-
partition function or optimal cost) considered in [FL03, FLT03] and following-up work are easily
proved to concentrate via martingale methods. This considerably simplifies those proofs.

Acknowlegements. The present research was initiated as far back as 2006, and remained
dormant for a long period of time. Some results were presented at the ‘DIMACS Working Group on
Message-Passing Algorithms’ in October 2008. We were finally motivated to polish and publish the
manuscript after discussions with Mohsen Bayati, David Gamarnik and Prasad Tetali regarding their
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recent paper [BGT10]. It is a pleasure to thank them. The first author also thanks Emre Telatar for
a careful reading of some parts of the manuscript and for useful suggestions.

This work was partially supported by a Terman fellowship, the NSF CAREER award CCF-
0743978 and the NSF grants DMS-0806211, CCF-0915145.

2 Random k-SAT

Definition 1. A k-clause is a disjunction of k Boolean variables or their negations. Let Ck(n)
be the set of all N =

(

n
k

)

2k possible k-clauses on n Boolean variables. We denote by Fk(n, α) a
random formula which is formed by selecting independently each element in Ck(n) with probability
pk(n, α) = αn/(

(n
k

)

2k), and by taking the conjunction of the selected clauses.

The number of clauses in the above model is a binomial random variable, which concentrates
exponentially fast around its expectation αn. Some of our computations prove to be simpler within
slightly different models, whereby the number of clauses is either Poisson or deterministic with the
same mean αn. Standard monotonicity arguments can be used to show the equivalence of these
models for our purposes and we will hence switch freely between these different models.

Unless specified, the value of k will remain fixed throughout the paper and the k subscript is
dropped.

We denote by Z(F ) the number of satisfying assignments (solutions) of a Boolean formula F and
by

Pn(α, φ) := P{Z(F (n, α)) < 2nφ} ,

the probability that a random formula has less than 2nφ satisfying assignments.

Definition 2. Note that Pn(α, 0) = P{Z(F (n, α)) = 0} is the probability that F (n, α) is unsatisfiable
(UNSAT). We define

α∗ := sup
{

α : Pn(α, 0) = O(1/(log n)1+ε), for some ε > 0
}

.

Remark 1. the results in this paper still hold when defining α∗ to be sup{α :
∑

n Pn(α, 0)/n <∞}.
However, the above definition simplifies the proofs without much loss of generality.
Remark 2. For any k ≥ 2, we have α∗ ≥ 1. Indeed, considering the case of 2-SAT, [dlV92]
proves that, for α < 1, P{Z(F2(n, α)) = 0} = O(1/n). Since for any k ≥ 3, P{Z(Fk(n, α)) = 0} ≤
P{Z(F2(n, α)) = 0}, we conclude

α∗ ≥ 1

for k ≥ 3 as well.
Unfortunately, the bounds on the satisfiability threshold based on the second moment method

[ANP05] do not imply any quantitative estimate on the probability that Fk(n, α) is UNSAT. It
might be possible to prove such an estimate by a careful analysis of specific solution algorithms.
In particular, a careful analysis of the recent algorithm [CO09] might lead to a proof of α∗ ≥
2k(1− δ) log k/k, for k large enough [CO10]. We expect that α∗ does coincide with the satisfiability
threshold.

Our main result estabilishes the conjecture (1.1) for α < α∗, apart possibly for countably many
‘special’ values of α.
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Theorem 1. There exist a countable set C ⊆ [0, α∗), and φs : [0, α
∗) → [0, 1] such that the following

holds. For any ε > 0 and any α ∈ [0, α∗) \ C, we have

lim
n→∞

Pn(α, φs(α) − ε) = 0,

lim
n→∞

Pn(α, φs(α) + ε) = 1.

In order to prove this result, which is done in Section 4.4, we first show the following sharp
threshold result.

Theorem 2. For any ε > 0 and φ ∈ [0, 1), there exists {αn(φ)}n∈Z+ such that

lim
n→∞

Pn(αn(φ)− ε, φ) = 0,

lim
n→∞

Pn(αn(φ) + ε, φ) = 1.

In other words, for any fixed φ, the property {Z(F (n, α)) < 2nφ} has a sharp threshold in α. In
[Fri99], this result is shown for φ = 0, i.e., for the property {F (n, α) is UNSAT}. As for the φ = 0
case, Theorem 2 is proved by showing that the monotone property {Z(F (n, α)) < 2nφ} cannot be
approximated by a “local property”, and hence must have a sharp threshold. For greater convenience
of the reader, and in order to introduce relevant notations, we reproduce in Section 4.1 the Friedgut’s
Theorem on sharp thresholds for monotone properties [Fri99]. The proof of Theorem 2 is differed to
Section 4.2.

In order to prove Theorem 1, we then would like to transfer the threshold in α (Theorem 2)
into a threshold in φ. This step is however not straightforward because of the little knowledge we
have about the function φ 7→ αn(φ). In order to establish this threshold transfer, we first prove the
following result, which shows the existence of the n → ∞ limit of the normalized logarithm of the
number of solutions when α < α∗.

Theorem 3. Let

ψn(α) :=
1

n
E[logZ(F (n, α))|Z(F (n, α)) ≥ 1].

We have that ψn(α) converges to a limit φs(α), for every α < α∗.

This theorem is proved in Section 4.3 and the key step in the proof consists in establishing the
following pseudo-superadditivity property.

Lemma 1. For any α, let Zn := Z(F (n, α)), we then have for any n1, n2 ≥ k

E log(1 + Zn1+n2) ≥ E log(1 + Zn1Zn2) .

The proof of Lemma 1 is differed to Section 4.3 and is based on the interpolation technique by
Guerra and Toninelli [GT02], and Franz-Leone [FL03]. However, while in those cases one obtains
superadditivity of E logZ, in the present case we get a weaker result because of the “1+” term.
Hence, in this case the existence of the infinite volume limit is not a straightforward consequence
of Lemma 1. Notice that this problem is intimately related to the fact that Z = 0 with positive
probability, and therefore E logZ is not defined. We use the fact that α < α∗ to circumvent this
problem in Theorem 3.

Finally, Theorem 3 implies the following result, which allows the complete the threshold transfer.

Lemma 2. For each n and φ, let αn(φ) be such that Pn(φ, αn(φ)) = 1/2. We have that αn(φ)
converges for almost every φ ∈ φs([0, α

∗)) (where φs is defined in Theorem 3).

Lemma 2 is proved in Section 4.4.
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3 A general family of random CSP’s

In this section, we extend the results of the previous section to a general family of random constraint
satisfaction problems (CSP) over binary variables. An ensemble in this family is defined as follows.

Definition 3. Let µ be a distribution over Boolean functions ϕ : {−1,+1}k → {0, 1}, which we
call the clause type distribution. Let n be an integer and α ∈ R+. A random formula from the
ensemble Fk(α, n, µ) is drawn as follows. For each a ∈ {1, . . . ,m = ⌊αn⌋} the a-th clause is drawn
independently from previous ones. For clause a, k indices i1(a), . . . , ik(a) are drawn independently
and uniformly at random in [n]. Further ϕa : {−1,+1}k → {0, 1} is drawn under the distribution µ,
producing the clause ϕa(xi1(a), . . . , xik(a)).

An assignment x ∈ {+1,−1}n is said to satisfy the formula Fk(α, n, µ) if, for each a ∈ [m], we
have ϕa(xi1(a), . . . , xik(a)) = 1.

As in previous section, we will often drop the subscripts k in the following. Further, Z(F ) is the
number of satisfying assignments of formula F and we define

Pn(α, φ, µ) := P{Z(F (α, n, µ)) < 2nφ} .

Definition 4. Note that Pn(α, 0, µ) = P{Z(F (α, n, µ)) = 0} is the probability that F (α, n, µ) is
UNSAT. We define

α∗(µ) := sup
{

α : Pn(α, 0, µ) = O(1/(log n)1+ε) for some ε > 0
}

.

Definition 5. For ϕ : {−1, 1}k → {0, 1} and θ ∈ [−1, 1], let

‖ϕ‖2θ =
∑

x∈{−1,1}k

ϕ(x)2vθ(x) and ‖ϕ‖ = ‖ϕ‖0

where

vθ(x) =
k
∏

i=1

1 + xiθ

2
.

Note that ‖ϕ‖2θ is the probability that ϕ = 1 under the measure vθ, which assigns probabilities
(1− θ)/2 and (1 + θ)/2 to −1 and +1 respectively.

Our CSP ensemble is specified by the distribution µ over clause types and we now describe two
set of hypotheses on this distribution.

H1. (a) Dominance of balanced assignments. For every θ ∈ [−1, 1], Eϕ log ‖ϕ‖θ ≤ Eϕ log ‖ϕ‖, with
equality only if θ = 0. This condition implies that, in a typical random instance, most solutions have
almost as many 1’s as −1’s.
(b) Unsatisfiability of uniform assignments. For every s ∈ {−1,+1}, there is at least one clause ϕ
with µ(ϕ) > 0 such that ϕ(s, . . . , s) = 0.

H2. Convexity of Γl. Let M1({−1, 1}l) be the set of probability measure on {−1, 1}l and let

Γl : M1({−1, 1}l) → R

be defined by

Γl(ν) := EϕEZ(r)

l
∏

r=1

(1− ϕ(Z(r))) (3.1)
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where Z(r) are Boolean random vectors of dimension k such that Zi = (Z
(1)
i , . . . , Z

(l)
i ), i = 1, . . . , k,

are i.i.d. with distribution ν, whereas ϕ is a random clause type drawn under distribution µ. Under
H2, µ is assumed to make Γl convex for for any l ≥ 1.

Notice that conditions H1.(a) and H1.(b) coincide with conditions 4 and 5 in [MRT09]. Further,
hypothesis H1 is satisfied by a number of interesting random CSP ensembles. Such examples include

• k-NAE-SAT, where ϕ(x) = ϕs(x) = 1(x /∈ {−s, s}) and µ(ϕs) = 2−k for each s ∈ {−1, 1}k ;

• Hypergraph 2-coloring, where ϕ(x) = 1(x /∈ {−1;+1}) is the unique clause in the support of
µ, with −1 = (−1, . . . ,−1) and +1 = (+1, . . . ,+1);

• k-XOR-SAT, where ϕ(x) = ϕs(x) = 1(
∏k

i=1 xi = s) and µ(ϕs) = 1/2 for each s ∈ {−1, 1};

• k-SAT, where ϕ(x) = ϕs(x) = 1(x 6= s) and µ(ϕs) = 2−k for each s ∈ {−1, 1}k .

For the first three examples above, it is checked in [MRT09] that hypothesis H1 is satisfied. Let us
check that this is the case for k-SAT as well. Note that

Es‖ϕ‖2θ = 1− Es

k
∏

i=1

1− siθ

2
= 1− 2−k = Es‖ϕ‖2,

hence

Es log ‖ϕ‖2θ ≤ logEs‖ϕ‖2θ = logEs‖ϕ‖2 = Es log ‖ϕ‖2.

This verifies condition H1.(a). Condition H1.(b) holds trivially.
Hypothesis H2 is not straightforward to check. The next definition characterizes a family of

clause type distributions satisfying it.

Definition 6 (k-factorizing distributions). A clause type distribution µ is said to k-factorize if it
has the following structure. There exists an integer J ≥ 1, such that any ϕ ∈ supp(µ) is of the form

ϕ(x) = 1(x /∈ {s(1), . . . , s(J)}), (3.2)

for some s(1), . . . , s(J) ∈ {−1, 1}k , and

µ(ϕ) =

k
∏

i=1

µ̄(s
(1)
i , . . . , s

(J)
i ) (3.3)

where µ̄ is a probability distribution on {−1, 1}J . In other words, the vectors (s
(1)
i , . . . , s

(J)
i ), for

i = 1, . . . , k, can have correlated components but are mutually i.i.d. with distribution µ̄.

This definition can be generalized by letting J itself to be random, but we stick to the above case
for the sake of simplicity.

The class of k-factorizing clause type distributions includes, among other problems:

• k-NAE-SAT: ϕ(x) = 1(x /∈ {−s, s}) for s ∈ {−1,+1}k uniformly random. This is k-factorizing
with µ̄(−1, 1) = µ̄(1,−1) = 1/2;

• Hypergraph 2-coloring: ϕ(x) = 1(x /∈ {−1,+1}) with µ̄(−1, 1) = 1;

6



• k-SAT: ϕ(x) = 1(x /∈ {s}) with µ̄(1) = µ̄(−1) = 1/2.

Condition H2 is satisfied by k-factorizing distributions as stated formally below.

Lemma 3. The mapping Γl is convex for any l ≥ 1 if the clause type distribution k-factorizes.

Note that k-XOR-SAT does not belong to this class of distributions, nevertheless, condition H2
holds in this case as well, as stated below.

Lemma 4. The mapping Γl is convex for any l ≥ 1 for k-XOR-SAT with k even.

The proofs of Lemma 3 and Lemma 4 are differed to Section 4.5. We now state the equivalent of
Theorem 1 for this general class of CSPs.

Theorem 4. Assume µ to satisfy conditions H1 and H2. Then there exists a countable set C and a
function α 7→ φs(α) such that, for any α ∈ [0, α∗(µ)) \ C, and any ε > 0,

lim
n→∞

Pn(α, φs(α)− ε, µ) = 0,

lim
n→∞

Pn(α, φs(α) + ε, µ) = 1.

As in previous section, the proof of this theorem is based on the following two theorems.

Theorem 5. For any µ satisfying H1 and φ ∈ [0, 1), there exists {αn(φ)}n∈Z+ such that for any
ε > 0,

lim
n→∞

Pn(αn(φ)− ε, φ, µ) = 0,

lim
n→∞

Pn(αn(φ) + ε, φ, µ) = 1.

This theorem is proved in [MRT09]. Although in that paper a larger set of conditions was required
in the formal statement, by simple inspection of the proof it follows that only conditions H1.(a) and
H1.(b) were in fact used.

Theorem 6. Let

ψn(α) :=
1

n
E[logZ(F (α, n, µ))|Z(F (α, n, µ)) ≥ 1].

For any µ satisfying H2 and for any α < α∗(µ), ψn(α) converges to a limit φs(α).

The proof of this theorem is based on the following pseudo-superaddittivity lemma.

Lemma 5. For any α and µ satisfying H2, let Zn := Z(F (α, n, µ)), we then have for any n1, n2 ≥ k,

E log(1 + Zn1+n2) ≥ E log(1 + Zn1Zn2).

The proof of Lemma 5 is differed to Section 4.5. The proofs of Theorem 6 and Theorem 4 follow
the same analytical arguments as for the k-SAT case and hence we omit the details here and refer
to the proofs of Theorem 3 and Theorem 1.
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4 Proofs

4.1 Friedgut’s theorem: A reminder

Let Pp be the product measure on {0, 1}N , such that for (z1, . . . , zN ) ∈ {0, 1}N , Pp(z1, . . . , zN ) =

p
∑N

i=1 zi(1−p)N−
∑N

i=1 zi . IfN =
(

n
k

)

2k, the space {0, 1}N is isomorphic to the space of k-CNF formulas
on n variables and the measure Pp is the measure used in this paper for random k-SAT. We say that
A ⊆ {0, 1}N is monotone if, for any x ∈ {0, 1}N , y ∈ A, x ≤ y (component-wise) implies y ∈ A. Such
a collection of vectors A is also called a monotone property, and note that by monotone it is really
meant here monotonically increasing. When N =

(n
k

)

2k, a property is called symmetric, equivalently
called a formula property, if it is invariant under k-CNF formula automorphisms (invariant under
the action of the wreath product of the symmetric group Sn with k copies of Z2). For instance, the
UNSAT property of a k-CNF formula is monotone and symmetric.

Note that for N fixed and a monotone symmetric property A = AN , the function p 7→ Pp(A)
is a monotonically increasing polynomial with P0(A) = 0 and P1(A) = 1 (strictly increasing if A 6=
{0, 1}N ). We can therefore define for ε ∈ [0, 1], pε such that Ppε(A) = ε and we call δ(ε) = p1−ε − pε
the critical interval. We then say that the property A (or the sequence of properties AN ) has a sharp
threshold if for all ε ∈ (0, 1), δ(ε)/p1/2 tends to zero when N increases. Note that for a monotone
property A having a sharp threshold, there exists p̂ ∈ (pε, p1−ε) such that Pp(A) → 0 if p ≤ p̂(1− ε)
and Pp(A) → 1 if p ≥ p̂(1 + ε).

If instead, for ε ∈ (0, 1), δ(ε)/p1/2 is bounded away from zero, we say that A has a coarse
threshold. In typical examples, δ(ε)/p1/2 is bounded and hence admits subsequential limits. In order
to prove a sharp threshold for monotone properties, it is therefore sufficient to rule out the case of a
coarse threshold (modulo reducing to subsequences). If A has a coarse threshold, then there exists
p∗ ∈ (pε, p1−ε) such that p∗ · ∂

∂pPp(A)
∣

∣

p∗
≤ 1/C uniformly in N .

For a given formula F , we denote by |F | the number of clauses in F . The average degree of
a formula F is the ratio between the number of variables and the number of clauses in F , and a
balanced formula is a formula whose average degree is no less than that of any sub-formula. We also
denote by E(F ) the expected number of sub-formulas isomorphic to F in a random formula. We
now state the result of Friedgut.

Theorem 7 ([Fri99]). Let 0 < β < 1. There exist functions B = B(ǫ, c), b1 = b1(ǫ, c) and b2 =
b2(ǫ, c) such that for any N , c > 0, ε > 0, p and any monotone symmetric family A of k-CNF
formulas with n variables such that p · ∂

∂qPq(A)
∣

∣

p
≤ c and β < Pp(A) < 1− β, there exists a formula

G satisfying:

• G is balanced

• b1 < E(G) < b2

• |G| ≤ B

• Pp{A|G} ≥ 1 − ǫ, where Pp{A|G} denotes the probability that a random formula belongs to A
conditioned on the appearance of a specific copy of G in the random formula.

Note that conditioning of the appearance of a formula satisfying the above hypothesis is not the
same as conditioning on a specific copy of such a formula (with specified variables).
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4.2 Proof of Theorem 2

In order to prove Theorem 2, let us assume that the property {Z(F (n, α)) < 2nφ} has a coarse
threshold. Let us consider ps in the critical interval of this property such that ps · ∂

∂pPp(A)
∣

∣

ps
≤ c and

define ps = αsn/N . By compactness there exists a subsequence of size n along which Pn(αs, φ) has a
limit P∞ = [ε, 1 − ε]. For simplicity of notation, consider P∞ = 1/2 (the general case is completely
analogous). We can hence assume w.l.o.g. that αs = αs(n) is such that Pn(αs, φ) = 1/2 (and αs is
well defined since Pn is continuous and strictly increasing in α).

The proof consists in showing that there does not exists a specific “short” formula G of the
kind described in Theorem 7, providing a contradiction with the coarse threshold assumption. We
proceed by showing that the third assumption on G, the bounded number of clauses, leads directly
to a contraction with the fourth one. This is shown with the following lemma.

Lemma 6. Let G be a satisfiable formula with a finite number of variables and clauses. For any
ε > 0, we have for n large enough

P{Z(F (n, αs)) < 2nφ|G} ≤ 1/2 + ε ,

where P{ · |G} is interpreted as in the statement of Theorem 7.

Before proceeding to the proof of Lemma 6, we need the following technical estimates for the
case φ > 0.

Lemma 7. For any n, α, φ, ψ, with φ ≥ ψ,

(i)
∂

∂α
Pn(α, φ) ≤ C1

√
n,

(ii) Pn(α, φ) − Pn(α,ψ) ≤ C2(φ− ψ)
√
n log(n) + o(1),

where C1 and C2 do not depend on n.

Proof. (i) By definition

Pn(α, φ) =
∑

0≤m≤N

(

N

m

)

pm(1− p)N−m
P{Z(F (n, α)) < 2nφ||F | = m},

and p = (nα)/N , thus

∂

∂α
pm(1− p)N−m =

n

N
pm−1(1− p)N−m−1(m−Np)

and

∂

∂α
Pn(α, φ) =

n

N
p−1(1− p)−1

∑

0≤m≤N

(

N

m

)

pm(1− p)N−m(m−Np)P{Z(F (n, α)) < 2nφ||F | = m}

≤ n

N
p−1(1− p)−1

E[(|F | −Np), |F | ≥ Np]

≤ n

N
p−1(1− p)−1(E(|F | −Np)2)1/2

=
n

N
p−1(1− p)−1(Np(1 − p))1/2

≤ C1

√
n,

9



(ii) Note that because of Lemma 7 (i),

α 7→ P{Z(F (n, α)) < 2m}

is Lipschitz with constant C1
√
n. Therefore, it is sufficient to show that for any a ≥ 0

P{Z(F (n, α)) < 2a+1} ≤ P{Z(F (n, α+A log(n)/n)) < 2a}+ c log(n)/
√
n, (4.1)

for some constants c and A (possibly depending on k), since then

P{Z(F (n, α)) < 2a+1} − P{Z(F (n, α)) < 2a}
≤ P{Z(F (n, α+A log(n)/n)) < 2a} − P{Z(F (n, α)) < 2a}+ c log(n)/

√
n

≤ C2 log(n)/
√
n,

for some constant C2. We first verify (4.1) for the model where the formulas have exactly αn clauses
drawn uniformly at random, using in that case the notation Fαn. The result for the Binomial model
follows then from standard monotonicity arguments. We will show that there exists θ ∈ (0, 1) such
that for any a ≥ 0 and any integer l ≥ 1,

P{Z(Fαn) < 2a+1} − P{Z(Fαn+l) < 2a} ≤ 2θl. (4.2)

Note that for a deterministic formula D, and C a k-clause uniformly drawn in Ck(n),

ECZ(D ∧C) = (1− 1

2k
)Z(D),

hence for l uniformly drawn k-clauses

EC1,...,Cl
Z(D ∧ C1 ∧ . . . ∧ Cl) ≤ (1− 1

2k
)lZ(D).

Therefore, denoting by El = EC1,...,Cl
the expectation with respect to C1, . . . , Cl, we get

P{Z(Fαn) ≤ 2a+1} ≤ P{ElZ(Fαn+l) ≤ 2a+1(1 − 1

2k
)l},

and defining T := 2(1 − 2−k)l, we have

P{Z(Fαn+l) ≤ 2a} ≥ P{Z(Fαn+l) ≤ 2a|ElZ(Fαn+l) ≤ T2a}P{ElZ(Fαn+l) ≤ T2a}
≥ (1− T )P{ElZ(Fαn+l) ≤ T2a},

where last inequality follows from Markov’s inequality. Thus,

P{Z(Fαn) < 2a+1} − P{Z(Fαn+l) < 2a} ≤ 2(1 − 1

2k
)l.

By setting l = A(k) log(n), previous upper bound is 2n
A(k) log(1− 1

2k
)
, hence by taking A(k) appropri-

ately we get (4.1).

We are now in position to prove Lemma 6.
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Proof of Lemma 6. Let G be a satisfiable formula with a bounded number of clauses and, say, r
variables. And let us assume without loss of generality that G contains only variables x1, . . . , xr, and
that it is satisfied when all variables are set to true. We then have

P{Z(F (n, αs)) < 2nφ|G} ≤ P{Z(F (n, αs)|x1=...=xr=T ) < 2nφ},

where T refers to the true assignment. The random formula F (n, αs)|x1=...=xr=T has now a different
structure and probability distribution. Let us denote by F∗ an equivalently distributed random
formula, which contains clauses of size 1 to k and has only n − r variables. Since |Ck(n)| =

(

n
k

)

2k,
the number of l-clauses appearing in F∗, denoted by Sl, satisfies

ESk = Θ(n), (4.3)

ESk−1 = O(1), (4.4)

and more generally

ESk−i = O(n1−i), ∀1 ≤ i ≤ k − 1 . (4.5)

Hence, defining a random formula F∗∗, which contains only k-clauses and (k − 1)-clauses, with the
k-clauses selected independently in Ck(n − r) with probability p = αsn

(nk)2k
, and exactly d clauses of

size (k − 1) uniformly selected in Ck−1(n− r), we get that for any τ > 0 and n large enough

P{Z(F (n, αs)) < 2nφ|G} ≤ P{Z(F∗∗) < 2nφ}+ τ ,

provided d is large enough. Since 1-clauses are more constraining than (k− 1)-clauses, we can upper
bound our estimate by replacing each k-clause by the disjunction of its k literals. Moreover, the
clauses on the n− r variables are drawn with probability p(n, αs) = αsn/{

(

n
k

)

2k}, hence, by drawing
them from p(n− r, αs) instead we get, for D = d(k − 1),

P{Z(F (n, αs)) < 2nφ|G} ≤ P{Z(F (n− r, αs) ∧D
i=1 C

(1)
i ) < 2nφ}+ τ. (4.6)

We now prove a useful fact.

Remark 1. Let f be a Boolean formula on n variables, C
(l)
i be l-clauses independently and uniformly

selected in Cl(n) and y ∈ R. Then for any unbounded increasing sequence h(n) and for any ε > 0,
we can take n large enough such that,

P{Z(f ∧D
i=1 C

(1)
i ) < y} ≤ P{Z(f ∧h(n)

i=1 C
(k)
i ) < kDy}+ ε.

Proof. In order to prove this fact, we check that for n large enough,

P{Z(f ∧ C(1)
1 ) < y} ≤ P{Z(f ∧h(n)/D

i=1 C
(k)
i ) < ky}+ ε/D. (4.7)

Note that for any g ≥ 1

P{Z(f ∧g
i=1 C

(k)
i ) < ky} ≥ P{ min

1≤i≤g
Z(f ∧ C(k)

i ) < ky} (4.8)
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Moreover,

P{Z(f ∧ C(k)
1 ) < ky} = P{Z(f ∧ ∨k

i=1C
(1)
i ) < ky}

≥ P{
k

∑

i=1

Z(f ∧ C(1)
i ) < ky}

≥ P{Z(f ∧ C(1)
i ) < y, ∀1 ≤ i ≤ k}

= P{Z(f ∧ C(1)
1 ) < y}k. (4.9)

Therefore, putting (4.8) and (4.9) together, we get

P{Z(f ∧g
i=1 C

(k)
i ) < ky} ≥ 1− (1− P{Z(f ∧ C(1)

1 ) < y}k)g,

but this implies that we can take g large enough, such that

P{Z(f ∧ C(1)
1 ) < y} ≤ P{Z(f ∧g

i=1 C
(k)
i ) < ky}+ ε/D,

which proves the remark.

We now can use our remark to upper bound the estimate in Eq. (4.6)

P{Z(F (n, αs)) < 2nφ|G} ≤ P{Z(F (n − r, αs) ∧h(n)
i=1 C

(k)
i ) < kD2nφ}+ 2τ (4.10)

and by taking t large enough

P{Z(F (n − r, αs) ∧h(n)
i=1 C

(k)
i ) < kD2nφ} ≤ P{Z(F (n− r, αs + th(n)/(n − r)) < kD2nφ}+ τ. (4.11)

Defining H(n) := th(n)/(n − r), we get from Lemma 7 (ii)

P{Z(F (n− r, αs +H(n))) < kD2rφ2(n−r)φ} ≤ P{Z(F (n− r, αs +H(n))) < 2(n−r)φ}+ τ. (4.12)

Note that by Lemma 7 (ii), the inequality in (4.12) holds for a clause density which is independent
of n, although here the clause density is αs(n)+H(n). Since we will pick H(n) to be o(1/

√
n), hence

the variation of H(n) can be neglected. Regarding the variation of αs(n), note that this sequence
fluctuates on a compact interval (for a fixed φ < 1, on an interval contained in (0, A] where A is
an upper bound on the critical threshold of Friedgut [Fri99]), then one can check that the gap in
this inequality, i.e., Pn(α, φ) − Pn(α, φ + 1/n), tends to zero uniformly in α, leading to the claimed
inequality.

Putting (4.10), (4.11) and (4.12) together, we get

P{Z(F (n, αs)) < 2nφ|G} ≤ P{Z(F (n − r, αs +H(n))) < 2(n−r)φ}+ 4τ

= Pn−r(αs +H(n), φ) + 4τ

≤ Pn(αs + 2H(n), φ) + 5τ. (4.13)

To see that the inequality (4.13) holds, let us check that for α, φ fixed, g(n) increasing and n large
enough

Pn−1(α, φ) ≤ Pn(α+ g(n)/n, φ) + τ. (4.14)
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The inequality (4.13) can then be verified by an appropriate choice of g(n) and by using a similar
argument as discussed previously regarding the dependence in n of the clause density. Recall that
a random formula in F (n − 1, α) is drawn by picking each clause in Ck(n − 1) with probability

p(n − 1, α) = α(n−1)

(n−1
k )2k

. By a coupling argument, since p(n − 1, α) > p(n, α), one can equivalently

draw a first formula F1 by picking each clause in Ck(n − 1) with probability p(n, α) and a second
formula F2 by picking each clause in Ck(n − 1) with probability p(n − 1, α) − p(n, α); creating the
formula F1 ∧ F2. Note that a random formula F (n, α) picks each clause in Ck(n − 1) and also in
{Ck(n)−C : C ∈ Ck(n− 1)} with probability p(α, n). Hence

Pn−1(α, φ) = P{Z(F (n− 1, α)) < 2(n−1)φ}
= P{Z(F1 ∧ F2) < 2(n−1)φ}
≤ P{Z(F (n, α) ∧ F2) < 2(n−1)φ}. (4.15)

The expected number of clauses in F2 is given by E|F2| = |Ck(n− 1)|(p(n− 1, α)− p(n, α)) = O(1),
hence, we can upper bound (4.15) by replacing F2 with a constant number of random 1-clauses and
use Remark 1 (as done above) to conclude that

Pn−1(α, φ) ≤ P{Z(F (n, α+ g(n)/n)) < K2(n−1)φ} (4.16)

for a constant K and an increasing function g(n). (Note that the 1-clauses are drawn within the set
of n − 1 variables instead of n variables, but this does not change the conclusion). Finally, using
Lemma 7 (ii), we get

Pn−1(α, φ) ≤ P{Z(F (n, α+ g(n)/n) < 2nφ}+ τ = Pn(α+ g(n)/n, φ) + τ, (4.17)

which proves (4.14). Hence, we have

P{Z(F (n, αs)) < 2nφ|G} ≤ Pn(αs + 2H(n), φ) + 5τ

and by choosing h(n) = o(
√
n) (increasing), i.e., H(n) = o(1/

√
n), and using Lemma 7 (i), we get

P{Z(F (n, αs)) < 2nφ|G} ≤ Pn(αs, φ) + 6τ.

4.3 Proofs of Theorem 3 and Lemma 1

Proof of Lemma 1. We refer to the proof of Lemma 5 which is more general.

In order to prove Theorem 3, we first need the following technical lemma.

Lemma 8. Let ∆(n) = O(n/(log n)1+ε) for some ε > 0, and t(n) = o(n). Let f(·) be positive, such
that f(n)/n is bounded above and

f(n1 + n2) + ∆(n1 + n2) ≥ f(n1) + f(n2), ∀n1, n2 ≥ t(n1 + n2).

Then f(n)/n converges.

Remark 3. This lemma still holds if ∆(n) is such that
∑

n
∆(n)
n2 <∞.
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Proof. Let ε > 0. Since f(n)/n is bounded above, we have S := lim supn f(n)/n < ∞. Let n0
large enough such that f(n)/n < S + ε for any n ≥ n0. Let r be an integer (to be chosen at our
convenience but to be kept fixed) and let γ(n) such that γ(n) ≥ t(n) and γ(n) = o(n). Define

m(n) = inf{r2k : r2k ≥ γ(n)}

and note that γ(n) ≤ m(n) ≤ 2γ(n) ∨ r. For any n, we then have

n = ⌊n/m(n)− 1⌋m(n) + q(n),

where q(n) ∈ [m(n), 2m(n)], with ⌊n/m(n) − 1⌋ ≥ 0 for n large enough. Hence, using the property
of f , we have

f(n) ≥ ⌊n/m(n)− 1⌋f(m(n)) + f(q(n))−
⌊n/m(n)−1⌋

∑

k=1

∆(q(n) + km(n)),

and since f is positive,

f(n)

n
≥ m(n)

n
⌊n/m(n)− 1⌋f(m(n))

m(n)
− 1

n

⌊n/m(n)−1⌋
∑

k=1

∆(q(n) + km(n)). (4.18)

Since γ(n) = o(n), for n large enough, we have

m(n)

n
⌊n/m(n)− 1⌋ > 1− ε.

We now show that for n large enough, we also have f(m(n))
m(n) > S − ε. First, note that we can take r

large enough such that r2k/2 ≥ γ(r2k) for all k ≥ 0, since γ(n) = o(n). Hence, using the property
of f , we have

f(r2k+1)

r2k+1
≥ f(r2k)

r2k
− 1

r2k+1
∆(r2k+1)

and

f(r2k)

r2k
≥ f(r)

r
−

k
∑

j=1

1

r2j
∆(r2j). (4.19)

Since we can pick r at our convenience, note that if r is a power of 2,

k
∑

j=1

1

r2j
∆(r2j) =

log2 r+k
∑

j=log2 r+1

1

2j
∆(2j),

which is, when r increases, tending to zero uniformly in k, provided that

∞
∑

j=1

1

2j
∆(2j) <∞.

Since previous condition follows from our hypothesis on ∆, and since we can always take r large
enough to ensure that f(r)/r > S − ε, we can take r large enough such that, from (4.19), we have
for any k

f(r2k)

r2k
≥ S − ε

14



and since m(n) is of the form r2k, for any n

f(m(n))

m(n)
≥ S − ε.

Finally, we need to show that the last term in (4.18) is vanishing, i.e., that

1

n

⌊n/m(n)−1⌋
∑

k=1

∆(q(n) + km(n))
n→∞−→ 0.

For this, we pick γ(n) to be large enough. For example, if ∆ = O(n/(log n)1+ε), we have

1

n

⌊n/m(n)−1⌋
∑

k=1

∆(q(n) + km(n)) ≤ 1

n

n

m(n)
∆(n), (4.20)

and since m(n) ≥ γ(n), if γ(n) = O(n/(log n)1+ν) with ν > ε, we conclude the proof. In general, we
pick γ(n) such that ∆(n)/γ(n) = o(1).

Proof of Theorem 3. Let Fn = F (n, α). Note that

E log(1 + Z(Fn)) = E[log(1 + Z(Fn)), Z(Fn) ≥ 1]

and

E[log(1 + Z(Fn)), Z(Fn) ≥ 1]

= E[logZ(Fn), Z(Fn) ≥ 1] + E[log(1 + Z(Fn)
−1), Z(Fn) ≥ 1].

Let c > 0, we have

E[log(1 + Z(Fn)
−1), Z(Fn) ≥ 1] ≤ E[Z(Fn)

−1, Z(Fn) ≥ 1]

≤ E[Z(Fn)
−1, Z(Fn) ≥ 1, ZFV ≥ cn] + P{ZFV < cn,Z(Fn) ≥ 1}

where ZFV is the number of free variables in Fn. Therefore, E[Z(Fn)
−1, Z(Fn) ≥ 1, ZFV ≥ cn] ≤

e−cn. Moreover, there exists c, c2 > 0 such that

P{ZFV < cn,Z(Fn) ≥ 1} = O(e−c2n)

hence there exists ξ > 0 such that

τ(n) := E[log(1 + Z(Fn)
−1), Z(Fn) ≥ 1] = O(e−ξn). (4.21)

On the other hand, we have (denoting by Fn1 , Fn2 two independent formulas and letting n = n1+n2)

E log(1 + Z(Fn1)Z(Fn2)) = E[log(1 + Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1]

and

E[log(1 + Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1] ≥ E[log(Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1].
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Hence, using Lemma 1, we get the following inequality

E[logZ(Fn), Z(Fn) ≥ 1] + τ(n) ≥ E[log(Z(Fn1)Z(Fn2)), Z(Fn1)Z(Fn2) ≥ 1]

or equivalently

g(n) + τ(n) ≥ g(n1) + g(n2)− g(n1)ε(n2)− g(n2)ε(n1), ∀n1, n2 ≥ k (4.22)

where

g(n) = E[logZ(Fn), Z(Fn) ≥ 1],

ε(n) = P{Z(Fn) = 0}.

Note that 0 ≤ g(n) ≤ n. Therefore (4.22) implies

g(n) + τ(n) ≥ g(n1) + g(n2)− n1ε(n2)− n2ε(n1), ∀n1, n2 ≥ k. (4.23)

Since α < α∗, we have that ε(n) = O(1/(log n)1+ε), for some ε > 0. We then restrict ourself to

n1, n2 ≥ t(n) := n/(log n)η, with η = ε/3.

This implies that n1−η ≤ n2 and (1− η) log n ≤ log n2. So, for n1, n2 large enough, we have

n1 ≤ n2(log n2)
2η (4.24)

n2 ≤ n1(log n1)
2η. (4.25)

Going back to (4.23), we get

g(n) + τ(n) ≥ g(n1) + g(n2)− n1(log n1)
2ηε(n1)− n2(log n2)

2ηε(n2), ∀n1, n2 ≥ n/(log n)2η

or equivalently

f(n) + ∆(n) ≥ f(n1) + f(n2), ∀n1, n2 ≥ t(n) (4.26)

where

f(n) = g(n)− n(log n)2ηε(n)

∆(n) = n(log n)2ηε(n) + τ(n)

t(n) = n/(log n)η.

But ε− 2η = ε/3 > 0, hence

∆(n) ≤ O

(

n

(log n)1+ε/3

)

,

and we satisfy the hypothesis of Lemma 8, which implies that f(n)/n converges, hence g(n)/n
converges too.
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4.4 Proofs of Lemma 2 and Theorem 1

Proof of Lemma 2. From Theorem 3, for every α < α∗, ψn(α) converges to a limit φs(α). Note
that φs( · ) is a non-increasing function on [0, α∗), hence, it has a countable number of plateaus and
discontinuities. Let α0 ∈ [0, α∗) and denote φ0 = φs(α0). If αn(φ0) does not converge, define

α0 = lim inf
n→∞

αn(φ0),

nk ր ∞ s.t. lim
k→∞

αnk
(φ0) = α0,

ᾱ0 = lim sup
n→∞

αn(φ0),

mk ր ∞ s.t. lim
k→∞

αmk
(φ0) = ᾱ0.

Then, for any α ∈ (α0, ᾱ0), there exists ε > 0 such that

Pmk
(α, φ0) ≤ Pmk

(αmk
(φ0)− ε, φ0)

kր∞→ 0 (4.27)

and

Pnk
(α, φ0) ≥ Pnk

(αnk
(φ0) + ε, φ0)

kր∞→ 1 (4.28)

Moreover, if α < α∗,

Pnk
(α, φ0) = P{ 1

nk
logZ(F (nk, α)) < φ0|Z(F (nk, α)) ≥ 1}+ o(1),

hence

lim
k→∞

E[
1

nk
logZ(F (nk, α))|Z(F (nk, α)) ≥ 1] ≤ φ0,

i.e., since ψn(α) converges to φs(α) from Lemma 3,

φs(α) ≤ φ0.

Similarly, we have

lim
k→∞

E[
1

mk
logZ(F (mk, α))|Z(F (mk , α)) ≥ 1] ≥ φ0,

and
φs(α) ≥ φ0.

Therefore, φ0 is a plateau of φs(·), and since φs(·) has countably many plateaus, there are countably
many φ0 ∈ φs([0, α

∗)), for which αn(φ0) does not converge.

Proof of Theorem 1. From Theorem 3, there exists a function φs(·), such that for any α ∈ [0, α∗),
we have φs(α) = limn→∞ ψn(α), where ψn(·) is defined in Theorem 3. Let I := φs([0, α

∗)). From
Lemma 2, there exists a countable set C ⊆ I and a function A : I \ C → [0, α∗) such that for any
φ ∈ I \ C, we can define the limit A(φ) = limn→∞ αn(φ). Note that for any φ ∈ I \ C, Theorem 2
implies φs(A(φ)) = φ.

Now, for any α ∈ [0, α∗) which is not a discontinuity point of φs (this holds except on a countable
subset of [0, α∗)), and for any ε > 0, there exists ε′ < ε such that φ∗ := φs(α)− ε′ ∈ I \ C and hence
αn(φ∗) tends to a limit A∗. Note that A∗ > α, since α is not a discontinuity point of φs and since
φs(A∗) = φ∗. Therefore, there exists δ > 0 such that

Pn(α, φs(α)− ε) ≤ Pn(α, φ∗) ≤ Pn(αn(φ∗)− δ, φ∗)

and we conclude from Theorem 2 that Pn(α, φs(α)− ε) → 0 when n→ ∞. With a similar argument,
we conclude that Pn(α, φs(α) + ε) → 1 when n→ ∞.
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4.5 Proofs of Lemma 3, Lemma 4 and Lemma 5

Proof of Lemma 5. In this proof, we keep α fixed and split the n variables into two sets of n1 and
n2 = n − n1 variables, such as {1, . . . , n1} and {n1 + 1, . . . , n}. For convenience, we now work with
the interpolated Poisson model. We construct a random Boolean formula as follows: we first draw
independently the integers M , M1 andM2 under Poisson distributions of parameters αnt, αn1(1− t)
and αn2(1− t) respectively. We then draw independentlyM clauses from the full system, by picking
for each clause the indices of the variables appearing in it independently and uniformly at random
within the set of n variables and by picking ϕ under µ. We also draw independentlyMi clauses from
each sub-systems, by picking for each clause the indices of the variables appearing in it independently
and uniformly at random within the set of ni variables and by picking ϕi under µ. Finally, we take
the conjunction of all clauses to create the formula Fn(t).

Note that the claim of the lemma is equivalent to

E log(1 + Z(Fn(1))) ≥ E log(1 + Z(Fn(0))), (4.29)

which is proved by showing that

d

dt
E log(1 + Z(Fn(t))) ≥ 0.

An elementary calculation yields

d

dt

1

n
E log(1 + Z(Fn(t))) = α [Eϕ,IE log(1 + Z(Fn(t) ∧ ϕ(xI)))− E log(1 + Z(Fn(t)))]

− α
n1
n

[Eϕ1,I1E log(1 + Z(Fn(t) ∧ ϕ1(xI1)))− E log(1 + Z(Fn(t)))]

− α
n2
n

[Eϕ2,I2E log(1 + Z(Fn(t) ∧ ϕ2(xI2)))− E log(1 + Z(Fn(t)))] ,

where ϕ,ϕ1, ϕ2
iid∼ µ, I ∼ Uk, I1 ∼ Uk

1 , I2 ∼ Uk
2 , all independent, and where Uk, respectively Uk

i ,
denotes the k-th product measure of U , respectively Ui (where U , resp. Ui, denotes the uniform
measure on the n variables, resp. ni variables). Hence, xI = (xi1 , . . . , xik) with i1, . . . , ik iid uniform
over the n variables.

We then have

Eϕ,IE log(1 + Z(Fn(t) ∧ ϕ(xI)))− E log(1 + Z(Fn(t))) = Eϕ,IE log〈ϕ(XI)〉

where X is uniformly drawn within the augmented solution space S(Fn∗(t)) = S(Fn(t))∪{∗}, where
∗ is an assignment which returns true on any Boolean functions, and 〈 · 〉 denotes the expectation
with respect to X. Note that

Eϕ,IE log〈ϕ(XI)〉 = −Eϕ,IE

∞
∑

l=1

〈ϕ̃(XI)〉l
l

. (4.30)

where ϕ̃ = 1 − ϕ. We now introduce the ‘replicas’ X(r), which are independent and identically
distributed copies of X. We then have

〈ϕ̃(XI)〉l = 〈
l

∏

r=1

ϕ̃(X
(r)
I )〉, ∀l ≥ 1.
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We are done if we can show that for any realizations of the X(r)’s and for any l ≥ 1,

Eϕ,I

l
∏

r=1

ϕ̃(X
(r)
I )− n1

n
Eϕ,I1

l
∏

r=1

ϕ̃(X
(r)
I1

)− n2
n
Eϕ,I2

l
∏

r=1

ϕ̃(X
(r)
I2

) ≥ 0. (4.31)

Note that

Eϕ,I

l
∏

r=1

ϕ̃(X
(r)
I ) = EϕEP̂

l
∏

r=1

ϕ̃(ξ(r)) (4.32)

where ξ(1), . . . , ξ(l)
iid∼ P̂ and where P̂ is the empirical distribution of X

(1)
I , . . . ,X

(l)
I , i.e. the distribu-

tion on {−1, 1}kl given by

P̂ (x
(1)
1 , . . . , x

(1)
k , . . . , x

(l)
1 , . . . , x

(l)
k ) =

k
∏

i=1

P̄ (x
(1)
i , . . . , x

(l)
i )

with

P̄ (x
(1)
i , . . . , x

(l)
i ) =

#{i ∈ {1, . . . , n} : (X
(1)
i , . . . ,X

(l)
i ) = (x

(1)
i , . . . , x

(l)
i )}

n
and similarly

Eϕ,Is

l
∏

r=1

ϕ̃(X
(r)
Ii

) = EϕEP̂s

l
∏

r=1

ϕ̃(ξ(r)s ), s = 1, 2 (4.33)

where ξ
(1)
s , . . . , ξ

(l)
s

iid∼ P̂s and where P̂s is the empirical distribution of X
(1)
Is
, . . . ,X

(l)
Is
, i.e. the distri-

bution on {−1, 1}kl given by

P̂s(x
(1)
1 , . . . , x

(1)
k , . . . , x

(l)
1 , . . . , x

(l)
k ) =

k
∏

i=1

P̄s(x
(1)
i , . . . , x

(l)
i ), s = 1, 2

with

P̄1(x
(1)
i , . . . , x

(l)
i ) =

#{i ∈ {1, . . . , n1} : (X
(1)
i , . . . ,X

(l)
i ) = (x

(1)
i , . . . , x

(l)
i )}

n1
,

P̄2(x
(1)
i , . . . , x

(l)
i ) =

#{i ∈ {n1 + 1, . . . , n} : (X
(1)
i , . . . ,X

(l)
i ) = (x

(1)
i , . . . , x

(l)
i )}

n2
.

Now, using the operator Γl defined by (3.1) in H2, i.e.,

Γl : M1({−1, 1}l) ∋ ν 7→ EϕEZ(r)

l
∏

r=1

(1− ϕ(Z(r)))

where Z(r) are Boolean random vectors of dimension k such that Zi = (Z
(1)
i , . . . , Z

(l)
i ), i = 1, . . . , k,

are i.i.d. with distribution ν, note that (4.31) is equivalent to

Γl(P̄ )− n1
n
Γl(P̄1)−

n2
n
Γl(P̄2) ≥ 0,

which holds by convexity of Γl, since

P̄ =
n1
n
P̄1 +

n2
n
P̄2.

19



Proof of Lemma 3. We have

Γl(ν) = EϕEZ(r)

l
∏

r=1

ϕ̃(Z(r))

= Eϕ

∑

z(1),...,z(l)∈{−1,1}k

l
∏

r=1

ϕ̃(z(r))νk(z(1), . . . , z(l))

= Es(j)

∑

z(1),...,z(l)∈{s(1),...,s(J)}

k
∏

i=1

ν((z(1))i, . . . , (z
(l))i)

=
∑

i1,...,il∈{1,...,J}

[E
s
(j)
1
ν(s

(i1)
1 , . . . , s

(il)
1 )]k

and Γl is convex for any l ≥ 1.

Proof of Lemma 4. We need to check the convexity of

ν 7→ EsEZ(r)

l
∏

r=1

(1− ϕs(Z
(r))) (4.34)

where Z(r) are Boolean random vectors of dimension k such that Zi = (Z
(1)
i , . . . , Z

(l)
i ), i = 1, . . . , k,

are i.i.d. with distribution ν,

ϕs(x) = 1(
k
∏

i=1

xi = s)

and
µ(ϕ1) = µ(ϕ−1) = 1/2.

Note that

EZ(r)

l
∏

r=1

(1− ϕs(Z
(r))) = P{

k
∏

i=1

Zi = −sl} (4.35)

where −sl denotes the vector (−s, . . . ,−s) with l components and where
∏k

i=1 Zi denotes the
component-wise product of the vectors Zi. Since the Zi are i.i.d. under ν and valued in {−1, 1},
and since we are interested in their product, we now work with their Fourier transform. For any
Q ⊆ {1, . . . , l}, let

f(Q) = fZ1(Q) = E

∏

r∈Q

Z
(r)
1 .

Note that we can recover the distribution of Z1 by knowing f(Q) for any Q, in particular

P{Z1 = 1l} =
∑

Q∈2[l]

f(Q)

and
P{Z1 = −1l} =

∑

Q∈2[l]

(−1)|Q|f(Q).
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Moreover,
f∏k

i=1 Zi
(Q) = f(Q)k,

hence,

EsP{
k
∏

i=1

Zi = −sl} = 1/2
∑

Q∈2[l]

f(Q)k + 1/2
∑

Q∈2[l]

(−1)|Q|f(Q)k

=
∑

Q∈2[l]

|Q| even

f(Q)k.

Since f(Q) is linear in ν (it is the expectation of
∏

r∈Q Z
(r)
1 where (Z

(1)
1 , . . . , Z

(l)
1 ) ∼ ν), the above

summation is clearly convex in ν if k is even.
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