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Abstract

We prove that a balanced Boolean function on Sn whose Fourier transform is highly concentrated
on the first two irreducible representations of Sn, is close in structure to a dictatorship, a function
which is determined by the image or pre-image of a single element. As a corollary, we obtain a
stability result concerning extremal isoperimetric sets in the Cayley graph on Sn generated by the
transpositions.

Our proof works in the case where the expectation of the function is bounded away from 0 and
1. In contrast, [7] deals with Boolean functions of expectation O(1/n) whose Fourier transform is
highly concentrated on the first two irreducible representations of Sn. These need not be close to
dictatorships; rather, they must be close to a union of a constant number of cosets of point-stabilizers.

Keywords: Fourier transform, stability, symmetric group.

1 Introduction

1.1 Background

This paper (together with [7] and [8]) is part of a trilogy dealing with stability and ‘quasi-stability’
results concerning Boolean functions on the symmetric group, which are of ‘low complexity’, in a Fourier-
theoretic sense.

Let us begin with some notation and definitions that will enable us to present the Fourier-theoretic
context of our results. Following this, the paper will be essentially Fourier-free, since Lemmas 1 and 2
will translate the relevant Fourier notion into a more combinatorial one.

We write [n] := {1, 2, . . . , n}, and we let Sn denote the symmetric group on [n]. If i, j ∈ [n], we
write Tij := {π ∈ Sn : π(i) = j}. We call the Tij ’s the 1-cosets of Sn, since they are cosets of point-
stabilizers. Similarly, for t > 1, and for two ordered t-tuples of distinct elements of [n], I = (i1, . . . , it)
and J = (j1, . . . , jt), we write TIJ := {π ∈ Sn : π(I) = J}. We call the TIJ ’s the t-cosets of Sn. If
F ⊂ Sn, we write χF for its characteristic function, i.e. the Boolean function on Sn with χF(π) = 1
iff π ∈ F . Abusing notation slightly, we will often use Tij and TIJ to denote their own characteristic
functions.

We say that a Boolean function f : Sn → {0, 1} is a dictatorship if there exists i ∈ [n] and X ⊂ [n]
such that f(π) = χ{π(i)∈X} for all π ∈ Sn, or f(π) = χ{π−1(i)∈X} for all π ∈ Sn, i.e. iff f is determined
by the image or the preimage of just one element of [n]. It is easy to see that a Boolean function f on
Sn is a dictatorship if and only if it is the characteristic function of a disjoint union of 1-cosets, i.e. a
sum of Ti,j ’s.

If f : Sn → R, the Fourier transform of f at an irreducible representation ρ of Sn is defined by

f̂(ρ) =
1

n!

∑

π∈Sn

f(π)ρ(π).
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Recall that the equivalence classes of irreducible representations of Sn are indexed by partitions of n.
We refer the reader to [18] for background on the representation theory of Sn, and to [19] for background
on the Fourier transform on non-Abelian groups.

For any non-negative integer t, we let Ut denote the vector space of real-valued functions on Sn whose
Fourier transform is supported on irreducible representations indexed by partitions of n, whose largest
part has size at least n − t. (Note that a partition λ of n has largest part of size at least n − t if and
only if λ � (n− t, 1t), where � denotes the lexicographical order on partitions of n.) If f is a real-valued
function on Sn, we define the degree of f to be the minimum t such that f ∈ Ut. This is a measure of
the complexity of f , analogous to the degree of a Boolean function on {0, 1}n. Indeed, it is precisely the
minimum possible total degree of a polynomial in the Tij ’s which is equal to f .

Note that U0 is the space of functions whose Fourier transform is supported on the trivial represen-
tation — i.e., the space of constant functions. The space U1, which is the main subject of this paper, is
the space of functions whose Fourier transform is supported on the two irreducible constituents of the
permutation representation. As promised, we now de-Fourierize this definition.

First, an easy fact:

Lemma 1. For any t ∈ N, the indicators of t-cosets (the functions TIJ), are in Ut.

Next, a slightly more intricate fact, observed and proved in [9]:

Lemma 2. For any t ∈ N, the TIJ ’s span Ut.

In this paper, which deals only with U1, we will henceforth use the definition U1 = Span{Tij : i, j ∈ [n]}.
Finally, we recall a theorem from [9], which characterizes the Boolean functions in U1.

Theorem 1 (Ellis, Friedgut, Pilpel). Let f : Sn → {0, 1} be in U1. Then f is a dictatorship. (Equiva-
lently, f is the characteristic function of a disjoint union of 1-cosets.)

The goal of the current paper, together with [7], is to provide stability versions of Theorem 1.
This is in the spirit of similar projects in the Abelian case, which have proved extremely useful and
applicable, see e.g. [3], [13], [12], [14], [15] and [17]. The general idea in applications is to prove results
in extremal combinatorics using Fourier analysis, and then use the Fourier stability results in order to
deduce combinatorial stability results. A good example of this is Theorem 6 in this paper, where we
characterize the almost-extremal sets for the edge-isoperimetric inequality in the transposition graph on
Sn (the Cayley graph on Sn generated by the transpositions). See [7] for more about applications in the
symmetric group setting.

We remark that if t ≥ 2, then a Boolean function in Ut is not necessarily the characteristic function of
a union of t-cosets. Theorem 27 in [9] states that a Boolean function in Ut is the characteristic function
of a disjoint union of t-cosets, but this is false; a counterexample, and the error in the proof, is pointed
out by the second author in [11]. A counterexample when t = 2 is as follows. Let n ≥ 8. For any
permutation π ∈ Sn, define x = x(π) ∈ {0, 1}4 by xi = χ{π(i)∈[4]}, and consider the function

f : Sn → {0, 1}; π 7→ χ{x1≥x2≥x3≥x4 or x1≤x2≤x3≤x4}.

It can be checked that f ∈ U2, but the value of f clearly cannot be determined by fixing the images
of at most two elements of [n], so neither f nor 1 − f is a union of 2-cosets. It is easy to use f to
construct a counterexample for each t ≥ 3, by considering a product of f with the characteristic function
of the pointwise stabilizer of a (t− 2)-set. We note that the main application of Theorem 27 in [9] was
to characterize (for large n) the t-intersecting families in Sn of maximum size (i.e., to characterize the
cases of equality in the Deza-Frankl conjecture); fortunately, this characterization follows immediately
e.g. from the Hilton-Milner type result of the first author in [6], where the proof does not depend on
Theorem 27 in [9] (and indeed predates the latter).

The division between the three papers in our trilogy is as follows: in [7], we deal with Boolean
functions which are close to U1, and have expectation O(1/n). We prove that such a functions must be
close to a sum of dictatorships — equivalently, close to the characteristic function of a union of 1-cosets.
In the current paper, we prove that Boolean functions that are close to U1, and whose expectation is
bounded away from 0 and 1, must be close to a single dictatorship. Finally, in [8], we deal with Boolean
functions close to Ut, with expectation O(n−t); we prove that they must be close to the characteristic
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function of a union of t-cosets. (The latter is perhaps especially interesting, in view of the fact that a
Boolean function in Ut with expectation O(n−t) is not necessarily the characteristic function of a union
of t-cosets.) The term ‘quasi-stability’ in the titles of the other two papers refers to the fact that a
Boolean function such as T11 + T22 − T11 · T22 is O(1/n2) close to U1, and is indeed O(1/n2) close to
T11+T22, which is a sum of two dictatorships, but is not O(1/n2) close to any single dictatorship. In the
case studied in this paper, we have bona fide stability, as the functions in question turn out to be close
to a dictator. For both ranges of expectation we have studied, however, the Boolean functions which are
close to U1 are close to the characteristic function of a union of 1-cosets. Interestingly, the proof in this
paper is quite different from the proof in [7]. It would be interesting to find a common proof that covers
the complete spectrum of possible values of E[f ].

The outline of the paper is as follows. In the rest of this section, we set up our notation, state our
main result, and outline the proof. In section 2, we prove the main theorem for the case of functions
with expectation = 1/2. Next, in section 3, we adapt the proof to deal with functions with expectation
bounded away from 0 and 1. Finally, in section 4, we give an application of our main theorem: a
characterization of the almost-extremal sets for the edge-isoperimetric inequality for the transposition
graph on Sn.

1.2 Notation

We now outline our notation systematically. If F ⊂ Sn, we let χF denote the characteristic function of
F , i.e. χF : Sn → {0, 1} with χF(π) = 1 iff π ∈ F . If B is a statement, its indicator 1B is equal to 1 if
B is true and 0 if B is false.

We write [n] := {1, 2, . . . , n}. Let Sn denote the symmetric group on [n], i.e. the group of all
permutations of [n]. For each i, j ∈ [n], we define

Tij = {π ∈ Sn : π(i) = j}

to be the set of all permutations sending i to j; we call these the 1-cosets of Sn, as they are the cosets
of stabilisers of points. Abusing notation slightly, we will also use Tij to denote its own characteristic
vector, more properly written as χTij

.
We define U1(n) to be the subspace of RSn spanned by {Tij : i, j ∈ [n]}. When n is understood, we

abbreviate this to U1.
We equip RSn with the inner product induced by the uniform probability measure on Sn:

〈f, g〉 = 1

n!

∑

π∈Sn

f(π)g(π).

The expectation of a real-valued function on Sn will mean the expectation with respect to the uniform
probability measure, i.e.

E[f ] =
1

n!

∑

π∈Sn

f(π).

We let || · ||2 denote the induced Euclidean norm; i.e.

||f ||2 =
√

E[f2] =

√
1

n!

∑

π∈Sn

f(π)2.

The distance between functions, or between a function and a subspace, will mean the Euclidean distance
as defined by this norm.

Throughout, if u and v are functions of several variables, the notation u = O(v) will mean that there
exists an absolute constant C (not depending upon any of the variables) such that |u| ≤ C|v| pointwise.

The notation x± ǫ is shorthand for the closed interval [x− ǫ, x+ ǫ]. If y ∈ x± ǫ, then we say that y
is ǫ-close to x. If y /∈ x ± ǫ, then we say that y is ǫ-far from x. For a set S, we say that x is ǫ-close to
S if |x− y| ≤ ǫ for some y ∈ S. Otherwise, we say that x is ǫ-far from S.

We will be dealing throughout with functions on finite probability spaces (i.e., with random variables);
we will frequently refer to these simply as ‘functions’ (rather than as ‘random variables’), when the
underlying probability space is understood.
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1.3 Main result

Our main goal in this paper is to prove the following theorem.

Theorem 2. Let F ⊂ Sn be a family of permutations with size |F| = c · n!, satisfying

E[(f − f1)
2] = ǫ1,

where f = 2χF − 1, and f1 is the orthogonal projection of f onto U1. Then there exists a family G ⊂ Sn
which is a union of dn disjoint 1-cosets, such that

|d− c| = O

(

ǫ
1/7
1 +

1

n1/3

)

and
|G△F|
n!

= O

(
1

η

(

ǫ
1/7
1 +

1

n1/3

))

,

where η = min{c, 1− c}.

Remark. It is convenient to work with the ±1-valued function f , rather than the 0/1-valued function
χF . Note that if (χF )1 denotes the orthogonal projection of χF onto U1, then the square of the Euclidean
distance of χF from U1 is

E[(χF − (χF )1)
2] = 1

4 E[(f − f1)
2].

Throughout the proof, a Boolean function will mean a function taking values in {±1}, rather than {0, 1}.

For the entire proof, we will make the assumptions

n ≥ 4, (1)

1

n7/3
≤ ǫ1 < ǫ0, (2)

where ǫ0 > 0 depends only upon c. Later, we will show how to get rid of these assumptions. During
the proof, we will use the phrase since ǫ1 is small enough, P holds to mean that for some ǫ0 > 0, the
statement P follows from ǫ1 < ǫ0.

For pedagogical reasons, we will first assume that c = 1/2. This assumption does not affect the proof
very much, but it simplifies the expressions appearing therein. After completing the proof in this case,
we will show how to extend it to general c, carefully noting the relation between ǫ0 and c.

1.4 Proof overview

We adopt a simple canonical way to express f1 as a linear combination of the form

f1 =
∑

i,j

aijTij ;

we then study the matrix of coefficients (aij). This offers a nice visualization of the function, due to the
observation that

f1(π) =
n∑

i=1

aiπ(i),

i.e. f1(π) is equal to the sum of the entries on a generalised diagonal of the matrix (aij). (A generalised
diagonal of an n×n matrix is a set of n entries with one entry from each row and one from each column,
so corresponds to a permutation of {1, 2, . . . , n}.)

Note that the Tij ’s are linearly dependent (the dimension of U1 is only (n − 1)2 + 1, whereas there
are n2 different Tij ’s), so there are many possible ways to represent f1 in such a manner. It turns out
that a particularly useful choice (when c = 1/2) is

aij = (n− 1)〈f, Tij〉. (3)
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To illustrate this, here is the matrix corresponding to the dictatorship F = {π ∈ Sn : 1 ≤ π(1) ≤ n/2}
(where n is even): n

2
︷ ︸︸ ︷










1− 1
n · · · 1− 1

n
1
n − 1 · · · 1

n − 1
− 1
n · · · − 1

n
1
n · · · 1

n
− 1
n · · · − 1

n
1
n · · · 1

n
...

...
...

...
− 1
n · · · − 1

n
1
n · · · 1

n










This matrix exemplifies the usefulness of our choice aij = (n−1)〈f, Tij〉: the entries that are significant
for our dictatorship (row 1, which depends on the image of 1) are all close in absolute value to 1, whereas
all other entries are close to 0. The idea of the proof is to discover some properties of the matrix (aij),
and then show that they imply that it looks roughly like the matrix above — namely, that it has precisely
one row or column in which almost half the entries are very close to 1 and almost half the entries are
very close to −1, and that almost all the other entries in the matrix are very close to 0.

The proof breaks down into two main parts. In the first part, we show that for almost all π ∈ Sn, the
generalised diagonal defined by π, namely {aiπ(i) : 1 ≤ i ≤ n}, has precisely one entry which is ‘large’
(close to 1 or −1), and all the rest of its entries are small. In the second part, we deduce that (aij) must
have either a row or a column, almost all of whose entries are large. This will enable us to complete the
proof.

Part 1

Step 1 (§ 2.2, § 2.3). Consider any two sets X,Y ⊂ {1, . . . , n} with |X | = |Y |, and the corresponding
set of permutations

TX,Y = {π ∈ Sn : π(X) = Y }.
When calculating f1 on TX,Y , we only need to look at the submatrices of (aij) defined by X × Y and by
X × Y . So it is natural to define, for π1 a bijection from X to Y and π2 a bijection from X to Y ,

g1(π1) =
∑

i∈X

aiπ1(i), g2(π2) =
∑

i∈X

aiπ2(i), g(π1, π2) = g1(π1) + g2(π2),

where (π1, π2) denotes the permutation of Sn whose restrictions to X and X are π1 and π2 respectively.
Notice that g is just the restriction of f1 to TX,Y . For most choices of X,Y , these functions are ‘well-
behaved’, meaning that all of the following hold (§ 2.2):

• For most permutations π ∈ TX,Y , g(π) is close to ±1.

• Furthermore, the function g is close to ±1 in an L2 sense.

• Both E g1 and E g2 are close to their expected value, 0.

Next, we note that, crucially, the function g (which can be viewed as a random variable) is the sum of
two independent random variables g1, g2, and yet is concentrated near 1 and −1. How can that happen?
We show (§ 2.3) that it must be the case that one of the gi’s (say g1) is concentrated around a constant
C, and that the other (say g2) is concentrated around two values, −C − 1 and −C + 1. Using the
observations above, it follows that C is very close to 0.

Step 2 (§ 2.4). For any permutation π ∈ Sn, we consider all pairs (X,Y ) compatible with it, i.e.
all pairs (X, π(X)). For most choices of π and for most choices of compatible (X,Y ), it will be true that
one of g1(π1), g2(π2) is close to 0, and the other is close to ±1. Note that

g1(π1) =
∑

i∈X

aiπ(i), g2(π2) =
∑

i∈X

aiπ(i).

Put differently, for most permutations π ∈ Sn it is true that for most ways of splitting the generalised
diagonal D = {aiπ(i) : 1 ≤ i ≤ n} into two parts, one part sums to roughly 0, and the other to roughly
±1. That can only happen if almost all entries in D are small, and one is close in magnitude to 1.
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Part 2 (§ 2.5)

This part uses induction on n to prove the following claim. If an n × n matrix satisfies property Q(δ),
namely a (1 − δ)-fraction of its generalised diagonals have a single entry which is large in magnitude,
then the matrix has a strong line — either a row or a column, a (1 − Cδ)-fraction of whose entries are
large. (Here, C does not depend on n.)

Base case. When n is small compared to 1/δ, we can prove directly that there is a line where all of
the entries are large.

Induction step. Given an n× n matrix M satisfying Q(δ) and a set X of n/2 rows, we can always
find a set Y of n/2 columns such that either X×Y or X×Y also satisfy Q(δ). The induction hypothesis
shows that the relevant submatrix has a strong line. The strong lines for different choices of X must be
the same (on the same row or column of M), since otherwise the probability that a generalized diagonal
passes through two large entries would be too big. Altogether, these strong lines constitute a line ℓ which
is almost as strong as required. A small bootstrapping argument shows that ℓ must indeed have the
required number of large entries.

Culmination (§ 2.6)

At this stage of the proof, we know that the matrix (aij) has a line, say row i, almost all of whose entries
are close either to −1 or to 1. It follows that for most j, it holds that (n− 1)!〈f, Tij〉 is close to 0 or to 1.
The disjoint union of the 1-cosets corresponding to those entries close to 1 form a good approximation
to F .

Part 2 is largely independent of Part 1. Part 1 shows that most generalized diagonals of the matrix
(aij) are composed of one large entry and n−1 small entries. Part 2 abstracts this situation, and deduces
the existence of a strong line. The results of Part 2 work for any definition of which entries are large and
which are small, and so are of independent interest.

Glossary of terminology Restrictions are defined in the beginning of § 2.2. Typical restrictions are
defined in the end of § 2.2. Good restrictions are defined in the beginning of § 2.5. Functions which are
almost Boolean or almost close to C are defined in § 2.2, just before Lemma 6. Partitions, good partitions
and good permutations are defined in the beginning of § 2.4. Small and large entries are defined in the
beginning of § 2.5. Strong lines (as well as strong rows and columns) are defined in § 2.5, just after
Lemma 13.

2 Proof when c = 1/2

2.1 Matrix representation

Let F and f be as in the statement of the theorem. Since f1 ∈ U1, it can be represented as a linear
combination of 1-cosets Tij . We single out one such representation:

aij = (n− 1)〈f, Tij〉. (3)

We start by showing that the aij do indeed represent f1.

Lemma 3. We have
f1 =

∑

i,j

aijTij .

Furthermore, each row and each column of the matrix (aij) sums to zero:

∑

j

aij = 0 ∀i ∈ [n],
∑

i

aij = 0 ∀j ∈ [n].

For each permutation π ∈ Sn, we have

f1(π) =
∑

i

aiπ(i).
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Proof. The ‘real’ proof of this fact uses the Fourier inversion formula, and the characters of the first two
irreducible representations of Sn. This is how we derived the formula. However, to avoid digression, we
offer a simpler, ad hoc argument.

The second statement follows from a simple calculation. For each i,

∑

j

〈f, Tij〉 = 〈f, 1〉 = 2〈χF , 1〉 − 〈1, 1〉 = 0,

so ∑

j

aij = 0.

Similarly, for each j,
∑

i

〈f, Tij〉 = 〈f, 1〉 = 0,

so ∑

i

aij = 0.

For the first statement, both sides of the equation are in U1, so it is enough to show that both sides
have the same inner product with each Tij. Note that 〈Tij , Tij〉 = 1/n, 〈Tij , Tkl〉 = 1

n(n−1) if i 6= k and

j 6= l, and 〈Tij , Tkl〉 = 0 if i 6= k or j 6= l. Therefore,

〈∑

k,l

aklTkl, Tij
〉
=
aij
n

+
1

n(n− 1)

∑

k 6=i
l 6=j

akl =
aij
n

+
aij

n(n− 1)
=

aij
n− 1

= 〈f, Tij〉 = 〈f1, Tij〉,

using
∑

k 6=i
l 6=j

akl =
∑

k,l

akl −
∑

l

ail −
∑

k

akj + aij = aij . (4)

Finally, the formula for f1(π) follows immediately from the first statement.

The preceding lemma shows that each value of f1 is equal to the sum of a generalised diagonal in the
matrix (aij).

Next, we calculate the ℓ2 norm of the vector formed by the entries aij .

Lemma 4. We have ∑

i,j

a2ij = (n− 1)(1− ǫ1).

Proof. Since f1 is an orthogonal projection of f , we have

1 = ‖f‖22 = ‖f1‖22 + ‖f − f1‖22 = ‖f1‖22 + ǫ1.

Therefore, ‖f1‖22 = 1− ǫ1. On the other hand, we have

‖f1‖22 =
∑

i,j,k,l

aijakl〈Tij , Tkl〉

=
1

n

∑

i,j

a2ij +
1

n(n− 1)

∑

i,j

∑

k 6=i
l 6=j

aijakl

=
1

n

∑

i,j

a2ij +
1

n(n− 1)

∑

i,j

a2ij =
1

n− 1

∑

i,j

a2ij ,

using (4).
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2.2 Random restrictions

For X,Y ⊂ [n] of equal size, let TX,Y denote the set of all permutations sending X to Y :

TX,Y = {π ∈ Sn : π(X) = Y )}.
We call such a pair (X,Y ) a restriction. Let g(X,Y ) denote the subvector of f1 supported on TX,Y .

The final part of Lemma 3 shows that every value of f1 is the sum of a generalized diagonal of (aij).
It is natural to decompose g(X,Y ) into two functions, one depending on the submatrix supported by
X × Y , the other depending on the submatrix supported by X × Y :

g1(X,Y ) =
∑

i∈X,j∈Y

aijTij , g2(X,Y ) = g1(X,Y ).

(In the definition of g1, Tij is, strictly speaking, the restriction of χTij
to TX,Y .) Lemma 3 immediately

implies that g(X,Y ) = g1(X,Y ) + g2(X,Y ). Note that g1(X,Y ) and g2(X,Y ) are both supported on
TX,Y .

We now define a probability distribution R over the set of all restrictions, as follows. Each i ∈ [n] is
included in X independently at random with probability 1/2. Then, Y is chosen uniformly at random
from all sets of size |X |. Note that this definition is symmetric between X and Y , and furthermore,
(X,Y ) has the same distribution as (X,Y ).

Most of this subsection will be devoted to the study of properties of typical restrictions. We start by
calculating the mean and variance of E[g1(X,Y )] when (X,Y ) ∼ R. This will enable us to show that
E[g1(X,Y )] and E[g2(X,Y )] are typically small in magnitude.

Lemma 5. Let X,Y ⊂ [n] with |X | = |Y |, and define

m(X,Y ) = E
TX,Y

[g1(X,Y )],

where the expectation is with respect to the uniform probability measure on TX,Y .
If (X,Y ) ∼ R, then the mean and variance of m(X,Y ) with respect to R satisfy

ER[m] = 0

and
VR[m] ≤ 1

2n .

Proof. We start with a formula for m(X,Y ):

m(X,Y ) =
∑

i∈X,j∈Y

aij E
TX,Y

[Tij ] =
1

|X |
∑

i∈X,j∈Y

aij .

Conditioned upon |X |, we have

ER[m(X,Y )||X |] = 1

|X |
|X |2
n2

∑

i,j

aij = 0.

Hence, ER[m] = 0.
The next step is to calculate ER[m2]. Expanding the formula, we get

|X |2m(X,Y )2 =
∑

i,j

1{i∈X,j∈Y }a
2
ij +

∑

i

∑

j 6=l

1{i∈X,j,l∈Y }aijail

+
∑

j

∑

i6=k

1{i,k∈X,j∈Y }aijakj +
∑

k 6=i,
l 6=j

1{i,k∈X,j,l∈Y }aijakl.

Taking expectations, we get

|X |2ER[m(X,Y )2||X |] = Pr[i ∈ X ∧ j ∈ Y ]
∑

i,j

a2ij + Pr[i ∈ X ∧ j, l ∈ Y ]
∑

i

∑

l 6=j

aijail

+ Pr[i, k ∈ X ∧ j ∈ Y ]
∑

k 6=i

∑

j

aijakj + Pr[i, k ∈ X ∧ j, l ∈ Y ]
∑

k 6=i,
l 6=j

aijakl.
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Using (4), together with
∑

l 6=j

ail =
∑

k 6=i

akj = −aij

(from Lemma 3) we obtain

n2
ER[m(X,Y )2||X |] =

∑

i,j

a2ij − 2
|X | − 1

n− 1

∑

i,j

a2ij +
(|X | − 1)2

(n− 1)2

∑

i,j

a2ij

=

(

1− |X | − 1

n− 1

)2 ∑

i,j

a2ij .

Taking expectations and using the estimate
∑

i,j a
2
ij ≤ n− 1 provided by Lemma 4, we conclude that

ER[m(X,Y )2] =
n+ 1

4n(n− 1)2

∑

i,j

a2ij

≤ n+ 1

4n(n− 1)

≤ 1

2n
.

The following lemma states some properties that a random restriction enjoys with probability close
to 1. The lemma uses the following nomenclature for functions on a probability space (a.k.a. random
variables):

• A function φ is (δ, ǫ)-almost Boolean if with probability at least 1−δ, φ is ǫ-close to ±1. In symbols,

Pr[|φ| ∈ 1± ǫ] ≥ 1− δ.

• A function φ is (δ, ǫ)-almost close to C if with probability at least 1 − δ, φ is ǫ-close to C. In
symbols,

Pr[|φ− C| ≤ ǫ] ≥ 1− δ.

Lemma 6. Let (X,Y ) ∼ R. With probability at least 1− 3ǫ
1/7
1 , (X,Y ) satisfies the following properties:

(a) g(X,Y ) is (ǫ
4/7
1 , ǫ

1/7
1 )-almost Boolean.

(b) E[g1(X,Y )] and E[g2(X,Y )] are ǫ
1/7
1 -close to zero.

(c) E[(|g(X,Y )| − 1)2] ≤ ǫ
6/7
1 .

Proof. We claim that each of the different parts holds with probability at least 1 − ǫ
1/7
1 . The lemma

follows using a union bound. We will use the fact that selecting a random partition (X,Y ) ∼ R and then
selecting a uniform random element in TX,Y is the same as choosing a uniform random permutation.
This holds because for any X , the sets (TX,Y : |Y | = |X |) partition Sn.

We first deal with part (a). Suppose for a contradiction that

Pr
R

[

Pr
TX,Y

[|g(X,Y )| /∈ 1± ǫ
1/7
1 ] ≥ ǫ

4/7
1

]

> ǫ
1/7
1 .

It follows that Pr[|f1| /∈ 1± ǫ
1/7
1 ] > ǫ

5/7
1 . This implies that

E[(f1 − f)2] ≥ E[(|f1| − 1)2] > ǫ
5/7
1 (ǫ

1/7
1 )2 = ǫ1.

This contradicts E[(f1 − f)2] = ǫ1, proving the claim for part (a).
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For part (b), we use Lemma 5, which gives the mean and variance (with respect toR) of ETX,Y
[g1(X,Y )].

We have

Pr
R

[∣
∣
∣
∣
E

TX,Y

[g1(X,Y )]

∣
∣
∣
∣
≥ 1

ǫ
1/14
1

√
n

]

≤ ǫ
1/7
1 n

2n
=

1

2
ǫ
1/7
1 ,

using Chebyshev’s inequality. Assumption (2) states that ǫ1 ≥ 1/n7/3. Hence ǫ
3/14
1 ≥ 1/

√
n, and so

ǫ
1/7
1 ≥ ǫ

−1/14
1 /

√
n. Therefore,

Pr
R

[∣
∣
∣
∣
E

TX,Y

[g1(X,Y )]

∣
∣
∣
∣
≥ ǫ

1/7
1

]

≤ 1

2
ǫ
1/7
1 .

Since (X,Y ) ∼ R, the same holds for g2(X,Y ). The claim for part (b) follows, using a union bound.
For part (c), the starting point is

E[(|f1| − 1)2] ≤ E[(f1 − f)2] = ǫ1.

Therefore,

E
R

[

E
TX,Y

[(|g(X,Y )| − 1)2]

]

= E[(|f1| − 1)2] ≤ ǫ1.

The claim now follows from Markov’s inequality.

We call a restriction typical if it satisfies the properties (a), (b) and (c) in Lemma 6.

2.3 Decomposition under a typical restriction

In this subsection, we show that if (X,Y ) is a typical restriction (meaning a restriction satisfying the
properties listed in Lemma 6), then the functions g1(X,Y ) and g2(X,Y ) have a particularly simple
structure: up to translation, one of them is almost constant, and the other is almost Boolean.

Many of the lemmas in this subsection start by assuming that a particular restriction (X,Y ) is typical.
In these lemmas, we will write g, g1, g2 for g(X,Y ), g1(X,Y ), g2(X,Y ).

The following technical lemma tackles the following situation. Suppose that some function φ is almost
close to C0. Can we deduce that C0 ≈ Eφ? The lemma gives a sufficient condition (in the case C0 = 0).

Lemma 7. Suppose that a function φ on a probability space satisfies the following properties:

(a) The function φ is (p, ǫ)-almost close to 0.

(b) There exists C ∈ R such that E[(|φ+ C| − 1)2] ≤ δ.

Then

|E[φ]| ≤ 3ǫ+ 3p+ 6

√

δ

1− p
.

Remark. Condition (b) says that φ+C is almost Boolean in the L2 sense. As we shall see, conditions
(a) and (b) together imply that C must be close to 1 or close to −1.

Proof. Without loss of generality, we may assume that C ≥ 0. We start by establishing the bound

|1− C| ≤ ǫ+

√

δ

1− p
. (5)

We distinguish between three cases: C < 1− ǫ, C > 1+ ǫ and |1−C| ≤ ǫ. In the latter case, we already
have the desired bound.

Suppose C < 1− ǫ. Whenever |φ| ≤ ǫ, we have

1− |φ+ C| ≥ 1− C − ǫ > 0.

Since this happens with probability at least 1− p, we deduce that (1− p)(1−C − ǫ)2 ≤ δ, verifying (5).
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Suppose next that C > 1 + ǫ. Whenever |φ| ≤ ǫ, we have

|φ+ C| − 1 ≥ C − ǫ− 1 > 0.

Since this happens with probability at least 1 − p, we deduce that (1 − p)(C − ǫ − 1)2 ≤ δ, again
verifying (5). This completes the proof of (5).

When |t| ≥ 1, we have |t| ≤ t2, and so

E[||φ+ C| − 1|χ{φ+C≥2}] ≤ E[(|φ+ C| − 1)2χ{φ+C≥2}] ≤ δ.

The triangle inequality implies that

∣
∣E[(φ + C − 1)χ{φ+C≥2}]

∣
∣ ≤ E[|φ+ C − 1|χ{φ+C≥2}] = E[||φ+ C| − 1|χ{φ+C≥2}] ≤ δ.

When t ≤ −2, we have |t− 1| = 1− t ≤ 3(−t− 1) = 3(|t| − 1) = 3||t| − 1|, and so, as before,

E[|φ+ C − 1|χ{φ+C≤−2}] ≤ 3E[||φ+ C| − 1|χ{φ+C≤−2}] ≤ 3δ.

The triangle inequality implies that

∣
∣E[(φ+ C − 1)χ{φ+C≤−2}]

∣
∣ ≤ 3δ.

Combining the two together, we get

∣
∣E[(φ+ C − 1)χ{|φ+C|≥2}]

∣
∣ ≤ 4δ.

Define ψ = φ+ C − 1. Rewriting the last inequality in terms of ψ, we have

∣
∣E[ψχ{|ψ+1|≥2}]

∣
∣ ≤ 4δ.

When |ψ + 1| ≤ 2, |ψ| ≤ 3. When |φ| ≤ ǫ, we have |ψ| ≤ |1− C|+ ǫ ≤ 2ǫ+
√

δ/(1− p). Therefore

|E[ψ]| ≤
∣
∣E[ψχ{|φ|≤ǫ}]

∣
∣+

∣
∣E[ψχ{|φ|>ǫ and |ψ+1|≤2}]

∣
∣+

∣
∣E[ψχ{|ψ+1|≥2}]

∣
∣

≤ 2ǫ+

√

δ

1− p
+ 3p+ 4δ.

We conclude that

|E[φ]| ≤ |E[ψ]|+ |1 − C| ≤ 3ǫ+ 2

√

δ

1− p
+ 3p+ 4δ.

Our first key step is the following lemma, which uses the fact that g1(X,Y ) and g2(X,Y ) are inde-
pendent pieces of g(X,Y ) to deduce that, up to translation, both are close to Boolean. Moreover, at
least one of them is close to being constant.

We will use the following notation, when a restriction (X,Y ) is understood. For a permutation π,
π1 = π|X denotes its restriction to X , and π2 = π|X denotes its restriction to X. Thus, g1 depends only
upon π1, and g2 depends only upon π2.

Lemma 8. Suppose (X,Y ) is a typical restriction. Choose α, β uniformly at random from TX,Y . Then

with probability at least 1− 8ǫ
2/7
1 , one of the following three cases holds:

(a) |g1(α1)− g1(β1)| and |g2(α2)− g2(β2)| ≤ 2ǫ
1/7
1 .

(b) |g1(α1)− g1(β1)| ≤ 2ǫ
1/7
1 and |g2(α2)− g2(β2)| ∈ 2± 2ǫ

1/7
1 .

(c) |g1(α1)− g1(β1)| ∈ 2± 2ǫ
1/7
1 and |g2(α2)− g2(β2)| ≤ 2ǫ

1/7
1 .
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Proof. Typicality implies that Pr[||g| − 1| > ǫ
1/7
1 ] < ǫ

4/7
1 . This implies that with probability at least

1− ǫ
2/7
1 over the choice of π1, it is true that Prπ2 [||g(π)| − 1| > ǫ

1/7
1 ] < ǫ

2/7
1 . So with probability at least

1− 2ǫ
2/7
1 over the choice of (π1, π2), it is true that |g(π)| is ǫ1/71 -close to 1. Thus with probability at least

1− 8ǫ
2/7
1 over the choice of α, β, all of the following are ǫ

1/7
1 -close in magnitude to 1:

x = g1(α1) + g2(α2), y = g1(α1) + g2(β2),

z = g1(β1) + g2(α2), w = g1(β1) + g2(β2).

Since ǫ1 is small enough, each of these four values is unambiguously close to either 1 or −1.
If x, y, z are all close to the same value, then

|g1(α1)− g1(β1)|, |g2(α2)− g2(β2)| ≤ 2ǫ
1/7
1 .

If x and y are close to different values, then

|g2(α2)− g2(β2)| ∈ 2± 2ǫ
1/7
1 .

Without loss of generality, we may assume that x is close to 1 and y is close to −1. Then g2(α2)−g2(β2) ∈
2± 2ǫ

1/7
1 . If z is close to −1, then g1(α1)− g1(β1) ∈ 2± 2ǫ

1/7
1 . But this implies that

w = x− (g1(α1)− g1(β1))− (g2(α2)− g2(β2)) ∈ −3± 5ǫ
1/7
1 .

Since ǫ1 is small enough, −3 + 5ǫ
1/7
1 < −1 − ǫ

1/7
1 , and we reach a contradiction. So when x and y are

close to different values, x and z must be close to the same value. This implies that

|g1(α1)− g1(β1)| ≤ 2ǫ
1/7
1 .

If x and z are close to different values, then we similarly obtain

|g1(α1)− g1(β1)| ∈ 2± 2ǫ
1/7
1 , |g2(α2)− g2(β2)| ≤ 2ǫ

1/7
1 .

These cases are exhaustive.

The preceding lemma shows that for most choices of α, β, either both g1 and g2 act as if they were
constant, or one acts as if it were constant, and the other acts as if it were Boolean, up to translation.
The following lemma, which is the main result of this section, shows that in fact, one is almost zero, and
the other is almost Boolean.

Lemma 9. Suppose (X,Y ) are typical restrictions. Then either g1 is (3ǫ
1/7
1 , 19ǫ

1/7
1 )-almost close to zero

and g2 is (4ǫ
1/7
1 , 24ǫ

1/7
1 )-almost Boolean, or the same is true with the roles of g1 and g2 reversed.

Proof. Define

p1 = Pr
α,β∈TX,Y

[|g1(α1)− g1(β1)| > 2ǫ
1/7
1 ],

p2 = Pr
α,β∈TX,Y

[|g2(α2)− g2(β2)| > 2ǫ
1/7
1 ].

Lemma 8 implies that p1p2 ≤ 8ǫ
2/7
1 . Thus, either p1 ≤ 3ǫ

1/7
1 or p2 ≤ 3ǫ

1/7
1 . Without loss of generality,

we may assume that p1 ≤ 3ǫ
1/7
1 .

A simple averaging argument shows that for some choice of α, we have

Pr
β∈TX,Y

[|g1(α1)− g1(β1)| ≤ 2ǫ
1/7
1 ] ≥ 1− 3ǫ

1/7
1 .

Therefore, putting C1 = g1(α1), we deduce that g1 is (3ǫ
1/7
1 , 2ǫ

1/7
1 )-almost close to C1.

Typicality implies that g = g1 + g2 satisfies E[(|g| − 1)2] ≤ ǫ
6/7
1 . This must be true for some value C2

of g2. The function g1 − C1 is (3ǫ
1/7
1 , 2ǫ

1/7
1 )-almost close to zero, and so we can apply Lemma 7, with

the following parameters:

φ , g1 − C1, p , 3ǫ
1/7
1 , ǫ , 2ǫ

1/7
1 , δ , ǫ

6/7
1 , C , C1 + C2.
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Since ǫ1 is small enough, Lemma 7 implies that

|E[g1]− C1| ≤ 6ǫ
1/7
1 + 9ǫ

1/7
1 + 6

√
√
√
√ ǫ

6/7
1

1− 3ǫ
1/7
1

= 15ǫ
1/7
1 +O(ǫ

3/7
1 ) ≤ 16ǫ

1/7
1 .

On the other hand, by typicality, |E[g1]| ≤ ǫ
1/7
1 . Therefore

|C1| ≤ 17ǫ
1/7
1 .

We conclude that g1 is (3ǫ
1/7
1 , 19ǫ

1/7
1 )-almost close to zero.

We now turn our gaze to g2. Lemma 8 implies that with probability at least 1− 8ǫ
2/7
1 over the choice

of α, β, it holds that |g2(α2)−g2(β2)| ∈ {0, 2}±2ǫ
1/7
1 . A simple averaging argument shows that for some

choice of α, it holds that

Pr
β∈TX,Y

[|g2(α2)− g2(β2)| /∈ {0, 2} ± 2ǫ
1/7
1 ] ≤ 8ǫ

2/7
1 .

Let C3 = g2(α2). Then g2 is concentrated on the three values {C3 − 2, C3, C3 +2}. Another application
of Lemma 8 will show that it is actually concentrated either on {C3 − 2, C3} or on {C3, C3 + 2}. Define

q1 = Pr
β∈TX,Y

[g2(β2) ∈ C3 + 2± 2ǫ
1/7
1 ],

q2 = Pr
γ∈TX,Y

[g2(γ2) ∈ C3 − 2± 2ǫ
1/7
1 ].

When g2(β2) ∈ C3 + 2 ± 2ǫ
1/7
1 and g2(γ2) ∈ C3 − 2 ± 2ǫ

1/7
1 , we have |g2(β2) − g2(γ2)| ∈ 4 ± 4ǫ

1/7
1 . In

particular, since ǫ1 is small enough, in this case β2, γ2 satisfy none of the options presented by Lemma 8.

Hence, we must have q1q2 ≤ 8ǫ
2/7
1 . Therefore, either q1 ≤ 3ǫ

1/7
1 or q2 ≤ 3ǫ

1/7
1 . Without loss of generality,

we may assume that q1 ≤ 3ǫ
1/7
1 . Putting C4 = C3 − 1, we conclude that g2 − C4 is (4ǫ

1/7
1 , 2ǫ

1/7
1 )-almost

Boolean. (Here, we used the estimate 3ǫ
1/7
1 + 8ǫ

2/7
1 ≤ 4ǫ

1/7
1 , true since ǫ1 is small enough.) Our task is

now to show that C4 is close to zero.
Since g1 is (3ǫ

1/7
1 , 19ǫ

1/7
1 )-almost close to zero, it follows that g−C4 is (7ǫ

1/7
1 , 21ǫ

1/7
1 )-almost Boolean.

By typicality, g is (ǫ
4/7
1 , ǫ

1/7
1 )-almost Boolean. Therefore, with probability at least 1 − 7ǫ

1/7
1 − ǫ

4/7
1 ≥

1− 8ǫ
1/7
1 over the choice of π ∈ TX,Y ,

g(π) ∈ {C4 ± 1} ± 21ǫ
1/7
1 and g(π) ∈ {±1} ± ǫ

1/7
1 . (6)

Suppose that π+ ∈ TX,Y satisfies (6) with g(π+) ǫ
1/7
1 -close to 1. Then either C4 is 22ǫ

1/7
1 -close to zero,

or it is 22ǫ
1/7
1 -close to 2. Similarly, if π− ∈ TX,Y satisfies (6) with g(π−) ǫ

1/7
1 -close to −1, then either C4

is 22ǫ
1/7
1 -close to zero, or it is 22ǫ

1/7
1 -close to −2. Since ǫ1 is small enough, if such permutations π+, π−

exist, then we can conclude that |C4| ≤ 22ǫ
1/7
1 . That would complete the proof of the lemma.

It remains to rule out the case that for all permutations satisfying (6), g(π) has the same sign. That

would imply that g is (8ǫ
1/7
1 , ǫ

1/7
1 )-almost close to L, where L ∈ {±1}. We apply Lemma 7, with the

following parameters:

φ , g − C, p , 8ǫ
1/7
1 , ǫ , ǫ

1/7
1 , δ , ǫ

6/7
1 , C , L.

Since ǫ1 is small enough, the lemma implies that

|E[g]− L| ≤ 3ǫ
1/7
1 + 24ǫ

1/7
1 + 6

√
√
√
√ ǫ

6/7
1

1− 9ǫ
1/7
1

≤ 28ǫ
1/7
1 .

Therefore E[g] is 28ǫ
1/7
1 -close to L. On the other hand, typicality implies that E[g] is 2ǫ

1/7
1 -close to

zero. We deduce that L is 30ǫ
1/7
1 -close to zero. Since L ∈ {±1} and ǫ1 is small enough, this is a

contradiction.
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2.4 Random partitions

Subsection 2.3 deals with random restrictions (X,Y ). The main result, Lemma 9, shows that with large
probability, in the decomposition g(X,Y ) = g1(X,Y )+g2(X,Y ), one of the functions is almost constant,
and the other is almost Boolean. In this subsection, we switch the order of the random choices, and
deduce a property of random permutations.

We will need the following classical theorem due to Esseen [10]. For a modern proof, see [16, 4.1.b].
Note we require Esseen’s version, rather than Berry’s slightly weaker result [2].

Theorem 3 (Berry-Esseen). Let X1, . . . , Xn be independent random variables with finite third moments,
and let S be their sum. Define

ψ =

∑n
i=1 E[|Xi − EXi|3]
(
∑n
i=1 V[Xi])

3/2
.

Let N be a normal random variable with the same mean and variance as S. Then S and N are C0ψ-close
in distribution, where C0 < 1 is an absolute constant. In other words, for every t ∈ R,

|Pr[S < t]− Pr[N < t]| ≤ C0ψ.

Before stating the results, we need some definitions. If (X,Y ) ∼ R, then the marginal distribution
of X is U(2[n]), the uniform distribution on the power set of [n]. With slight abuse of terminology, we
call the subset X ⊂ [n] a partition, as it will correspond to the genuine partition (X,Xc).

For a permutation π ∈ Sn and a partition X ⊂ [n], define

P1 :=
∑

i∈X

aiπ(i), P2 :=
∑

i∈X

aiπ(i).

We say that a partition X is good for π if either P1 is 25ǫ
1/7
1 -close to zero and P2 is 25ǫ

1/7
1 -close to ±1,

or the same is true with the roles of P1 and P2 reversed. Otherwise, we say that X is bad for π. We say
that the permutation π ∈ Sn is good if with probability at least 4/5, a random partition X is good for
π. Otherwise, we say that π is bad.

The following lemma shows that most permutations are good.

Lemma 10. With probability at least 1− 50ǫ
1/7
1 , a random permutation π ∈ Sn is good.

Proof. By Lemma 6, a restriction (X,Y ) ∼ R is typical with probability at least 1−3ǫ
1/7
1 . Suppose (X,Y )

is typical. Choose a uniform random permutation π ∈ TX,Y . Lemma 9 shows that with probability at

least 1−7ǫ
1/7
1 , X is good for π. Hence, if we choose a restriction (X,Y ) ∼ R and a permutation π ∈ TX,Y

uniformly at random, then X is good for π with probability at least 1− 10ǫ
1/7
1 .

Given X , the sets TX,Y partition Sn. Therefore, the permutation π chosen in the process above
is chosen uniformly at random from Sn. Furthermore, by definition, the marginal distribution of X is
U(2[n]). Therefore, if we first choose a permutation π ∈ Sn uniformly at random, and then we choose

X ∼ U(2[n]), then X is good for π with probability at least 1 − 10ǫ
1/7
1 . Thus, the average probability

(over π ∈ Sn) that a random partition is bad is at most 10ǫ
1/7
1 :

E
π∈Sn

[

Pr
X∼U(2[n])

[X is bad for π]

]

≤ 10ǫ
1/7
1 .

Markov’s inequality now implies that the probability that π is bad is at most 50ǫ
1/7
1 :

Pr
π∈Sn

[

Pr
X∼U(2[n])

[X is bad for π] > 1/5

]

<
10ǫ

1/7
1

1/5
= 50ǫ

1/7
1 .

The next lemma shows that if π is a good permutation, then the generalized diagonal aiπ(i) corre-
sponding to π has a special structure: one of its elements is ‘large’, and the rest are ‘small’. This is,
essentially, a consequence of the main statement of [13], but, for the sake of being self-contained, we give
a full proof.

14



Lemma 11. Suppose π ∈ Sn is a good permutation. Then for some m ∈ [n], |amπ(m)| is 50ǫ
1/7
1 -close

to ±1, and for i 6= m, |aiπ(i)| ≤ 50ǫ
1/7
1 .

Proof. The proof is inspired by one of the proofs in [13]. Considering what happens when an element
‘switches sides’ allows us to group the elements aiπ(i) into two groups: ‘small’ elements (close to zero)
and ‘large’ elements (close to ±1). Similar considerations show that there can be at most one large
element. The crucial part is showing that not all elements can be small. Indeed, in this case, the sum
P1 in the definition of goodness is approximately normal, and so it cannot be concentrated on the two
values {0, 1} or {0,−1}. The formal proof is as follows.

Define si = aiπ(i). Since π is good, S0 :=
∑n
i=1 si is 50ǫ

1/7
1 -close to either 1 or −1. It cannot be close

to both, since ǫ1 is small enough. Choose K ∈ {±1} so that S0 is 50ǫ
1/7
1 -close to K.

Define T (X) =
∑

i∈X si. Let X ∼ U(2[n]), and put T = T (X), so that T is also a random variable.
Note that T = S0/2 +

∑n
i=1Wi, where Wi = si(χi∈X − 1/2). Clearly, X is a good partition for π if and

only if X is a good partition for π. Since X and X are equidistributed, given that X is good for π, T is

25ǫ
1/7
1 -close to zero with probability 1/2, and 25ǫ

1/7
1 -close to K with probability 1/2. We conclude that

with probability at least 2/5, T is 25ǫ
1/7
1 -close to zero, and with probability at least 2/5, T is 25ǫ

1/7
1 -close

to K.
Consider any si. Since 2 · 1/5 < 1 (here, 1/5 is an upper bound on the probability that a random

partition is bad for π), there is some choice of Y ⊂ [n] \ {i} such that both Y and Y ∪ {i} are good for

π. Since |T (Y )− T (Y ∪ {i})| = |si|, necessarily either |si| ≤ 50ǫ
1/7
1 (si is small) or |si| is 50ǫ1/71 -close to

|K| = 1 (si is large).

We claim that not all the si can be small. Assume, for the sake of contradiction, that |si| ≤ 50ǫ
1/7
1

for all i. Applying Berry-Esseen with Xi = Wi shows that T is ψ-close in distribution to a normal
distribution N ∼ N (S0/2, σ

2), where

σ2 =
1

4

n∑

i=1

s2i , ψ =

∑n
i=1 |si|3

(
∑n
i=1 s

2
i )

3/2
.

The upper bound on |si| implies that |si|3 ≤ 50ǫ
1/7
1 s2i , and so

ψ ≤ 50ǫ
1/7
1

∑n
i=1 s

2
i

(
∑n

i=1 s
2
i )

3/2
=

50ǫ
1/7
1

√∑n
i=1 s

2
i

=
25ǫ

1/7
1

σ
.

We now obtain a lower bound on σ. With probability at least 4/5, T is 25ǫ
1/7
1 -close to zero or to K, and

so its distance from its mean S0/2 is at least 1/2− 50ǫ
1/7
1 . Hence

σ2 = V[T ] ≥ 4

5

(
1

2
− 50ǫ

1/7
1

)2

= Ω(1).

This shows that ψ = O(1). Concretely, when ǫ
1/7
1 is small enough, ψ ≤ 1/10.

For every interval I, Berry-Esseen shows that |Pr[T ∈ I] − Pr[N ∈ I]| < 2ψ. We consider three

intervals: I1 = 0 ± 25ǫ
1/7
1 , I2 = K ± 25ǫ

1/7
1 , and I3 is the interval ‘in between’: when K = 1, I3 =

(25ǫ
1/7
1 , 1− 25ǫ

1/7
1 ), and when K = −1, I3 = (−1 + 25ǫ

1/7
1 ,−25ǫ

1/7
1 ). By assumption,

Pr[T ∈ I1] ≥ 2/5, Pr[T ∈ I2] ≥ 2/5, Pr[T ∈ I3] ≤ 1/5.

Since 2ψ ≤ 1/5, we deduce that

Pr[N ∈ I1] ≥ 1/5, Pr[N ∈ I2] ≥ 1/5, Pr[N ∈ I3] ≤ 2/5.

The density of a normal distribution is bitonic (increasing and then decreasing), and so

Pr[N ∈ I3]

|I3|
≥ min

(
Pr[N ∈ I1]

|I1|
,
Pr[N ∈ I2]

|I2|

)

. (7)
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We have |I1| = |I2| = 50ǫ
1/7
1 and |I3| = 1 − 50ǫ

1/7
1 . Therefore, the left-hand side of (7) is at most (say)

4/5, and both terms on the right-hand side are at least (say) 1 (since ǫ1 is small enough), a contradiction.

Concluding, there must be some m such that |sm| is 25ǫ1/71 -close to 1. We claim that there cannot be

two such indices m, l. Suppose, for the sake of contradiction, that both |sm| and |sl| are 25ǫ1/71 -close to 1.
Since 4 · 1/5 < 1, there is some choice of Y ⊂ [n] \ {m, l} such that all of Y, Y ∪ {m}, Y ∪ {l}, Y ∪ {m, l}
are good for π. Since T (Y ∪ {m}) = T (Y ) + sm and T (Y ∪ {l}) = T (Y ) + sl, we see that sm, sl must
have the same sign. Since T (Y ∪ {m, l}) = T (Y ) + sm + sl, this implies that Y and Y ∪ {m, l} cannot
both be good. This contradiction shows that there can be at most one large sm.

2.5 Strong lines

The previous section showed that if we pick a generalized diagonal at random in the matrix (aij), then
with probability close to 1, we can designate exactly one element in it as ‘large’. Corollary 12 restates
this formally.

In this subsection, we say that an entry aij is large if |aij | is 50ǫ1/71 close to 1. Otherwise, we say it
is small. Note that, contrary to the usage in Lemma 11, small elements need not be close to 0. While
Lemma 11 allows us to deduce that most of the non-large elements in (aij) are actually close to 0, for
what follows, it will be enough for us to just maintain a distinction between large elements and non-large
elements.

Let (X,Y ) be a restriction. Denote by A[X,Y ] the submatrix (aij)i∈X,j∈Y . We say that a generalized
diagonal in A[X,Y ] is good if it contains exactly one large entry. We say that (X,Y ) is q-good if with
probability at least 1− q, a random generalized diagonal in A[X,Y ] is good.

Corollary 12. The restriction ([n], [n]) is 50ǫ
1/7
1 -good.

Proof. Immediate from Lemma 10 and Lemma 11.

Our goal is to deduce that ([n], [n]) has a row or column which contains (1−O(ǫ
1/7
1 ))n large entries.

The general plan of attack is to prove this by induction on n. We will have a separate argument for
small values of n, and an inductive argument for large n. The latter will use the following lemma, which
we will apply with |X ′| = ⌊|X |/2⌋.

Lemma 13. Suppose that (X,Y ) is q-good for q < 1/2. For every X ′ ⊂ X there exists Y ′ ⊂ Y with
|Y ′| = |X ′|, such that either (X ′, Y ′) or (X \X ′, Y \ Y ′) is q-good. Similarly, for every Y ′ ⊂ Y there
exists X ′ ⊂ X with |X ′| = |Y ′|, such that either (X ′, Y ′) or (X \X ′, Y \ Y ′) is q-good.

Proof. By symmetry, we need only prove the first statement. Fix X ′ ⊂ X . Since the sets (TX′,Y ′ : Y ′ ⊂
Y, |Y ′| = |X ′|) partition TX,Y , the fact that (X,Y ) is q-good implies that for some choice of Y ′, the
probability that a random generalized diagonal corresponding to a permutation in TX′,Y ′ is good is at
least 1− q. Choose such a Y ′.

Let p1 be the probability that a random generalized diagonal in A[X ′, Y ′] is good, and let p2 be the
probability that a random generalized diagonal in A[X\X ′, Y \Y ′] is good. Then p1(1−p2)+(1−p1)p2 ≥
1− q. We claim that this forces max(p1, p2) ≥ 1− q.

Indeed, let p1 = (1 + δ1)/2 and p2 = (1 + δ2)/2, where |δ1|, |δ2| ≤ 1. We have

p1(1− p2) + (1− p1)p2 =
1− δ1δ2

2
.

Since 1− q > 1/2, we must have δ1δ2 < 0. Without loss of generality, we may assume that δ1 > 0. Since
1 ≥ −δ2, we have

p1 =
1 + δ1

2
≥ 1− δ1δ2

2
≥ 1− q,

proving the lemma.

Let (X,Y ) be a restriction. If i ∈ X , we say that row i is p-strong for (X,Y ) if at least (1 − p)|Y |
of the entries {aij : j ∈ Y } are large. If j ∈ Y , we say that column j is p-strong for (X,Y ) if at least
(1− p)|X | of the entries {aij : i ∈ X} are large.
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We say that (X,Y ) has a p-strong row (resp. column) if some row (resp. column) is p-strong for
(X,Y ). We say that (X,Y ) has a p-strong line if it has either a p-strong row or a p-strong column.

Our goal is to show that ([n], [n]) has a strong line. We start by showing that two strong lines must
coincide.

Lemma 14. Suppose that (X,Y ) is q-good. Let X1, X2 ⊂ X, and let Y1, Y2 ⊂ Y with |Y1| = |X1|
and |Y2| = |X2|. Suppose that (X1, Y1) has a p1-strong line, and that (X2, Y2) has a p2-strong line. If
(1− p1)|X1| > 1, (1− p2)|X2| > 1 and

(1− p1)(1− p2)
|X1||X2|
|X |2 ≥ 4q

then the strong lines must be the same (defined by the same row or by the same column).

Proof. Suppose, for the sake of contradiction, that the two restrictions have different strong lines. Let
L1 ⊂ X1×Y1 consist of the first t1 = ⌈(1−p1)|X1|⌉ indices of large elements in the strong line of (X1, Y1),
and let L2 consist of the first t2 = ⌈(1− p2)|X2|⌉ indices of large elements in the strong line of (X2, Y2).

Say that (i1, j1) ∈ L1 and (i2, j2) ∈ L2 conflict if either i1 = i2 or j1 = j2 (or both). If L1 is row i
and L2 is column j, then an entry on L1 not on column j never conflicts with an entry on L2 not on
row i. Therefore, there are at least (t1 − 1)(t2 − 1) non-conflicting pairs. If both L1 and L2 are rows
(resp. columns), then two entries conflict only if they are on the same column (resp. row). Therefore,
the number of non-conflicting pairs is at least t1t2 −min(t1, t2) ≥ (t1 − 1)(t2 − 1).

For each non-conflicting pair, the probability that a random generalized diagonal in A[X,Y ] goes
through both entries of the pair is 1/|X |(|X | − 1). Since these events are all disjoint, it follows that

(t1 − 1)(t2 − 1)

|X |2 <
(t1 − 1)(t2 − 1)

|X |(|X | − 1)
≤ q.

Since t1, t2 ≥ 2, t1 − 1 ≥ t1/2 and t2 − 1 ≥ t2/2. Using t1/|X1| ≥ 1− p1 and t2/|X2| ≥ 1− p2, we deduce
that

(1− p1)(1 − p2)
|X1||X2|
|X |2 < 4q,

contradicting our assumption.

Note that the conditions (1 − p1)|X1| > 1 and (1 − p2)|X2| > 1 simply guarantee that each strong
line has at least two large elements. (If one of the strong lines had only one large element, then it could
be contained in the other strong line, and so there would be no contradiction.)

Our next result says that if there is one strong line, then there cannot be many large entries outside
the line. For the proof, we need the simplest case of Bonferroni’s inequality.

Theorem (Bonferroni). Let A1, . . . , Ah be events. Then

Pr[A1 ∨ · · · ∨Ah] ≥
∑

i

Pr[Ai]−
∑

i<j

Pr[Ai ∧ Aj ].

Lemma 15. Suppose that (X,Y ) is q-good and has a p-strong line. Let m = |X |, and let ̺ = 2q/(1−p).
If m ≥ 6, (1 − p)m > 1, 2̺m > 1 and ̺ ≤ 1/2, then that line is actually (q + 3̺)-strong.

Proof. Without loss of generality, we may assume that the p-strong line is row i. Since (X,Y ) is q-good,
a random element in A[X,Y ] is large with probability at least (1 − q)/m. Therefore, A[X,Y ] contains
at least (1− q)m large entries.

Suppose that row i is not (q + 3̺)-strong. Then A[X,Y ] contains at least 3̺m large entries outside
row i. Lemma 14 implies that no other line can be (1 − 2̺)-strong. Therefore, no column can contain
more than 2̺m large entries. So for any column j, A[X,Y ] contains at least ̺m large entries outside
row i and column j. The probability that a random generalized diagonal in A[X,Y ] hits any single one
of these, given that it hits a specific large entry in row i, is 1/(m−1), and the probability that it hits any
two of them is at most 1/(m− 1)(m− 2). Therefore, Bonferroni’s inequality implies that the probability
that a generalized diagonal in A[X,Y ] contains at least two large elements is at least

(1− p)

(
̺m

m− 1
− (̺m+ 1)(̺m)

2(m− 1)(m− 2)

)

=
(1− p)̺m

m− 1

(

1− ̺m+ 1

2(m− 2)

)

> q,

since ̺m+ 1 ≤ m/2 + 1 ≤ m− 2. But this probability must be at most q, a contradiction.
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The following sequence of lemmas shows the existence of a strong line in (X,Y ), given that (X,Y )
is q-good for q sufficiently small depending on |X |.

Lemma 16. Suppose that (X,Y ) is q-good for some q < 1
m(m−1) , where m = |X |. Then (X,Y ) has a

0-strong line.

Proof. Without loss of generality, we may assume that X = Y = [m]. Since q < 1/m, there must exist
a permutation π ∈ Sm such that all generalized diagonals of the form {(i, π(i) + j) : i ∈ [m]} are good.
Without loss of generality, we may assume that π is the identity, and that a1,1 is large. For j ∈ [m], let
ai,i+j be the large entry on the corresponding diagonal. If i 6= 1 and i+ j 6= 1, then a random generalized
diagonal in A[[m], [m]] passes through both a1,1 and ai,i+j with probability 1/(m(m − 1)), contrary to
our assumption. Therefore, all large entries are either on row 1 or on column 1. If there is an entry ai,1
not on row 1 and an entry a1,j not on column 1, then we again reach a contradiction. It follows that
either row 1 or column 1 consists of large elements only.

We now improve this result using induction.

Lemma 17. Suppose that (X,Y ) is q-good for some q < 1
4m , where m = |X |. Then (X,Y ) has a

0-strong line.

Proof. The proof is by induction on m. When m ≤ 5, the claim follows from Lemma 16, so suppose that
m ≥ 6.

Let X ′ ⊂ X be an arbitrary subset of size s = ⌊m/2⌋. Lemma 13 shows that there exists Y ′ ⊂ Y
with |Y ′| = |X ′|, such that either (X ′, Y ′) is q-good or (X \ X ′, Y \ Y ′) is q-good. The induction
hypothesis implies that either (X ′, Y ′) or (X \X ′, Y \ Y ′) has a 0-strong line. Similarly, if Y ′ ⊂ Y is an
arbitrary subset of size s = ⌊m/2⌋, then there exists X ′ ⊂ X with |X ′| = |Y ′| such that either (X ′, Y ′)
or (X \X ′, Y \ Y ′) has a 0-strong line.

Since s ≥ 3, we have
( s

m

)2

≥ 9

49
>

1

6
≥ 1

m
> 4q,

so Lemma 14 implies that all 0-strong lines arising from different choices of X ′ or Y ′ must be defined by
the same row or column — say row i.

We claim that row i can have at most one small entry. If row i has at least two small entries aij , aik,
then there exists Y ′ ⊂ Y with |Y | = s, such that j ∈ Y ′ and k ∈ Y \ Y ′. For any X ′ ⊂ X with |X ′| = s,
row i can be 0-strong in neither (X ′, Y ′) nor (X \X ′, Y \ Y ′), a contradiction. Thus, row i has at most
one small entry.

Suppose that row i has exactly one small entry. Since q < 1/4m < 1/m, a random entry in A[X,Y ]
is large with probability at least (1− q)/m > 1/m− 1/m2, and so there must be at least m large entries.
Exactly m − 1 of these are on row i. Let akl be another large entry. The probability that a random
generalized diagonal passes through both akl and one of the large entries on row i is at least

1

m

(

1− 1

m− 1

)

≥ 4/5

m
>

1

4m
,

a contradiction. Hence, row i must be 0-strong for A[X,Y ], completing the proof.

We now use induction to tackle the case of large |X |.

Lemma 18. Suppose that (X,Y ) is q-good for q < 1/50. Then (X,Y ) has a 13q-strong line.

Proof. The proof is by induction on m := |X |. When m < 1/(4q), the statement of the lemma follows
from Lemma 17, so suppose that m ≥ 1/(4q) ≥ 12.

Let X ′ ⊂ X be an arbitrary subset of size s = ⌊m/2⌋ ≥ 6. Lemma 13 shows that there exists Y ′ ⊂ Y
with |Y ′| = |X ′|, such that either (X ′, Y ′) is q-good or (X ′, Y ′) is q-good. The induction hypothesis
implies that either (X ′, Y ′) or (X \X ′, Y \Y ′) has a 13q-strong line. Similarly, if Y ′ ⊂ Y is an arbitrary
subset of size s = ⌊m/2⌋, then there exists X ′ ⊂ X with |X ′| = |Y ′| such that either (X ′, Y ′) or
(X \X ′, Y \ Y ′) has a 13q-strong line.

Since (1 − 13q)s > 1 and (1 − 13q)2(s/m)2 ≥ 4q, Lemma 14 implies that all the 13q-strong lines
arising from different choices of X ′ or Y ′ must be defined by the same row or column — say row i.
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We claim that row i has at most ⌊13qm+1⌋ small entries. Indeed, suppose it has at least ⌊13qm+2⌋
small entries. Then there exists a subset Y ′ ⊂ Y with |Y ′| = s, such that the Y ′-part of row i contains at
least ⌊13qs+1⌋ small entries and the Y \Y ′-part of it contains at least ⌊13q(m−s)+1⌋ small entries. For
any X ′ ⊂ X , row i is not 13q-strong in either (X ′, Y ′) nor (X \X ′, Y \ Y ′), a contradiction. Therefore,
row i is a (13q + 1/m)-strong line for (X,Y ).

Let p = 13q + 1/m. We are going to apply Lemma 15. Clearly m ≥ 12, and it is easy to check that
(1− p)m > 1 and ̺ ≤ 1/2. Slightly more delicately, we have

2̺m =
4qm

1− 13q − 1/m
> 4qm ≥ 1.

Hence, by Lemma 15, row i is (q+3̺)-strong. Since p < 1/2, we have q+3̺ < 13q, so row i is 13q-strong,
completing the proof.

It might seem that the condition 2̺m > 1 is very tight. This will not matter for us, but in fact, one
can prove a version of Lemma 15 with a weaker condition, at the cost of obtaining a worse guarantee on
the strength of the line.

Corollary 19. There exists an O(ǫ
1/7
1 )-strong line for ([n], [n]).

Proof. Follows immediately from Corollary 12 and Lemma 18.

2.6 Culmination of the proof

In this section, we will see what Corollary 19 implies in terms of the original family F . Without loss

of generality, we may assume for the rest of this section that the O(ǫ
1/7
1 )-strong line whose existence is

guaranteed by Corollary 19 is row 1.
What the corollary implicitly says is that the matrix (aij) looks very like the canonical example

shown in the introduction: n
2

︷ ︸︸ ︷









1− 1
n · · · 1− 1

n
1
n − 1 · · · 1

n − 1
− 1
n · · · − 1

n
1
n · · · 1

n
− 1
n · · · − 1

n
1
n · · · 1

n
...

...
...

...
− 1
n · · · − 1

n
1
n · · · 1

n










Indeed, the corollary shows that, without loss of generality, the first row consists mainly of elements
which are very close to ±1. Since the line must sum to zero, we know that roughly half of these are
close to 1, and roughly half to −1. This information will enable us to deduce that F is close to a disjoint
union of roughly n/2 cosets.

For i, j ∈ [n], we define

τij :=
|F ∩ Tij |
(n− 1)!

.

By (3), we have

τij =
1

2
+

n

2(n− 1)
aij . (8)

So we have τij ≈ (aij + 1)/2. More precisely, we have the following.

Lemma 20. Each τij is 1/n-close to (aij + 1)/2. If aij is large, then τij is 26ǫ
1/7
1 -close to {0, 1}.

Proof. The formula (3) for aij implies that |aij | ≤ 1. We have

τij =
aij + 1

2
+

aij
2(n− 1)

.

The second term has absolute value at most 1
2(n−1) ≤ 1

n , since n ≥ 2.

A large entry is 50ǫ
1/7
1 close in magnitude to ±1, and so (aij + 1)/2 is 25ǫ

1/7
1 -close to {0, 1}. Finally,

assumption (2) implies that 1/n ≤ ǫ
1/7
1 .
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We are now almost ready to prove our main result.

Lemma 21. The number of τ1i which are 26ǫ
1/7
1 -close to 1 is O(ǫ

1/7
1 )n-close to n/2.

Proof. Let N0 be the number of τ1i which are 26ǫ
1/7
1 -close to 0, and let N1 be the number of τ1i which

are 26ǫ
1/7
1 -close to 1. Lemma 3 shows that

T :=

n∑

i=1

τ1i =
n

2
.

On the other hand,

(1 − 26ǫ
1/7
1 )N1 ≤ T ≤ 26ǫ

1/7
1 N0 + (n−N0) = n− (1− 26ǫ

1/7
1 )N0.

Substituting T = n/2, we obtain

N0, N1 ≤ (1 +O(ǫ
1/7
1 ))n/2.

The fact that row 1 is an O(ǫ
1/7
1 )-strong line implies that N0 +N1 = (1 −O(ǫ

1/7
1 ))n, and so

N1 ≥ (1−O(ǫ
1/7
1 ))n−N0 ≥ (1−O(ǫ

1/7
1 ))n/2.

The main result easily follows.

Corollary 22. Suppose that n ≥ 4, and

1

n7/3
≤ ǫ1 < ǫ0,

where ǫ0 > 0 is an absolute constant. Let F ⊂ Sn be a family of permutations with size |F| = n!/2,
satisfying

E[(f − f1)
2] = ǫ1,

where f = 2χF − 1, and f1 is the orthogonal projection of f onto U1. Then there exists a family G ⊂ Sn
which is a union of ⌊n/2⌋ disjoint 1-cosets, satisfying

|G△F| ≤ O(ǫ
1/7
1 )n!.

Proof. Lemma 21 implies that the set S = {i : τ1i ≥ 1− 26ǫ
1/7
1 } has cardinality which is O(ǫ

1/7
1 )n-close

to n/2. By assumption, ǫ1 ≥ n−7/3, and therefore

||S| − ⌊n/2⌋| ≤ ||S| − n/2|+ 1/2 ≤ O(ǫ
1/7
1 )n+ 1/2 ≤ O(ǫ

1/7
1 )n+ n2/3 ≤ O(ǫ

1/7
1 )n.

Define
G′ =

⋃

i∈S

T1i.

Note that the T1i are pairwise disjoint, and so |G′| = (n− 1)!|S|. By the definition of S, we have

|F ∩ G′| ≥ (1− 26ǫ
1/7
1 )(n− 1)!|S| = (12 −O(ǫ

1/7
1 ))n!.

It follows that

|F△G′| = |F|+ |G′| − 2|F ∩ G|
≤ n!/2 + (1 +O(ǫ

1/7
1 ))n!/2− 2(12 −O(ǫ

1/7
1 ))n!

= O(ǫ
1/7
1 )n!.

By adding or deleting

||S| − ⌊n/2⌋| = O(ǫ
1/7
1 )n

T1i’s from G′, we may produce a family G ⊂ Sn which is a union of ⌊n/2⌋ disjoint 1-cosets, and satisfies

|F△G| = O(ǫ
1/7
1 )n!, completing the proof.
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3 Proof in the general case

Up until now, we have only discussed the case |F| = n!/2. Much of the argument remains intact for
general values of c = |F|/n!, although an additional argument is required in the culmination of the proof.
Also, ǫ0 will now depend upon c. More concretely, let

η = min{c, 1− c}. (9)

As we shall see below, for the proof to go through, we will need ǫ0 = O(η7). Indeed, we shall make the
following assumption.

1

n7/3
≤ ǫ1 ≤ c0η

7, (2)’

To explore all of these issues, let us follow the existing proof and see how it adapts for arbitrary c.

Matrix representation (§ 2.1) The coefficients aij for c = 1/2 were defined so that the following
holds.

f1 =
∑

i,j

aijTij . (10)

As we remarked in the proof of Lemma 3, our definition of aij can be derived from this formula via
Fourier inversion. For arbitrary c, the corresponding definition is

aij = (n− 1)〈f, Tij〉 −
n− 2

n
(2c− 1). (3)’

Under this definition, (10) holds. Straightforward calculations yield the following updated versions of
Lemma 3 and Lemma 4.

Lemma 3’. We have
f1 =

∑

i,j

aijTij .

Furthermore,
∑

j

aij = 2c− 1 ∀i ∈ [n],
∑

i

aij = 2c− 1 ∀j ∈ [n].

For each permutation π, we have:

f1(π) =
∑

i

aiπ(i).

Lemma 4’. We have ∑

i,j

a2ij = (n− 1)(1− ǫ1)− (n− 2)(2c− 1)2.

Random restrictions (§ 2.2) The proof of Lemma 5 becomes more cumbersome. Curiously enough,
the variance of the random variable in question is actually maximized when c = 1/2, and so the bound
on the variance holds true for arbitrary c. Here is the updated version.

Lemma 5’. If (X,Y ) is a restriction, define m(X,Y ) = ETX,Y
[g1(X,Y )]. Let (X,Y ) ∼ R. Then

ER[m] = c− 1/2 and VR[m] ≤ 1/2n.

Proof. We only give the exact formula for VR[m]:

VR[m] =
n+ 1

4n(n− 1)
− (2c− 1)2

2n(n− 1)
≤ 1

2n
.

The proof of Lemma 6 remains the same, adjusting for the general value of ER[m].

Lemma 6’. Let (X,Y ) ∼ R. With probability at least 1−3ǫ
1/7
1 , (X,Y ) satisfies the following properties:

(a) g(X,Y ) is (ǫ
4/7
1 , ǫ

1/7
1 )-almost Boolean.

(b) E[g1(X,Y )] and E[g2(X,Y )] are ǫ
1/7
1 -close to c− 1/2.

(c) E[(|g(X,Y )| − 1)2] ≤ ǫ
6/7
1 .

We redefine a typical restriction as one satisfying these updated properties.
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Decomposition under random restriction (§ 2.3) Lemma 7 and Lemma 8 are not affected by the
value of c. The value of c comes into play in the main result of this section, Lemma 9, in two ways.
Firstly, the result is affected by the change in Lemma 5. Secondly, there is a hidden dependence of ǫ0 on
c, namely

η > 15ǫ
1/7
1 . (11)

Lemma 9’. Suppose that (X,Y ) is a typical restriction. Then either g1 is (3ǫ
1/7
1 , 19ǫ

1/7
1 )-almost close

to c− 1/2 and g2 + c− 1/2 is (4ǫ
1/7
1 , 24ǫ

1/7
1 )-almost Boolean, or the same is true with the roles of g1 and

g2 reversed.

Proof. At the very end of the proof, we need to rule out possibility that for all permutations π ∈ Sn
satisfying

g(π) ∈ {C4 ± 1} ± 21ǫ
1/7
1 and g(π) ∈ {±1} ± ǫ

1/7
1 , (6)

the sign of g(π) is the same. This would imply that g is (8ǫ
1/7
1 , ǫ

1/7
1 )-almost close to L ∈ {±1}. Applying

Lemma 7, this in turn would imply that E[g] is 28ǫ
1/7
1 -close to L. On the other hand, typicality implies

that E[g] is 2ǫ
1/7
1 -close to 2c − 1. In order to obtain a contradiction, we need to assume that 2c − 1 is

not 30ǫ
1/7
1 -close to ±1. This is equivalent to (11).

Random partitions (§ 2.4) At the beginning of this section, we defined the concept of a good parti-
tion, which we now need to update. For a permutation π ∈ Sn and a partition X ⊂ [n], define

P1 :=
∑

i∈X

aiπ(i), P2 :=
∑

i∈X

aiπ(i).

We say that the partition X is good for π if either P1 is 25ǫ
1/7
1 -close to c− 1/2 and P2 is 25ǫ

1/7
1 -close to

{−c−1/2, 3/2−c}, or the same is true with the roles of P1 and P2 reversed. We say that the permutation
π ∈ Sn is good if with probability at least 4/5, a random partition X ∼ U(2[n]) is good for π (this is the
same definition as before). With the updated definition, Lemma 10 remains the same.

As for Lemma 11, apart from slightly updating the statement, there is also a hidden dependence of
ǫ0 upon c, namely

η = Ω(ǫ
1/7
1 ). (12)

Lemma 11’. Suppose that π ∈ Sn is a good permutation. Then for some m ∈ [n], |amπ(m)| is 50ǫ
1/7
1 -

close to {2c, 2(1− c)}, and for i 6= m, |aiπ(i)| ≤ 50ǫ
1/7
1 .

Proof. We redefine ‘large’ elements as those which are 50ǫ
1/7
1 -close in magnitude to {2c, 2(1− c)}. An-

alyzing what happens when a single si switches over, we deduce as in the original proof that each si is
either small or large.

For the Berry-Esseen argument, we need a lower bound on σ2. In the original proof, we deduced

such a bound from the fact that with probability at least 4/5, it holds that |T − S0/2| ≥ 1/2− 50ǫ
1/7
1 .

The same argument shows that with probability at least 4/5, it holds that |T − S0/2| ≥ η − 50ǫ
1/7
1 , and

therefore

σ2 ≥ 4

5
(η − 50ǫ

1/7
1 )2.

This implies that

ψ =
O(ǫ

1/7
1 )

η − 50ǫ
1/7
1

,

where the implied constant does not depend upon c. Condition (12) guarantees that (say) ψ ≤ 1/10.
The intervals I1, I2 retain their length, while for I3 we get the guarantee

|I3| ≥ 2η − 50ǫ
1/7
1 .

Recall inequality (7), from which we would like to derive a contradiction:

Pr[N ∈ I3]

|I3|
≥ min

(
Pr[N ∈ I1]

|I1|
,
Pr[N ∈ I2]

|I2|

)

. (7)
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The left-hand side is at most (roughly) 1/(5η), while the right-hand side is Ω(ǫ
−1/7
1 ). We get a contra-

diction if 1/η = O(ǫ
−1/7
1 ), which is the same condition as (12).

The rest of the proof goes through without change.

Strong lines (§ 2.5) As we mentioned in the introduction, this part is almost completely independent
of the rest of the proof. All we have to do is redefine a large entry so that it conforms to the specification

of Lemma 11’, that is, |aij | is 50ǫ
1/7
1 -close to {2c, 2(1 − c)}. With this small change, all the results in

this section carry through.

Culmination of the proof (§ 2.6) This section requires a small overhaul. Whereas for c = 1/2, a
large element was always close to ±1, now all we know is that it is close in magnitude to {2c, 2(1− c)}.
Its actual value is therefore close to one of the values {2c, 2(1−c),−2c,−2(1−c)}. Defining τij as before,
this means that τij is close to one of the values {0, 1, 2c, 2c− 1}. Of these, one is always outside [0, 1]
and so cannot occur, and one is a ‘medium’ value,

γ :=

{

2c if c < 1/2,

2c− 1 if c > 1/2
,

lying inside the interval (0, 1). An additional argument is needed to show that such medium values do
not actually occur in large quantities on the strong line.

We first rearrange the formula (3)’:

τij :=
|F ∩ Tij |
(n− 1)!

=
2(n− 2)c+ 1

2(n− 1)
+

n

2(n− 1)
aij . (8)’

Roughly, we have τij ≈ aij/2 + c. More precisely, we have the following analogue of Lemma 20.

Lemma 20’. Each τij is 2/n-close to aij/2 + c.

If aij is large, then τij is 26ǫ
1/7
1 -close to {0, 1, γ}.

As before, without loss of generality, we may assume that row 1 is the strong line. Before proving the
analogue of Lemma 21, we need to show that for any two ‘reasonable’ large entries on row 1, either both
are close to {0, 1}, or both are close to γ. Since most entries turn out to be ‘reasonable’, this implies a
dichotomy: either most entries are close to {0, 1}, or most are close to γ. Since the row sums to roughly
cn, the second case cannot occur.

For j ∈ [n], let r(j) be the probability that a random generalized diagonal passing through a1j is good.

We say that an entry a1j is reasonable if a1j is large, r(j) ≥ 4/5 and g({1}, {j}) is (1/5, ǫ
1/7
1 )-almost

Boolean. (Recall that g({1}, {j}) is the function f1 restricted to permutations in T1j.)

Lemma 23. Assume that γ is 156ǫ
1/7
1 -far from {0, 1}. Let j, k ∈ [n] be such that a1j and a1k are

reasonable. Either both τ1j and τ1k are 26ǫ
1/7
1 -close to γ, or neither of them are.

Proof. If π ∈ T1j then (jk)π ∈ T1k. Since 4 · 1/5 < 1, there exists a permutation π ∈ T1j such that both

f1(π) and f1((jk)π) are ǫ
1/7
1 -close to ±1, and both π and (jk)π are good. Let i = π−1(k). Note that

(f1(π) − aik)− (f1((jk)π) − aij) = a1j − a1k =
2(n− 1)

n
(τ1j − τ1k).

Since both aik and aij are small, the left-hand side is 102ǫ
1/7
1 -close to {0,±2}, and therefore τ1j − τ1k is

102ǫ
1/7
1 -close to {0,±n/(n− 1)}. Assumption (2)’ implies that 2ǫ

1/7
1 > 2/n > 1/(n− 1), and so τ1j − τ1k

is 104ǫ
1/7
1 -close to {0,±1}.

Suppose for a contradiction that τ1j is 26ǫ
1/7
1 -close to γ, and that τ1k is 26ǫ

1/7
1 -close to b ∈ {0, 1}.

Then γ is 156ǫ
1/7
1 -close to b+ {0,±1} ∈ {−1, 0, 1, 2}. Since γ ∈ (0, 1), γ must be 156ǫ

1/7
1 -close to {0, 1},

contradicting the assumption of the lemma.

Then following lemma says that most of the entries a1j are reasonable.
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Lemma 24. The probability that a1j is not reasonable for a uniform random j ∈ [n] is O(ǫ
1/7
1 ).

Proof. Corollary 19 shows that the probability that a1j is not large is O(ǫ
1/7
1 ).

Corollary 12 shows that E[1− r(j)] ≤ 50ǫ
1/7
1 , and so, by Markov’s inequality,

Pr
j∈[n]

[1− r(j) > 1/5] <
50ǫ

1/7
1

1/5
= 250ǫ

1/7
1 .

Notice that f1 is (ǫ
5/7
1 , ǫ

1/7
1 )-almost Boolean, since otherwise E[(f1−f)2] ≥ E[(|f1|−1)2] > ǫ

5/7
1 ǫ

2/7
1 =

ǫ1. Therefore, by Markov’s inequality,

Pr
j∈[n]

[g({1}, {j}) is not (1/5, ǫ1/71 )-almost Boolean] ≤ ǫ
5/7
1

1/5
= 5ǫ

5/7
1 .

The lemma follows from a union bound.

We can now prove the analogue of Lemma 21.

Lemma 21’. The number of τ1i which are 51ǫ
1/7
1 -close to 1 is O(ǫ

1/7
1 )n-close to cn.

Proof. There are two cases, depending on whether γ is 156ǫ
1/7
1 -close to {0, 1} or not.

Suppose first that γ is 156ǫ
1/7
1 -close to {0, 1}. Let N0 be the number of τ1i which are 182ǫ

1/7
1 -close

to 0, and let N1 be the number of τ1i which are 182ǫ
1/7
1 -close to 1. Lemma 3’ shows that

T :=

n∑

i=1

τ1i = cn.

On the other hand,

(1− 182ǫ
1/7
1 )N1 ≤ T ≤ 182ǫ

1/7
1 N0 + (n−N0) = n− (1 − 182ǫ

1/7
1 )N0.

Substituting in T = cn gives:

N0 ≤ (1 +O(ǫ
1/7
1 ))(1 − c)n,

N1 ≤ (1 +O(ǫ
1/7
1 ))cn.

Corollary 19 and Lemma 20’ together show that N0 +N1 = (1−O(ǫ
1/7
1 ))n, and so

N1 ≥ (1−O(ǫ
1/7
1 ))n−N0 ≥ (c−O(ǫ

1/7
1 ))n.

This completes the proof when γ is 156ǫ
1/7
1 -close to {0, 1}.

Suppose next that γ is 156ǫ
1/7
1 -far from {0, 1}, so that Lemma 23 applies. By Lemma 24, all but

O(ǫ
1/7
1 )n of the entries in the first row are reasonable. Lemma 23 implies that either all of the corre-

sponding τ1i are 26ǫ
1/7
1 -close to γ, or none are. In the latter case, they must be 26ǫ

1/7
1 -close to {0, 1},

and so an argument similar to the preceding case proves the lemma. It remains to rule out the case that

all reasonable τ1i are 26ǫ
1/7
1 -close to γ.

Suppose for a contradiction that all the reasonable τ1i are 26ǫ
1/7
1 -close to γ. Assume first that c < 1/2,

so that γ = 2c. Since all but O(ǫ
1/7
1 )n of the τ1i are reasonable, we have

T =
∑

i

τ1i ≥ (1 −O(ǫ
1/7
1 ))2cn.

This contradicts the equation T = cn since ǫ1 is small enough (not, here, depending on c).
Assume now that c > 1/2, so that γ = 2c− 1. Then we have

(1− c)n = n− T =
∑

i

(1− τ1i) ≥ (1−O(ǫ
1/7
1 ))2(1 − c)n,

a contradiction.
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Note that the assumption ǫ
1/7
1 = O(η) does not imply that γ is 156ǫ

1/7
1 -far from {0, 1}. Indeed, if c

is close to 1/2 then γ is close to {0, 1}. Hence, it is necessary for us to split the proof of Lemma 21’ into
the two cases above.

The analogue of Corollary 22 now follows, just as before. We state it without any prior assumptions.

Corollary 22’. Suppose that n ≥ 4 and

1

n7/3
≤ ǫ1 ≤ c0η

7, (13)

where c0 > 0 is an absolute constant. Let F ⊂ Sn be a family of permutations with size |F| = c · n!,
satisfying

E[(f − f1)
2] = ǫ1,

where f = 2χF − 1, and f1 is the orthogonal projection of f onto U1. Then there exists a family G ⊂ Sn
which is a union of ⌊cn⌋ disjoint 1-cosets, satisfying

|G△F| ≤ O(ǫ
1/7
1 )n!.

Getting rid of the assumptions on ǫ1 Corollary 22’ has a drawback: it needs to assume that ǫ1 is
not too small and not too large. When ǫ1 is large enough (depending on η), the statement holds trivially,
so we may focus our attention on the case where ǫ1 is small. Intuitively, having ǫ1 small should work
in our favor. We shall introduce a few artificial errors to increase ǫ1, and then later on take account of
them, by introducing an extra error term into our conclusion statement.

We start by showing how to artificially increase ǫ1.

Lemma 25. Let F ⊂ Sn, and let υ ≤ 1/16. Then there exists a family H ⊂ Sn such that

|F△H| ≤ √
υn! and υ ≤ E[(h− h1)

2] ≤ (
√

E[(f − f1)2] + 2
√
υ)2,

where f = 2χF − 1, h = 2χH − 1 and f1, h1 are the projections of f, h into U1.
Moreover, if |F| ≥ n!/2 then H ⊂ F , and otherwise H ⊃ F .

Proof. By taking complements if necessary, we may assume that |F| ≥ n!/2. Let sgn(π) denote the
sign of a permutation π. Since n ≥ 3, the sign function is orthogonal to U1 (this is because the sign
representation is not a constituent of the permutation representation), and so

E[(f − f1)
2] ≥ 〈f, sgn〉2 =

(

E
π
sgn(π)f(π)

)2

. (14)

First, assume that at least half of the permutations in F are even. Then the number of these is at least
n!/4 ≥ √

υn!. Define G (and so g) by removing
√
υn! of them. We have

E
π
sgn(π)g(π) = E

π
sgn(π)f(π) − 2

√
υ.

Therefore, either Eπ sgn(π)f(π) ≥
√
υ, or Eπ sgn(π)g(π) ≤ −√

υ. In the former case, we take H = F ,
and we are done by the inequality (14). In the latter case, we take H = G. The inequality (14) shows
that E[(h− h1)

2] ≥ υ. Moreover, since projections are contracting, we have

‖h− h1‖2 ≤ ‖f − f1‖2 + ‖(h− h1) + (f − f1)‖2 ≤ ‖f − f1‖2 + ‖h− f‖2 ≤ ‖f − f1‖2 + 2
√
υ.

Similarly, if at least half of the permutations in F are odd, then the number of these is at least n!/4 ≥√
υn!. Define G (and so g) by removing

√
υn! of them. We have

E
π
sgn(π)g(π) = E

π
sgn(π)f(π) + 2

√
υ.

Therefore, either Eπ sgn(π)f(π) ≤ −√
υ, or Eπ sgn(π)g(π) ≥

√
υ, so we may continue as before.

Using this trick and Corollary 22’, we get our main theorem in full generality.

25



Theorem 2. Let F ⊂ Sn be a family of permutations with size |F| = c · n!, satisfying

E[(f − f1)
2] = ǫ1,

where f = 2χF − 1, and f1 is the orthogonal projection of f onto U1. Then there exists a family G ⊂ Sn
which is a union of dn disjoint 1-cosets, such that

|d− c| = O

(

ǫ
1/7
1 +

1

n1/3

)

and
|G△F|
n!

= O

(
1

η

(

ǫ
1/7
1 +

1

n1/3

))

,

where η = min{c, 1− c}.

Proof. If n < 4 then the theorem is trivial (by taking the absolute constants implied by the O-terms to
be sufficiently large), so we may assume that n ≥ 4. If ǫ1 satisfies (2)’, then the theorem follows directly
from Corollary 22’. Otherwise, there are two cases: ǫ1 is too large, and ǫ1 is too small. If ǫ1 > c0η

7 then

the theorem holds, since ǫ
1/7
1 /η > c

1/7
0 , so suppose ǫ1 < n−7/3.

Apply Lemma 25 with υ = n−7/3 to obtain a family H. The value ǫ2 = E[(h− h1)]
2 satisfies

1

n7/3
≤ ǫ2 ≤

(
1

n7/6
+

2

n7/6

)2

=
9

n7/3
.

Moreover, |F△H|/n! ≤ n−7/6 and so c2 := E[H] satisfies |c − c2| ≤ n−7/6. Also, η2 := min(c2, 1 − c2)
satisfies |η − η2| ≤ n−7/6 as well.

There are two cases: either ǫ2 > c0η
7
2 , or not. In the first case, 9/n1/3 > c

1/7
0 η2, and so η2 = O(n−1/3).

Hence η = O(n−1/3) and so the theorem holds, since n−1/3/η = Ω(1).
The more interesting case is when ǫ2 < c0η

7
2 . Corollary 22’ applies, and we get a family G ⊂ Sn which

is the union of ⌊c2n⌋ = ⌊cn⌋ disjoint 1-cosets, where

|G△H| ≤ O(ǫ
1/7
2 )n!.

Since ǫ
1/7
2 = O(n−1/3) and |F△H| ≤ n−7/6 · n!, we have

|G△F| ≤ |G△H|+ |H△F| ≤ O(ǫ
1/7
2 )n! + n−7/6 · n! ≤ O(n−1/3)n!,

completing the proof of the theorem.

Remark. When ǫ1 > c0η
7, the error terms ǫ

1/7
1 /η ensures that the theorem holds. Other error terms

have the same effect, and so other versions of the theorem are possible. For example, instead of ǫ
1/7
1 /η,

we could have ǫ
1/7
1 + (ǫ

1/7
1 /η)2.

4 Almost extremal isoperimetric sets in the transposition graph

As explained in the introduction, the main reason for developing Fourier-theoretic stability results, such
as the main theorem of this paper, is for applications in extremal combinatorics. Oftentimes, one must
struggle to translate the combinatorial information in an extremal problem to the Fourier language,
but there is one setting in which the translation is almost immediate (yet may demand certain non-
trivial calculations.) That is the setting of normal Cayley graphs on groups, and characterization of the
maximum-sized independent sets, or the sets of minimum edge-expansion, in those graphs. See [7] for a
more complete description of this. In a nutshell, there are good characterizations relating edge-expansion
in graphs to the eigenvalues and eigenvectors of the graph, namely, the theorems of Alon-Milman [1] and
Dodziuk [5]. A Cayley graph whose generating set is closed under conjugation is known as a normal
Cayley graph. For any normal Cayley graph on a group Γ, its eigenspaces are precisely the isotypical
subspaces of CΓ (the subspaces consisting of functions whose Fourier transform is concentrated on a
fixed irreducible representation of Γ). Furthermore, the eigenvalues are given by a formula involving the
average of the character of the corresponding representation on the generating set of the graph.
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The example of the above phenomenon which we have in mind is the application of the Alon-
Milman/Dodziuk theorems to the Cayley graph on Sn generated by the transpositions. In other words,
the graph G with V (G) = Sn, and

E(G) = {{σ, τ} : στ−1 is a transposition}

— two permutations are joined if they differ by a transposition. For any set A ⊂ V (G), we let ∂A denote
the edge-boundary of A, i.e. the set of edges between A and its complement. As explained in [7], by
using Dodziuk/Alon-Milman, the work of Diaconis and Shashahani [4] yields the following theorem:

Theorem 4 (Diaconis and Shashahani). Let A ⊂ Sn with |A| = cn!. Then

|∂A| ≥ (1− c)n|A|, (15)

with equality if and only if the characteristic vector of A belongs to U1.

The characterization of Boolean functions in U1 given in [9] immediately yields the following charac-
terization of the extremal isoperimetric sets.

Corollary 26. Let A ⊂ Sn, with |A| = cn!, and |∂A| = (1− c)n|A|. Then A is a dictatorship.

We now want a stability version of this. In [7], Lemma 13, we prove a stability version of Dodziuk/Alon-
Milman, which, when combined with the eigenvalue estimates in [4], shows that any set which has
edge-boundary close to the minimum, must have its characteristic vector very close (in L2 norm) to U1:

Theorem 5 (Lemma 13 in [7]). Let A ⊂ Sn with |A| = cn!. If

|∂A| ≤ (1− c+ δ0)n|A|,
then

E[(f − f1)
2] ≤ n

n− 2
cδ0,

where f is the characteristic vector of A, and f1 is its projection on U1.

Combining this with Theorem 2 immediately yields the following.

Theorem 6. Let A ⊂ Sn with |A| = cn!. If

|∂A| ≤ (1− c+ δ0)n|A|
then there exists a dictatorship B ⊂ Sn with

|A△B|
n!

= O

(
1

c(1− c)

(

(cδ0)
1/7 +

1

n1/3

))

.

We may apply a perturbation argument similar to the one in [7] to prove the following strengthening
of Theorem 6:

Theorem 7. There exists η0 > 0 such that the following holds. Let A ⊂ Sn with |A| = cn!, where
min(c, 1− c) ≥ η0. If

|∂A| ≤ (1− c+ δ0)n|A|
then there exists a dictatorship B ⊂ Sn with

|A△B|
n!

= O(δ0).

This is best possible up to an absolute constant factor, as can be seen by taking

A = T11 ∪ T12 ∪ . . . ∪ T1a ∪ T2,a+1 ∪ T2,a+2 ∪ . . . ∪ T2,a+b,

where min{a/n, 1− a/n} = Ω(1) and b/a = Θ(δ0).
Therefore, a subset of Sn with measure bounded away from 0 and 1, which has edge-boundary close

to the lower bound (15), must be close in structure to a dictatorship. This is a ‘genuine’ stability result.
One may contrast it with the ‘quasi-stability’ result in [7], where we prove that a subset of Sn with size
Θ((n−1)!) has edge-boundary close to the minimum iff it is close in structure to a union of dictatorships,
as opposed to a single dictatorship.
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5 Conclusion

Remarks and open questions

The most obvious open question in the context of this trilogy is whether it is possible to prove the
common generalization of the main theorems in all three papers. Is it true that no matter what the
expectation of f is, if f is Boolean and close to Ut, then it is close to a union of t-cosets? This surely
must be true, but our techniques fall short of proving it. We also believe the correct dependence between
the two distances to be linear. We make the following conjecture.

Conjecture 1. Let A ⊂ Sn, and let t ∈ N. Let f denote the characteristic function of A, and let ft
denote the orthogonal projection of f onto Ut. If

E[(f − ft)
2] ≤ ǫE[f ],

then there exists a family B ⊂ Sn which is a union of t-cosets, such that

|A△B| ≤ C0(ǫ+ 1/n)|A|,

where C0 is an absolute constant.

Another related question involves understanding the precise extremal isoperimetric sets in the trans-
position graph on Sn, for all set-sizes. Limor Ben Efraim conjectures that the minimum edge-boundary
is always achieved by an initial segment of the lexicographical order on Sn. (If σ, π ∈ Sn, we say that
σ < π in the lexicographic order if σ(j) < π(j), where j = min{i ∈ [n] : σ(i) 6= π(i)}.)

It would also be interesting to discover other groups where there is an elegant characterization of
Boolean functions whose Fourier support is concentrated on certain irreducible representations.
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