
ar
X

iv
:1

30
1.

58
36

v1
 [

m
at

h.
C

O
]

 2
4

Ja
n

20
13

TIGHT HAMILTON CYCLES IN RANDOM

HYPERGRAPHS

PETER ALLEN*, JULIA BÖTTCHER*, YOSHIHARU KOHAYAKAWA†,
AND YURY PERSON‡

Abstract. We give an algorithmic proof for the existence of tight
Hamilton cycles in a random r-uniform hypergraph with edge prob-
ability p = n−1+ε for every ε > 0. This partly answers a question
of Dudek and Frieze [Random Structures Algorithms], who used a
second moment method to show that tight Hamilton cycles exist
even for p = ω(n)/n (r ≥ 3) where ω(n) → ∞ arbitrary slowly,
and for p = (e + o(1))/n (r ≥ 4).

The method we develop for proving our result applies to related
problems as well.

1. Introduction

The question of when the random graph G(n, p) becomes hamilton-
ian is well understood. Pósa [19] and Korshunov [15, 16] proved that
the hamiltonicity threshold is log n/n, Komlós and Szemerédi [14] de-
termined an exact formula for the probability of the existence of a
Hamilton cycle, and Bollobás [4] established an even more powerful
hitting time result. The first polynomial time randomised algorithms
for finding Hamilton cycles in G(n, p) were developed by Angluin and
Valiant [1] and Shamir [21]. Finally, Bollobás, Fenner and Frieze [3]
gave a deterministic polynomial time algorithm whose success proba-
bility matches the probabilities established by Komlós and Szemerédi.

Date: July 3, 2018.
* Department of Mathematics, London School of Economics, Houghton Street,

London WC2A 2AE, U.K. E-mail : p.d.allen|j.boettcher@lse.ac.uk .
†Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do

Matão 1010, 05508–090 São Paulo, Brazil. E-mail : yoshi@ime.usp.br .
‡Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-5, D-14195

Berlin, Germany. E-mail : person@math.fu-berlin.de .
PA was partially supported by FAPESP (Proc. 2010/09555-7). JB was par-

tially supported by FAPESP (Proc. 2009/17831-7). YK was partially sup-
ported by CNPq (308509/2007-2, 477203/2012-4), CAPES/DAAD (415/ppp-
probral/po/D08/11629, 333/09) and NUMEC (Project MaCLinC/USP). YP
was partially supported by GIF grant no. I-889-182.6/2005. The coopera-
tion of the authors was supported by a joint CAPES-DAAD project (415/ppp-
probral/po/D08/11629, Proj. no. 333/09). The authors are grateful to NU-
MEC/USP, Núcleo de Modelagem Estocástica e Complexidade of the University
of São Paulo, for supporting this research.

1

http://arxiv.org/abs/1301.5836v1

2 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

For random hypergraphs much less is known. The random r-uniform
hypergraph G(r)(n, p) on vertex set [n] is generated by including each

hyperedge from
(

[n]
r

)

independently with probability p = p(n). First,
Frieze [9] considered loose Hamilton cycles in random 3-uniform hy-
pergraphs. The loose r-uniform cycle on vertex set [n] has edges {i+
1, . . . , i + r} for exactly all i = k(r − 1) with k ∈ N and (r − 1) | n,
where we calculate modulo n. Frieze showed that the threshold for a
loose Hamilton cycle in G(3)(n, p) is Θ(log n/n2). Dudek and Frieze [6]
extended this to r-uniform hypergraphs with r ≥ 4, where the threshold
is Θ̃(logn/nr−1). Both results require that n is divisible by 2(r − 1)
(which was recently removed by Dudek, Frieze, Loh and Speiss [7]) and
rely on the deep Johansson-Kahn-Vu theorem [13], which makes their
proofs non-constructive.

Tight Hamilton cycles, on the other hand, were first considered in
connection with packings. The tight r-uniform cycle on vertex set [n]
has edges {i+ 1, . . . , i+ r} for all i calculated modulo n. Frieze, Kriv-
elevich and Loh [11] proved that if p ≫ (log21 n/n)1/16 and 4 divides n
then most edges of G(3)(n, p) can be covered by edge disjoint tight
Hamilton cycles. Further packing results were obtained by Frieze and
Krivelevich [10] and by Bal and Frieze [2], but the probability range
is far from best possible. Subsequently, Dudek and Frieze [5] used a
second moment argument to show that the threshold for a tight Hamil-
ton cycle in G(r)(n, p) is sharp and equals e/n for each r ≥ 4 and for
r = 3 they showed that G(3)(n, p) contains a tight Hamilton cycle when
p = ω(n)/n for any ω(n) that goes to infinity. Since their method is
non-constructive they asked for an algorithm to find a tight Hamilton
cycle in a random hypergraph. In this paper we present a randomised
algorithm for this problem if p is slightly bigger than in their result.

Theorem 1. For each integer r ≥ 3 and 0 < ε < 1/(4r) there is a
randomised polynomial time algorithm which for any n−1+ε < p ≤ 1
a.a.s. finds a tight Hamilton cycle in the random r-uniform hypergraph
G(r)(n, p).

The probability referred to in Theorem 1 is with respect to the ran-
dom bits used by the algorithm as well as by G(r)(n, p). The running
time of the algorithm in the above theorem is polynomial in n, where
the degree of the polynomial depends on ε.

Organisation. We first provide some notation and a brief sketch of our
proof, formulate the main lemmas and prove Theorem 1 in Section 2.
In Sections 3 and 4 we prove the main lemmas, and in Section 5 we
end with some remarks and open problems.

2. Lemmas and proof of Theorem 1

2.1. Notation. An s-tuple (u1, . . . , us) of vertices is an ordered set of
vertices. We often denote tuples by bold symbols, and occasionally

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 3

also omit the brackets and write u = u1, . . . , us. Additionally, we
may also use a tuple as a set and write for example, if S is a set,
S ∪ u := S ∪ {ui : i ∈ [s]}. The reverse of the s-tuple u is the s-tuple
(us, . . . , u1).

In an r-uniform hypergraph G the tuple P = (u1, . . . , uℓ) forms a
tight path if {ui+1, . . . , ui+r} is an edge for every 0 ≤ i ≤ ℓ − r. For
any s ∈ [ℓ] we say that P starts with the s-tuple (u1, . . . , us) =: v and
ends with the s-tuple (uℓ−(s−1), . . . , uℓ) =: w. We also call v the start
s-tuple of P , w the end s-tuple of P , and P a v−w path. The interior
of P is formed by all its vertices but its start and end (r − 1)-tuples.
Note that the interior of P is not empty if and only if ℓ > 2(r − 1).

For a hypergraph H we define the 1-density of H to be d(1)(H) :=
e(H)/

(

v(H)− 1
)

if v(H) > 1, and d(1)(H) := 0 if v(H) = 1. We set

m(1)(H) := max{d(1)(H′) : H′ ⊆ H} .

We denote the r-uniform tight cycle on ℓ vertices by C
(r)
ℓ . Observe that

m(1)(C
(r)
ℓ) = ℓ/(ℓ− 1).

2.2. Outline of the proof. A simple greedy strategy shows that for
p = nε−1 it is easy to find a tight path (and similarly a tight cycle)

in G(r)(n, p) which covers all but at most n1− 1
2
ε of its vertices. Incor-

porating these few remaining vertices is where the difficulty lies.
To overcome this difficulty we apply the following strategy, which we

call the reservoir method. We first construct a tight path P of a linear
length in n which contains a vertex set W ∗, called the reservoir, such
that for any W ⊆ W ∗ there is a tight path on V (P) \ W whose end
(r − 1)-tuples are the same as that of P . In a second step we use the
mentioned greedy strategy to extend P to an almost spanning tight
path P ′, with a leftover set L. The advantage we have gained now is
that we are permitted to reuse the vertices in W ∗: we will show that,
by using a subset W of vertices from W ∗ to incorporate the vertices
from L, we can extend the almost spanning tight path to a spanning
tight cycle C. More precisely, we shall delete W from P ′ (observe that,
by construction of P , the hypergraph induced on V (P) \W contains a
tight path with the same ends) and use precisely all vertices of W to
connect the vertices of L to construct C.

We remark that our method has similarities, in spirit, with the ab-
sorbing method for proving extremal results for large structures in
dense hypergraphs (see, e.g., Rödl, Ruciński and Szemerédi [20]). The
techniques to deal with multi-round exposure in our algorithm is simi-
lar to those used by Frieze in [8]. Moreover, a method very similar to
ours was used independently by Kühn and Osthus [17] to find bounds
on the threshold for the appearance of the square of a Hamilton cycle
in a random graph.

4 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

2.3. Lemmas. We shall rely on the following lemmas. We state these
lemmas together with an outline of how they are used, and then give
the details of the proof of Theorem 1.

Our first lemma asserts that there are hypergraphs H∗ with density
arbitrarily close to 1 which have a spanning tight path and a vertex w∗

such that deleting w∗ from H∗ leaves a spanning tight path with the
same start and end (r − 1)-tuples.

Lemma 2 (Reservoir lemma). For all r ≥ 2 and 0 < ε < 1/(6r),
there exist an r-uniform hypergraph H∗ = H∗(r, ε) on less than 16/ε2

vertices, a vertex w∗, and two disjoint (r−1)-tuples u = (u1, . . . , ur−1)
and v = (v1, . . . , vr−1) such that

(i) m(1)(H∗) ≤ 1 + ε,
(ii) H∗ has a tight Hamilton u− v path, and

(iii) H∗ − w∗ has a tight Hamilton u− v path.

We provide a proof of Lemma 2 in Section 2. We also call the
graph H∗ asserted by this lemma the reservoir graph and the ver-
tex w∗ the reservoir vertex, since they will provide us as follows with
the reservoir mentioned in the outline. If we can find many disjoint
copies of H∗ in G(r)(n, p), and if we can connect these copies of H∗ to
form a tight path, then the set W ∗ of reservoir vertices w∗ from these
H∗-copies forms such a reservoir.

In order to find many disjoint H∗-copies, we use the following stan-
dard theorem.

Theorem 3 (see, e.g., [12, Theorem 4.9]). For every r-uniform hy-
pergraph H there are constants ν > 0 and C ∈ N such that if p ≥
Cn−1/m(1)(H), then G(r)(n, p) a.a.s. contains νn vertex disjoint copies of
H.

For connecting the H∗-copies into a long tight path P we use the
next lemma.

Lemma 4 (Connection lemma). Given r ≥ 3, 0 < ε < 1/(4r) and
δ > 0, there exists η > 0 such that there is a (deterministic) polynomial
time algorithm A which on inputs G = G(r)(n, p) with p = n−1+ε a.a.s.
does the following.

Let 1 ≤ k ≤ ηn, let X be any subset of [n] of size at least δn. Let
u(1), . . . ,u(k), v(1), . . . ,v(k) be any 2k pairwise disjoint (r − 1)-tuples
in [n]. Then A finds in G a collection of vertex disjoint tight paths Pi,
1 ≤ i ≤ k, of length at most ℓ := (r − 1)/ε + 2, such that Pi is a
u(i) − v(i) path all of whose interior vertices are in X.

We prove this lemma in Section 3. In fact, we will also make use of
this lemma after extending P to a maximal tight path P ′ in order to
extend P ′ (reusing vertices of the reservoir W ∗) to cover the leftover
vertices L. It is for this reason that we require the lemma to work with
a set X which can be quite small.

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 5

2.4. Proof of the main theorem. Our goal is to describe an algo-
rithm which a.a.s. constructs a tight Hamilton cycle in the r-uniform
random hypergraph G(r)(n, q) in five steps. For convenience we replace
G(r)(n, p) in Theorem 1 by G(r)(n, q). We make use of a 5-round ex-
posure of the random hypergraph, that is, each of the five algorithm
steps will individually a.a.s. succeed on an r-uniform random hyper-
graph with edge probability somewhat smaller than q. Observe, how-
ever, that for the algorithm the input graph is given at once, and not
as the union of five graphs. Therefore, in a preprocessing step the
algorithm will first split the (random) input hypergraph into five (in-
dependent random) hypergraphs. The only probabilistic component of
our algorithm is in the preprocessing step.

Our five algorithm steps will then be as follows. Firstly, we apply
Theorem 3 in order to find cn vertex disjoint copies of the reservoir
graph H∗ from Lemma 2. Secondly, we use the connection lemma,
Lemma 4, to connect the H∗ copies to a tight path P of length c′n
which contains a set W ∗ of linearly many reservoir vertices. Thirdly,
we greedily extend P until we get a tight path P ′ on n − n1−(ε′/2)

vertices. In the fourth and fifth step we use W ∗ and Lemma 4 to
connect the remaining vertices to the path constructed so far and to
close the path into a cycle.

For technical reasons it will be convenient to assume that the edge
probability in each of the last four steps is exactly q′ = n−1+ε′ for
some ε′. We therefore split our random input hypergraph into five
independent random hypergraphs, of which the first has edge proba-
bility q′′ ≥ q′ and the remaining four have edge probability q′.

Proof of Theorem 1. Constants: Given r ≥ 3 and 0 < ε < 1/(4r), set
ε′ := ε/2. Suppose in the following that n is sufficiently large and
define q′ = n−1+ε′ . Now let q > n−1+ε be given and observe that
q ≥ 5q′ ≥ 1− (1− q′)5. Finally, let q′′ ∈ (0, 1] be such that

(1) 1− q = (1− q′′)(1− q′)4

and note that since q ≥ 1− (1− q′)5, we have q′′ ≥ q′.
Let η1 > 0 be the constant given by Lemma 4 with input r, ε′ and

δ = 1/2. Let H∗ = H∗(r, ε′/2) be the r-uniform reservoir hypergraph
given by Lemma 2 and n∗ := v(H∗). Let ν > 0 be the constant given
by Theorem 3 with input H∗. We set

(2) c := min
(1

2n∗
,
ν

n∗
, η1

)

.

Finally, let η2 > 0 and ℓ2 be the constants given by Lemma 4 with
input r, ε′ and δ = c/2.

Preprocessing: We shall use a randomised procedure to split the
input graph G which is distributed according to G(r)(n, q) into five hy-
pergraphs G1, . . . ,G5, such that G1 is distributed according to G(r)(n, q′′)

6 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

and G2, . . . ,G5 are distributed according to G(r)(n, q′), where the choice
of parameters is possible by (1). Moreover these five random hyper-
graphs are mutually independent.

Our randomised procedure takes a copy G of G(r)(n, q) and colours
its edges as follows. It colours each edge e of G independently with a
non-empty subset c of [5] such that

Pr(e receives colour c) =

{

q′|c|(1− q′)4−|c|(1− q′′)/q if 1 /∈ c

q′|c|−1(1− q′)5−|c|q′′/q if 1 ∈ c .

Then we let Gi be the hypergraph with those edges whose colour con-
tains i for each i ∈ [5].

For justifying that this randomised procedure has the desired ef-
fect, let us consider the following second random experiment. We take
five independent random hypergraphs, G1 = G(r)(n, q′′) and four copies
G2, . . . ,G5 of G(r)(n, q′), and form an r-uniform hypergraph on n ver-
tices, whose edges are the union of G1, . . . ,G5, each receiving a colour
which is a subset of [5] identifying the subset of G1, . . . ,G5 containing
that edge. Observe that we simply obtain G(r)(n, q), when we ignore
the colours in this union.

It is straightforward to check that the two experiments yield identical
probability measures on the space of n-vertex coloured hypergraphs. It
follows that any algorithm which with some probability finds a tight
Hamilton cycle when presented with the five hypergraphs Gi of the
first experiment succeeds with the same probability when presented
with five hypergraphs obtained from the second experiment.

Step 1: The first main step of our algorithm finds cn vertex disjoint
copies of the reservoir graph H∗ in G1. To this end we would like
to apply Theorem 3, hence we need to check its preconditions. We

require that q′′ ≥ Cn−1/m(1)(H∗) for some large C. By Lemma 2 we
have m(1)(H∗) ≤ 1 + 1

2
ε′, and 1/(1 + 1

2
ε′) > 1 − ε′. It follows that for

all sufficiently large n we have q′ = n−1+ε′ ≥ Cn−1/m(1)(H∗), and so the
same holds for q′′ since q′′ ≥ q′.

By Theorem 3 and (2), a.a.s. G1 contains at least νn ≥ n∗ · cn vertex
disjoint copies of H∗. Hence we can algorithmically find a subset of
at least cn of them as follows. We search the vertex subsets of size n∗

of G1. Whenever we find a subset that induces H∗ and does not share
vertices with a previously chosen H∗-copy, then we choose it. Clearly,
we can do this until we chose cn vertex disjoint copies H1, . . . ,Hcn

of H∗. This requires running time O
(

nn∗
)

, where n∗ ≤ 16ε−2 does not
depend on n.

Step 2: The second step consists of using G2 and Lemma 4 with input
r, ε′ and δ = 1/2 to connect the cn vertex disjoint reservoir graphs into
one tight path. Let W ∗ consist of the cn reservoir vertices, one in each
of H1, . . . ,Hcn. By (2), H1, . . . ,Hcn cover at most n/2 vertices. By

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 7

Lemma 4 applied with X = [n] \
(
⋃

i∈[cn] V (Hi)
)

there is a polynomial
time algorithm which a.a.s. for each 1 ≤ i ≤ cn − 1 finds a tight path
in G2 connecting the end (r−1)-tuple of Hi with the start (r−1)-tuple
of Hi+1, where these tight paths are disjoint and have their interior
in X . This yields a tight path P in G1 ∪ G2 containing all of the Hi

with the following property. For any W ⊆ W ∗, if we remove W from
P , then we obtain (using the additional edges of the Hi) a tight path
P (W) whose start and end (r − 1)-tuples are the same as those of P
(see Lemma 2(i)).

Step 3: In the third step we use G3 to greedily extend P to a tight
path P ′ covering all but at most n1− 1

2
ε′ vertices. Let P0 = P and do

the following for each i ≥ 0. Let ei be the end (r − 1)-tuple of Pi if
there is an edge eivi in G3 for some vi ∈ [n] \ V (Pi) then append vi
to Pi to obtain the tight path Pi+1. If no such edge exists, then halt.

Observe that in step i of this procedure, it suffices to reveal the
edges eiw with w ∈ [n]\Pi. Hence, by the method of deferred decision,
the probability that vi does not exist is at most (1 − q′)n−|Pi|. So, as

long as |Pi| ≤ n− n1− 1
2
ε′ this probability is at most exp(−q′n1− 1

2
ε′) ≤

exp(−n
1
2
ε′). We take the union bound over all (at most n) i to infer

that this procedure a.a.s. indeed terminates with a tight path P ′ with
|P ′| ≥ n− n1− 1

2
ε′ which contains P .

Step 4: Now let L′ be the set of vertices not covered by P ′. Let L be
obtained from L′ by adding at most r− 2 vertices of W ∗, such that |L|
is divisible by r− 1. Let Y1, . . . , Yt be a partition of L into |L|/(r− 1)
tuples of size r − 1. Let Y0 be the reverse of the start (r − 1)-tuple of
P ′, and Yt+1 be the reverse of its end (r − 1)-tuple.

In the fourth step, we use G4 and Lemma 4 with input r, ε′ and
δ = 1

2
c to find for each 0 ≤ i ≤ 1

2
t a tight path between Y2i and Y2i+1 of

length at most ℓ2 using only vertices in W ∗ \ L, such that these paths
are pairwise disjoint. This is possible since |W ∗ \ L| ≥ 1

2
cn and since

t ≤ |L| ≤ n1− 1
2
ε′ + r− 2 implies t

2
+ 1 ≤ n1− 1

3
ε′ ≤ η2n for n sufficiently

large. LetW ∗∗ be the set of at least cn−(t
2
+1)ℓ2 ≥ cn−n1− 1

3
ε′ℓ2 ≥

2
3
cn

vertices in W ∗ not used in this step.

Step 5: Similarly, in the fifth step, we use G5 and Lemma 4, with
input r, ε and δ = c/2, to find for each 0 ≤ i ≤ 1

2
(t − 1) a tight path

between Y2i+1 and Y2i+2 of length at most ℓ2 using only vertices in
W ∗∗\L, such that these paths are pairwise disjoint. Again, |W ∗∗\L| ≥
1
2
cn and t

2
+1 ≤ η2n for n sufficiently large. Thus Lemma 4 guarantees

that this step a.a.s. succeeds also and the tight paths can be found in
polynomial time.

But now we are done: Let W be the vertices of W ∗ used in steps 4
and 5. By definition of W ∗ we can delete the vertices of W from P ′

and obtain a tight path P ′(W) through the remaining vertices of P ′

8 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

(using additional edges of the reservoir graphs) and with the same start
and end (r − 1)-tuples. Then P ′(W) together with the connections
constructed in steps 4 and 5 (which incorporated all vertices of L)
form a Hamilton cycle in G. �

Remark 5. We note that the only non-deterministic part of the algo-
rithm presented in the above proof concerns the partition of the edges
of the input graph into five random subsets at the beginning.

The algorithm in the connection lemma (Lemma 4) is polynomial
time, where the power of the polynomial is independent of ε. The
same is (obviously) true for the greedy procedure of step 3. Finding
many vertex disjoint reservoir graphs in step 1 however, we can only
do in time n16ε−2

.

3. Proof of the connection lemma

Preliminaries. For a binomially distributed random variable X
and a constant γ with 0 < γ ≤ 3/2 we will use the following Chernoff
bound, which can be found, e.g., in [12, Corollary 2.3]:

(3) P
(

|X − EX| ≥ γEX
)

≤ 2 exp(−γ2
EX/3) .

In addition we apply the following consequence of Janson’s inequality
(see for example [12], Theorem 2.18): Let E be a finite set and P be a
family of non-empty subsets of E . Now consider the random experiment
where each e ∈ E is chosen independently with probability p and define
for each P ∈ P the indicator variable IP that each element of P gets
chosen. Set X =

∑

P∈P IP and ∆ = 1
2

∑

P 6=P ′,P∩P ′ 6=∅ E(IP IP ′). Then

(4) P(X = 0) ≤ exp(∆− EX) .

For e ∈
(

n
r

)

we say that we expose the r-set e in G(r)(n, p), if we

perform (only) the random experiment of including e in G(r) with prob-
ability p (recall that p := n−1+ε). If this random experiment includes e
then we say that e appears. Clearly, we can iteratively generate (a sub-
graph of) G(r)(n, p) by exposing r-sets, as long as we do not expose any
r-set twice. For a tuple u of at most r − 1 vertices in [n] we say that
we expose the r-sets at u, if we expose all r-sets e ∈

(

n
r

)

with u ⊆ e.

Similarly, we expose H ⊆
(

n
r

)

if we expose all r-sets e ∈ H.
In our algorithm we use the following structure. A fan F(u) in

an r-uniform hypergraph H is a set {P1, . . . , Pt} of tight paths in H
which all have length either ℓ or ℓ − 1, start in the same (r − 1)-
tuple u, and satisfy the following condition. For any set S of at least
r/2 vertices, let {Pj}j∈I be the collection of tight paths in which the
set S appears as a consecutive interval. Then the paths {Pj}j∈I also
coincide between u and the interval S. The tuple u is also called the
root of F(u). Moreover, ℓ is the length of F(u), and t its width. The
set of leaves L

(

F(u)
)

of F(u) is the set of (r − 1)-tuples u′ such that

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 9

some path in F ends in u′. For intuition, observe that in the graph case
r = 2, a fan is simply a rooted tree all of whose leaves are at distance
either ℓ or ℓ− 1 from the root. For r ≥ 3, a fan is a more complicated
structure.

Idea. We shall consecutively build the u(i) − v(i) paths Pi in the
set X , starting with P1. The construction of the path Pi we call phase i,
and the strategy in this phase is as follows. We shall first expose all the
hyperedges at u(i), excluding a set of ‘used’ vertices U (like those not in
X , or in any u(i′) or v(i′)). The edges {u(i), c} appearing in this process
form possible starting edges for a path connecting u(i) and v(i). For
each such (one edge) path P we next consider the (r−1)-endtuple of P
and expose all edges at this tuple, excluding edges that were exposed
earlier and used vertices (where now we count vertices in P as used).
And so on. In this way we obtain a (consecutively growing) fan F(u(i))
with root u(i). While growing this fan we shall also insist that no j-
tuple of vertices with j < r is used too often. We stop when the fan
has width n1−ε/2. We will show that with high probability the fan then
has only constant depth. Then we similarly construct a fan F(v(i)) of
width n1−ε/2 with root v(i) (again avoiding used vertices and exposed
edges).

In a last step, for each leaf ũ(i) of F(u(i)) and each leaf ṽ(i) of F(v(i))
we expose all ũ(i)−ṽ(i) paths of length 2(r−1), avoiding exposed edges.
We shall show that with high probability at least one of these paths
appears (and the fans F(u(i)) and F(v(i)) can be constructed), and
hence we have successfully constructed Pi. We shall also show that,
in phase i we only exposed much less than a 1/n fraction of the r-sets
in X . Hence it is plausible that we can avoid these exposed r-sets in
future phases. We note that this last statement makes use of the fact
r ≥ 3: our connection algorithm does not work for 2-graphs.

Proof of Lemma 4. Setup: Given r ≥ 3, δ > 0 and 0 < ε < 1/(4r), we
set

(5) ξ′ := δ/(48r2) , ξ := (ξ′)r/(r2(r − 1)!) and η = δ/(16r) .

Without loss of generality we will assume |X| = δn: this simplifies our
calculations.

In the algorithm described below, we maintain various auxiliary sets.
We have a set U of used vertices, which contains all vertices in the sets
u(i) and v(i), and in previously constructed connecting paths. In phase i
we maintain additionally a (non-uniform) multihypergraph Ui of used
sets, which keeps track of the number of times we have so far used a
vertex, or pair of vertices, et cetera, consecutively in some path of the
fan currently under construction.

Actually, it will greatly simplify the analysis if any such used set can
only appear in a unique order on these paths. Hence we choose the

10 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

following setup. We arbitrarily fix an equipartition

X = Y1∪̇ · · · ∪̇Y2r∪̇Y
′
1∪̇ · · · ∪̇Y ′

2r ,

and set Y := Y1∪̇ · · · ∪̇Y2r and Y ′ := Y ′
1∪̇ · · · ∪̇Y ′

2r. We shall construct
the fan F(u(i)) with root u(i) in Y1, . . . , Y2r, taking successive levels of
the fan from successive sets (in cyclic order), and similarly F(v(i)) in
Y ′
1 , . . . , Y

′
2r.

Further, we maintain an r-uniform exposé hypergraph H , which keeps
track of the r-sets which we have exposed. We let Hi be the hypergraph
with the edges of H at the beginning of phase i.

We define hypergraphs D
(1)
i , . . . , D

(r−1)
i of dangerous sets for phase i

as follows:

D
(r−1)
i :=

{

x ∈
(

X
r−1

)

: degHi
(x) ≥ ξn

}

, and(6a)

D
(j)
i :=

{

x ∈
(

X
j

)

: deg
D

(j+1)
i

(x) ≥ ξn
}

, r − 2 ≥ j ≥ 1 .(6b)

We will not use any set in any D
(j)
i consecutively in a path in the fans

constructed in phase i.
Given two vertex-disjoint (r− 1)-sets u and v, we say that the path

(u,v) of length 2r − 2 is blocked by the exposé hypergraph H if any
r consecutive vertices of the (2r − 2)-set {u,v} is in H . When con-
structing the fan F

(

v(i)
)

with root v(i), we need to ensure that not
too many of its leaves are blocked by H together with too many leaves
of the previously constructed fan F

(

u(i)
)

. For this purpose we define

hypergraphs D̃
(j)
i of temporarily dangerous sets in phase i as follows.

We call an (r − 1)-set y in Y ′ temporarily dangerous if there are at
least ξ′

∣

∣L
(

F(u(i))
)
∣

∣ leaves x of F(u(i)) such that {x,y} is blocked by
Hi. We define

D̃
(r−1)
i :=

{

y ∈
(

Y ′

r−1

)

: y is temporarily dangerous
}

, and(7a)

D̃
(j)
i :=

{

y ∈
(

Y ′

j

)

: deg
D̃

(j+1)
i

(y) ≥ ξ′n
}

, for r − 2 ≥ j ≥ 1 .(7b)

Summarising, we do not want to append a vertex c ∈ X \ U to the
end (r − 1)-tuple a of a path in one of our fans, if for a or for any end
(j − 1)-tuple aj−1 of a with j ∈ [r − 2] we have

(i) {a, c} is in H ,

(ii) {aj−1, c} is an edge of D
(j)
i or of D̃

(j)
i , or

(iii) {aj−1, c} has multiplicity greater than ξr−jn(r−1)/2−j(1−ε) in Ui.

Hence we define the set B(a) of bad vertices for a to be the set of
vertices in X \ U for which at least one of these conditions applies.

Algorithm: The desired paths Pi will be constructed using Algo-
rithm 1. This algorithm constructs for each i ∈ [k] two fans F(u(i))
and F(v(i)), using Algorithm 2 as a subroutine.

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 11

Algorithm 1: Connect each pair u(i), v(i) with a path Pi

U :=
⋃

i∈[k]{u
(i),v(i)} ; H := ∅ ;

foreach i ∈ [k] do
1 construct the fan F(u(i)) in Y1∪̇ . . . ∪̇Y2r ;

2 construct the fan F(v(i)) in Y ′
1∪̇ . . . ∪̇Y ′

2r ;

let L := L(u(i)) be the leaves of F(u(i)) ;

let L′ := L(v(i)) be the leaves of F(v(i)) reversed ;

P := all L− L′-paths of length 2r − 2 not blocked by H ;
3 expose all edges which are in some P ∈ P ;

if one of these paths ũ(i), ṽ(i) appears then
P (u(i)) := the path in F(u(i)) ending with ũ(i) ;

P (v(i)) := reversal of the path in F(v(i)) ending with ṽ(i) ;

Pi := P (u(i)), ũ(i), ṽ(i), P (v(i)) ;

4 else halt with failure;
5 U := U ∪ V (Pi) ;

6 foreach x ∈ L(u(i)),y ∈ L(v(i)) do H := H ∪
(

x∪y

r

)

;
end

Algorithm 2: Construct the fan F(u(i))

F(u(i)) := {u(i)} ; Ui := ∅ ; t := 1 ;

repeat forever

P := F(u(i)) ;
7 foreach path P ∈ P do

let a be the end (r − 1)-tuple of P ;

8 expose all edges {a, c} with
c ∈ C ′ := Yt \ (V (P) ∪ U ∪B(a)) ;

9 C := {c : {a, c} appears in previous step} ;
10 if not δnε/(16r) ≤ |C| ≤ δnε/(2r) then halt with failure;

11 F(u(i)) :=
(

F(u(i)) \ {P}
)

∪
{

(P, c) : c ∈ C
}

;
12 aj := last j vertices of P for j ∈ [r − 2] ;

13 Ui := Ui ∪ C ∪
⋃

c∈C

{

{aj , c} : j ∈ [r − 2]
}

;

14 H := H ∪
{

(a, c) : c ∈ C ′
}

;

15 if |F(u(i))| ≥ n(r−1)/2−ε/2 then return ;
end

t := (t mod 2r) + 1 ;

end

It is clear that the running time (whether the algorithm succeeds
or fails) is polynomial: Steps 10 and 15 guarantee that in one call,

12 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

Algorithm 2 runs at most n(r−1)/2 times through its repeat loop. Our
analysis will show that a.a.s. the algorithm indeed succeeds.

Before we proceed with the analysis, let us remind the reader that
H denotes the already exposed hyperedges that appeared so far, Hi

consists of the hyperedges of H before the start of phase i, U is the set
of already used vertices and Ui is the auxiliary multihypergraph which
is maintained through phase i and records those j-tuples (j ∈ [r − 1])
that were used for constructing the fan F(u(i)) (F(v(i)) resp.).

Analysis: First, we claim that the algorithm is valid in that it does
not try to expose any r-set twice. To see this, we need to check that at
steps 3 and 8, we do not attempt to re-expose an already exposed r-set.
Since we do not expose any r-set in H at either step (by the definition
of B(a)), it is enough to check that after either step, all exposed r-sets
are added to H before the next visit to either step. This takes place in
steps 6 and 14.

In order to show that the algorithm succeeds, we need to show that
the following hold with sufficiently high probability for each i ∈ [k].

(A1) Algorithm 2 successfully builds the fans F(u(i)) and F(v(i)), that
is, the condition in step 15 eventually becomes true, and the
condition in step 10 never becomes true.

(A2) If this is the case, then Algorithm 1 successfully constructs Pi,
that is, one of the paths exposed in step 3 appears.

(A3) If this is the case, then Pi is of length at most s = r−1
ε
, that is,

the fans F(u(i)) and F(v(i)) have length at most s/2.

It is straightforward to see that (A3) holds. Indeed, if Algorithm 2
succeeds in step i, then in the last repetition of the for-loop creat-
ing F(u(i)), the width of F(u(i)) finally exceeds n(r−1)/2−ε/2. Since
by step 10 at most |C| ≤ δnε/(2r) < n(r−1)/2−ε/2 paths are added to
F(u(i)) in this last for-loop (and the same holds for F(v(i))), we obtain
for the width of F(u(i)) and F(v(i)) (which equals the number of their
leaves) that

(8) n(r−1)/2−ε/2 ≤
∣

∣L(u(i))
∣

∣,
∣

∣L(v(i))
∣

∣ ≤ 2n(r−1)/2−ε/2 .

Now observe that by step 10 the fan F(u(i)) (and similarly F(v(i)))
has width at least

(

δnε/(16r)
)si, where si is the length of F(u(i)). For

si ≥ (r − 1)/(2ε) this would imply
∣

∣L(u(i))
∣

∣ ≥
(

δnε/(16r)
)(r−1)/(2ε)

>

n(r−1)/2−ε/2, contradicting (8). Hence we have (A3).
For proving (A1) and (A2), we first show bounds on various quanti-

ties during the running of the algorithm. For a set a in the multiset Ui

with i ∈ [k], we write multUi
(a) for the multiplicity of a in Ui.

Claim 6. If phase i and all phases before succeed, then the following
hold throughout phase i.

(a) |U | ≤ k
(

s+ 2(r − 1)
)

≤ 2kr/ε.

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 13

(b) For each j ∈ [r − 1] and each j-set a ∈ Ui we have

multUi
(a) ≤ ξr−jn((r−1)/2)−j(1−ε) + 1 .

(c) For each j ∈ [r − 1] and each (j − 1)-set a in [n], for all but ξn
vertices c ∈ X we have

multUi
({a, c}) ≤ ξr−jn((r−1)/2)−j(1−ε) .

(d) e(Hi+1) ≤ 22r+1(i+ 1)nr−1−ε/2.
(e) At step 8 in Algorithm 2, we have |Yt \ (V (P) ∪ U ∪ B(a))| ≥

δn/(8r).

Observe that for j ≥ r/2 Claim 6(b) implies that we always have
multUi

(a) ≤ 1 for any j-tuple used in any F(u(i)) or F(v(i)). This
shows that F(u(i)) and F(v(i)) are indeed fans, as we claim.

Proof of Claim 6. We first prove (a). The set U contains the 2k(r−1)
vertices of the k pairs of (r − 1)-tuples which we wish to connect,
together with all the vertices of the paths thus far constructed. Since
by (A3) these paths are of length at most s, it follows that |U | ≤
2k(r − 1) + (i− 1)s ≤ k

(

s+ 2(r − 1)
)

.

To see that (b) holds, observe that j-sets are added to Ui only at
step 13, and at this point the sets added are distinct: two sets ei-
ther contain different members of Yt, or they are of different sizes.
Moreover, they are added only if their multiplicity in Ui is at most
ξr−jn(r−1)/2−j(1−ε) by (iii) in the definition of B(a).

For (c) we proceed by induction on j. First consider the case j = 1.
Observe that c ∈ X is added to Ui in step 13 only if it is added at the
end of a path P . Since step 10 guarantees that each fan grows by a
factor of at least 2 in each iteration, we have

∑

c∈X

multUi
(c) ≤ 2

(

|L(u(i))|+ L(v(i))|
)

(8)

≤ 4n(r−1)/2−ε/2 < ξrn(r−1)/2 .

We conclude that there are at most

ξrn(r−1)/2

ξr−1n((r−1)/2)−1+ε
= ξn1−ε

vertices c ∈ X with multUi
(c) > ξr−1n((r−1)/2)−1+ε.

Now assume that (c) holds for j− 1 and let a be a (j− 1)-set in [n].
Similarly as before, for c ∈ X the set {a, c} is in Ui with multiplicity
equal to the number of times that a has appeared as the end of a path P
in one of the two fans constructed in this phase and the path (P, c) was
subsequently added to the fan in step 11. Since we did not previously
halt in step 10, for any P there are at most δnε/(2r) ≤ 1

2
nε vertices

c ∈ X such that (P, c) is added in this way. Thus we have

(9)
∑

c∈X

multUi
(a, c) ≤ multUi

(a) · 1
2
nε .

14 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

By (b) we know in addition that

multUi
(a) ≤ ξr−j+1n((r−1)/2)−(j−1)(1−ε) + 1 .

Note that if this bound is less than 2 then (9) directly implies that
there are at most ξn vertices c with multUi

(a, c) ≥ 1 and we are done.
Hence we may assume multUi

(a) ≤ 2ξr−j+1n((r−1)/2)−(j−1)(1−ε). This
together with (9) also implies that there are at most

2ξr−j+1n((r−1)/2)−(j−1)(1−ε) · 1
2
nε

ξr−jn((r−1)/2)−j(1−ε)
= ξn

vertices c ∈ X with multUi
(a, c) ≥ ξr−jn((r−1)/2)−j(1−ε), as desired.

For the remaining parts of the claim, we proceed by induction on
the phase i ∈ [k]. So assume that the claim holds at the end of the
(i− 1)st phase.

We next prove (d). At the end of phase i, the hypergraph H contains
all the r-sets which it had at the end of phase i− 1, together with all
those added in phase i. Now consider the construction of one fan in
phase i, say of F(u(i)). Since we did not halt in step 10, the width of
the fan grows exponentially, more than doubling at each step. Thus we
can bound the total number of iterations of the for-loop by the number
|L(u(i))| of leaves of this fan (cf. step 11). In each of these iterations,
we exposed |Yt \ (P ∪ U ∪ B(a))| < n of the r-sets and added them
to H . Hence, while constructing F(u(i)) (and similarly for F(v(i))),
we added at most |L(u(i))|n new r-sets to H . The only other step
where we add r-tuples to H is step 6. In this step, for each pair of
leaves of F(u(i)) and F(v(i)), we add

(

2r−2
r

)

new r-sets to H . Using
the induction hypothesis we thus conclude that at the end of phase i
we have

e(Hi+1) ≤ e(Hi) +
(

|L(u(i))|+ |L(v(i))|
)

n +
(

2r−2
r

)

|L(u(i))| · |L(v(i))|

(8)

≤ 22r+1i · nr−1−ε/2 + 4n(r+1)/2−ε/2 · n+
(

2r−2
r

)

4nr−1−ε

≤ 22r+1(i+ 1)nr−1−ε/2 ,

where for the final inequality we use the fact that (r + 1)/2 ≤ r − 1,
which holds since r ≥ 3. This is the only step in the analysis where we
use r ≥ 3, but this analysis is reasonably tight: the algorithm does fail
for r = 2.

Last we prove (e), for which we additionally proceed by induction
on the number f of iterations through the for-loop of Algorithm 2 done
in the ith phase so far. So we assume that the claim holds at the end
of the (i− 1)st phase and after f − 1 iterations.

Let P be the path considered in iteration f of this for-loop, and
a the (r − 1)-tuple ending P . We would like to estimate the size of
B(a)∩Yt. Keep in mind in the following analysis that for j ∈ [r−1] the

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 15

hypergraph Dj
i does not change during phase i, by definition. Similarly,

D̃j
i does not change once the fan F(ui) is constructed.
Now let us first assess the effect of (i) of the definition of B(a).

Since a is the end of a path constructed by Algorithm 2, step 8 implies
that the last vertex b of a is not contained in B(b) where b is the end
(r− 1)-tuple of P − b. From (ii) in the definition of B(b) we conclude

that a /∈ D
(r−1)
i . Thus, by the definition of D

(r−1)
i in (6a), the number

of edges in Hi containing a is smaller than ξn.
But how many edges {a, c} with c ∈ Yt did phase i add to H so far?

By (b) the set a has multiplicity at most ξn(r−1)(2ε−1)/2 + 1 < 2 in Ui.
It follows that since the start of phase i only one edge containing a

was added to H in step 14: the end r-tuple ar of P . However, since ar

contains no vertices of Yt because the algorithm takes successive levels
of the fan in successive Yt′ (or Y

′
t′), we conclude that the current phase

did not add any additional edges {a, c} to H with c ∈ Yt.
Now let us estimate the number of vertices c ∈ Yt which (ii) of

the definition of B(a) forbids. First, we need to consider the case

j = 1, and show that the number of vertices in D
(1)
i is at most ξn.

Suppose not, and observe that by definition (6b), each vertex in D
(1)
i

extends to at least ξn pairs in D
(2)
i , and so on, where at the final step

each constructed member of D
(r−1)
i extends to at least ξn members of

Hi. We can construct any given member of Hi in at most r! ways,
so we conclude that e(Hi) ≥ (ξn)r/r!, which (for sufficiently large n)
contradicts part (d).

Next, again for the case j = 1, we need to show that further there

are at most ξ′n vertices in D̃
(1)
i . Again, suppose not: then as above this

implies that the number of pairs of (r−1)-tuples (x,y) with x ∈ L
(

u(i)
)

and y contained in Y ′
1 ∪ . . . ∪ Y ′

2r is at least

(10) ξ′
∣

∣

∣
L
(

u(i)
)

∣

∣

∣
· (ξ′n)r−1/(r − 1)!

(5)

≥ r2ξnr−1
∣

∣

∣
L
(

u(i)
)

∣

∣

∣
.

However, by construction of F(u(i)), for each j ∈ [r − 1] and each
x ∈ L

(

u(i)
)

, we have the property that the last j vertices of x are not

in D
(j)
i . We claim that this implies that the number of (r−1)-tuples y

contained in Y ′
1 ∪ . . .∪Y ′

2r such that (x,y) is blocked by Hi, is at most
(r − 1)2ξnr−1, which is a contradiction to (10). To see this, consider
the following property P of tuples y. For each r − 1 ≥ j ≥ 1 and each
1 ≤ k ≤ r − j, the tuple consisting of the last j vertices of x followed

by the first k vertices of y is not in D
(j+k)
i (if j + k < r) and not in Hi

(if j + k = r). If y has property P, then clearly the pair (x,y) is not
blocked by Hi. On the other hand, if y does not have P, then there is

a smallest k for which P fails. By definition of the sets D
(j+k)
i , for a

fixed j given the first k − 1 vertices of y there are at most ξn choices
for the k-th vertex of y. Hence, in total, given the first k−1 vertices of

16 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

y there are at most (r−1)ξn choices for the k-th vertex of y. Thus the
number of (r−1)-tuples y which do not have P is at most (r−1)2ξnr−1

as desired.
Now given 2 ≤ j ≤ r − 2, let aj−1 be the set consisting of the last

j − 1 vertices of a. By construction, aj−1 is in neither D
(j−1)
i nor in

D̃
(j−1)
i . It follows from the definition of these sets in (6b) and (7b) that

there are at most ξn vertices c such that {aj−1, c} ∈ D
(j)
i , and at most

ξ′n such that {aj−1, c} ∈ D̃
(j)
i . Together with the case j = 1, this gives

at most (r − 2)(ξ + ξ′)n forbidden vertices c ∈ Yt.
Finally, for (iii), observe that by part (b), for each j ∈ [r− 2] there

are at most ξn vertices c ∈ X with multUi

(

{aj−1, c}
)

> ξr−jn
r−1
2

−j(1−ε).
Hence, in total, B(a) ∩ Yt contains at most

ξn+ (r − 2)(ξ + ξ′)n+ (r − 2)ξn
(5)

≤
δn

4r

vertices. Moreover, it follows from (A3) that |P | ≤ r/ε, and from (a)
that |U | ≤ 2kr/ε. Since we have |Yt| = δn/(2r), we conclude that

|Yt \ (P ∪ U ∪ B(a))| ≥
δn

2r
−

r

ε
−

2kr

ε
−

δn

4r
≥

δn

8r
�

Now we can use a Chernoff bound to show that a.a.s. Algorithm 2
does not fail in step 10.

Claim 7. At any given visit to step 10, Algorithm 2 halts with proba-
bility at most 2 exp

(

− δnε/(96r)
)

.

Proof. By Claim 6(e), we have

δn/(8r) ≤ |Yt \ (P ∪ U ∪ B(a))| ≤ |Yt| = δn/(4r) .

Since C is a p-random subset of Yt \ (P ∪ U ∪ B(a)) with p = n−1+ε,
we obtain δnε/(8r) ≤ E|C| ≤ δnε/(4r). Using the Chernoff bound (3)
with γ = 1/2, we conclude that δnε/(16r) ≤ |C| ≤ δnε/(2r) with
probability at least 1− 2 exp

(

− δnε/(96r)
)

. �

We would like to show that also a.a.s. Algorithm 1 does not fail
in step 4. Since the events considered in this step are not mutually
independent, we use Janson’s inequality for this purpose.

Claim 8. At any given visit to step 4, Algorithm 1 halts with probability
at most exp(−n(r−2)ε/4).

Proof. Let E =
⋃

P be the family of r-sets exposed in step 3 in this
iteration of the foreach-loop. For each P ∈ P let IP be the indicator
variable for the event that the path P appears, which occurs with
probability p̃ = pr−1. Then X =

∑

P∈P IP is the random variable
counting the number of L − L′-paths appearing in this iteration. We

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 17

would like to use Janson’s inequality (4) to show that X > 0 with high
probability, in which case Algorithm 1 does not halt in step 4.

To this end we first bound EX , for which we need to estimate |P|.
Firstly, since F(u(i)) and F(v(i)) are disjoint fans, no vertex is in a leaf
both of F(u(i)) and of F(v(i)), and in particular L(u(i)) and L(v(i)) are
disjoint. Now let ṽ be any (r − 1)-tuple in L(v(i)). By construction

ṽ is not in D̃
(r−1)
i (see step 8 and the definition of B(a)). By (7a)

the path (ũ, ṽ) therefore is blocked by H for at most ξ′
∣

∣L(u(i))
∣

∣ tuples

ũ ∈ L(u(i)). Thus we have

|P| ≥ |L(v(i))
∣

∣ · (1− ξ′)|L(u(i))
∣

∣

(8)

≥ (1− ξ′)nr−1−ε ,

which gives

(11) EX = |P|p̃ ≥ (1− ξ′)nr−1−εn(ε−1)(r−1) = (1− ξ′)n(r−2)ε .

Next we would like to estimate E(IP IP ′) for two distinct paths P =
(ũ, ṽ) and P ′ = (ũ′, ṽ′) which share at least one edge. If P and P ′ are
distinct paths sharing at least one edge, then in particular, either ũ

and ũ′ have the same end r/2-tuple, or ṽ and ṽ′ have the same start
r/2-tuple. Without loss of generality assume the former and suppose
that ṽ and ṽ′ match in the start j-tuple, but not in the (j+1)st vertex.
Clearly 1 ≤ j, and since F(u(i)) and F(v(i)) are fans we have ũ = ũ′

and j < r/2. Hence P and P ′ share precisely an interval of length
r − 1 + j, and thus j edges. Therefore E(IP IP ′) ≤ p2r−2−j.

In addition, the discussion above shows that for a fixed path P =
(ũ, ṽ), the number NP,j of paths P

′ = (ũ′, ṽ′) such that P and P ′ share
j edges, is at most the number of choices of a leaf ṽ′ ∈ L(v(i)) such that
ṽ′ only has the end (r−1−j)-tuple v different from ṽ, plus the number
of choices of a leaf ũ′ ∈ L(u(i)) such that ũ′ only has the start (r−1−j)-
tuple u different from ũ. By Claim 6(b) the start j-tuple of ṽ and the
end j-tuple of ũ have multiplicity in Ui at most n(r−1)/2−j(1−ε) + 1. By
step 13 this implies that there are at most n(r−1)/2−j(1−ε) choices for u
and for v, and hence NP,j ≤ 2n(r−1)/2−j(1−ε).

With this we are ready to estimate

∆ =
∑

P 6=P ′,P∩P ′=∅

E(IP IP ′) =
∑

P

∑

1≤j<r/2

(

∑

|P ′∩P |=j

E(IP IP ′)
)

,

where P, P ′ ∈ P. We have

∆ ≤
∑

P

∑

1≤j<r/2

NP,j · p
2r−2−j

≤ |L(u(i))||L(v(i))|
∑

1≤j<r/2

2n(r−1)/2−j(1−ε)p2r−2−j ,

18 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

which, by (8), is at most

n(r−1)−ε
∑

1≤j<r/2

2n(r−1)/2−j(1−ε)n(ε−1)(2r−2−j),

≤ n(r−1)−ε · r · n− 3
2
(r−1)+2ε(r−1) < 1.

Hence, inequalities (4) and (11) imply that P(X = 0) ≤ exp(∆ −
EX) ≤ exp(−n(r−2)ε/4), and thus Algorithm 1 fails with at most this
probability in this visit to step 4 �

Since Algorithm 1 visits step 4 at most k ≤ n times, we can use
Claim 8 and a union bound to infer that (A2) holds with probability
at least 1−n · exp

(

−n(r−2)ε/4
)

≥ 1− 1
2
exp

(

− δnε/(100r)
)

. Similarly,
step 10 of Algorithm 2 is called at most once per leaf in any of the
at most 2k constructed fans, which is at most 2k · 2n(r−1)/2−ε/2 ≤ nr

times by (8). It follows from Claim 7 that (A1) holds with probability
at least 1− nr · 2 exp

(

− δnε/(96r)
)

≥ 1− 1
2
exp(−δnε/(100r)

)

.
Summarising, we showed that Algorithm 1 constructs the k de-

sired tight paths of length at most ℓ with probability at least 1 −
exp(−δnε/(100r)

)

. �

4. Proof of the reservoir lemma

In this section we prove Lemma 2.

Proof of Lemma 2. Choose ℓ :=
⌈

1/
(

2(r − 1)ε
)⌉

+ 2. Our strategy
will be as follows. We will start by defining an auxiliary r-uniform

hypergraph D
(r)
ℓ with 2(r− 1)(2ℓ− 1) + 1 vertices and as many edges,

which implies

(12) d(1)(D
(r)
ℓ) = 1 +

1

2(r − 1)(2ℓ− 1)
≤ 1 + ε .

After defining D
(r)
ℓ we shall construct a graph H∗ which satisfies (ii)

and (iii) and is such that D
(r)
ℓ ⊆ H∗ and D

(r)
ℓ has maximum 1-density

among all subhypergraphs of H∗.

The vertex set of D
(r)
ℓ is

V (D
(r)
ℓ) := U ∪ V ∪

⋃

i∈[ℓ−1]

Ai ∪
⋃

i∈[ℓ−2]

Bi .

where U := (u1, . . . , ur−1, w
∗, ur, . . . , u2(r−1)), V := (v′1, . . . , v

′
2(r−1)),

Ai := (a
(i)
1 , . . . a

(i)
2(r−1)) for i ∈ [ℓ − 1], and Bi := (b

(i)
1 , . . . b

(i)
2(r−1)) for

i ∈ [ℓ − 2] are ordered sets of vertices. The edge set of D(r)
ℓ contains

exactly the edges of the tight paths determined by U , by V , by Ai for

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 19
PSfrag replacements

U VA1 A2

B1

w∗

Figure 1. H∗ for r = 3 and ℓ = 3. The vertices of D
(r)
ℓ

are drawn bigger than the vertices newly inserted in H.
The continuous line indicates the tight Hamilton path
in H∗ from (13), the dashed line the tight Hamilton path
in H∗ − w∗.

each i ∈ [ℓ − 1], by Bi for each i ∈ [ℓ − 2], as well as by the following
vertex sequences:

ŨA := (u1, . . . , ur−1, a
(1)
r−1, . . . , a

(1)
1) ,

ṼA := (a
(ℓ−1)
2(r−1), . . . , a

(ℓ−1)
r , v′r, . . . , v

′
2(r−1)) ,

ŨB := (u2(r−1), . . . , ur, b
(1)
r−1, . . . , b

(1)
1) ,

ṼB := (b
(ℓ−2)
2(r−1), . . . , b

(ℓ−2)
r , v′r−1, . . . , v

′
1) ,

and

Ãi,i+1 := (a
(i)
2(r−1), . . . , a

(i)
r , a

(i+1)
r−1 , . . . , a

(i+1)
1) for all i ∈ [ℓ− 2] ,

B̃i,i+1 := (b
(i)
2(r−1), . . . , b

(i)
r , b

(i+1)
r−1 , . . . , b

(i+1)
1) for all i ∈ [ℓ− 3] .

It is not difficult to check that D
(r)
ℓ has exactly 2(r − 1)(2ℓ − 1) + 1

vertices and edges as claimed.

In order to obtain H∗ from D
(r)
ℓ we first let vi := v′(r−1)+i for each

i ∈ [r − 1]. Then we insert

k := 3(r − 1)2(2ℓ− 1)

new vertices ‘between’ each of the following pairs of vertex sets in D
(r)
ℓ :

U and A1, Aℓ−1 and V , Ai and Bi for each i ∈ [ℓ − 2], Bi and Ai+1

for each i ∈ [ℓ− 2]. We let I(X, Y) denote the ordered set of vertices
inserted ‘between’ the sets X and Y in this process (where we choose
any ordering). In addition, we add to this graph the tight Hamilton
path

(13) U, I(U,A1), A1, I(A1, B1), B1, I(B1, A2), A2, . . .

. . . , Bℓ−2, I(Bℓ−2, Aℓ−1), Aℓ−1, I(Aℓ−1, V), V

running from u to v (which uses some edges already present in D(r)
ℓ).

The resulting hypergraph is H∗ (see also Figure 1).

20 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

By construction v(H∗) = 2(r − 1)(2ℓ − 1) + 1 + 2k(ℓ − 1) which
by definition of k is smaller than 16(r − 1)2ℓ2 ≤ 16ε−2, and e(H∗) =
2(r − 1)(2ℓ− 1) + 1 + 2(k + r − 1)(ℓ− 1). Since ℓ > 1 this implies

d(1)(H∗) = 1 +
2(r − 1)(ℓ− 1) + 1

2(r − 1)(2ℓ− 1) + 2k(ℓ− 1)

< 1 +
2(r − 1)(ℓ− 1) + 1

2k(ℓ− 1)
≤ 1 +

1

2(r − 1)(2ℓ− 1)
(12)
= d(1)(D

(r)
ℓ) .

(14)

By (13) the hypergraph H∗ satisfies (ii). We define Ĩ(Y,X) to be the
reversal of I(X, Y). It can be checked that H∗ also contains the tight
path

ŨA, Ĩ(A1, U), ŨB, Ĩ(B1, A1), Ã1,2, Ĩ(A2, B1), B̃1,2, Ĩ(B2, A2), Ã2,3, . . .

. . . , Ãℓ−2,ℓ−1, Ĩ(Aℓ−1, Bℓ−2), ṼB, Ĩ(V,Aℓ−1), ṼA .

This is a tight path from u to v running through all vertices of H∗

but w∗, and so H∗ also satisfies (iii). It remains to show that D(r)
ℓ has

maximal 1-density among all subgraphs of H∗.
Suppose that H is a subgraph of H∗ with maximal 1-density. It fol-

lows that H is an induced subgraph of H∗, and that we have d(1)(H) ≥

d(1)(D
(r)
ℓ) > 1. It follows that H cannot contain any vertex of degree

one (otherwise we could delete it and increase the 1-density). In par-
ticular, this means that if I(X, Y) is any of the sets of k vertices which

form a tight path in H∗ and which are not present in D(r)
ℓ , then either

every vertex of I(X, Y) is inH, or none are. Similarly, by the definition

of k we have k · d(1)(D
(r)
ℓ) > k+ (r− 1) and so H cannot contain any k

vertices meeting only k + r − 1 edges. Accordingly H cannot contain

I(X, Y). It follows that H must be a subgraph of D
(r)
ℓ .

It is straightforward to check that if any of the vertices

S := {u2, . . . , u2(r−1)−1,w
∗, v2, . . . , v2(r−1)−1,

a
(i)
2 , . . . , a

(i)
2(r−1)−1, b

(i)
2 , . . . , b

(i)
2(r−1)−1}

of D
(r)
ℓ is removed from D

(r)
ℓ , then we obtain a graph which can be

decomposed by successively removing vertices of degree at most one
(i.e. it is 1-degenerate) and which therefore has 1-density at most 1. It

follows that S ⊆ V (H). Now let x be any vertex of D
(r)
ℓ which is not

in H. Since x 6∈ S we have deg
D

(r)
ℓ

(x) = 2, and both edges containing

x have all their remaining vertices in S. Thus we have

d(1)
(

D
(r)
ℓ

[

V (H) ∪ {x}
])

≥ min
(

d(1)(H), 2
)

and since d(1)(D
(r)
ℓ) < 2, we conclude that d(1)(H) ≤ d(1)(D

(r)
ℓ) as

required. �

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 21

5. Concluding remarks

Graphs. We remark that our approach does not work (as such) in the
case r = 2, even for the sub-optimal edge probability nε−1. For this
case, in the proof of the connection lemma, Lemma 4, when growing
a fan we would have to reveal in each iteration of the foreach-loop in
Algorithm 2 more than n1−ε edges at a vertex a. In the construction
of one fan we would have to repeat this operation at least n(1/2)−2ε

times: only then we could hope for the fan to have n(1/2)−ε leaves,
which we need in order to get a connection between two such fans
at least in expectation. But then we would have revealed at least
n1−ε · n(1/2)−2ε = n(3/2)−3ε edges to obtain a single connection. Hence,
we cannot obtain a linear number of connections in this way, as required
by our strategy.

Vertex disjoint cycles. It is easy to modify our approach to show
the following theorem.

Theorem 9. For every integer r ≥ 3 and for every ε, δ > 0 the follow-
ing holds. Suppose that n1, . . . , nℓ are integers, each at least 2r/ε, whose
sum is at most n, and n1 ≥ δn. Then for any n−1+ε < p = p(n) ≤ 1,
the random r-uniform hypergraph G(r)(n, p) contains a collection of ver-
tex disjoint tight cycles of lengths n1, . . . , nℓ with probability tending to
one as n tends to infinity.

A proof sketch is as follows. We refer to the steps used in the proof
of Theorem 1.

First, we would run step 1 as before, except that we would find reser-
voir graphs covering only at most εδn/(8r) vertices. Step 2 remains
unchanged. We would then in an extra step (requiring an extra round
of probability) to create greedily a collection of vertex disjoint tight
paths of lengths slightly shorter than n2, . . . , nℓ, and another extra
step using Lemma 4 to connect these paths into tight cycles of lengths
n2, . . . , nℓ. Here we require that the connecting paths always have a
precisely specified length. As written, Lemma 4 does not guarantee
this (the output paths have lengths differing by at most two, since the
paths in each fan can differ in length by one) but it is easy to modify
the lemma to obtain this (we would simply extend each of the shorter
fan paths by one vertex while avoiding dangerous sets). The remainder
of the proof can remain almost unchanged. We extend the reservoir
path greedily to cover most of the remaining vertices. Then we apply
Lemma 4 twice to cover all the leftover vertices and complete a cycle.
Then this cycle has length n1 as desired. (The only difference is that
some of our constants will need to be adapted slightly.)

Again, for fixed r, ε and δ we obtain a randomised polynomial time
algorithm from this proof. Note that the condition that the cycles
should not be too short cannot be completely removed: in order to
have linearly many cycles of length g with high probability, we require

22 P. ALLEN, J. BÖTTCHER, Y. KOHAYAKAWA, AND Y. PERSON

that linearly many such cycles exist in expectation. This expectation
is of the order ngpg, which is in o(n) if p = o

(

n−(g−1)/g
)

.

Derandomisation. Our approach to Theorem 1 yields a randomised
algorithm. However we only actually use the power of randomness in
order to preprocess our input hypergraph and ‘simulate’ multi-round
exposure. This motivates the following question.

Question 10. For a constructive proof which uses multi-round expo-
sure, how can one obtain a deterministic algorithm?

Replacing the randomised preprocessing step with a deterministic
splitting of the edges of the complete r-uniform hypergraph into disjoint
dense quasirandom subgraphs might be a promising strategy here.

Multi-Round exposure is a very common technique in probabilistic
combinatorics. Hence this question might be of interest for other prob-
lems as well.

Resilience. A very active recent development in the theory of random
graphs is the concept of resilience: under which conditions can one
transfer a classical extremal theorem to the random graph setting?
Lee and Sudakov [18], improving on previous work of Sudakov and
Vu [22], showed that Dirac’s theorem can be transferred to random
graphs almost as sparse as at the threshold for hamiltonicity. More
precisely, they proved that for each ε > 0, if p ≥ C log n/n for some
constant C = C(ε), then almost surely the random graph G = G(n, p)
has the following property. Every spanning subgraph of G which has
minimum degree (1

2
+ ε)pn, contains a Hamilton cycle.

It would be interesting to prove a corresponding result for tight
Hamilton cycles in subgraphs of random hypergraphs. It is unlikely
that the Second Moment Method will provide help for this. Our meth-
ods, however, might be robust enough to provide some assistance.

6. Acknowledgements

We would like to thank Klas Markström for suggesting Theorem 9.

References

[1] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian

circuits and matchings, J. Comput. System Sci. 18 (1979), no. 2, 155–193.
[2] D. Bal and A. Frieze, Packing tight Hamilton cycles in uniform hypergraphs,

SIAM Journal on Discrete Mathematics 26 (2012), no. 2, 435–451.
[3] B. Bollobás, T. I. Fenner, and A. Frieze, An algorithm for finding Hamilton

paths and cycles in random graphs, Combinatorica 7 (1987), no. 4, 327–341.
[4] B. Bollobás, The evolution of sparse graphs, Graph theory and combinatorics

(Cambridge, 1983), Academic Press, London, 1984, pp. 35–57.
[5] A. Dudek and A. Frieze, Tight Hamilton cycles in random uniform hypergraphs,

Random Structures Algorithms, to appear.
[6] , Loose Hamilton cycles in random uniform hypergraphs, Electron. J.

Combin. 18 (2011), no. 1, Paper 48, 14.

TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS 23

[7] A. Dudek, A. Frieze, P.-S. Loh, and S. Speiss, Optimal divisibility conditions

for loose Hamilton cycles in random hypergraphs, Electron. J. Combin. 19

(2012), Note 44, 4.
[8] A. Frieze, An algorithm for finding Hamilton cycles in random directed graphs,

J. Algorithms 9 (1988), no. 2, 181–204.
[9] , Loose Hamilton cycles in random 3-uniform hypergraphs, Electron. J.

Combin. 17 (2010), no. 1, Note 28, 4.
[10] A. Frieze and M. Krivelevich, Packing Hamilton cycles in random and pseudo-

random hypergraphs, Random Structures & Algorithms 41 (2012), 1–22.
[11] A. Frieze, M. Krivelevich, and P.-S. Loh, Packing tight Hamilton cycles in

3-uniform hypergraphs, Random Structures Algorithms 40 (2012), 269–300.
[12] S. Janson, T. Luczak, and A. Ruciński, Random graphs, Wiley-Interscience,

New York, 2000.
[13] A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Struc-

tures Algorithms 33 (2008), no. 1, 1–28.
[14] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamilton-

ian cycles in a random graph, Discrete Math. 43 (1983), no. 1, 55–63.
[15] A. Korshunov, Solution of a problem of Erdős and Renyi on Hamiltonian cycles

in nonoriented graphs., Sov. Math., Dokl. 17 (1976), 760–764.
[16] , Solution of a problem of P. Erdős and A. Renyi on Hamiltonian cycles

in undirected graphs, Metody Diskretn. Anal. 31 (1977), 17–56.
[17] D. Kühn and D. Osthus, On Pósa’s conjecture for random graphs, SIAM Jour-

nal on Discrete Mathematics 26 (2012), no. 3, 1440–1457.
[18] C. Lee and B. Sudakov, Dirac’s theorem for random graphs, Random Struc-

tures Algorithms 41 (2012), no. 3, 293–305.
[19] L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976),

no. 4, 359–364.
[20] V. Rödl, A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem

for k-uniform hypergraphs, Combinatorica 28 (2008), no. 2, 229–260.
[21] E. Shamir, How many random edges make a graph Hamiltonian?, Combina-

torica 3 (1983), no. 1, 123–131.
[22] B. Sudakov and V. H. Vu, Local resilience of graphs, Random Structures Al-

gorithms 33 (2008), no. 4, 409–433.

	1. Introduction
	2. Lemmas and proof of Theorem ??
	2.1. Notation
	2.2. Outline of the proof
	2.3. Lemmas
	2.4. Proof of the main theorem

	3. Proof of the connection lemma
	4. Proof of the reservoir lemma
	5. Concluding remarks
	6. Acknowledgements
	References

