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Abstract

We introduce and study the uniform infinite planar quadrangulation (UIPQ)
with a boundary via an extension of the construction of [14]. We then relate this
object to its simple boundary analog using a pruning procedure. This enables us to
study the aperture of these maps, that is, the maximal distance between two points
on the boundary, which in turn sheds new light on the geometry of the UIPQ. In
particular we prove that the self-avoiding walk on the UIPQ is diffusive.

Introduction

Motivated by the theory of 2D quantum gravity, the probabilistic theory of random
planar maps has been considerably growing over the last few years. In this paper
we continue the study of the geometry of random maps and focus in particular on
random quadrangulations with a boundary.

Recall that a planar map is a proper embedding of a finite connected planar graph
into the two-dimensional sphere seen up to orientation-preserving homeomorphisms.
The faces are the connected components of the complement of the union of the edges,
and the degree of a face is the number of edges that are incident to it, where it should
be understood that an edge is counted twice if it lies entirely in the face. A map
is a quadrangulation if all its faces have degree 4. All the maps considered in this
work are rooted, meaning that an oriented edge is distinguished and called the root
edge. The face lying to the right of the root edge is called the root face.

Figure 1: A quadrangulation with a simple and a non-simple boundary.

A planar map q is a quadrangulation with a boundary if all its faces have degree
four except possibly the root face, which can have an arbitrary even degree. Since
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we want to consider this distinguished face as lying “outside” of the map, we also
call it the external face. The degree (which must be even) of the external face is
called the perimeter of the map, and the boundary is said to be simple if during the
contour of the external face all the vertices on the boundary are visited only once
(i.e. there are no pinch points on the boundary). The size of q is its number of faces
minus one.

Uniform quadrangulations of size n with a boundary of perimeter p have recently
been studied from a combinatorial and a probabilistic point of view [8, 11]. Three
different regimes have to be distinguished: If p � n1/2, then these maps converge,
in the scaling limit, towards the Brownian map introduced in [21, 24]. If p � n1/2,
then the boundary becomes macroscopic and Bettinelli [8] introduced the natural
candidate for the scaling limits of these objects which is a sort of Brownian map
with a hole. When p � n1/2 these random quadrangulations fold on themselves
and become tree-like [8, 11]. In this work, we shall take a different approach and
study infinite local limits of quadrangulations with a boundary as the size tends to
infinity. Let us precise the setting.

In a pioneering work [7], Benjamini & Schramm initiated the study of local limits
of maps. If m,m′ are two rooted maps, the local distance between m and m′ is

dmap(m,m′) =
(
1 + sup{r > 0 : Br(m) = Br(m

′)}
)−1

,

where Br(m) denotes the map formed by the faces of m whose vertices are all at
graph distance smaller than or equal to r from the origin of the root edge in m.
Let Qn be uniformly distributed over the set of all rooted quadrangulations with n
faces. Krikun [19] proved that

Qn
(d)−−−→

n→∞
Q∞, (1)

in distribution in the sense of dmap. The object Q∞ is a random infinite rooted
quadrangulation called the Uniform Infinite Planar Quadrangulations (UIPQ) (see
also [2, 4] for previous works concerning triangulations). The UIPQ (and its related
triangulation analog) has been the subject of numerous researches in recent years,
see [13, 14, 19, 20, 22]. Despite these progresses, the geometry of the UIPQ remains
quite mysterious. The purpose of this article is to provide some new geometric un-
derstanding of the UIPQ via the study of UIPQ with a boundary.

We will show that the convergence (1) can be extended to quadrangulations with
a boundary. More precisely, for any p > 1, we let Qn,p (resp. Q̃n,p) be a uniform
quadrangulation of size n and with a (resp. simple) boundary of perimeter 2p then
we have

Q̃n,p
(d)−−−→

n→∞
Q̃∞,p,

Qn,p
(d)−−−→

n→∞
Q∞,p,

in distribution for the metric dmap. The random maps Q∞,p and Q̃∞,p are called the
Uniform Infinite Planar Quadrangulation with a (resp. simple) boundary of perime-
ter 2p. The first convergence is an easy consequence of (1) (see the discussion around
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(6) below) whereas the second convergence requires an adaptation of the techniques
of [14]: In Theorem 2, we construct Q∞,p from a labeled “treed bridge” and extend
the main result of [14] to our setting. This construction is yet another example of
the power of the bijective technique triggered by Schaeffer [27] which has been one
of the key tool for studying random planar maps [10, 12, 13, 25].

We then turn to the study of the UIPQ’s with a boundary and their relationships.
Although well-suited for the definition and the study of Q∞,p, the techniques “à la
Schaeffer”seem much harder to develop in the case of simple boundary because of the
topological constraint imposed on the external face. In order to bypass this difficulty
we use a pruning decomposition to go from non-simple to simple boundaries. More
precisely, we prove that Q∞,p has a unique infinite irreducible component, that is,
a core made of an infinite quadrangulation with a simple boundary together with
finite quadrangulations hanging off from this core, see Fig. 2.

∞ ∞

Q∞,p Core(Q∞,p)

Figure 2: Pruning of Q∞,p.

We show that if we remove these finite components then the core of Q∞,p has
a (random) perimeter |∂Core(Q∞,p)| which is roughly a third of the original one.
More precisely we prove in Proposition 4 the following convergence in distribution

|∂Core(Q∞,p)| − 2p/3

p2/3

(d)−−−→
p→∞

Z,

where Z is a spectrally negative stable random variable of parameter 3/2. Fur-
thermore, conditionally on its perimeter, the core is distributed as a UIPQ with a
simple boundary (Theorem 4). This confirms and sharpens a phenomenon already
observed in a slightly different context by Bouttier & Guitter, see [11, Section 5]

As an application of our techniques we study the aperture of these maps: If q is
a quadrangulation with a boundary, we denote the maximal graph distance between
two vertices on the boundary of q by aper(q) and call it the aperture of q. We prove
that the aperture of the UIPQ with a simple boundary of perimeter p is strongly
concentrated around

√
p, in the sense of the following statement.

Theorem 1. There exists c, c′ > 0 such that for all p > 1 and λ > 0 the aperture
of a uniform infinite planar quadrangulation with simple boundary of perimeter 2p
satisfies

P
(

aper(Q̃∞,p) > λ
√
p
)

6 c p2/3 exp
(
− c′λ2/3

)
.
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This result is first established for UIPQ with general boundary using the con-
struction from a treed bridge (Proposition 3) and then transferred to the simple
boundary case using the pruning procedure. This theorem provides a new tool for
studying the UIPQ itself via the technique of peeling, see [2, 5]. In particular, The-
orem 1 is one of the key estimates of [5] used to prove that the simple random walk
on the UIPQ is subdiffusive with exponent less than 1/3.

Let us finish this introduction with one more motivation. There is an obvious
bijective correspondence between, on the one hand, quadrangulations of size n with
a self-avoiding path of length p starting at the root edge and, on the other hand,
quadrangulations with simple boundary of perimeter 2p and size n: Simply con-
sider the self-avoiding walk as a zipper. See Fig. 3. Hence, the UIPQ with simple
boundary of perimeter 2p can be seen as an annealed model of UIPQ endowed with
a self-avoiding path of length p.

Figure 3: Zip the external face and unzip the self-avoiding walk.

With this correspondence, the aperture of the map obviously bounds the maxi-
mal graph distance of any point of the self-avoiding walk to the origin of the map.
The estimates of Theorem 1 then show that, when p is large, the maximal graph
distance displacement of the self-avoiding walk with respect to the root of the map
is at most of order

√
p. This contrasts with the Euclidean case where a displacement

of order p3/4 is conjectured.
Let us remark, however, that the aperture of a quadrangulation with boundary

only gives an upper bound on the maximal displacement of the SAW obtained after
zipping.

Open Question 1. Consider the infinite quadrangulation with a self-avoiding walk
obtained after zipping the boundary of Q̃∞,p. Prove a lower bound (if possible match-
ing the order

√
p) on the maximal displacement from the root of this walk as p→∞.

The paper is organized as follows: The first section contains some background
on quadrangulations with a boundary. In the second section, we present the bijec-
tive techniques adapted from [11] that we apply in Section 3 to define the UIPQ
with general boundary and study its aperture. The fourth section is devoted to
the pruning decomposition and its applications. Finally, the last section contains
applications, extensions and comments. In particular, we define the UIPQ of the
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half-plane (with infinite boundary) with general and simple boundary and propose
some open questions.

Acknowledgments: We are grateful to Jérémie Bettinelli for a careful reading
and numerous comments on a first version of this article.

1 Quadrangulations with a boundary

1.1 Definitions

Recall that all the maps we consider are rooted, that is given with one distinguished
oriented edge ~e.

A planar map q is a quadrangulation with a boundary if all its faces have degree
four, with the possible exception of the root face (also called external face). Since
quadrangulations are bipartite, the degree of the external face has to be even. The
boundary of the external face is denoted by ∂q and its degree by |∂q|. We say that
q has a perimeter |∂q| and its size |q| is the number of faces minus 1.

A quadrangulation has a simple boundary if there is no pinch point on the
boundary, that is, if ∂q is a cycle with no self intersection. By convention, all the
notation involving a simple quadrangulation will be decorated with a “∼” to avoid
confusion.

We denote by Qn,p (resp. Q̃n,p) the set of all rooted quadrangulations with
(resp. simple) boundary with n+ 1 faces and such that the external face has degree
2p and by qn,p (resp. q̃n,p) its cardinal. By convention, the set Q0,0 = Q̃0,0 contains

a unique “vertex” map denoted by †. Note also that Q0,1 = Q̃0,1 is composed of
the map with one oriented edge (which has simple boundary). Note that any quad-
rangulation with boundary of perimeter 2 can be seen as a rooted quadrangulation
without boundary, by contracting the external face of degree two.

1.2 Enumeration

Let q be a quadrangulation with boundary. If the boundary of q is not simple (if it
has some separating vertices) we can decompose q unambiguously into quadrangu-
lations with simple boundary attached by the separating vertices of the boundary of
q: These quadrangulations are called the irreducible components of q. The root edge
is carried by a unique irreducible component, and all other irreducible components
have a unique boundary vertex which is closest to the component of the root. By
convention, we root each component at the oriented edge that immediately precedes
this particular vertex in counterclockwise order. See Fig.4.

We gather here a few enumeration results that will be useful in the following.
We refer to [11] for the derivations of these formulæ.

If q is a quadrangulation with a general boundary we can also decompose q
according to the irreducible component that contains its root edge and other quad-
rangulations with general boundary attached to it. This decomposition yields an
identity relating the bi-variate generating functions of quadrangulations with simple
and general boundary: For g, z > 0, let W (resp. W̃ ) be the bi-variate generating
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Figure 4: Decomposition of a quadrangulation with boundary into irreducible
components.

function of Qn,p (resp. Q̃n,p) with weight g per internal face and
√
z per edge on the

boundary, that is

W (g, z) :=
∑
n,p>0

qn,pg
nzp, and W̃ (g, z) :=

∑
n,p>0

q̃n,pg
nzp.

Then the last decomposition translates into the identity

W̃
(
g, zW 2(g, z)

)
= W (g, z). (2)

The exact expression of W can be found in [11], it reads

W (g, z) = ω(1− gR2(ω − 1)), where ω =
1−
√

1− 4zR

2zR
and R =

1−√1− 12g

6g
. (3)

From this we can deduce

qn,p =
(2p)!

p!(p− 1)!
3n

(2n+ p− 1)!

n!(n+ p+ 1)!
,

for n > 0 and p > 1. Note the asymptotics

qn,p ∼
n→∞

Cp12nn−5/2, (4)

Cp =
(2p)!

p!(p− 1)!
2p−1π−1/2 ∼

p→∞
(2π)−18p

√
p.

Moreover equation (2) enables us to find the expressions for q̃n,p (see [11] for more
details) namely

q̃n,p = 3−p
(3p)!

p!(2p− 1)!
3n

(2n+ p− 1)!

(n− p+ 1)!(n+ 2p)!
, for n > 1 and p > 1,

q̃n,p ∼
n→∞

C̃p12nn−5/2, (5)

C̃p =
(3p)!

p!(2p− 1)!
3−p2p−1π−1/2 ∼

p→∞

√
3p

2π

(
9

2

)p
.

To simplify notation we introduce Wc(z) = W (12−1, z) (resp. W̃c(z) = W (12−1, z))
the generating function of quadrangulations with general (resp. simple) boundary
taken at the critical point g = 1

12 for the size.
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Remark 1. The n−5/2 and
√
p polynomial corrections in the asymptotics of qn,p and

q̃n,p are common features in planar structures with boundary, in particular it holds
for other “reasonable” classes of maps with boundary such as triangulations. These
exponents turn out to rule the large scale structure of such maps.

For all n, p > 0, we denote by Qn,p and Q̃n,p random variables with uniform

distributions over Qn,p and Q̃n,p respectively. In the next section we recall the
definition of the UIPQ and construct the UIPQ with simple boundary from it.

1.3 The UIPQ with simple boundary

Recall the metric dmap presented in the Introduction. The set of all finite rooted
planar quadrangulations with boundary is not complete for this metric and we will
have to work in its completion Q. The additional elements of this set are called
infinite quadrangulations with boundary. Formally they can be seen as sequences
(q1, ..., qn, ...) of finite rooted quadrangulations with boundary such that for any
r > 0, Br(qn) is eventually constant. See [14] for more details. Recall from (1) that
the UIPQ is the weak limit in the sense of dmap of uniform rooted quadrangulations
whose size tends to infinity.

We can already use (1) to deduce a similar convergence result for rooted quad-
rangulations with a simple boundary. Indeed, notice that a rooted quadrangulation
with n faces and perimeter 2p can be turned into a rooted quadrangulation with
n + p faces that has a special neighborhood around the origin. More precisely, if
qn+p ∈ Qn+p,1 is a rooted quadrangulation such that the neighborhood of the root
edge is composed of p squares arranged like a star around the origin of the root edge
as depicted in Fig. 5 (note that the vertices on the boundary of the star must be
pairwise distinct), then we can remove this star from qn+p and move the root edge
in a deterministic way to obtain a quadrangulation with boundary of perimeter 2p
with n internal faces. This operation is reversible.

Figure 5: A fragment of a rooted quadrangulation with a special neighborhood
of the root and the rooted quadrangulation with simple boundary obtained by
removing this neighborhood and moving the root edge.

Hence the uniform distribution over Q̃n,p can be seen as the uniform distribution
over Qn+p,1 conditioned on having a “starred neighborhood” composed of p squares.
For p > 1, we condition a uniform infinite planar quadrangulation Q∞ to have a
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“starred neighborhood” with p squares (event of positive probability) and denote by
Q̃∞,p the complement of this neighborhood, which is an infinite quadrangulation
with simple boundary of perimeter 2p rooted as explained before. The convergence
(1) together with the preceding remarks then yield

Q̃n,p −−−→
n→∞

Q̃∞,p, (6)

in distribution in the sense of dmap. The random variable Q̃∞,p is called the uniform
infinite planar quadrangulation (UIPQ) with simple boundary of perimeter 2p.

Remark 2. It is not easy to deduce from (1) a similar convergence result for quad-
rangulations with a general boundary: This is due to the fact that quadrangulations
with general boundary are not rigid in the sense of [4, Definition 4.7]. We prefer
to take a different approach to define the UIPQ with general boundary in the next
sections.

2 Bijective Representation

In this section we extend the bijective approach of the UIPQ developed in [14] to
the case of quadrangulations with boundary using the tools of [11]. For technical
reasons, we will have to consider pointed quadrangulations: A (rooted) quadran-
gulation with boundary is pointed if it is given with a distinguished vertex ρ. We
let Q•n,p (resp. Q̃•n,p) be the set of all rooted pointed quadrangulations with general
(resp. simple) boundary and q•n,p (resp. q̃•n,p) its cardinality.

2.1 Trees

We use the same notation as in [14]. Let U = ∪∞n=0Nn, where N = {1, 2, . . .} and
N0 = {∅} by convention. An element u of U is thus a finite sequence of positive
integers. If u, v ∈ U , uv denotes the concatenation of u and v. If v is of the form uj
with j ∈ N, we say that u is the parent of v or that v is a child of u. More generally,
if v is of the form uw for u,w ∈ U , we say that u is an ancestor of v or that v is a
descendant of u. A plane tree τ is a (finite or infinite) subset of U such that

1. ∅ ∈ τ (∅ is called the root of τ),

2. if v ∈ τ and v 6= ∅, the parent of v belongs to τ

3. for every u ∈ U there exists ku(τ) > 0 such that uj ∈ τ if and only if j 6 ku(τ).

A plane tree can be seen as a graph, in which an edge links two vertices u, v such
that u is the parent of v or vice-versa. This graph is of course a tree in the graph-
theoretic sense, and has a natural embedding in the plane, in which the edges from a
vertex u to its children u1, . . . , uku(τ) are drawn from left to right. We let |u| be the
length of the word u. The integer |τ | denotes the number of edges of τ and is called
the size of τ . A corner of a tree is an angular sector formed by two consecutive edges
in the clockwise contour. A spine in a tree τ is an infinite sequence u0, u1, u2, . . . in
τ such that u0 = ∅ and ui is the parent of ui+1 for every i > 0. In this work, unless
explicitly mentioned, all the trees considered are plane trees.
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The uniform infinite plane tree. For any plane tree τ and any h > 0 we
define the tree [τ ]h = {u ∈ τ : |u| 6 h} as the tree τ restricted to the first h
generations. If τ and τ ′ are two plane trees, we set

dtree(τ, τ
′) =

(
1 + sup{h > 0 : [τ ]h = [τ ′]h}

)−1
.

Obviously, dtree is a distance on the set of all plane trees. In the following, for every
n > 0, we denote by Tn a random variable uniformly distributed over the set of all
rooted plane trees with n edges. It is standard (see [17, 23, 15]) that there exists a
random infinite plane tree T∞ with one spine called the uniform infinite plane tree,
or critical geometric Galton-Watson tree conditioned to survive, such that we have
the convergence in distribution for dtree

Tn
(d)−−−→

n→∞
T∞. (7)

The tree T∞ can be informally described as follows. Start with a semi-infinite line
of vertices (which will be the unique spine of the tree, rooted at the first vertex
of the spine), then on the left and right hand side of each vertex of the spine,
graft independent critical geometric Galton-Watson trees with parameter 1/2. The
resulting plane tree has the same distribution as T∞. See [6, 14] for more details.

Labeled trees. A rooted labeled tree (or spatial tree) is a pair θ = (τ, (`(u))u∈τ )
that consists of a plane tree τ and a collection of integer labels assigned to the
vertices of τ , such that if u, v ∈ τ are neighbors then |`(u) − `(v)| 6 1. Unless
mentioned, the label of the root vertex is 0. If θ = (τ, `) is a labeled tree, |θ| = |τ |
is the size of θ. Obviously, the distance dtree can be extended to labeled trees by
taking into account the labels, and we keep the notation dtree for this distance.

Let τ be a random plane tree and, conditionally on τ , consider a sequence
of independent identically distributed random variables uniformly distributed over
{−1, 0, 1} carried by each edge of τ . For any vertex u of τ , the label of u is defined
as the sum of the variables carried by the edges along the unique path from the
root ∅ to u. This labeling is called the uniform labeling of τ . When the tree
τ is a geometrical critical Galton-Watson tree (conditioned to survive), we will
speak of the “uniform labeled critical geometric Galton-Watson tree (conditioned to
survive)”. Using the notation of [14], we denote by S the set of all labeled infinite
trees with only one spine such that the infimum of the labels along the spine is −∞.
Note that if τ is an infinite tree with one spine and θ = (τ, `) is a uniform labeling
of τ then θ ∈ S almost surely.

2.2 Treed bridges

A bridge of length 2p is a sequence of integers x1, x2, ..., x2p such that x1 = 0 and for
every i ∈ {1, ...2p} we have |xi − xi+1| = 1, where by convention we let x2p+1 = x1.
Note that in any bridge of length 2p, there are exactly p down-steps, which are the
indices i ∈ {1, 2, . . . , 2p} such that xi+1 = xi − 1. A labeled treed bridge of size n
and length 2p is a bridge bp = (x1, ..., x2p) together with p non-empty labeled plane
trees θ1, ..., θp (with root label 0) such that the sum of the sizes of the trees θ1, ..., θp
is n. We denote by Bp the union set of all labeled finite treed bridges and infinite
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labeled treed bridges (bp; θ1, ..., θp) such that one and only one of the labeled trees
θi belongs to S , all others being finite. In the following, unless explicitly mentioned,
all labeled treed bridges considered belong to Bp for some p > 1.

Representation. Let b = (bp; θ1, ..., θp) be a treed bridge of Bp. If bp =
(x1, ..., x2p) we denote (xi1 , xi1+1), ..., (xip , xip+1) its p down-steps. We construct
a representation of b in the plane as follows. Let C be a proper embedding in the
plane of a cycle of length 2p. We label the vertices of C starting from a distinguished
vertex in the clockwise order by the values of the bridge bp. Now we graft (proper
embeddings of) the trees θ1, ..., θp in the infinite component of R2\C in such a way
that the tree θk is grafted on the ikth point of C corresponding to the value xik and
we shift all the labels of this tree by xik . This representation can be constructed
in such a way that the embedding is proper (no edges are crossing except possibly
at their endpoints) and such that the sequence of vertices of the embedding has no
accumulation point in R2 (recall that there is at most one infinite tree with only
one spine). See Fig. 6 below.

bp = (0, 1, 0,−1,−2,−1, 0, 1)

0

1

0

−1−2

−1

0

1

0

1

10

2

0 0

1

0

−1

−2

−3 −2 2

1
3

2

0

0−1

−2

−1

θ1 θ2 θ3 θ4

Figure 6: A labeled finite treed bridge and an representation of it. The black
dots represent the vertices of the trees of the treed bridge.

The vertex set of this representation is thus formed by the union of the vertices
of the trees θ1, ..., θp and of the vertices of the cycle which are not down-steps. The
labeling of these vertices, which is given by the bridge on the cycle and the shifted
labelings of the trees is denoted by `b. We will often abuse notation and write u ∈ θi
for a vertex in the representation that belongs to the embedding of the tree θi.
Recall that a corner of a proper embedding of a graph in the plane is an angular
sector formed by two consecutive edges in clockwise order. In the case of a repre-
sentation of a labeled treed bridge we can consider the set of corners of the infinite
component of the plane minus the embedding. This set, although possibly infinite,
inherits a cyclic order from the clockwise order of the plane. The label of a corner
is that of its attached vertex.

The uniform infinite labeled treed bridge. Let p > 1. We say that

a sequence of labeled treed bridges (b
(n)
p ; θ

(n)
1 , ..., θ

(n)
p ) of length 2p converges to

10



(bp; θ1, ..., θp), if eventually b
(n)
p = bp and θ

(n)
i converges towards θi for any i ∈

{1, ..., p} with respect to dtree. This convergence is obviously metrizable by the
metric

dbridge

(
(bp; θ1, ..., θp), (b

′
p; θ
′
1, ..., θ

′
p)
)

= 1bp=b′
p

sup
16i6p

dtree(θi, θ
′
i) + 1bp 6=bp′ .

In the rest of this work, Bn,p = (Bp; Θ
(n)
1 , ...,Θ

(n)
p ) is a uniform labeled bridge of

size n and length 2p. Note that Bp is uniformly distributed over the set of bridges
of length 2p. We introduce the analog of the labeled critical geometric Galton-
Watson tree conditioned to survive in the setting of treed bridges. The uniform
infinite labeled treed bridge denoted by B∞,p = (Bp,Θ1, ...,Θp) is constructed as
follows. Firstly, Bp is a uniform bridge of length 2p. Then choose i0 ∈ {1, ..., p}
uniformly and independently of Bp. Conditionally on Bp and i0, the trees Θ1, ...,Θp

are independent, Θi0 being a uniform labeled critical geometric Galton-Watson tree
conditioned to survive and all other Θj for j 6= i are uniform labeled critical geo-
metric Galton-Watson trees. Notice that B∞,p almost surely belongs to Bp. Then
the analog of (7) becomes:

Proposition 1. We have the following convergence in distribution for dbridge

Bn,p
(d)−−−→

n→∞
B∞,p. (8)

Proof. Since conditionally on the structure of the trees, the bridge and the labels
are uniform they do not play any crucial role in the convergence. We just have

to prove that if τ
(n)
1 , ..., τ

(n)
p are p plane trees chosen uniformly among all p-uples

of plane trees such that |τ (n)
1 | + ... + |τ (n)

p | = n then we have the following weak
convergence

(τ
(n)
1 , ..., τ (n)

p ) −−−→
n→∞

(τ1, ..., τp),

where the distribution of (τ1, ..., τp) is described as follows: Choose i0 uniformly
among {1, ..., p}, then conditionally on i0 the τk’s are independent, τi0 = T∞ in
distribution and the other trees are critical geometric Galton-Watson trees. This
fact is standard but we include a proof for the reader’s convenience. For p > 1 and
n > 0, we let Cat(n, p) be the number of finite sequences (“forests”) of p trees with
n edges in total, so that by a well-known formula (see e.g. [26])

Cat(n, p) =
p

2n+ p

(
2n+ p

n

)
∼

n→∞
4nn−3/2 2p−1p√

π
. (9)

We also let Cat(n) = Cat(n, 1). Let f1, ..., fp be bounded continuous functions for

dtree. By definition of the distribution of (τ
(n)
1 , ..., τ

(n)
p ) we have

E

[
p∏
i=1

fi(τ
(n)
i )

]
=

1

Cat(n, p)

∑
n1+...+np=n

p∏
i=1

Cat(ni)E[fi(Tni)], (10)

where Tni denotes a uniform plane tree on ni edges. We first estimate the probability

that two of the trees τ
(n)
1 , ..., τ

(n)
p have a size larger than some large constant a > 0.

For that purpose we recall a classical lemma whose proof is very similar to [4, Lemma
2.5] and is left to the reader.
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Lemma 1. For any β > 1, and any p > 0 there exists a constant c(β, p) such that
for any a > 0 and any n > 0 we have

∑
n1+...+np=n
n1,n2>a

(
p∏
i=1

(ni + 1)−β

)
6 c(β, p)n−βa−β+1.

Using the asymptotic (9) with p = 1, we deduce that there exists a constant
c1 such that for any n > 1 we have Cat(n) 6 c14n(n + 1)−3/2. We can thus use
Lemma 1 to deduce that there exists a constant c2 > 0 such that for every n > 1,

the probability that two of the trees τ
(n)
1 , ..., τ

(n)
p have size larger than a > 0 is less

than c2a
−1/2. Hence, for large n’s the right-hand side of (10) becomes

εn,a+

p∑
i=1

 ∑
06n1,...,n̂i,...,np6a

Cat
(
n−∑j 6=i nj

)
Cat(n, p)

E[fi(Tn−
∑

j 6=i nj
)]
∏
j 6=i

Cat(nj)E[fj(Tnj )]

 ,

where εn,a 6 c2a
−1/2 uniformly in n > 1. Moreover, (7) implies that E[f(Tn)] →

E[f(T∞)] for any bounded continuous functional for dtree as n→∞. So, using once
more the asymptotic (9), we can let n→∞ followed by a→∞ in the last display
and obtain

E

[
p∏
i=1

fi(τ
(n)
i )

]
−−−→
n→∞

p∑
i=1

1

p
E[fi(T∞)]

∏
j 6=i

∞∑
nj=0

Cat(nj)

2 · 4nj
E[fj(Tnj )]. (11)

The sum over indices nj is E[fj(T )], where T is a uniform critical geometric Galton-
Watson tree, which proves the desired result.

2.3 From treed bridges to quadrangulations with bound-
ary

2.3.1 Finite bijection

The bijection presented in this section is taken from [11] with minor adaptations.
This is a one-to-one correspondence between, on the one hand, the set Q•n,p of all
rooted and pointed quadrangulations with boundary of perimeter 2p and size n and,
on the other hand, the set of all labeled treed bridges of length 2p and size n. We
only present the mapping from labeled treed bridges to quadrangulations, the re-
verse direction can be found in [11].

Let b = (bp; θ1, ..., θp) be a labeled treed bridge of size n and perimeter 2p. We
consider a representation E of this treed bridge in the plane. Recall that the labeling
of the vertices of this representation is denoted by `b. Let C be the set of corners
of the infinite component of R2\E that are also incident to vertices belonging of the
grafted trees, that is, we erase the corners coming from angular sectors around the
vertices of the cycle that are not down steps of the bridge (see Fig. 7). This set
inherits a clockwise cyclic order.

We now associate a quadrangulation with b by the following device: We start
by putting an extra vertex denoted ρ in the infinite component of R2 \ E . Then for
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each corner c ∈ C , we draw an edge between c and the first corner c′ ∈ C for the
clockwise order such that the label `b(c′) of c′ equals `b(c)−1: This corner is called
the successor of c. If there is no such corner (this happens only if the corner c has
minimal label) then we draw an edge between c and ρ. This construction can be
done in such a way that the edges are non-crossing. After erasing the representation
E of b we obtain a quadrangulation q with size n and a boundary whose vertex set
is the union of the vertices of (the embeddings of) θi for i ∈ {1, ..., p} plus the extra
vertex ρ.

Note that there is a one-to-one order-preserving correspondence between the
edges of the cycle of E and the edges of the external face of q, see Fig. 7. The
distinguished oriented edge ~e of q is the edge that corresponds to the first step of
the bridge oriented such that the external face is on the right-hand side of ~e. We
denote the rooted quadrangulation (q,~e) pointed at ρ by Φ(b). Furthermore, using
the identification of the vertices of the map Φ(b) with ∪iθi ∪{ρ}, for every u ∈ ∪iθi
we have

`b(x)− `b(ρ) = dgr(x, ρ), (12)

where dgr is the graph distance in Φ(b).

0

1

0

−1−2

−1

0

1 2

1 3

2

0

0−1

−2

−1

∂

Figure 7: Construction of the rooted and pointed quadrangulation with boundary
associated with a treed bridge. Note the correspondence between the embedded
cycle and the boundary of the map.

2.3.2 Extended construction

We can extend the preceding mapping Φ to the case when the treed bridge b is infi-
nite but still belongs to Bp. The extension is very similar to that of [14]. Basically,
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the construction goes through. The only point that is changed is that every corner
attached to a tree in the infinite component of the embedding will find a successor,
that is, there is no need to add an extra vertex ρ. The extended mapping that we
denote Φ, associates with every labeled treed bridge in Bp an infinite rooted quad-
rangulation q with boundary of perimeter 2p (this quadrangulation is not pointed
anymore) whose vertex set is the union of the vertices of the trees of the bridge.
The correspondence between the cycle of the representation and the boundary of
the map is still preserved. The shifted labels lose their finite interpretation (12) (see
(14) in Theorem 2). However, since any neighboring vertices in the quadrangula-
tion q have labels that differ in absolute value by exactly 1, we deduce that for any
vertices u, v in the resulting quadrangulation we have (with the identification of the
vertices of the quadrangulation with those of the trees of b)

dgr(u, v) > |`b(u)− `b(v)|. (13)

Proposition 2. The extended Schaeffer mapping Φ : Bp −→ Q is continuous with
respect to the metrics dbridge and dmap.

Proof. The proof is similar to that of [14, Proposition 1] and is left to the reader.

3 The UIPQ with general boundary

3.1 Construction

The following theorem in an extension of the main result of [14] to the case of
quadrangulations with boundary. Recall that Qn,p is uniformly distributed over
Qn,p.
Theorem 2. (i) For any p ∈ {1, 2, 3, ...} we have the following convergence in
distribution for dmap

Qn,p
(d)−−−→

n→∞
Q∞,p,

where Q∞,p is called the uniform infinite planar quadrangulation with boundary of
perimeter 2p. If B∞,p is a uniform infinite labeled treed bridge of length 2p then
Q∞,p = Φ(B∞,p) in distribution.

(ii) If Q∞,p = Φ(B∞,p) then, with the identification of the vertices of Q∞,p with
those of the trees of B∞,p, we have for any u, v ∈ Q∞,p

lim
z→∞

(
dgr(u, z)− dgr(v, z)

)
= `B∞,p(u)− `B∞,p(v). (14)

First part of Theorem 2. An application of Euler’s formula shows that every quad-
rangulation with a boundary of perimeter 2p and size n has exactly n+p+1 vertices.
We deduce from the preceding section that after forgetting the distinguished point,
the rooted quadrangulation Φ(Bn,p) is uniform over Qn,p. The first part of the the-
orem then follows from Proposition 1 and Proposition 2.
For the second part of the theorem, notice that the case p = 1 is proved in [14]. The
general case will follow from this case using some surgical operation that we present
in Section 4.
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Remark 3. In the construction Q∞,p = Φ(B∞,p), since the origin of the root edge
of Q∞ automatically has label 0, the formula (14) can be used to recover `B∞,p as a
measurable function of Q∞,p. Using an extension of the reversed construction “Φ−1”
(see [11]) it can be proved following the lines of [14] that the treed bridge B∞,p itself
can be recovered as a measurable function of Q∞,p. We leave this to the interested
reader.

Remark 4. Recall that the UIPQ with a simple boundary was defined from the
standard UIPQ in Section 1.3. It is also possible to define the UIPQ with simple
boundary Q̃∞,p as the variable Q∞,p conditioned on having a simple boundary.
However, thanks to the asymptotics (4) and (5) the probability that the boundary
of Q∞,p is simple is easily seen to be

P (Q∞,p is simple) =
C̃p
Cp

∼
p→∞

√
3

(
9

16

)p
.

This exponential decay is not useful if we want to derive properties of Q̃∞,p from
properties of Q∞,p for large p’s. For that purpose we develop in Section 4 another

link between Q̃∞,p and Q∞,p based on a pruning procedure.

3.2 Aperture of the UIPQ with general boundary

Recall that if q is a quadrangulation with boundary, the aperture of q is the maximal
graph distance between any two points of the boundary

aper(q) = max{dgr(u, v) : u, v ∈ ∂q}.

The main result of this section provides bounds on the aperture of Q∞,p for large
p’s. It is based on the construction Q∞,p = Φ(B∞,p) of Theorem 2 and on properties
of some specific geodesics in Q∞,p.

Theorem 3. The aperture of Q∞,p is exponentially concentrated around the order
of magnitude

√
p. More precisely, there exist c1, c2 > 0 such that for all λ > 0 and

every p ∈ {1, 2, 3, ...} we have

P
(
aper(Q∞,p) /∈ [λ−1√p, λ√p]

)
6 c1 exp(−c2λ

2/3).

Fix p ∈ {1, 2, 3, ...}. To simplify notation, we write B = (Bp; Θ1, ...,Θp) ∈ Bp for
the uniform infinite labeled treed bridge of length 2p and assume that Q∞,p = Φ(B).
We will always use a representation E of B and identify the trees Θ1, ...,Θp and the
bridge Bp with their embeddings in the representation, see Fig. 6. Recall that the
shifted labels of the trees are denoted by `B. We denote by C the set of corners
of E that are associated with some vertex of ∪iΘi. If c, c′ ∈ C we denote by [c, c′]
the set of corners of C that are in-between c and c′ for the clockwise order. For
1 6 i 6 p, the set of corners attached to the tree Θi is [cL,i, cR,i] where cLi and cR,i
respectively denote the left and right most corner of the root vertex of Θi in E , see
Fig. 8.
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Θ1

cL,1

cR,1

cR,2

cL,2

cL,3cR,3

cL,4 = cL,4

cL,5

cR,5

cL,6

cR,6

Θ2

Θ3

Θ4

Θ5

Θ6

γcR,1

γcL,1

Figure 8: Left and right most corners of the trees Θ1, ...,Θ6 and the geodesics
γcL,1

and γcR,1
.

Simple geodesic. We recall the notion of simple (or maximal) geodesic, see
[14, Definition 3]. Let c ∈ C . We can construct a path in the quadrangulation
Φ(B) by starting with the corner c and following iteratively its successors. This
path is called the simple geodesic starting from c and is denoted by γc, see Fig. 8
for examples. It is easy to see, thanks to (13), that this path is actually a geodesic
in the quadrangulation. If B were finite, this path would eventually end at ρ. In
general, if c, c′ ∈ C , then γc and γc′ merge at a corner c′′ of label

`B(c′′) = max

{
min
[c,c′]

`B,min
[c′,c]

`B

}
− 1.

Proof of Theorem 3. We will suppose, without loss of generality, that Θ1 is the uni-
form labeled infinite tree so that Θ2, ...,Θp are uniform labeled critical geometric
Galton-Watson trees. Let us start with a preliminary observation.

Warmup. Imagine that we construct the two simple geodesics γcL,1 and γcR,1

starting from the extreme corners of the root of Θ1 and denote by C the cycle
they form until their meeting point, see Fig. 8. We let M = max{`B(u) : u ∈
∪pi=2Θi or u = root(Θ1)} and m = min{`B(u) : u ∈ ∪pi=2Θi or u = root(Θ1)}. By
the remark made on simple geodesics, one sees that the length of C is less than
2(M −m+ 1) and that every vertex in the external face of Q∞,p is linked to C by
a simple geodesic of length less than M −m+ 1. Thus we deduce that

aper(Q∞,p) 6 3(M −m+ 1). (15)
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AlthoughM andm are typically of order
√
p, yet it is possible that with a probability

of order p−2, a specific tree, say Θ2, has a height larger than p2 and thus contains
labels of order ±p. If that happens then M − m becomes of order p and not

√
p

anymore. Thus the exponential concentration presented in Theorem 3 cannot follow
from (15). The idea is to modify the cycle C in order to bypass the large trees among
Θ2, ...,Θp.

Bridge. Since Q∞,p is constructed from B, we know that the edges of its
boundary are in correspondence with the edges of the cycle of E , in particular the
`B-labeling of the vertices of ∂Q∞,p corresponds to the values (X1, ..., X2p) of the
bridge Bp. From the lower bound (13) we deduce that if ∆p = maxXi −minXi we
have

aper(Q∞,p) > ∆p. (16)

Since Bp is a uniform bridge with 2p steps, classical results (which easily follow from
the arguments of [18]) show that there exist positive constants c1 and c2 such that
for all p > 0 we have

P
(
∆p /∈ [λ−1√p, λ√p]

)
6 c1 exp(−c2λ

2). (17)

Shortcut. As we said, the strategy is now to build a simple path surrounding
the external face in a very similar fashion as in the warmup but to shortcut large
trees. Let us be precise. For every i ∈ {1, ..., p}, declare the tree Θi “good” if the
maximal displacement of the labels in Θi is in absolute value less than

√
p, that is

if

sup
u,v∈Θi

|`B(u)− `B(v)| 6 √p.

Call Θi “bad” otherwise. For any i ∈ {2, ..., p}, the probability that Θi is bad is less
than c3p

−1, for some c3 > 0 (see e.g. [14, Lemma 12]). Hence, if K is the number of
bad trees among {Θ2, ...,Θp}, then for any 1 6 k 6 p we have

P (K > k) 6

(
p

k

)(
c3

p

)k
6

ck3
k!
. (18)

We now construct the path shortcutting these trees. Recall that for 1 6 i 6 p, we
denote cL,i, cR,i respectively the left-most and right-most corners of the root vertex
of Θi in E . We start with γcR,1 and move along it. As soon as γcR,1 meets a bad tree
Θi, we proceed as follows. From cL,i we start the simple geodesic γcL,i . We know
that it requires less than

√
p + ∆p + 1 steps for γcL,i to merge with γcR,1 (which

happens in Θi), then we bypass Θi by considering the path formed of the beginning
of γcR,1 until it reaches Θi then go backwards along γcL,i to reach the root of Θi and
finally continue the process with γcR,i . Since Θ1 is obviously bad we also shortcut
it. See Fig. 9 below.

At the end of the process we get a simple cycle denoted by Cshort, which surrounds
the external face of Q∞,p and whose length is at most

Length(Cshort) 6 2(K + 1)(
√
p+ ∆p + 1). (19)

17



γcR,1

γcL,i1

γcR,i1

∞

Figure 9: An illustration of the proof, the bad trees are represented in gray and
the cycle constructed out of simple geodesics shortcutting them in fat black line.

Furthermore, similarly as in the warmup part, it is easy to see that every vertex of
the external face of Q∞,p can be connected to Cshort via a simple geodesic of length
less than

√
p+∆p+1, thus the aperture of Q∞,p is less than (2K+4) ·(√p+∆p+1),

which together with (16) gives

∆p 6 aper(Q∞,p) 6 (2K + 4)(
√
p+ ∆p + 1). (20)

Now, for λ > 1 and p > 1, we get from the previous display that

P (aper(Q∞,p) /∈ [λ−1√p, λ√p]) 6 P (∆p /∈ [λ−1/3√p, λ1/3√p]) + P (K > λ2/3/20).

We use (17) and (18) to see that the probabilities of the right hand side are of
bounded by c4 exp(−c5λ

2/3) for some constants c4, c5 > 0, which completes the
proof of the theorem.

4 Pruning

4.1 Pruning of Q∞,p
Recall from Section 1.2 that we can decompose a quadrangulation with a general
boundary into the irreducible component containing the root edge on which quad-
rangulations with general boundary are attached. We now aim at a decomposition
with respect to a “big” irreducible component, which is not necessarily the one des-
ignated by the root edge (since the root edge can be located on a small component).
We call this operation pruning.

Let q be a rooted quadrangulation with a boundary. Suppose that there is a
unique largest irreducible component in q. We call this irreducible component the
core of q and denote it by Core(q). Attached to this core we find quadrangulations
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with general boundary denoted by Part1(q),Part2(q), ...,Part2p(q) in clockwise order
where 2p is the perimeter of the core. Note that some of these components can be
reduced to the vertex map †. The components attached to the core are rooted
at their last oriented edge visited during a clockwise contour of the external face
(keeping the external face on the right). The core is either rooted at the original
root edge of the map if it lies on the boundary of the core, or on the oriented edge
preceding the component carrying the root edge (in that case this component is not
empty). See Fig. 10 below.

q

Part1(q)

Part2(q)

original root

Part3(q)

Core(q)

†

†

†

†

†

†

†

Figure 10: Illustration of the pruning.

The quadrangulation q can be recovered from Core(q),Part1(q),Part2(q), ...,Part2p(q)
if we are given a number R(q) ∈ {1, ..., |∂Part1(q)|+1} to specify the location of the
original root edge of the initial quadrangulation: On the first, second, ..., |∂Part1(q)|-
th oriented edge of Part1(q) if R(q) ∈ {1, ..., |∂Part1(q)|}, or on the core just before
Part1(q) if R(q) = |∂Part1(q)|+ 1.

If there is no largest irreducible component, we set Core(q) and all the compo-
nents to be equal to † and R(q) = 0 by convention. The pruning is still possible
when we deal with a rooted quadrangulation with boundary that contains a unique
infinite irreducible component, which is automatically the core.

Proposition 3. For every p ∈ {1, 2, 3, ...}, almost surely Q∞,p has only one infinite
irreducible component.

The proof is easy using the construction of Q∞,p from B∞,p and the fact that
B∞,p contains only one infinite labeled tree. Details are left to the reader.

Recall that Qn,p (resp. Q̃n,p) is uniformly distributed over Qn,p (resp. Q̃n,p). We
also denote by Uk a uniform variable over {1, 2, ..., k}. Fix p > 1 and q > 1,
and let g, f1, ..., f2q be positive bounded continuous functions for the distance dmap

and e : R → R+ be a bounded positive continuous function. As an immediate
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consequence of Proposition 3 and Theorem 2 we deduce that Qn,p has a largest
irreducible component with a probability tending to 1 as n→∞. Thus we have

E

[
g
(
Core(Qn,p)

)
e(R(Qn,p))

2q∏
i=1

fi
(
Parti(Qn,p)

)
1|∂Core(Qn,p)|=2q

]

−−−→
n→∞

E

[
g
(
Core(Q∞,p)

)
e(R(Q∞,p))

2q∏
i=1

fi
(
Parti(Q∞,p)

)
1|∂Core(Q∞,p)|=2q

]
.(21)

Moreover, the pruning decomposition leads to

E

[
g
(
Core(Qn,p)

)
e(R(Qn,p))

2q∏
i=1

fi
(
Parti(Qn,p)

)
1|∂Core(Qn,p)|=2q

]

=
1

qn,p

∑
n>m>0

q̃m,qE
[
g(Q̃m,q)

]
×

∑
p1+...+p2q=p−q
m>n1,...,n2q>0
n1+...+n2q=n−m

(2p1 + 1)E [e(U2p1+1)]

2q∏
i=1

qni,piE
[
fi(Qni,pi)

]
. (22)

Similarly as in the proof of Proposition 1, one can use Lemma 1 to deduce that the
probability that one of the components Part1(Qn,p),Part2(Qn,p), ... has a size larger
than a > 0 is bounded above by ca−3/2 for some constant c > 0 uniformly in n. So
we can let n → ∞ followed by a → ∞ in the formula (22) and obtain by (6), (21)
and asymptotics (4) and (5) that

E

[
g
(
Core(Q∞,p)

)
e(R(Q∞,p))

2q∏
i=1

fi
(
Parti(Q∞,p)

)
1|∂Core(Q∞,p)|=2q

]

=
C̃q
Cp
E
[
g(Q̃∞,q)

] ∑
p1+...+p2q=p−q

(2p1 + 1)E [e(U2p1+1)]

×
2q∏
i=1

∞∑
ni=0

12−niqni,piE
[
fi(Qni,pi)

]
. (23)

The last expression is the fundamental “pruning formula”. It can be used to
derive the distribution of the core and the components of Q∞,p for a fixed p. Let us
proceed. Fix p > q > 1, so that (23) specializes when e = f1 = . . . = f2q = 1 to

E[g(Core(Q∞,p))] =
C̃q
Cp
E[g(Q̃∞,q)]

∑
p1+...+p2q=p−q

(2p1 + 1)

2q∏
i=1

∞∑
ni=0

12−niqni,pi

=
p

q

C̃q
Cp
E[g(Q̃∞,q)]

∑
p1+...+p2q=p−q

2q∏
i=1

∞∑
ni=0

12−niqni,pi ,

where we got rid of the term (2p1 + 1) by an obvious symmetry argument, to the
cost of adding the prefactor (2q)−1

∑2q
i=1(2pi + 1) = p/q. Recalling the definition of
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the bivariate function W (g, z) and Wc(z) = W (12−1, z), we can further re-write the
last expression as

p

q

C̃q
Cp
E[g(Q̃∞,q)]8

p−qWc(8
−1)2q

∑
p1+...+p2q=p−q

2q∏
i=1

∑∞
ni=0 12−ni8−piqni,pi

Wc(8−1)

=
p

q

(9/2)−qC̃q
8−pCp

E[g(Q̃∞,q)]
∑

p1+...+p2q=p−q

2q∏
i=1

∑∞
ni=0 12−ni8−piqni,pi

Wc(8−1)
,

where we used the fact that Wc(8
−1) = 4/3, see (3). We interpret the last sum as

P (Z1 +Z2 + . . .+Z2q = p− q), where Z1, . . . , Z2q are independent random variables
with common distribution

P (Z1 = r) =

∑∞
n=0 12−n8−rqn,r
Wc(8−1)

, r > 0 .

We just proved

Theorem 4 (Pruning with fixed perimeter). For every p > q > 1, conditionally on
the event {|∂Core(Q∞,p)| = 2q} of probability

P (|∂Core(Q∞,p)| = 2q) =
q−1(9/2)−qC̃q
p−18−pCp

P (Z1 + ...+ Z2q = p− q),

the core of Q∞,p is distributed as a simple boundary UIPQ with perimeter 2q.

4.2 Proof of Theorem 1

As a first application of Theorem 4, let us now prove Theorem 1. To this end, we
first make some preliminary observations. By definition of W (g, z), the generating
function of Z1 is given by

E[sZ1 ] =
Wc(s8

−1)

Wc(8−1)
=

(1−
√

1− s)(2s− 1 +
√

1− s)
s2

=
s↑1

s+ 2(1− s)3/2 + o((1− s)3/2) .

By standard results on stable domains of attraction [9], this expression entails that
the random variable Z1 is in the domain of attraction of a stable random variable
with exponent 3/2. More precisely, since moreover E[Z1] = 1 by differentiating the
previous expression, it holds that

Z1 + . . .+ Zn − n
n2/3

(d)−−−→
n→∞

Z ′ ,

where the Laplace transform of Z ′ is given by E[exp(−λZ ′)] = exp(2λ3/2) for every
λ > 0. More precisely, if h denotes the density of the law of Z ′, then the Gnedenko-
Kolmogorov local limit theorem for lattice variables (see [16, Theorem 4.2.1]) entails
that

sup
k∈Z

∣∣∣∣n2/3P (Z1 + Z2 + . . .+ Zn = n+ k)− h
( k

n2/3

)∣∣∣∣ −→n→∞ 0 . (24)
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Now, for a given q > 1, set p = 3q in equation (23). By using (24) with n = 2q
and k = 0, we obtain P (Z1 + . . . + Z2q = 2q) ∼ h(0)(2q)−2/3 as q → ∞. On the

other hand, the asymptotic behavior for Cp, C̃q entails that (still when p = 3q)

q−1(9/2)−qC̃q
p−18−pCp

−−−→
q→∞

3 . (25)

From this and Theorem 4, we conclude that

P (|∂Core(Q∞,3q)| = 2q) ∼ Aq−2/3 ,

where A = 3 · 2−2/3 · h(0) ∈ (0,∞). By the first assertion of Theorem 4, we deduce
that there exists A′ ∈ (0,∞) such that for any non-negative measurable function g,

E[g(Q̃∞,q)] = E
[
g(Core(Q∞,3q))

∣∣ |∂Core(Q∞,3q)| = 2q
]
6 A′q2/3E[g(Core(Q∞,3q))] .

From this, Theorem 3, and the obvious fact that aper(Core(Q∞,3q)) 6 aper(Q∞,3q),
we conclude that

P (aper(Q̃∞,q) > λ
√
q) 6 A′q2/3P (aper(Core(Q∞,3q)) > λ

√
q)

6 A′q2/3P (aper(Q∞,3q) > λ
√
q)

6 A′c1q
2/3 exp(−3−1/3c2λ

2/3) .

This yields Theorem 1.

Remark 5. Theorem 3 entails that (p−1/2aper(Q∞,p))p>0 is tight. We believe that a

similar property holds for (p−1/2aper(Q̃∞,p))p>0, but this is not a direct consequence

of our results. In fact, we believe that (p−1/2aper(Q∞,p))p>0 and ((3p)−1/2aper(Q̃∞,p))p>0

converge in distribution to the same non-degenerate random variable.

4.3 Asymptotics of the perimeters

As a second application of Theorem 4, we will see that as p → ∞ the core of
Q∞,p has a perimeter which is roughly a third of the original quadrangulation. This
supports [11, Section 5] where the authors proved that quadrangulations with simple
boundary of perimeter p have the same large scale structure as quadrangulations
with general boundary of perimeter 3p.

Proposition 4. We have the following convergence in probability

|∂Core(Q∞,p)|
2p

(P )−−−→
p→∞

1

3
.

More precisely, it holds that

|∂Core(Q∞,p)| − 2p/3

p2/3

(d)−−−→
p→∞

Z ,

where Z is a spectrally negative stable random variable with exponent 3/2, with
Laplace transform given by

E[exp(λZ)] = exp

((2

3

)5/2
λ3/2

)
, λ > 0 .
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Proof. Let p > 1 and x ∈ R, and let q = bp/3c + bxp2/3c. We again use the local
limit theorem (24) by specializing it to n = 2q and k = p − 3q, and utilize the
asymptotic equivalents for Cp, C̃q with the same limit as in (25). Together with
Theorem 4 this implies

p2/3P
(1

2
|∂Core(Q∞,p)| − bp/3c = bxp2/3c

)
−−−→
p→∞

35/3

22/3
h
(
− 35/3

22/3
x
)
.

By Scheffé’s lemma and elementary computations using the Laplace transform of
h, this implies the claim on convergence in distribution in the statement. The first
claim on convergence in probability is a simple consequence of the latter.

4.4 Randomizing the perimeters

In this section, we argue that (23) gives a particularly nice probabilistic interpreta-
tion of the pruning operation, to the cost of randomizing the perimeters of the maps
under consideration. Let us introduce some notation. Let C(z) =

∑
Cpz

p be the

generating function of the Cp’s (with C0 = 0) and set ~Wc(z) := Wc(z) + 2z∂zWc(z).

Notice that
∑

n>0 qn,p(2p + 1)12−n = [zp](Wc(z) + 2z∂zWc(z)) = [zp] ~Wc(z). From
the exact expressions of Cp(.) (4) and W (., .) (3) we get that

C(z) =
2z√

π(1− 8z)3/2
,

Wc(z) =
(1− 8z)3/2 − 1 + 12z

24z2
,

~Wc(z) =
1− 4z −

√
1− 8z

8z2
. (26)

For 0 6 z 6 1/8, we denote by Qf,z (resp. ~Qf,z) a random finite quadrangulation
with general boundary such that the size of Qf,z equals n and its perimeter 2p

with probability 12−nzpWc(z)
−1 (resp. (2p+ 1)12−nzp ~Wc(z)

−1). Since Wc(1/8) and
~Wc(1/8) are finite, both Qf,z and ~Qf,z make sense for z = 1/8. We call these
random quadrangulations “free critical Boltzmann (extra rooted) quadrangulations
with parameter z”. Finally, for 0 < z < 1/8, let Pz and P̃z be random variables
distributed according to

P (Pz = p) =
zpCp
C(z)

, and P (P̃z = q) = C̃q
(
zW 2

c (z)
)q ~Wc(z)

C(z)Wc(z)
. (27)

Where we recall that C0 = C̃0 = 0. The lines leading to (23) (or a direct calculation)
show that C̃(zW 2

c (z)) ~Wc(z) = C(z)Wc(z) for every 0 6 z < 1/8 (where C̃ is the
generating function of the C̃q’s) so that P̃z is well-defined.

In the remaining of this work if P is a integer-valued random variable, we denote
by Q∞,P a random variable such that conditionally on {P = p}, Q∞,P is distributed
as Q∞,p (and similarly of the “∼” analog).

Fix z ∈ (0, 1/8). Now that the reader is acquainted with this notation we
multiply both members of (23) by zpCp, sum over all p > 1 and divide after-all by
C(z) to deduce that

23



E

[
g
(
Core(Q∞,Pz)

)
e(R(Q∞,Pz))

2q∏
i=1

fi
(
Parti(Q∞,Pz)

)
1|∂Core(Q∞,Pz )|=2q

]

=
~Wc(z)

C(z)Wc(z)
C̃q
(
zW 2

c (z)
)q (

E
[
g(Q̃∞,q)

]
E
[
f1( ~Qf,z)E

[
e
(
U|∂ ~Qf,z |+1

)] ] 2q∏
i=2

E
[
fi(Qf,z)

])

= P (P̃z = q)

(
E
[
g(Q̃∞,q)

]
E
[
f1( ~Qf,z)E[e(U|∂ ~Qf,z |+1)]

] 2q∏
i=2

E
[
fi(Qf,z)

])
.

(28)

Thus we proved:

Theorem 5 (Pruning with random perimeter). For every z ∈ (0, 1/8), we have the
following equality in distribution

Core
(
Q∞,Pz

) (d)
= Q̃∞,P̃z

.

Furthermore, conditionally on |∂Core(Q∞,Pz)|, the core and the components of
Q∞,Pz are independent the latter being distributed as follows: the first component is

distributed according to ~Qf,z (the location R(Q∞,Pz) of the root being uniform over
{1, 2, ..., |∂Part1(Q∞,p)|+ 1}), and all the other |∂Core(Q∞,Pz)| − 1 components are
distributed according to Qf,z.

Using the exact expression of C(.) we deduce that for z ∈ (0, 1/8) we have

E[Pz] =
zC ′(z)

C(z)
=

1 + 4z

1− 8z
.

Thus the average perimeter of Q∞,Pz is asymptotically equivalent to 3(1− 8z)−1 as
z → 1/8 and it is easy to see from the singularity analysis of C(.) that Pz →∞ in
distribution as z → 1/8. Using Proposition 4 (or by a direct analysis) we see that
P̃z →∞ as well as z → 1/8.

4.5 Interpretation of labels when Q∞,p = Φ(B∞,p)

In this section we finally prove how the pruning can be used to deduce the second
part of Theorem 2 from the results of [14]. Let us recall the setting. Fix p ∈
{1, 2, 3, ...} and let B be a uniform infinite labeled treed bridge of length p. We
consider Q∞,p = Φ(B). We aim at showing that, with the identification of the
vertices of Q∞,p with those of B, a.s. for every u, v ∈ Q∞,p we have

lim
z→∞

(
dgr(u, z)− dgr(v, z)

)
= `B(u)− `B(v).

Proof of the second part of Theorem 2. In order to prove the last display, it only
suffices to prove that the left-hand side actually a.s. has a limit as z → ∞: Let us
call this fact the property (∗). Then the last display follows from an adaptation of the
end of the proof of [14, Lemma 5]: For u, v ∈ B we can consider two simple geodesics
γu and γv starting from any corners associated with u and v in B. These two paths
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eventually merge. If we assume that property (∗) holds then we take z →∞ along
the geodesics after the merging point: For such z we have dgr(u, z) − dgr(v, z) =
`B(u)− `B(v), which proves the claim.
It thus suffices to prove that (∗) holds for Q∞,p. In fact, it is easy to see that we
can restrict our attention to those u, v that belong to the Core of Q∞,p. Thanks
to Theorem 5, for any 1 6 q 6 p, conditionally on {∂Core(Q∞,p) = 2q} we have

Core(Q∞,p) = Q̃∞,q in distribution. We are thus reduced to prove that Q̃∞,q satisfies

(∗) for all q > 1. To show this, we will make some plastic surgery with Q̃∞,p in
order to come back to the setup of [14] which deals with the full-plane UIPQ.

More precisely, let us consider the quadrangulationQ′∞,q obtained after filling the

external face of Q̃∞,q with a quadrangulation with a simple boundary of perimeter
2q made of 2q + 1 “layers” of quadrangles such that the last layer is connected to
the root edge, see Fig. 11.

Q̃∞,q
Q′

∞,q

Figure 11: The filling operation.

This operation is reversible, that is, given Q′∞,q and the number q, we can

recover Q̃∞,p. Most importantly, the filing has been done in such a way that for any

u, v ∈ Q̃∞,q we have

d
Q′

∞,q
gr (u, v) = d

Q̃∞,q
gr (u, v). (29)

Indeed it is easy to see that for any u, v ∈ Q̃∞,q we can find a geodesic path
between u and v that does not enter the grated region. Furthermore, by the spatial
Markov property of the UIPQ (see [5]) we deduce that the law of Q′∞,q is absolutely
continuous with respect to the law of the UIPQ. Since the UIPQ almost surely
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satisfies the property (∗) (see [14]) we deduce that Q′∞,q and by (29) that Q̃∞,q also
satisfies it a.s.

Remark 6. This surgical operation can also be used to transfer other “ergodic”
properties of the standard UIPQ towards UIPQ with boundaries.

5 Open boundary, open questions

5.1 UIPQ with infinite boundary

In this section we let p→∞ and define the UIPQ with infinite general and simple
boundary of infinite perimeter. We then extend the pruning procedure to these
infinite quadrangulations. The proofs are only sketched or left to the reader.

5.1.1 General boundary

We start by introducing the limit of the uniform treed bridges as p→∞.

Let (Xn)n∈Z be a two-sided simple random walk starting from 0 at 0 and having
uniform increments in {+1,−1}. Independently of (Xn)n∈Z, let (Θi)i∈Z be a se-
quence of independent uniform labeled geometric critical Galton-Watson trees. The
object B∞,∞ = ((Xn)n∈Z, (Θi)i∈Z) is the uniform infinite treed bridge of infinite
length. It obviously appears as a limit of the uniform infinite treed bridge of length
2p as p → ∞ in the following sense: Let B∞,p = (Bp; Θ1,p, ...,Θp,p) be a uniform

infinite treed bridge of length 2p with Bp = (X
(p)
1 , ..., X

(p)
2p ). Then for any m > 1

we have

(X
(p)
[i] )−m6i6m

(d)−−−→
p→∞

(Xi)−m6i6m,

when [i] stands for the representative of i modulo 2p that belongs to {1, ..., 2p}.
Furthermore the trees grated on the down-steps [i] such that −m 6 i 6 m asymp-
totically are i.i.d. critical geometric GW trees since the probability that one of these
trees is the infinite one tends to 0 as p→∞.

We can associate with the infinite treed bridge B∞,∞ a representation by grafting
the trees Θi to the down-steps of the walk (Xn), see Fig. 12. We then (once again)
extend the Schaeffer mapping Φ to this object in a straightforward manner and
define a random infinite quadrangulation with an infinite perimeter denoted by
Φ(B∞,∞), see Fig. 12.

Proposition 5. We have the following convergence

Q∞,p
(d)−−−→
p→∞

Q∞,∞,

in distribution for dmap, where Q∞,∞ is random infinite rooted quadrangulation with
an infinite boundary which can be constructed from the uniform infinite treed bridge
of infinite perimeter via the extended Schaeffer mapping, that is Q∞,∞ = Φ(B∞,∞)
in distribution.
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Figure 12: Second extension of Φ.

This is essentially an adaptation of the first part of Theorem 2 (and Proposition
2). The proof is left to the interested reader.

5.1.2 Simple boundary.

Recall that Pz →∞ in distribution as z ↑ 1/8. Thus it follows from the last theorem
that Q∞,Pz → Q∞,∞ as z → 1/8. Using Theorem 5 we deduce that Q̃∞,P̃z

converge
towards some random infinite quadrangulation with an infinite simple boundary as
z → 1/8. We denote this limit by Q̃∞,∞ and call it the UIPQ with infinite simple
boundary or UIPQ of the half-plane.

Angel [1] defined and studied the analog of Q̃∞,∞ in the triangulation case. His
approach can be adapted to the quadrangulation case to show that

Q̃∞,p
(d)−−−→
p→∞

Q̃∞,∞,

for dmap. One of the advantages of working with such objects is the very simple
form that takes the spatial Markov property, see [1, 3].

The pruning procedure can also be extended to Q∞,∞ (one can show that Q∞,∞
has only one infinite irreducible component almost surely). The following statement
can be seen as an extension to z = 1/8 of Theorem 5.

Proposition 6. The core and the components of Q∞,∞ are all independent, the core

being distributed as Q̃∞,∞, the first component as ~Qf,1/8, and the other components
as Qf,1/8.
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5.2 Comments, questions

Extending the techniques of this paper, it is possible to study a variant of the
aperture in the case of Q∞,∞ and translate the results to the simple boundary case
via the pruning procedure extended in Theorem 5. We present here a couple of open
questions related to the models Q∞,∞ and Q̃∞,∞.

Open Question 2. In the construction Q∞,∞ = Φ(B∞,∞), is it the case that
the `B∞,∞-labels have the same interpretation as in Theorem 2, that is, for every
u, v ∈ Q∞,∞ we have

lim
z→∞

(
dgr(z, u)− dgr(z, v)

)
= `B∞,∞(u)− `B∞,∞(v).

We next move to surgical considerations. Consider two copies of Q̃∞,∞ and glue
them together along the boundary with coinciding roots to form a rooted quadran-
gulation of the plane denoted by Q∞. We claim that the law of Q∞ is singular
with respect to the law of Q∞. Indeed, it is easy to construct two infinite (simple)
geodesics in Q∞ starting from the origin and that are eventually non intersecting.
However, two such geodesics do not exist in the case of the UIPQ, see [14]. Con-
sequently, the full-plane UIPQ is not the result of the gluing of two independent
half-plane UIPQ with simple boundary. A more interesting gluing is the following:

Open Question 3. Consider the “closing” operation that consists in zipping the
boundary of Q̃∞,∞ to get an infinite rooted quadrangulation Q∞ with an infinite
self-avoiding path on it. Is the law of Q∞ absolutely continuous or singular with
respect to the law of Q∞? Study the self-avoiding walk obtained on it: In particular,
is it diffusive?
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