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On the Longest Paths and the Diameter

in Random Apollonian Networks
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Jonathan Zung∗∗

Abstract

We consider the following iterative construction of a random planar triangula-

tion. Start with a triangle embedded in the plane. In each step, choose a bounded

face uniformly at random, add a vertex inside that face and join it to the vertices

of the face. After n − 3 steps, we obtain a random triangulated plane graph with

n vertices, which is called a Random Apollonian Network (RAN). We show that

asymptotically almost surely (a.a.s.) every path in a RAN has length o(n), refuting

a conjecture of Frieze and Tsourakakis. We also show that a RAN always has a

path of length (2n − 5)log 2/ log 3, and that the expected length of its longest path
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is Ω
(
n
0.88
)
. Finally, we prove that a.a.s. the diameter of a RAN is asymptotic to

c log n, where c ≈ 1.668 is the solution of an explicit equation.

1 Introduction

Due to the increase of interest in social networks, the Web graph, biological networks etc.,

in recent years a large amount of research has focused on modelling real world networks

(see, e.g., Bonato [1] or Chung and Lu [2]). Despite the outstanding amount of work on

models generating graphs with power law degree sequences, a considerably smaller amount

of work has focused on generative models for planar graphs. In this paper we study a

popular random graph model for generating planar graphs with power law properties,

which is defined as follows. Start with a triangle embedded in the plane. In each step,

choose a bounded face uniformly at random, add a vertex inside that face and join it to

the vertices on the face. We call this operation subdividing the face. In this paper, we

use the term “face” to refer to a “bounded face,” unless specified otherwise. After n− 3

steps, we have a (random) triangulated plane graph with n vertices and 2n−5 faces. This

is called a Random Apollonian Network (RAN) and we study its asymptotic properties,

as its number of vertices goes to infinity. The number of edges equals 3n− 6, and hence

a RAN is a maximal plane graph.

The term “apollonian network” refers to a deterministic version of this process, formed

by subdividing all triangles the same number of times, which was first studied in [3, 4].

Andrade et al. [3] studied power laws in the degree sequences of these networks. Random

apollonian networks were defined in Zhou et al. [5] (see Zhang et al. [6] for a generalization

to higher dimensions), where it was proved that the diameter of a RAN is asymptotically

bounded above by a constant times the logarithm of the number of vertices. It was shown

in [5, 7] that RANs exhibit a power law degree distribution. The average distance between

two vertices in a typical RAN was shown to be logarithmic by Albenque and Marckert [8].

The degree distribution, k largest degrees and k largest eigenvalues (for fixed k) and the

diameter were studied in Frieze and Tsourakakis [9]. We continue this line of research

by studying the asymptotic properties of the longest (simple) paths in RANs and giving

sharp estimates for the diameter of a typical RAN.

Before stating our main results, we need a few definitions. In this paper n (respectively,

m) always denotes the number of vertices (respectively, faces) of the RAN. All logarithms

are in the natural base. We say an event A happens asymptotically almost surely (a.a.s.)
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if P [A] approaches 1 as n goes to infinity. For two functions f(n) and g(n) we write f ∼ g

if limn→∞
f(n)
g(n)

= 1 . For a random variable X = X(n) and a function f(n), we say X is

a.a.s. asymptotic to f(n) (and write a.a.s. X ∼ f(n)) if for every fixed ε > 0,

lim
n→∞

P [f(n)(1− ε) ≤ X ≤ f(n)(1 + ε)] = 1 ,

and we say a.a.s. X = o
(
f(n)

)
if for every fixed ε > 0, limn→∞ P [X ≤ εf(n)] = 1 .

The authors of [9] conjecture in their concluding remarks that a.a.s. a RAN has a path

of length Ω(n). We refute this conjecture by showing the following theorem. Let Lm be

a random variable denoting the number of vertices in a longest path in a RAN with m

faces.

Theorem 1.1. A.a.s. we have Lm = o(m).

Recall that a RAN on n vertices has 2n− 5 faces, so Theorem 1.1 implies that a.a.s.

a RAN does not have a path of length Ω(n).

We also prove the following lower bounds for the length of a longest path determinis-

tically, and its expected value in a RAN.

Theorem 1.2. For every positive integer m, the following statements are true.

(a) Lm ≥ mlog 2/ log 3 + 2 .

(b) E [Lm] = Ω (m0.88) .

The proofs of Theorems 1.1 and 1.2 are built on two novel graph theoretic observations,

valid for all subgraphs of apollonian networks.

We also study the diameter of RANs. In [9] it was shown that the diameter of a

RAN is a.a.s. at most η2 log n, where η2 ≈ 7.081 is the unique solution greater than 1 of

exp (1/x) = 3e/x. (Our statement here corrects a minor error in [9], propagated from

Broutin and Devroye [10], which stated that η2 is the unique solution less than 1.) In [8]

it was shown that a.a.s. the distance between two randomly chosen vertices of a RAN

(which naturally gives a lower bound on the diameter) is asymptotic to η1 logn, where

η1 = 6/11 ≈ 0.545. In this paper, we provide the asymptotic value for the diameter of a

typical RAN.

Theorem 1.3. A.a.s. the diameter of a RAN on n vertices is asymptotic to c log n, with

c = (1− x̂−1)/ log h(x̂) ≈ 1.668, where

h(x) =
12x3

1− 2x
− 6x3

1− x
,

3



and x̂ ≈ 0.163 is the unique solution in the interval (0.1, 0.2) to

x(x− 1)h′(x) = h(x) log h(x) .

The proof of Theorem 1.3 consists of a nontrivial reduction of the problem of estimating

the diameter to the problem of estimating the height of a certain skewed random tree,

which can be done by applying a result of [10].

We start with some preliminaries in Section 2, and prove Theorems 1.1, 1.2, and 1.3

in Sections 3, 4, and 5, respectively.

2 Preliminaries

The following result is due to Eggenberger and Pólya [11] (see, e.g., Mahmoud [12, The-

orem 5.1.2]).

Theorem 2.1. Start with w white balls and b black balls in an urn. In each step, pick a

ball uniformly at random from the urn, look at its colour, and return it to the urn; also

add s balls of the same colour to the urn. Let wn and tn be the number of white balls and

the total number of balls in the urn after n draws. Then, for any α ∈ [0, 1] we have

lim
n→∞

P

[
wn

tn
< α

]
=

Γ((w + b)/s)

Γ(w/s)Γ(b/s)

∫ α

0

x
w

s
−1(1− x)

b

s
−1 dx .

Note that the right hand side equals P [Beta(w/s, b/s) < α], where Beta(p, q) denotes

a beta random variable with parameters p and q. The urn described in Theorem 2.1 is

called the Eggenberger-Pólya urn.

Let △ be a triangle. The standard 1-subdivision of △ is the set of three triangles

obtained from subdividing △ once. For k > 1, the standard k-subdivision of △ is the set

of triangles obtained from subdividing each triangle in the standard (k − 1)-subdivision

of △ exactly once. In Figure 1, the standard 2-subdivision of a triangle is illustrated.

Consider a triangle △ containing more than one face in a RAN, and let △1,△2,△3 be

the three triangles in its standard 1-subdivision. We can analyze the number of faces inside

△1 by modelling the process of building the RAN as an Eggenberger-Pólya urn: after the

first subdivision of △, each of △1, △2, and △3 contains exactly one face. We start with

one white ball corresponding to the only face in △1, and two black balls corresponding

to the two faces in △2 and △3. In each subsequent step, we choose a face uniformly at
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random, and subdivide it. If the face is in △1, then the number of faces in △1 increases by

2, and otherwise the number of faces not in △1 increases by 2. Thus after k subdivisions

of △, the number of faces in △1 has the same distribution as the number of white balls

in an Eggenberger-Pólya urn with w = 1, b = 2, and s = 2, after k − 1 draws. This

observation leads to the following corollary.

Corollary 2.2. Let △ be a triangle containing m faces in a RAN, and let Z1, Z2, . . . , Z9

be the number of faces inside the 9 triangles in the standard 2-subdivision of △. Given

ε > 0, there exists m0 = m0(ε) such that for m > m0,

P [min{Z1, . . . , Z9}/m < ε] < 13 4
√
ε .

Proof. Let △ be a triangle containing m faces in a RAN, and let W1,W2,W3 be the

number of faces inside the three triangles in the standard 1-subdivision of △. Say that

△ is balanced if

min{W1,W2,W3}/m ≥ √
ε .

By Theorem 2.1, for a given 1 ≤ i ≤ 3 we have

lim
m→∞

P

[
Wi

m
<

√
ε

]
=

∫ √
ε

0

Γ(3/2)

Γ(1)Γ(1/2)
x−1/2 dx =

√√
ε .

In particular, there exists m0 such that

P

[
Wi

m
<

√
ε

]
<

4
√
1.1ε

for m > m0.

Now, take m0 = m0/
√
ε, and let △ be a triangle containing m > m0 faces in a

RAN. The probability that △ is balanced is at least 1 − 3 4
√
1.1ε by the union bound.

If △ is balanced, then each of the three triangles in the standard 1-subdivision of △
contains more than m0

√
ε = m0 faces, so the probability that a certain one of them is not

balanced is at most 3 4
√
1.1ε. Note that if △ and these three triangles are balanced, then

min{Z1, · · · , Z9}/m ≥ ε. Hence by the union bound,

P [min{Z1, · · · , Z9}/m < ε] < 12
4
√
1.1ε < 13 4

√
ε . �

We include some definitions here. Let G be a RAN. We denote the vertices incident

with the unbounded face by ν1, ν2, ν3. All trees we consider are rooted. We define a tree

T , called the △-tree of G, as follows. There is a one to one correspondence between the
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triangles in G and the nodes of T . For every triangle △ in G, we denote its corresponding

node in T by n△. To build T , start with a single root node, which corresponds to the

triangle ν1ν2ν3 of G. Wherever a triangle △ is subdivided into triangles △1, △2, and △3,

generate three children n△1 , n△2 , and n△3 for n△, and extend the correspondence in the

natural manner. Note that this is a random ternary tree, with each node having either

zero or three children, and has 3n− 8 nodes and 2n− 5 leaves. We use the term “nodes”

for the vertices of T , so that “vertices” refer to the vertices of G. Note that the leaves of

T correspond to the faces of G. The depth of a node n△ is its distance to the root.

3 Upper bound for a longest path

In this section we prove Theorem 1.1, stating that a.a.s. all paths in a RAN have length

o(n). The set of grandchildren of a node is the set of children of its children, so every

node in a ternary tree has between zero and nine grandchildren. For a triangle △ in G,

I(△) denotes the set of vertices of G that are strictly inside △.

Lemma 3.1. Let G be a RAN and let T be its △-tree. Let n△ be a node of T with nine

grandchildren n△1 ,n△2 , . . . ,n△9. Then the vertex set of a path in G does not intersect all

of the I(△i)’s.

Proof. There are exactly 7 vertices in the boundaries of the triangles corresponding to the

grandchildren of n△. Let v1, . . . , v7 denote such vertices (see Figure 1). Let P = u1u2 . . . up

be a path in G. Clearly, when P enters or leaves one of△1,△2, . . . ,△9, it must go through

a vi. So P does not contain vertices from more than one triangle between two consecutive

occurrences of a vi. Since P goes through each vi at most once, the vertices vi split P

up into at most eight sub-paths. Hence P contains vertices from at most eight of the

triangles △i. �

We first sketch a proof of Theorem 1.1. Let G be a RAN on n vertices, and let T be its

△-tree. The 2-subdivision of the triangle ν1ν2ν3 consists of nine triangles, and every path

misses the vertices in at least one of them by Lemma 3.1. We can now apply the same

argument inductively for the other eight triangles, and repeat. Note that if the distribution

of vertices in the nine triangles of every 2-subdivision were always moderately balanced,

this argument would immediately prove the theorem (by extending it to O(logn) depth).

Unfortunately, the distribution is biased towards becoming unbalanced: the greater the

number of vertices falling in a certain triangle, the higher the probability that the next
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v2

v1

v3

v4

v5

v6

v7

Figure 1: A triangle in G corresponding to a node of T with 9 grandchildren. Vertices

v1, . . . , v7 are the vertices in the boundaries of the triangles corresponding to these grand-

children.

vertex falls in the same triangle. However, Corollary 2.2 gives an upper bound for the

probability that this distribution is very unbalanced. The idea is to use this Corollary

iteratively and to use independence of events cleverly to bound the probability of certain

“bad” events.

It is easy to see that T is a random ternary tree on 3n − 8 nodes in the sense of

Drmota [13]. The following theorem is due to Chauvin and Drmota [14, Theorem 2.3]

(we use the wording of [13, Theorem 6.47]).

Theorem 3.2. Let Hn denote the largest number L such that a random n-node ternary

tree has precisely 3L nodes at depth L. Let ψ ≈ 0.152 be the unique solution in (0, 3) to

2ψ log

(
3e

2ψ

)
= 1 .

Then we have

E
[
Hn

]
∼ ψ logn ,

and there exists a constant κ > 0 such that for every ε > 0,

P
[
|Hn − E

[
Hn

]
| > ε

]
= O(exp(−κε)) .

Let D = 0.07 logn. Then, the following is obtained immediately.

Corollary 3.3. A.a.s. there are 32D nodes at depth 2D of T .

Let ε > 0 be a fixed number such that 3(13 4
√
4ε)1/5 < 1, and let pF = 1 − 13 4

√
4ε.

Notice that 3(1−pF )1/5 < 1. We say node n△ is fair if at least one of the following holds:
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(i) the number of faces inside △ is less than 3D, or

(ii) n△ has nine grandchildren n△1,n△2 , . . . ,n△9, and |I(△i)| ≥ ε|I(△)| for all 1 ≤ i ≤
9.

A triangle △ in G is fair if its corresponding node n△ is fair.

Lemma 3.4. Let n△ be a node in T with nine grandchildren, and let U be a subset of the

set of ancestors of n△, not including the parent of n△. The probability that n△ is fair,

conditional on all nodes in U being unfair, is at least pF .

Proof. Let n be sufficiently large that 3D > m0(2ε), where m0(2ε) is defined as in Corol-

lary 2.2. Let M denote the number of faces inside △, and let m ≥ 3D be arbitrary. If

M < 3D, then n△ is fair by definition, so it is enough to prove that

P

[
n△ is fair

∣∣∣∣ nodes in U are unfair,M = m

]
≥ pF .

Since U does not contain the parent of n△, conditional on nodes in U being unfair and

M = m, the subgraph of G induced by vertices on and inside △ is distributed as a RAN

with m faces.

Let △1, . . . ,△9 be the nine triangles in the standard 2-subdivision of △, and let

Z1, Z2, . . . , Z9 be the number of faces inside them. By Corollary 2.2 and sincem > m0(2ε),

with probability at least pF for all 1 ≤ i ≤ 9,

Zi ≥ 2εm ,

and so

I(△i) =
Zi − 1

2
≥ 2εm− 1

2
≥ ε

m− 1

2
= εI(△) ,

which implies that n△ is fair. �

Let k = (log log n)/2. Let d0 = 0 and di = 2i−1k for 1 ≤ i ≤ k. Notice that dk < D.

Lemma 3.5. A.a.s the following is true. Let v be an arbitrary node of T at depth di for

some 1 ≤ i ≤ k, and let u be the ancestor of v at depth di−1. Then there is at least one

fair node f on the (u, v)-path in T , such that the depth of f is between di−1 and di − 2,

inclusive.

8



Proof. Let us say that a node is bad if the conclusion of the lemma is false for it. We prove

that the probability that a bad node exists is o(1). Let v be a node at depth di and u be

its ancestor at depth di−1. Let x0 = v, x1, x2, . . . , xr = u be the (v, u)-path in T , where

r = di − di−1. By Lemma 3.4, the probability that none of x2⌊r/2⌋, x2⌊r/2⌋−2, . . . , x4, x2 is

fair is at most

(1− pF )
⌊r/2⌋ ≤ (1− pF )

(di−di−1−1)/2 ≤ (1− pF )
di/5 .

There are at most 3di nodes at depth di, so by the union bound, the probability that there

is at least one bad node v at depth di is at most

3di(1− pF )
di/5 =

[
3(1− pF )

1/5
]di ≤

[
3(1− pF )

1/5
]k

= o(1/k) ,

by the definition of di and as 3(1− pF )
1/5 < 1 and k → ∞. Consequently, the probability

that there exists a bad node whose depth lies in {d1, d2, . . . , dk} is o(1). �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let G be a RAN with n vertices and m faces, and let T be the

△-tree of G. The depth of a vertex v of G is defined as max{depth(△) : v ∈ I(△)}, and
we define the depth of ν1, ν2, ν3 to be −1. Say a vertex is deep if its depth is greater than

D, and is shallow otherwise. Let nD denote the number of deep vertices. Note that the

number of shallow vertices is at most (3D+1 + 5)/2, which is o(n) by the choice of D, so

nD = n − o(n). For a node n△ of T , let ID(△) be the set of deep vertices in I(△), and

for a subset A of nodes of T , let

ID(A) =
⋃

n
△∈A

ID(△) .

Claim. If T is full down to depth 2D where D ≥ 2, then any fair node n△ with depth at

most D has nine grandchildren n△1,n△2 , . . . ,n△9 such that

|ID(△i)| ≥ ε|ID(△)|/2 i = 1, 2, . . . , 9. (3.1)

Proof of Claim. Assume that T is full down to depth 2D. We first show that for any

triangle △,

|ID(△)| ≥ |I(△)|/2 . (3.2)

To prove (3.2), let △ be a triangle at depth r. If r > D, then I(△) contains no shallow

vertices, and (3.2) is obviously true. Otherwise, the number of shallow vertices in I(△)

equals 1 + 3 + · · · + 3D−r = (3D−r+1 − 1)/2, whereas the number of vertices in I(△) at

9



depth D + 1 equals 3D−r+1, where we have used the fact that T is full down to depth

at least D + 2. Thus I(△) contains more deep vertices than shallow vertices, and (3.2)

follows.

Now, let n△ be a fair triangle having depth at most D. Since T is full down to depth

2D, the number of faces inside △ is at least 3D. So, as n△ is fair, it has nine grandchildren

n△1 ,n△2, . . . ,n△9 such that |I(△i)| ≥ ε|I(△)| for all 1 ≤ i ≤ 9. Applying (3.2) gives

|ID(△i)| ≥ |I(△i)|/2 ≥ ε|I(△)|/2 ≥ ε|ID(△)|/2 i = 1, 2, . . . , 9 ,

as required.

We may condition on two events that happen a.a.s.: the first one is the conclusion of

Lemma 3.5, and the second one is that of Corollary 3.3, namely that T is full down to

depth 2D.

To complete the proof of the theorem, for a given path P in G, we will define a

sequence B0, B1, . . . , Bk of sets of nodes of T , such that for all 0 ≤ i ≤ k we have

(i) |ID(Bi)| ≥ nD

(
1−

(
1− ε

2

)i)
, and

(ii) V (P ) ∩ ID(Bi) = ∅.

Before defining the Bi’s, let us show that this completes the proof. Notice that (i) gives

|ID(Bk)| ≥ nD − nD(1− ε/2)k ≥ nD − nD exp(−εk/2) ,

which is n− o(n) since nD = n− o(n) and εk = ω(1). Therefore, by (ii),

|V (P )| ≤ |V (G) \ ID(Bk)| = o(n) .

So, now we define the sets Bi. Let Si denote the set of nodes of T at depth di. Let

B0 = ∅ and we define the Bi’s inductively, in such a way that Bi ⊆ Si. Fix 1 ≤ i ≤ k,

and assume that Bi−1 has already been defined. Let Ci be the set of nodes at depth di

whose ancestor at depth di−1 is in Bi−1 (so, in particular, C1 = ∅). By the induction

hypothesis, V (P ) does not intersect ID(Bi−1) = ID(Ci), and |ID(Ci)| = |ID(Bi−1)| ≥
nD (1− (1− ε/2)i−1).

Since the conclusion of Lemma 3.5 is true, there exists a set F of fair nodes, with

depths between di−1 and di − 2, such that every v ∈ Si \Ci is a descendent of some node

in F . Now, for every x, y ∈ F such that y is a descendent of x, remove y from F . This

10



× • • • • • •× × × × • • • • + + + +
+ + + +

Si

u1 u2 u3 Bi−1

Figure 2: Illustration for the inductive step in the proof of Theorem 1.1: Vertices in Ci

are shown as +, vertices in Mi are shown as ×, and vertices in Si \ (Ci ∪Mi) are shown

as dots.

results in a set {u1, u2, . . . , us} of fair nodes, with depths between di−1 and di − 2, such

that every v ∈ Si \ Ci is a descendent of a unique uj. Recall that dk < D and so all the

uj’s have depths less than D.

Let w1, . . . , w9 be the grandchildren of u1. By Lemma 3.1, V (P ) does not intersect all

of the I(wi)’s; say it does not intersect I(w1). Then mark all of the descendants of w1,

and perform a similar procedure for u2, . . . , us. Let Mi be the set of marked nodes in Si.

See Figure 3. Thus V (P )∩ ID(Mi) = ∅. Moreover, since the uj’s are fair and the ID(uj)’s

are disjoint, it follows from the claim that

|ID(Mi)| ≥
s∑

j=1

ε|ID(uj)|/2 = ε|ID(Si \ Ci)|/2 = ε(nD − |ID(Bi−1)|)/2 .

Now, let Bi = Ci ∪Mi. Then we have

|ID(Bi)| = |ID(Ci)|+ |ID(Mi)|
≥ |ID(Bi−1)|+

ε

2

(
nD − |ID(Bi−1)|

)
= |ID(Bi−1)|(1−

ε

2
) +

εnD

2

≥ nD

(
1−

(
1− ε

2

)i−1
)(

1− ε

2

)
+
εnD

2
= nD

(
1−

(
1− ε

2

)i)
,

and V (P ) does not intersect ID(Bi). �

Remark. Noting that n − nD < n1−δ for some fixed δ > 0 and being more careful in the

calculations above shows that indeed we have a.a.s. Lm ≤ n (logn)−Ω(1).

4 Lower bounds for a longest path

In this section we prove Theorem 1.2. We first prove part (a), i.e., we give a deterministic

lower bound for the length of a longest path in a RAN. Recall that Lm denotes the number
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ν1

ν3

ν2

v

(a) Path avoiding ν3.

ν1

ν3

ν2

v

(b) Path avoiding ν2.

ν1

ν3

ν2

v

(c) Path avoiding ν1

Figure 3: Paths avoiding △3 and one of the νi’s.

of vertices of a longest path in a RAN with m faces. Let G be a RAN with m faces, and

let v be the unique vertex that is adjacent to ν1, ν2, and ν3. For 1 ≤ i ≤ 3, let △i be the

triangle with vertex set {v, ν1, ν2, ν3}\{νi}. Define the random variable L′
m as the largest

number L such that for every permutation π on {1, 2, 3}, there is a path in G of L edges

from νπ(1) to νπ(2) not containing νπ(3). Clearly we have Lm ≥ L′
m + 2.

Proof of Theorem 1.2(a). Let ξ = log 2/ log 3. We prove by induction on m that L′
m ≥

mξ. This is obvious for m = 1, so assume that m > 1. Let mi denote the number of faces

in △i. Then m1 +m2 +m3 = m. By symmetry, we may assume that m1 ≥ m2 ≥ m3.

For any given 1 ≤ i ≤ 3, it is easy to find a path avoiding νi that connects the other two

νj ’s by attaching two appropriate paths in △1 and △2 at vertex v. (See Figures 3(a)–(c).)

By the induction hypothesis, these paths can be chosen to have lengths at least m1
ξ and

m2
ξ, respectively. Hence for every permutation π of {1, 2, 3}, there is a path from νπ(1)

to νπ(2) avoiding νπ(3) with length at least

m1
ξ +m2

ξ . (4.1)

It is easily verified that since m1 ≥ m2 ≥ m3 and m1 +m2 +m3 = m, the minimum of

(4.1) happens when m1 = m2 = m/3, thus

L′
m ≥ m1

ξ +m2
ξ ≥ 2

(m
3

)ξ
= mξ ,

and the proof is complete. �

Next, we use the same idea to give a larger lower bound for E [Lm]. Let the random

variable Xi denote the number of faces in △i. Then the Xi’s have the same distribution
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and are not independent. It follows from Theorem 2.1 that as m grows, the distribution

of Xi

m
converges pointwise to that of Beta(1/2, 1). Moreover, for any fixed ε ∈ [0, 1), if we

condition on X1 = εm, then the subdividing process inside △2 and △3 can be modelled

as an Eggenberger-Pólya urn again, and it follows from Theorem 2.1 that the distribution

of X2

(1−ε)m
conditional on X1 = εm converges pointwise to that of Beta(1/2, 1/2). Namely,

for any fixed ε ∈ [0, 1) and δ ∈ [0, 1],

lim
m→∞

P

[
X2

(1− ε)m
≤ δ

∣∣∣∣X1 = εm

]
=

∫ δ

0

Γ(1)

Γ(1/2)2
x−1/2(1− x)−1/2 dx . (4.2)

We are now ready to prove part (b) of Theorem 1.2.

Proof of Theorem 1.2(b). Let ζ = 0.88. We prove that there exists a constant κ > 0

such that E [L′
m] ≥ κmζ holds for all m ≥ 1. We proceed by induction on m, with the

induction base being m = m0, where m0 is a sufficiently large constant, to be determined

later. By choosing κ sufficiently small, we may assume E [L′
m] ≥ κmζ for all m ≤ m0.

For 1 ≤ i ≤ 3, let Xi denote the number of faces in △i. Define a permutation

σ on {1, 2, 3} such that Xσ(1) ≥ Xσ(2) ≥ Xσ(3), breaking ties randomly. Then σ is a

random permutation determined by the Xi and the random choice in the tie-breaking.

By symmetry, for every fixed σ′ ∈ S3, P [σ = σ′] = 1/6. From the proof of part (a), we

know

L′
m ≥ L′

Xσ(1)
+ L′

Xσ(2)
.

Taking the expectation on both sides, we have

E [L′
m] ≥ E

[
L′

Xσ(1)
+ L′

Xσ(2)

]
≥ 6E

[
(L′

X1
+ L′

X2
)1X1>X2>X3

]
, (4.3)

where the second inequality holds by symmetry and as P [σ = (1, 2, 3)] = 1/6. By the

induction hypothesis, for every x1, x2 < m,

E
[
L′

X1
| X1 = x1

]
≥ κxζ1, and E

[
L′

X2
| X2 = x2

]
≥ κxζ2.

Hence,

E
[
(L′

X1
+ L′

X2
)1X1>X2>X3

]
≥ κE

[
(Xζ

1 +Xζ
2 )1X1>X2>X3

]
. (4.4)

Let f1(x) and f2(x) denote the probability density functions of Beta(1/2, 1) and Beta(1/2, 1/2),

respectively. Namely,

f1(x) =
Γ(3/2)

Γ(1)Γ(1/2)
x−1/2 and f2(x) =

Γ(1)

Γ(1/2)2
x−1/2(1− x)−1/2 .

13



Then it follows from Theorem 2.1 that for any fixed 0 ≤ t < 1,

lim
m→∞

P

[
X1

m
≤ t

]
=

∫ t

0

f1(x) dx ,

and for any fixed 0 ≤ s ≤ 1, by (4.2),

lim
m→∞

P

[
X2

m
≤ (1− t)s

∣∣∣∣ X1 = tm

]
= lim

m→∞
P

[
X2

(1− t)m
≤ s

∣∣∣∣
X1

m
= t

]
=

∫ s

0

f2(x) dx .

Hence (see Billingsley [15, Theorem 29.1 (i)])

E

[((
X1

m

)ζ

+

(
X2

m

)ζ
)
1X1>X2>X3

]
→

1∫

t=1/3

min{1, t

1−t
}∫

s=1/2

[
tζ + (s(1− t))ζ

]
f1(t)f2(s) ds dt ,

as m→ ∞. By the choice of ζ , we have

∫ 1

t=1/3

∫ min{1, t

1−t
}

s=1/2

[
tζ + (s(1− t))ζ

]
f1(t)f2(s) ds dt > 1/6 .

Then, by (4.3) and (4.4),

E [L′
m] ≥ 6κE

[
(Xζ

1 +Xζ
2 )1X1>X2>X3

]
> κmζ ,

if we choose m0 sufficiently large. �

5 Diameter

As mentioned in the introduction, prior to this work it had been known that a typical

RAN has logarithmic diameter, and asymptotic lower and upper bounds for the diameter

had been proved, but the asymptotic value had not been determined. In this section

we prove Theorem 1.3, which states that a.a.s. the diameter of a RAN is asymptotic to

c logn, where c ≈ 1.668 is the solution of an explicit equation.

Let G be a RAN with n vertices, and recall that ν1, ν2, and ν3 denote the vertices

incident with the unbounded face. For a vertex v of G, let τ(v) be the minimum graph

distance of v to the boundary, i.e.,

τ(v) = min{dist(v, ν1), dist(v, ν2), dist(v, ν3)} .

The radius of G is defined as the maximum of τ(v) over all vertices v.
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Lemma 5.1. Let

h(x) =
12x3

1− 2x
− 6x3

1− x
,

and let x̂ be the unique solution in (0.1, 0.2) to

x(x− 1)h′(x) = h(x) log h(x) .

Finally, let

c =
1− x̂−1

log h(x̂)
≈ 1.668 .

Then the radius of G is a.a.s. asymptotic to c log n/2.

We first show that this lemma implies Theorem 1.3.

Proof of Theorem 1.3. Let △1, △2, and △3 be the three triangles in the standard 1-

subdivision of the triangle ν1ν2ν3, and let ni be the number of vertices on and inside △i.

Let diam(G) denote the diameter of G. Fix arbitrarily small ε, δ > 0. We show that with

probability at least 1− 2δ we have

(1− ε)c logn ≤ diam(G) ≤ (1 + ε)c logn .

Here and in the following, we assume n is sufficiently large.

Let M be a positive integer sufficiently large that, for a given 1 ≤ i ≤ 3,

P

[
ni

n
<

1

M

]
< δ/6 .

Such an M exists by Theorem 2.1 and the discussion after it. Let A denote the event

min
{ni

n
: 1 ≤ i ≤ 3

}
≥ 1

M
.

By the union bound, P [A] ≥ 1 − δ/2. We condition on values (n1, n2, n3) such that A

happens. Note that we have log ni = log n− O(1) for each i.

For a triangle △, V (△) denotes the three vertices of △. Note that for 1 ≤ i ≤ 3,

the subgraph induced by vertices on and inside △i is distributed as a RAN Gi with ni

vertices. Hence by Lemma 5.1 and the union bound, with probability at least 1 − δ/2,

the radius of each of G1, G2 and G3 is at least (1 − ε)c logn/2. Hence, with probability

at least 1− δ/2 there exists u1 ∈ V (G1) with distance at least (1− ε)c logn/2 to V (△1),

and also there exists u2 ∈ V (G2) with distance at least (1 − ε)c logn/2 to V (△2). Since
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any (u1, u2)-path must contain a vertex from V (△1) and V (△2), with probability at least

1− δ/2, there exists u1, u2 ∈ V (G) with distance at least 2(1− ε)c logn/2, which implies

P [diam(G) ≥ c(1− ε) logn] ≥ P [diam(G) ≥ c(1− ε) logn|A]P [A] > 1− δ .

For the upper bound, let R be the radius of G. Notice that the distance between any

vertex and ν1 is at most R + 1, so diam(G) ≤ 2R + 2. By Lemma 5.1, with probability

at least 1 − δ we have R ≤ (1 + ε/2)c logn/2. If this event happens, then diam(G) ≤
(1 + ε)c logn. �

The rest of this section is devoted to the proof of Lemma 5.1. Let T be the △-tree of

G, as defined in Section 2. We categorize the triangles in G into three types. Let △ be a

triangle in G with vertex set {x, y, z}, and assume that τ(x) ≤ τ(y) ≤ τ(z). Since z and

x are adjacent, we have τ(z) ≤ τ(x) + 1. So, △ can be categorized to be of one of the

following types:

1. if τ(x) = τ(y) = τ(z), then say △ is of type 1.

2. If τ(x) = τ(y) < τ(y) + 1 = τ(z), then say △ is of type 2.

3. If τ(x) < τ(x) + 1 = τ(y) = τ(z), then say △ is of type 3.

The type of a node of T is the same as the type of its corresponding triangle. The root

of T corresponds to the triangle ν1ν2ν3 and the following are easy to observe.

(a) The root is of type 1.

(b) A node of type 1 has three children of type 2.

(c) A node of type 2 has one child of type 2 and two children of type 3.

(d) A node of type 3 has two children of type 3 and one child of type 1.

For a triangle △, define τ(△) to be the minimum of τ(u) over all u ∈ V (△). Then it

is easy to observe that, for two triangles △ and △ of type 1 such that n△ is an ancestor

of n△ and there is no node of type 1 in the unique path connecting them, we have

τ(△) = τ(△) + 1. This determines τ inductively: for every n△ ∈ V (T ), τ(△) is one less

than the number of nodes of type 1 in the path from n△ to the root. We call τ(△) the

auxiliary depth of node △, and define the auxiliary height of a tree T , written ah(T ), to
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be the maximum auxiliary depth of its nodes. Note that the auxiliary height is always

less than or equal to the height. Also, for a vertex v ∈ V (G), if △ is the triangle that v

subdivides, then τ(v) = τ(△) + 1. We augment the tree T by adding specification of the

type of each node, and we abuse notation and call the augmented tree the △-tree of the

RAN. Hence, the radius of the RAN is either ah(T ) or ah(T ) + 1.

Notice that instead of building T from the RAN G, one can think of the random T

as being generated in the following manner: let n ≥ 3 be a positive integer. Start with a

single node as the root of T . So long as the number of nodes is less than 3n− 8, choose a

leaf v independently of previous choices and uniformly at random, and add three leaves as

children of v. Once the number of nodes becomes 3n− 8, add the information about the

types using rules (a)–(d), as follows. Let the root have type 1, and determine the types of

other nodes in a top-down manner. For a node of type 1, let its children have type 2. For a

node of type 2, select one of the children independently and uniformly at random, let that

child have type 2, and let the other two children have type 3. Similarly, for a node of type

3, select one of the children independently of previous choices and uniformly at random,

let that child have type 1, and let the other two children have type 3. Henceforth, we will

forget about G and focus on finding the auxiliary height of a random tree T generated in

this manner.

A major difficulty in analyzing the auxiliary height of the tree generated in the afore-

mentioned manner is that the branches of a node are heavily dependent, as the total

number of nodes equals 3n−8. To remedy this we consider another process which has the

desired independence and approximates the original process well enough for our purposes.

The process, P̂ , starts with a single node, the root, which is born at time 0, and is of

type 1. From this moment onwards, whenever a node is born (say at time κ), it waits

for a random time X , which is distributed exponentially with mean 1, and after time X

has passed (namely, at absolute time κ + X) gives birth to three children, whose types

are determined as before (according to the rules (b)–(d), and using randomness whenever

there is a choice) and dies. Moreover, the lifetime of the nodes are independent. By the

memorylessness of the exponential distribution, if one starts looking at the process at

any (deterministic) moment, the next leaf to die is chosen uniformly at random. For a

nonnegative (possibly random) t, we denote by T̂ t the random almost surely finite tree

obtained by taking a snapshot of this process at time t. Hence, for any deterministic

t ≥ 0, the distribution of T̂ t conditional on T̂ t having exactly 3n − 8 nodes, is the same

as the distribution of T .

Lemma 5.2. Assume that there exists a constant c such that a.a.s. the auxiliary height
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of T̂ t is asymptotic to ct as t → ∞. Then the radius of a RAN with n vertices is a.a.s.

asymptotic to c logn/2 as n→ ∞.

Proof. Let ℓn = 3n−8, and let ε > 0 be fixed. For the process P̂ , we define three stopping

times as follows:

a1 is the deterministic time (1− ε) log(ℓn)/2.

A2 is the random time when the evolving tree has exactly ℓn nodes.

a3 is the deterministic time (1 + ε) log(ℓn)/2.

Broutin and Devroye [10, Proposition 2] proved that almost surely

log |V (T̂ t)| ∼ 2t ,

which implies the same statement a.a.s. as t→ ∞. This means that, as n→ ∞, a.a.s.

log |V (T̂ a1)| ∼ 2a1 = (1− ε) log(ℓn) ,

and hence |V (T̂ a1)| < ℓn, which implies a1 < A2. Symmetrically, it can be proved that

a.a.s. as n→ ∞ we have A2 < a3. It follows that a.a.s. as n→ ∞

ah
(
T̂ a1
)
≤ ah

(
T̂A2

)
≤ ah

(
T̂ a3
)
.

By the assumption, a.a.s. as n → ∞ we have ah
(
T̂ a1

)
∼ (1 − ε)c log(ℓn)/2 and

ah
(
T̂ a3
)

∼ (1 + ε)c log(ℓn)/2. On the other hand, as noted above, T has the same

distribution as T̂A2 . It follows that a.a.s. as n→ ∞

1− 2ε ≤ 2 ah(T )

c log(ℓn)
≤ 1 + 2ε .

Since ε was arbitrary, the result follows. �

It will be more convenient to view the process P̂ in the following equivalent way.

Denote by Exp(1) an exponential random variable with mean 1. Let T̂ denote an infinite

ternary tree whose nodes have types assigned using rules (a)–(d) and are associated with

independent Exp(1) random variables. For convenience, each edge of the tree from a

parent to a child is labelled with the random variable associated with the parent, which

denotes the age of the parent when the child is born. For every node u ∈ V (T̂ ), its birth

18



time is defined as the sum of the labels on the edges connecting u to the root, and the

birth time of the root is defined to be zero. Given t ≥ 0, the tree T̂ t is the subtree induced

by nodes with birth time less than or equal to t, and is finite with probability one.

Let k ≥ 3 be a fixed positive integer. We define two random infinite trees Tk and Tk

as follows. First, we regard T̂ as a tree generated by each node giving birth to exactly

three children with types assigned using (b)–(d), and with an Exp(1) random variable

used to label the edges to its children. The tree Tk is obtained using the same generation

rules as T̂ except that every node of type 2 or 3, whose distance to its closest ancestor of

type 1 is equal to k, dies without giving birth to any children. Given t ≥ 0, the random

(almost surely finite) tree T t
k is, as before, the subtree of Tk induced by nodes with birth

time less than or equal to t. The tree Tk is also generated similarly to T̂ , except that

for each node u of type 2 (respectively, 3) in Tk whose distance to its closest ancestor of

type 1 equals k, u has exactly three (respectively, four) children of type 1, and the edges

joining u to its children get label 0 instead of random Exp(1) labels. (In the “evolving

tree” interpretation, u immediately gives birth to three or four children of type 1 and

dies.) Such a node u is called an annoying node. The random (almost surely finite) tree

T t
k is defined as before.

Lemma 5.3. For every fixed k ≥ 3, every t ≥ 0, and every g = g(t), we have

P

[
ah
(
T t
k

)
≥ g
]
≤ P

[
ah
(
T̂ t
)
≥ g
]
≤ P

[
ah
(
T t
k

)
≥ g
]
.

Proof. The left inequality follows from the fact that the random edge labels of T̂ and Tk

can easily be coupled using a common sequence of independent Exp(1) random variables

in such a way that for every t ≥ 0, the generated T t
k is always a subtree of the generated

T̂ t.

For the right inequality, we use a sneaky coupling between the edge labels of T̂ and

Tk. It is enough to choose them using a common sequence of independent Exp(1) random

variables X1, X2, . . . and define a one-to-one mapping f : V (T̂ ) → V
(
Tk
)
such that for

every u ∈ V (T̂ ),

(1) the auxiliary depth of f(u) is greater than or equal to the auxiliary depth of u, and

(2) for some I and J ⊆ I, the birth time of u equals
∑

i∈I Xi and the birth time of f(u)

equals
∑

j∈J Xj.

For annoying nodes, the coupling and the mapping f is shown down to their grand-

children in Figures 4 and 5. This is easily extended in a natural way to all other nodes of
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the tree. �

With a view to proving Lemma 5.1 by appealing to Lemmas 5.2 and 5.3, we will

define two sequences
(
ρk
)
and (ρk) such that for each k, a.a.s. the heights of T t

k and T t
k

are asymptotic to ρkt and ρkt, respectively, and also

lim
k→∞

ρk = lim
k→∞

ρk = c ,

where c ≈ 1.668 is defined in the statement of Lemma 5.1.

For the rest of this section, asymptotics are with respect to t instead of n, unless

otherwise specified. We analyze the heights of Tk and Tk with the help of a theorem

of Broutin and Devroye [10, Theorem 1]. We state here a special case suitable for our

purposes, including a trivial correction to the conditions on E.

Theorem 5.4. Let E be a prototype nonnegative random variable that satisfies P [E = 0] =

0 and sup{z : P [E > z] = 1} = 0, and such that P [E = z] < 1 for every z ∈ R; and for

which there exists λ > 0 such that E [exp(λE)] is finite. Let b be a fixed positive integer

greater than 1 and let T∞ be an infinite b-ary tree. Let B be a prototype random b-vector

with each component distributed as E (but not necessarily independent components). For

every node u of T∞, label the edges to the children of u using an independently generated

copy of B.

Given t ≥ 0, let Ht be the height of the subtree of T∞ induced by the nodes for which

the sum of the labels on their path to the root is at most t. Then, a.a.s. we have Ht ∼ ρt,

where ρ is the unique solution to

sup{λ/ρ− log(E [exp(λE)]) : λ ≤ 0} = log b .

For each i = 2, 3, . . . , let αi, βi, γi denote the number of nodes of type 1, 2, 3 at depth

i of T̂ for which the root is the only node of type 1 in their path to the root. Then rules

(a)–(d) for determining node types imply

∀i > 2 αi = γi−1, βi = βi−1, γi = 2βi−1 + 2γi−1 .

These, together with α2 = 0, β2 = 3, and γ2 = 6, imply

∀i ≥ 2 αi = 3× 2i−1 − 6, βi = 3, γi = 3× 2i − 6 . (5.1)

Let bk =
∑k

i=1 αi and bk =
∑k

i=1 αi + 3βk + 4γk. For a positive integer s, let Gamma(s)

denote the Gamma distribution with mean s, i.e., the distribution of the sum of s inde-

pendent Exp(1) random variables.
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Figure 4: Illustrating the coupling in Lemma 5.3 for an annoying node of type 2 in T̂ .

The offspring of the node is shown above and the offspring of the corresponding node in

Tk is shown below. The type of each node is written inside the node. The coupling of

edge labels is defined by the appearance of A,B, . . . in the two cases. The label 0 is also

used in the case of Tk. The function f is defined by the labels beside the nodes.
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Figure 5: The coupling in Lemma 5.3 for an annoying node of type 3 in T̂ .
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We define a random infinite tree Tk
′ as follows. The nodes of Tk

′ are the type-1 nodes

of Tk. Let V ′ denote the set of these nodes. For u, v ∈ V ′ such that u is the closest

type-1 ancestor of v in Tk, there is an edge joining u and v in Tk
′, whose label equals the

sum of the labels of the edges in the unique (u, v)-path in Tk. By the construction, for

all t ≥ 0, the height of the subtree of Tk
′ induced by nodes with birth time less than or

equal to t equals the auxiliary height of T t
k. Let u be a node in Tk

′. Then observe that

for each i = 3, 4, . . . , k, u has αi children whose birth times equal the birth time of u plus

a Gamma(i) random variable. In particular, Tk
′ is an infinite bk-ary tree.

To apply Theorem 5.4 we need the label of each edge to have the same distribution.

For this, we create a random rearrangement of Tk
′. First let Ek be the random variable

such that for each 3 ≤ i ≤ k, with probability αi/bk, Ek is distributed as a Gamma(i)

random variable. Now, for each node u of Tk
′, starting from the root and in a top-down

manner, randomly permute the branches below u. This results in an infinite bk-ary tree,

every edge of which has a random label distributed as Ek. Although the labels of edges

from a node to its children are dependent, the bk-vector of labels of edges from a node to

its children is independent of all other edge labels, as required for Theorem 5.4. Let ρ be

the solution to

sup{λ/ρ− log(E
[
exp(λEk)

]
) : λ ≤ 0} = log bk . (5.2)

Then by Theorem 5.4, a.a.s. the auxiliary height of T t
k, which equals the height of the

subtree of Tk
′ induced by nodes with birth time less than or equal to t, is asymptotic to

ρt. Notice that we have

E [exp(λ Exp(1))] =
1

1− λ
.

So, by the definition of Gamma(s), and since the product of expectation of independent

variables equals the expectation of their product,

E [exp(λ Gamma(s))] =
1

(1− λ)s
.

Hence by linearity of expectation,

E
[
exp(λEk)

]
=

k∑

i=3

αi

bk(1− λ)i
. (5.3)

One can define a random infinite bk-ary tree Tk
′
in a similar way. Let Ek be the random

variable such that for each 3 ≤ i ≤ k − 1, with probability αi/bk, it is distributed as a

Gamma(i) random variable, and with probability (αk +3βk +4γk)/bk, it is distributed as
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a Gamma(k) random variable. Then by a similar argument, a.a.s. the auxiliary height of

T t
k is asymptotic to ρt, where ρ is the solution to

sup{λ/ρ− log(E
[
exp(λEk)

]
) : λ ≤ 0} = log bk . (5.4)

Moreover, one calculates

E
[
exp(λEk)

]
=
αk + 3βk + 4γk

bk(1− λ)k
+

k−1∑

i=3

αi

bk(1− λ)i
. (5.5)

As part of our plan to prove Lemma 5.1, we would like to define ρk and ρk in such a

way that they are the unique solutions to (5.2) and (5.4), respectively. We first need to

establish two analytical lemmas.

For later convenience, we define F to be the set of positive functions f : [0.1, 0.2] → R

that are differentiable on (0.1, 0.2), and let W : F → R
[0.1,0.2] be the operator defined as

Wf(x) = x(x− 1)f ′(x)/f(x)− log f(x) .

Note that Wf is continuous. Define h ∈ F as

h(x) =
12x3

1− 2x
− 6x3

1− x
.

Lemma 5.5. The function Wh has a unique root x̂ in (0.1, 0.2).

Proof. By the definition of (αi)i≥3 in (5.1) we have

h(x) =
∑

i≥3

αix
i ∀x ∈ [0.1, 0.2] .

Since αi > 0 for all i ≥ 3, we have h(x) > 0 and h′(x) > 0 for x ∈ [0.1, 0.2], and hence the

derivative of log h(x) is positive. Moreover, the derivative of x(x − 1)h′(x)/h(x) equals

4x(x−1)/(1−2x)2, which is negative. Therefore,Wh(x) is a strictly decreasing function on

[0.1, 0.2]. Numerical calculations give Wh(0.1) ≈ 1.762 > 0 and Wh(0.2) ≈ −0.831 < 0.

Hence, there is a unique solution to Wh(x) = 0 in (0.1, 0.2). �

Remark. Numerical calculations give x̂ ≈ 0.1629562 .

Define functions gk, gk ∈ F as

gk(x) =

k∑

i=3

αix
i, and gk(x) = (αk + 3βk + 4γk)x

k +

k−1∑

i=3

αix
i .
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Note that by (5.3) and (5.5),

bk E
[
exp

(
λEk

)]
= gk

(
1

1− λ

)
, and bk E

[
exp

(
λEk

)]
= gk

(
1

1− λ

)
(5.6)

hold at least when (1− λ)−1 ∈ [0.1, 0.2], namely for all λ ∈ [−9,−4].

Lemma 5.6. Both sequences
(
Wgk

)∞
k=3

and (Wgk)
∞
k=3 converge pointwise to Wh on

[0.1, 0.2] as k → ∞. Also, there exists a positive integer k0 and sequences
(
xk
)∞
k=k0

and

(xk)
∞
k=k0

such that Wgk
(
xk
)
= Wgk (xk) = 0 for all k ≥ k0, and

lim
k→∞

xk = lim
k→∞

xk = x̂ .

Proof. For any x ∈ [0.1, 0.2], we have

lim
k→∞

gk(x) = h(x), lim
k→∞

gk
′(x) = h′(x), lim

k→∞
gk(x) = h(x), lim

k→∞
gk

′(x) = h′(x) ,

so the sequences
(
Wgk

)∞
k=3

and (Wgk)
∞
k=3 converge pointwise to Wh.

Next, we show the existence of a positive integer k0 and a sequence
(
xk
)∞
k=k0

such that

Wgk
(
xk
)
= 0 for all k ≥ k0, and

lim
k→∞

xk = x̂ .

The proof for existence of corresponding positive integer k0 and the sequence (xk)
∞
k=k0

is

similar, and we may let k0 = max{k0, k0}.
Since Wh(0.1) > 0 and Wh(0.2) < 0, there exists k0 so that for k ≥ k0, Wgk(0.1) > 0

and Wgk(0.2) < 0. Since Wgk is continuous for all k ≥ 3, it has at least one root in

(0.1, 0.2). Moreover, since Wgk is continuous, the set {x : Wgk(x) = 0} is a closed set,

thus we can choose a root xk closest to x̂. We just need to show that limk→∞ xk = x̂. Fix

an ε > 0. Since Wh (x̂− ε) > 0 and Wh (x̂+ ε) < 0, there exists a large enough M such

that for all k ≥M , Wgk(x̂− ε) > 0 and Wgk(x̂+ ε) < 0. Thus xk ∈ (x̂− ε, x̂+ ε). Since

ε was arbitrary, we conclude that limk→∞ xk = x̂. �

Let k0 be as in Lemma 5.6 and let
(
xk
)∞
k=k0

and (xk)
∞
k=k0

be the sequences given by

Lemma 5.6. Define the sequences
(
ρk
)∞
k=k0

and (ρk)
∞
k=k0

by

ρk =
(
1− xk

−1
)
/ log gk(xk), ρk =

(
1− xk

−1
)
/ log gk(xk). (5.7)

Lemma 5.7. For every fixed k ≥ k0, a.a.s. the heights of T t
k and T t

k are asymptotic to

ρkt and ρkt, respectively.

25



Proof. We give the argument for T t
k; the argument for T t

k is similar. First of all, we claim

that log(E
[
exp(λEk)

]
) is a strictly convex function of λ over (−∞, 0]. To see this, let

λ1 < λ2 ≤ 0 and let θ ∈ (0, 1). Then we have

E
[
exp

(
θλ1Ek + (1− θ)λ2Ek

)]
= E

[[
exp

(
λ1Ek

)]θ [
exp

(
λ2Ek

)]1−θ
]

< E
[
exp

(
λ1Ek

)]θ
E
[
exp

(
λ2Ek

)]1−θ
,

where the inequality follows from Hölder’s inequality, and is strict as the random vari-

able Ek does not have all of its mass concentrated in a single point. Taking logarithms

completes the proof of the claim.

It follows that given any value of ρ, λ/ρ − log(E
[
exp(λEk)

]
) is a strictly concave

function of λ ∈ (−∞, 0] and hence attains it supremum at a unique λ ≤ 0.

Now, define

λk = 1− xk
−1 ,

which is in (−9,−4) as xk ∈ (0.1, 0.2). Next we will show that

λk/ρk − log(E
[
exp(λk Ek)

]
) = log bk , (5.8)

d

dλ

[
λ/ρk − log(E

[
exp(λEk)

]
)
] ∣∣∣

λ=λk

= 0 , (5.9)

which implies that ρk is the unique solution for (5.4), and thus by Theorem 5.4 and the

discussion after it, the height of T t
k is asymptotic to ρkt.

Notice that λk ∈ (−9,−4), so by (5.6),

bkE
[
exp(λEk)

]
= gk((1− λ)−1)

for λ in a sufficiently small open neighbourhood of λk. Taking logarithm of both sides

and using (5.7) gives (5.8).

To prove (5.9), note that

d

dλ

[
log(E

[
exp(λEk)

]
)
] ∣∣∣

λ=λk

=
d

dλ

[
log gk

((
1− λk

)−1
)
− log bk

] ∣∣∣
λ=λk

=
gk

′ ((1− λk)
−1
)

(
1− λk

)2
gk
(
(1− λk)−1

) = xk
2 gk

′(xk)

gk(xk)
.

By Lemma 5.6, Wgk(xk) = 0, i.e.,

xk
2 gk

′(xk)

gk(xk)
= xk

2 log gk(xk)

xk(xk − 1)
=

log gk(xk)

1− xk
−1 =

1

ρk
,

and (5.9) is proved. �
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We now have all the ingredients to prove Lemma 5.1.

Proof of Lemma 5.1. By Lemma 5.2, we just need to show that a.a.s. the auxiliary height

of T̂ t is asymptotic to ct, where

c =
1− x̂

log h(x̂)
.

By Lemma 5.7, a.a.s. the heights of T t
k and T t

k are asymptotic to ρkt and ρkt, respectively.

By Lemma 5.6, xk → x̂ and xk → x̂. Observe that
(
gk
)∞
k=3

and (gk)
∞
k=3 converge pointwise

to h, and that for every k ≥ 3 and every x ∈ [0.1, 0.2], gk(x) ≤ gk+1(x) and gk(x) ≥
gk+1(x). Thus by Dini’s theorem (see, e.g., Rudin [16, Theorem 7.13]),

(
gk
)∞
k=3

and

(gk)
∞
k=3 converge uniformly to h on [0.1, 0.2].

Hence,

lim
k→∞

ρk = lim
k→∞

1− xk
−1

log gk(xk)
=

1− x̂−1

log h(x̂)
= c ,

and

lim
k→∞

ρk = lim
k→∞

1− xk
−1

log gk(xk)
=

1− x̂−1

log h(x̂)
= c .

It follows from Lemma 5.3 that a.a.s. the auxiliary height of T̂ t is asymptotic to ct, as

required. �
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