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Abstract

The independence number of a sparse random gfaptm) of average degreé = 2m/n is
well-known to be(2 — e4)nIn(d)/d < a(G(n,m)) < (2 + £4)nln(d)/d with high probability, with
eq — 0 in the limit of larged. Moreover, a trivial greedy algorithm w.h.p. finds an indegent set
of sizenln(d)/d, i.e., about half the maximum size. Yet in spite of 30 years)xdénsive research no
efficient algorithm has emerged to produce an independentite(1 + ¢)n In(d)/d for anyfixede > 0
(independent of bottl andn). In this paper we prove that the combinatorial structurthefindependent
set problem in random graphs undergoes a phase transitibe sige: of the independent sets passes the
pointk ~ nln(d)/d. Roughly speaking, we prove that independent sets oftsize(1 + )n In(d)/d
form an intricately ragged landscape, in which local sealgbrithms seem to get stuck. We illustrate
this phenomenon by providing an exponential lower boundHerMetropolis process, a Markov chain
for sampling independents sets.

Key words: random graphs, independent set problem, Metropolis psppésise transitions.

1 Introduction and Results

1.1 Probabilistic analysis and the independent set problem

In the early papers on the subject, the motivation for théabdistic analysis of algorithms was to alleviate
the glum of worst-case analyses by establishing a brighterage-case’ scenar(d [8,/81] 22]. This opti-
mism was stirred by early analyses of simple, greedy-tygerdhms, showing that these perform rather
well on randomly generated input instances, at least faaireranges of the parameters. Examples of
such analyses include Grimmett and McDiarmid [15] (indejear set problem), Wilf[32], Achlioptas and
Molloy [2] (graph coloring), and Frieze and Suénl[1R}$AT). Yet, remarkably, in spite of 30 years of re-
search, for many problems no efficient algorithms, howsoswghisticated, have been found to outperform
those simple greedy algorithms markedly.

The independent set problem in random gra@fis, m) is a case in point. Recall that(n,m) is a
graph om vertices obtained by choosimg edges uniformly at random (without replacement). We saty tha
G(n, m) has a propertwith high probabilityif the probability that the property holds tends to Inas> oco.
One of the earliest results in the theory of random graphsisnaconstructive argument showing that for
m = (%) the independence number@fn,m) is a(G(n,m)) ~ 2log,(n) w.h.p. [5[9[28]. Grimmett
and McDiarmid[[15] analysed a simple algorithm that juststeuncts an inclusion-maximal independent set
greedily onG(n,m): it yields an independent set of sige+ o(1)) log, n» w.h.p., about half the maximum
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size. But no algorithm is known to produce an independenfssize (1 + ¢) log, n for any fixede > 0
in polynomial time with a non-vanishing probability, nestron the basis of a rigorous analysis, nor on the
basis of experiments or other evidence. In fact, devisieg sun algorithm is probably the most prominent
open problem in the algorithmic theory of random graphs [Z], (However, note that one can find a
maximum independent set w.h.p. by trying=afl("" ") possible sets of siz&log, n.)

Matters are no better on sparse random graphs. If we fet2m/n denote the average degree, then
non-constructive arguments yield
21n(d)

d

for 1 < d = o(n). In the casel > /n, the proof of this is via a simple second moment argument3db, 2
By contrast, forl < d < /n, the second moment argument breaks down and additionabaesuch
as large deviations inequalities are needed [10]. Yet ineeitase, no algorithm is known to find an

independent set of sizé + 5)% -n in polynomial time with a non-vanishing probability, whilgreedy’

yields an independent set of sigze+ o(l))% -n w.h.p. In the sparse case, the time needed for exhaustive

search scales asp(2} In?(d)), i.e., the complexity grows asdecreases.

The aim of this paper is to explore the tenacity of finding éairgdependent sets in random graphs. The
focus is on the sparse case, both conceptually and commedyi the most difficult case. We exhibit a
phase transition in the structure of the problem that ocaarthe size of the independent sets passes the
point % - n up to which efficient algorithms are known to succeed. Royghkaking, we show that
independent sets of sizes bigger thian- 5)% -n form an intricately ragged landscape, which plausibly
explains why local-search algorithms get stuck. Thus,igalty, instead of showing that the ‘average
case’ scenario is brighter, we end up suggesting that ramlaphs provide an excellent source of difficult
examples. Taking into account the (substantially) diffiéreture of the independent set problem, our work
complements the results obtainedih [1] for random constegitisfaction problem such &sSAT or graph
coloring.

a(G(n,m)) ~

n

1.2 Results

Throughout the paper we will be dealing with sparse randaaplys where the average degdee 2m/n
is ‘large’ but remains bounded as— oc. To formalise this sometimes we work with functianghat tend

to zero asi gets largdl Thusa(G(n,m)) = (2 — £4)2¢ . n and the greedy algorithm finds independent

d
sets of sizg1 + ¢/;)'2¢ - n w.h.p., wheresy,e/, — 0. However, no efficient algorithm is known to find
independent sets of sizé + )22 . n, for anyfixeds” > 0.

For a graphG and an integek we let S (G) denote the set of all independent setgGirthat have
size exactlyk. What we will show is that irG(n, m) the setS;(G(n, m)) undergoes a phase transition
ask ~ %n. For two setsS, T C V we let SAT denote the symmetric difference 8f17". Moreover,
dist(S, T) = |SAT| is the Hamming distance &f, T viewed as vectors if0, 1} " .

To state the result fok smaller than%n, we need the following concept. Létbe a set of subsets
of V, and lety > 0 be an integer. We say th&tis y-connectedf for any two setss, 7 € S there exist
01,...,0n € Ssuchthat, = o, on = 7, anddist(oy,0141) < yforall1 <t < N. If Sk(G(n,m))
is y-connected for some = O(1), one can easily define various simple Markov chainspfG) that are

ergodic.

Theorem 1 There exists, — 0 and for anyd a numbelC; > 0 (independent o) such thatS;, (G(n, m))
is Cq-connected w.h.p. for any

Ind
k§ (1*€d)7 - n.
The proof of Theoreml1 is ‘constructive’ in the following sen Suppose givel = G(n, m) we set up an

auxiliary graph whose vertices are the independentSgts’) with &£ < (1 — 5@% -n. In the auxiliary

1The reason why we need to speak ahdtiarge’ is that the sparse random gra@tfn, m) is not connected. This implies, for
instance, that algorithms can find independent sets of(8ize €4)n In(d)/d for somee; — 0 by optimizing carefully over the
small tree components 6f(n, m). Our results/proofs actually carry over to the case that d(n) tends to infinity as: grows, but
to keep matters as simple as possible, we will confine owselyfixedd.



graph two independent setsT € Si(G) are adjacent iflist(o, 7) < Cy4. Then the proof of Theorefd 1

yields an algorithm for finding paths of lengt(n) between any two elements 6%.(G) w.h.p. Thus,

intuitively Theoreni]l shows that fdr < (1 — e4) 2% - n the setS,(G(n, m)) is easy to ‘navigate’ w.h.p.
By contrast, our next result shows that for> (1 + £4)22 - n the setS, (G(n, m)) is not just discon-

nected w.h.p., but that it shatters into exponentially margonentially tiny pieces.

Definition 1 We say thatS;(G(n, m)) shattersif there exist constants, { > 0 such that w.h.p. the set
Sk (G(n,m)) admits a partition into subsets such that

1. Each subset contains at mesp (—yn) |Si(G(n, m))| independent sets.

2. If o, 7 belong to different subsets, théist(o, 7) > (n.

Theorem 2 There iss4 — 0 so thatS, (G(n, m)) shatters for allk with

Ind Ind
(L+e)— n<k<(@—c)— n.

Theorem$1l and] 2 deal with the geometry of a single ‘laye(G(n, m)) of independents of a specific
size. The following two results explore iffhow a ‘typicalidependent set i, (G(n, m)) can be extended
to a larger one. To formalize the notion of ‘typical’, we &t (n, m) signify the set of all pair§G, o),
whereG is a graph orV = {1,...,n} with m edges and € S;(G). LetU(n,m) be the probability
distribution onA(n, m) induced by the following experiment.

Choose a grapty = G(n,m) at random.
If a(G) > k, choose an independent set Si.(G) uniformly at random and outpy&, o).

We say a paifG, o) chosen from the distributiot); (n, m) has a propert? with high probabilityif the
probability of the even{(G, o) € P} tends to one as — oo.

Definition 2 Letv,d > 0, let G be a graph, and let be an independent set 6f. We say tha{G, o) is
(v, 0)-expandableif G has an independent setsuch thafr| > (1 + v)|e| and|r Na| > (1 — §)|o]|.

Theorem 3 There aresy4,d; — 0 such that for any,; < ¢ < 1 — ¢4 the following is true. Fork =
(1 —e)24 . » a pair (G, o) chosen from the distributioby, (n,m) is (2 — da)e/(1 — €), 0)-expandable
w.h.p.

TheoreniB shows that w.h.p. in a random gr&fm, m) almost all independent sets of size= (1 —

)l . are contained isomebigger independent set of sige+ 5)% -n. Thatis, they can be expanded

d
beyond the critical siz&¢ - n where shattering occurs. However Jaapproaches the critical si2& - n,

i.e., ass — 0, the typical potential for expansion diminishes.

Theorem 4 There isz; — 0 such that for any satisfyingsq < e <1—¢5andk = (1 + 5)%

apair (G, o) chosen from the distributiott) (n, m) is not(~, ¢)-expandable for any > ¢, and

-nw.h.p.

2(e —eq)
0 < N
vt 1+e

In other words, Theoreifi 4 shows that for= (1 + ¢)!22 . n, a typicalo € Sx(G(n,m)) cannot be
expanded to an independent set of size- )k, v > ¢4 without firstreducingits size below

Ind Ind
(1-0)k= (lfsf’y(1+€)+2€d)n7-n< %n
(However, a random independent set of sizeC (2 — ¢4) In(d)n/d is typically not inclusion-maximal
because, for instance, it is unlikely to contalhisolated vertices of the random gra@fin, m).)
Metaphorically, the above results show that w.h.p. the pedelent sets of+(n, m) form a ragged
mountain range. Beyond the ‘plateau level'~ % - n there is an abundance of smaller ‘peaks’, i.e.,



independent sets of siz€s + )k for anyey < € < 1 — g4, almost all of which are not expandable (by
much).

The algorithmic equivalent of a mountaineer aiming to adderthe highest summit is a Markov chain
called theMetropolis procesq19,[25]. For a given grapfi its state space is the set of all independent sets
of G. Let I; be the state at tim& In stept + 1, the chain chooses a verte>of G uniformly at random.

If v € I, then with probabilityl /\ the next state ig;; = I; \ {v}, and with probabilityl — 1/ we let
I;+1 = I, whereX > 1is a ‘temperature’ parameter.df¢ I, U N (I;) (with N(I;) the neighbourhood of
L), thenl;, = I; U {v}. Finally, if v € N(I;), thenl;; = I. Itis well know that the probability of an
independent sef of G in the stationary distribution equal$®l /Z(G, \), where

Z(G,N) =) A [Sk(G)]
k=0
is the partition function. Hence, the larggrthe higher the mass of large independent sets. Let
(G, A) = kX" - [Sk(G)] /Z(G,N)
k=0

denote the average size of an independent setufider the stationary distribution.

Itis easy to see that every statelin= | J,, Sk (G (n, m)) communicates with every other in the Metropo-
lis process. Thus the process is ergodic and possessesue stadgionary distribution. Let : Q — [0, 1]
denote the stationary distribution of the Metropolis psxc®ith parametek, for some\ > 0. Itis well
known thatr (o) = Al°l /Z whereZ = 3~ __, Al°! (e.g. [16]).

Here, we are interested in finding the rate at which the Meflisjprocess converges to its equilibrium.
There are a number of ways of quantifying the closeness tiosaity. Let P!(c,-) : Q — [0, 1] denote
the distribution of the state at timtegiven thato was the initial state. Thiotal variation distancet timet
with respect to the initial state is

8, (1) = ax | P' (0, 5) — 7(5)| = %%W(m) ~ (7).

Starting fromo, the rate of convergence to stationarity may then be med$yréhe function
7o =min{A,(t') < e~ forallt’ > t}.
Themixing time of the Metropolis process is defined as

T = max7,.
geQ

Our above results on the structure of the s8t6G(n, m)) imply that w.h.p. the mixing time of the
Metropolis process is exponential if the parametés tuned so that the Metropolis process tries to ascend
to independent sets bigger théin+ e4) 22 - n.

Corollary 1 There iss4 — 0 such that for\ > 1 with

(1 +€d)¥ n < E[u(G(n,m),\)] < (2- 5@% - n. (1)

the mixing time of the Metropolis process @fin, m) is exp(2(n)) w.h.p.

1.3 Related work

To our knowledge, the connection between transitions irgtametry of the ‘solution space’ (in our case,
the set of all independent sets of a given size) and the appfiture of local algorithmsin finding a
solution has been pointed first out in the statistical meidsditerature [[13, 24, 20]. In that work, which



mostly deals with CSPs such AsSAT, the shattering phenomenon goes by the name of ‘dynaeplica
symmetry breaking.” Our present work is clearly inspiredtliy statistical mechanics ideas, although we
are unaware of explicit contributions from that line of wattdressing the independent set problem in the
case of random graphs with average degiee 1. Generally, the statistical mechanics work is based on
deep, insightful, but, alas, mathematically non-rigormehiniques.

In the case that the average degiesatisfies > /n, the independent set problem in random graphs
is conceptually somewhat simpler than in the casé ef o(1/n). The reason for this is that fat > \/n
the second moment method can be used to show thautimderof independent sets is concentrated about
its mean. As we will see in Corollabhy 6 below, this is actualhtrue for sparse random graphs.

The results of the present paper extend the main results Acittioptas and Coja-Oghlanl[1], which
dealt with constraint satisfaction problems such-&AT or graph coloring, to the independent set problem.
This requires new ideas, because the natural question@arensat different (for instance, the concept
of ‘expandability’ has no counterpiece in CSPs). Furthesmin [1] we conjectured but did not manage
to prove the counterpiece of Theoréin 1 on the connectivit,df=(n,m)). On a technical level, we
owe to [1] the idea of analysing the distributitfy (n, m) via a different distributiorP(n, m), the so-
called ‘planted model’ (see Sectibh 3 for details). Howetlee proof that this approximation is indeed
valid (Theoreni B below) requires a rather different appnodn [1] we derived the corresponding result
from the second moment method in combination with sharpstiolel results. By contrast, here we use an
indirect approach that reduces the problem of estimatiagitimbetS;. (G(n, m))| of independent sets of
a given size to the problem of (very accurately) estimatirgihdependence numbe(G(n, m)). Indeed,
the argument used here carries over to other problemscpiary randomk-SAT, for which it yields a
conceptually simpler proof than given in [1] (details omit}.

Subsequently ta 1], it was shown in[26] that in many rando&P€ the threshold for the shattering of
the solution space into exponentially small componentsades asymptotically with theeconstruction
threshold Roughly speaking, the reconstruction threshold markottset of long-range correlations in
the Gibbs measure. More precisely, it is shown’in [26] thatafalass of ‘symmetric’ random CSPs the
reconstruction threshold derives from the correspondingshold on random trees, and that it happens
to coincide with the shattering threshold. Our Theofém Zwheines the threshold for shattering in the
independent set problem in random graphs. FurthermorenBbar, Sly, and Tetali [3] recently studied
the reconstruction problem for the independent set problemregular trees. It would be most interesting
to obtain a result similar td [26], namely that the reconsgion threshold on thé&(n, m) random graph
is given by the reconstruction threshold on trees and thagiiicides with the shattering threshold from
Theoreni®.

The work that is perhaps most closely related to ours is aneabée paper of Jerrurh [16], who studied
the Metropolis process on random graghi&:, m) with average degreé = 2m/n > n*/3. The main
result is that w.h.pthere exist&n initial state from which the expected time for the Metrggpprocess to
find an independent set of size+ s)% -m is superpolynomial. This is quite a non-trivial achievemas
it is a result about thanitial steps of the process where the states might potentialigvicdl very different
distribution than the stationary distribution. The probftas fact is via a concept called ‘gateways’, which
is somewhat reminiscent of the expandability property eygfesent work. However, Jerrum’s proof hinges
upon the fact that the number of independent sets oftsize(1 + 5)% -m is concentrated about its mean.
The technigues from the present work (particularly ThedBdelow) can be used to extend Jerrum’s result
to the sparse case quite easily, showing that the expentedititil a large independent set is found is fully
exponential in. w.h.p. Yet as also pointed out in [16], an unsatisfactoreaspf this type of result is that
it only shows thathere exista ‘bad’ initial state, while it seems natural to conjecturattindeed most
specific initial states (such as the empty set) are ‘bad’cé&Sime are currently unable to establish such a
stronger statement, we will confine ourselves to provingxporential lower bound on the mixing time
(Corollary().

For extremelysparse random graphs, nameély e =~ 2.718, finding a maximum independent set in
G(n,m) is easy. More specifically, the greedy matching algorithrKaifp and Sipsef [18] can easily be
adapted so that it yields a maximum independent set w.hfghiBuapproach does not generalize to average
degreesl > e (see, howeveri [14] for a particular type of weighted indejent sets).

Recently Rossmar [29] obtained a monotone circuit lowembdor the clique problem on random
graphs that is exponential in the size of the clique. Thepsefu[29] is somewhat orthogonal to our



contribution, as we are concerned with the case that the$the desired object (i.e., the independent set)
is linear in the number of vertices, while [29] deals with teese that the size of the clique(g1) in terms
of the order of the graph. Nevertheless, the punchline afivig random graphs as a potential source of
hard problem is similar.

In the course of the analysis in this paper we need a lowerdbonn (G (n, m)) which is bigger what
is calculated in[[I0]. For this reason, [ [6], a previoussien of this work, we improved slightly on the
value ofa(G(n,m)). The analysis is similar to that in [1L0], i.e. combine vamidlecond moment with
Talagrand’s inequality. A bit later our result was improv@en more by Dani and Moorgl[7]. Raughly
speaking, the authors show thatrén, m) of expected degreé < 2(n/k) In(n/k) +2(n/k) — O(/n/k)
has an independent set of sizev.h.p. In comparison t6 7], our bound @iin [6] is d < 2(n/k)(In(n/k)+
1) — O(/In(n/k) - (n/k)). To absolve our work from the tendious second moment caloukwe make
direct use of the result[7].

1.4 Organisation of the paper

The remaining material of this work is organised as followsr completeness, in Sectibh 2 we provide
some very elementary results, which are either known or &adgrive. In Sectiofil3 we analyse the so-
called ‘planted model’ to approximate the distributign(n, m). Then in Sectiofil4 we show Theor&in 1.
In Sectior b we show Theordmh 2. In Sectidn 6 we show Thebtem Settiori ¥ we show Theordrh 4. In

SectiorL 8 we show Corollafy 1.

2 Preliminaries and notation

We will need the following Chernoff bounds on the tails of ansof independent Bernoulli variableés [27].

Theorem 5 Letly, I» ..., I, be independent Bernoulli variables. LEt= """ | I, andy = E[X]. Then
PriX <(1-0)u] < exp(—pd®/2) forany0 < <1, and (2)
PriX > (1+6)u] < exp(—pné®/4) forany0 < § < 2e — 1. 3)

Let G*(n, m) be random graph on vertices obtained as follows: choosepairs of vertices indepen-
dently out of alln? possible pairs; insert the m edges induced by these pairs, omitting self-loops and
replacing multiple edges by single edges. For technicaaesit will sometimes be easier to first work
with G*(n, m) and then transfer the results@j{n, m). The two distributions are related as follows.

Lemma 1 For any fixedc > 0 andm = cn we have
Pr[G(n,m) € A] < (1+o0(1))exp(c+ ¢*) - Pr[G*(n,m) € A for any eventA.

Proof: This is a standard counting argument. The random gé&f{n, m) is obtained by choosing one of
the n?™ possible sequences of vertex pairs uniformly at random. dDtltesen®™ sequences, precisely
2m (Z)m sequences induce simple graphs witredges (wher¢-), . denotes the falling factorial). Indeed,

each of the((%)) simple graph withn edges can be turned into a sequence of pairs by ordering tfes ed
arbitrarily (a factorn!), and then choosing for each edge in which order its verdpgear in the sequence
(afactor2™). Hence, letting= denote the event thét* (n, m) is a simple graph withn edges, we see that

. gm (1 9 m m—1 n ' m—1 1 9
i = E8e (2" () -T2
7=0

j=0
- = 125
= exp Zln(lﬁ$>]
_‘7:0
~ exp |— i 1 + 2 [usingln(1 — x) = —z + O(2?) asz — 0]
el n?
~ exp[—c—c]. (4)



Furthermore, given that the evenitoccurs,G*(n,m) is just a uniformly distributed (simple) graph with
m edges. Thereford,](4) yields

P[G(n,m) e A] = P[G*(n,m) e AlX] <
~ exp[c+ P P[G*(n,m) € A],

as claimed. 0

Corollary 2 Suppose that: = cn for a fixede > 0. For a graphG let Z,(G) = |S(G)|. Then for any
1 <k <0.99n we have

In E[Z,(G*(n,m))] = In E[Z,(G(n,m))] + O(1).

Proof: Let @ C V be a set of siz&, and letZy(G) = 1if @ is independent iri7, and setZg(G) = 0
otherwise. The total number of sequencesiofvertex pairs such tha® is an independent set in the
corresponding grapi* (n, m) equals(n? — k?)™ (just avoid thek? pairs of vertices irQ). Hence,

(TL2 o k2)m

ElZo(G"(n,m))] = 57—,  andsimilarly )
n\ _ (k n n\y _ (k
E[Zg(G(n,m))] = ((z)m (2))/((;3) _ W ©

Combining [B) with[6) and usinn(1 — z) = —x + O(2?) asz — 0, we obtain

* om (1 1.2 2 1.2\m
BZ(@ nm)] _ 2"(), ("n LY S U )
E[Zq(G(n,m))] w2 2m((5) = (5)m 27((3) = (2))m
[ m—1 2]
= exp|—c—c2 Zln( _n2k2)
L J:O
m(n — m®
~ exp_—cchr 2 k +n2—k:2
e [, L_C 4 c? . ck + 02k2
Il N Dy Ry oy ) i o IS k2|
Hence, by the linearity of expectation,
Bz mm) = (1) BlZe(@ mm)] = exp -2+ 1 (") p(zq(Gmm))
K n,m = & Q n,m))| = exp n+k 2 3 Q n,m
ck k>
= exp |:_7’L—+k + nZ _ k2:| E[Zk(G(n,m))]
Taking logarithms and recalling that< 0.99n completes the proof. O

Finally we present a lemma that it will be very useful in thense of this paper.
Lemma 2 (Expectation.) Letm = dn/2 forareald > 0. Let0 < 5 <Ind —Inlnd + 1 — In2 and set
2n
k= 7(1nd—1nlnd+1—ln2—ﬁ) > 0.

If Z;.(G) is the number of independent sets of dide G, then

Inlnd —1+4+1In2+ 4 1—e€qk
In(1- — —1.
Ind 2 n

In E[Z,(G"(n,m))] =k [ﬁ —

foreq — 0asd — oo.



Proof: SinceG*(n,m) is obtained by choosing. independent pairs of vertices, we have

n

B2 )] = ()1 = /)™ )

Lets = £. By Stirling’s formula and the fact that far > 0 it holds thatln(1 — z) = —z — ﬁ for
somel < ¢ < z, we get that

1n<”> = —n(slns+(1—s)In(l —s)) + o(n)

k
= ns(—Ins+1-5/2—5%/(2(1 — &)%) + o(n) [where0 < & < 5]
= k[lnd—Inlnd—In2+1—1In(l —qq) — k/(2n) + (k/n)*/(2(1 — &)*)] + o(n),  (8)
wheregy = nd—1tn248 Agyy = 4y we obtain
(1= &)™ = —dn/2(s* + /(21 - &)%)
= —nslds/2+ds*/(2(1 — &) [where0 < & < s?]
—k(Ind—Inlnd -2+ 1 — B+ d(k/n)*/(2(1 — &)?)) . 9)
Note that bott,, & tend to zero withi. Combining [8) and{9) yields the assertion. O

We also need the following theorem from Dani and Moaore [7]lomindependence number@f (n, m).

Theorem 6 There is a constant, > 0 such that for any: > 4/ and anyk < agn the following is true.

Suppose that
d<2(n/k)(In(n/k) +1) —xy/n/k
and letm = dn/2. Thena(G*(n,m)) > k w.h.p.

Remark. In a previous version of this work[6] we derived a slightly aker bound oni, i.e. d <
2(n/k)(In(n/k) + 1) — O(y/In(n/k) - (n/k)). As opposed to the weighted second momentin [7], our
approach is based on “vanilla” second moment calculatiodglze use of a Talagrand type inequality, i.e.
similar to that in[10].

From [7] we, also, have the following corollary.

Corollary 3 LetW (z) denote the largest positive rogtof the equationye? = z. W.h.p. it holds that

2 ed Ind
< - — ) - * < :
O_dW(2) a(G*(n,m)) < yy/ PR

for any constany > 41/2/e. ExpandingV (ed/2) asymptotically ind we have that

ed Inlnd 1—-1In2
W(?) = Ind—Inlnd+1—-In2+ md  Ind

1 (lnlnd Inlnd 3+1mn?2—4In2 Inlnd\?
- —(2—1In2 .
+2(1nd) - eyt ona +O<( lnd)>
It is well known that the independence numbkegiG*(n,m)) of the random graph is tightly concen-

trated. More precisely, the following lower tail bound falls from a standard application of Talagrand’s
large deviations inequality [30], similar to the one use(28, Section 7.1] to establish concentration for

a(G(n,p)).
Theorem 7 Suppose thal, k are as in Theorerfl6. Then for = %" and for any positive integer< k it

holds that
(k—t+1)2
4k '

Pria(G*(n,m)) < t] < 12exp <_



Proof: Consider the grapt¥(n, p) wherep = d/n and letE(G(n, p)) denote the number of its edges. It
holds that

(3)
Prla(G(n,p)) 2 k] = Pria(G*(n, M)) > k]Pr[E(G(n, p)) = M]
Z Pria(G*(n,m)) > k|Pr[E(G(n,p)) = M] [wherem = dn/2]
<dn/2

Y
£

> Prla(G*(n,m)) > k|Pr E(G(n,p))g% .

From the above derivations and Theofdm 6, it is direct that
1
Prla(G(n,p)) > k| > gPr[a(G*(n,m)) >kl >1/4. (20)

A vertex exposure argument allows to apply Talagrand’'sdateviation inequality for the independence
number ofG(n, p) (in the form that appears in [28], page 41 (2.39)). The foifapholds:

Prla(G(n,p)) < t|Prla(G(n,p)) > k] < exp (—(k —t+ 1)2/4k) .

Using [10) we get
Pr(a(G(n,p)) < t) < 4dexp (—(k—t+1)*/4k).

Working as in[(ID) we get thatPr{o(G* (n, m)) < t] < Pr[a(G(n,p)) < t]. The theorem follows. [

Corollary 4 For the integerk > 0 let
Or = 2(n/k)In(n/k) + 2(n/k) — 8/ (n/k).
There is a constant, > 0 such that fork < ayn andG*(n, m) of expected degreé< J;, it holds that

Pr(a(G*(n,m)) <k] < 12exp(-n/(d*In°d)). (11)

Also, ford = 4y, it holds thatE|Sy, (G* (n,m))| < exp (14m /In® d/d3>.

Proof: Let G*(n,m) be of expected degree= 2(n/k)(In(n/k) + 1) — 84/n/k, wherek is as in the
statement. Also, let’ be such that = 2(n/k')(In(n/k') + 1) — 24/n/k’. By Theorenil7 we have that

Prla(G*(n,m)) <k] < 12exp (W) < 12exp <W> , (12)

where the last inequality follows from the fact thkdt< 2k. The tail bound in[(ZI1) will follow by bounding
appropriately = k' — k > 0. We bound by using the fact that

2(n/k)(In(n/k) + 1) — 8y/n/k = 2(n/k)(In(n/k") + 1) — 2y/n/k’.

Sets = k/n andgq = t/k. Leth(s, q) be the difference of the I.h.s. minus r.h.s. in the above lggua
written in terms ofs, ¢. Clearly, it holds that thal(s, ¢q) = 0. Thatis

h(s,q) = 21n(i+q) + qu(—lns—ln(l—l—q)—i—l)—% (4—\/%) =0

Forl.5nlnd/d < k, k' < 2nlnd/d, itis direct to verify that fol; = 10/VvdIn° d and sufficiently smalk
it holds thath(s, ¢) < 0. Furthermore, it is easy to see that

-2 + ! (—1ns—1n(1+)+1—)—;
“s0+q  (+a? ! RV

0
8_qh(85 Q)



For anyq € [0, 1] and sufficiently smalk we have thaté?—qh(s, q) > 0. This yields to the fact that for any

q < 10/VdIn® and sufficiently smalk we haveh(s, q) < 0. Thus, we get that’ — k& > 10k/VdIn® d.
Plugging this into[(IR) we get that

Pria(G*(n,m)) < k]

IN

1 k
12 exp < 00 >

8 dIn°d
300_n
16 d21n*d

IN

12 exp (— ) , [ask > 1.5nlnd/d]

which implies [11).

For the rest of the proof, considé¥*(n, m) with expected degreé = §;,. Assume that we add
to G*(n, m) edges at random so as to increase the expected degiEe o 251“”1(][]1(]?;2“)(1_5)) and
get the graphG*(n,m’). That is, we need to insert int6*(n,m) as many agd™ — d)n/2 random
edges. Therefore, each independent set offsingz* (n, m) is also an independent set@f (n, m’) with

probability (1 — (k/n)2) " ="/ Lets = (k/n). Itis direct that

+_ n
BISk(Gn,m)| = (1= %) " B[l84(Gn, m))- (13)
Using Corollary 2 we get that

1 / _ 1 n _ 2ydtn/2 1
nlnE|Sk(G(n,m))| = nln<<k)(1 (k/n)%) +0 -
~ —[slns+(1—s)In(l—s)] +d+In(l — s2)/2 — h;—"
n
Inn
~ o (14)
Furthermore, using the fact that;~ < In(1 —z) < —x, for0 < = < 1, itis direct that
Qﬂ <dt < Qﬂ +9. (15)
S S
Combining [I3),[(1k) and(15), we get that
1
~In B[Sy (G(n,m))] < —In(l—s*)(d" —d)/2~o(1) [by (I3) and[(1#)]
n
$3/2
< 41—2 [by @3) andl — 2 > e=*/(=%) for 0 < z < 1].
— S
The upper bound foE|Sy, (G (n, m))| follows by using the above inequality and noting that 2nInd/d,
i.e.s <2Ind/d. O

Corollary 5 For the graphG(n, m) of expected degreeit holds that
Pria(G(n,m)) > 2n(1 — €4)Ind/d] > 1 — exp [—8n/(dln3 d)] .

wheree; — 0 asd increases.

Proof: ConsideiG*(n, m) of expected degretand letk be such that /n = 2 (W(ed/2) —10y/Ind/d3 - 213‘;2‘1),
whereW (z) is defined in the statement of Corollddy 3. Using Corol[@ryn@ aheorenil7, we get that

dIn®d
The corollary follows by using Lemnid 1. O

Pra(G*(n,m)) < k] <exp (—Mn) .

The following is taken from[28, p. 156].

Lemma 3 Letd > 0 be fixed andn = dn/2. LetY be the number of isolated verticesGt{n, m). Then
Y = (1+ o(1))nexp(—d) w.h.p.

10



3 Approaching the distribution U (n, m)
3.1 The planted model

The main results of this paper deal with properties of ‘taimdependents sets of a given size in a random
graph, i.e., the probability distributiait, (n, m). In the theory of random discrete structures often the
conceptual difficulty of analysing a probability distribmt is closely linked to the computational difficulty
of sampling from that distribution (e.g[,_[28, Chapter 9his could suggest that analysitg (n,m) is
a formidable task, because for> (1 + ¢)nIn(d)/d there is no efficient procedure known for finding an
independent set of siZein a random grapldZ(n, m), let alone for sampling one at random. In effect, we
do not know of an efficient method for sampling fréf(n, m).

To get around this problem, we are going to ‘approximatediséributionl{;, (n, m) by another distri-
butionPy (n, m) on the set\(n, m) of graph/independent set pairs, the so-called planted metieh is
easy to sample from. This distribution is induced by thedfelhg experiment:

Choose a subset C [n] of sizek uniformly at random.
Choose a grapty with m edgesn whicho is an independent seniformly at random.
Output the paifG, o).

In other words, the probability assigned to a given §&is, oo) € Ax(n, m) is

P [(Go,0)] = [(Z) (9 (5))] (16)

i.e., Pr(n,m) is nothing but the uniform distribution afy, (n, m). The key result that allows us to study
the distributiori; (n, m) is the following.

Theorem 8 There ise; — 0 such that fork < (2 — ¢4)nIn(d)/d the following is true. 15 is an event

such that
Py, (nm) [B] = 0 (exp (—14m/1n5 d/d3)) , (17)
thenPuk(n,m) [B] = 0(1)

Hence, Theorernl 8 allows us to bound the probability of sonae“levents3 in the distributioridy, (n, m)
by bounding its probability in the distributioBy, (n, m).

To establish Theorefd 8, we need to find a way to compale, m) andif,(n, m). Suppose that <
(2 —e4)nIn(d)/d is such thaty(G(n,m)) > k w.h.p. Then the probability of a pait:y, oo) € Ar(n,m)
under the distributiody, (n, m) is

—1

Pt (Gl ~ (%)) 1sucal] a8)

(because we first choose a graph uniformly, and then an imdiepé set of that graph). Hence, the proba-
bilities assigned t¢G), o¢) under [I8) and{16) coincide (asymptotically) iff

sanl ~ (1) (@ ) (@), (19)

A moment’s reflection shows that the expression on the r&fqI9) is precisely thexpectechumber
E|Si(G(n,m))| of independent sets of size Thus,Py(n, m) andlUy(n, m) coincide asymptotically iff
the numbelS; (G(n, m))| of independents sets of sizds concentrated about its expectation.

This is indeed the case in ‘dense’ random graphs with> n3/2. For this regime one can perform
a ‘'second moment’ computation to show thét(G(n,m))| ~ E|Sk(G(n,m))| w.h.p., (e.g. se€ [28,
Chapter 7]) whence the measuf@gn, m) andi/ (n, m) are interchangeable. This fact forms (somewhat
implicitly) the foundation of the proofs in [16].

11



By contrast, in the sparse case < n3/? a straight second moment argument fails utterly. As it
turns out, this is because the quantiy.(G(n,m))| simply it not concentrated about its expectation any-
more. In fact, maybe somewhat surprisingly Theorém 8 carsbd to infer the following corollary, which
shows that in sparse random graphs the expectaiSp(G(n, m))| ‘overestimates’ the typical number of
independent sets by an exponential factor w.h.p.

Corollary 6 There exist functions; — 0 andg(d) > 0 such that forlOn/d < k < (2 —eq)nIn(d)/d we
have
Sk (G (n, m))| < E[Sk(G(n,m))| - exp(=g(d)n)  w.h.p.

The proof of Corollaryb appears in Sectfonl3.3.
Conversely, in order to prove Theoréh 8 we need to bound tap’ lgetween the typical value of
|Sk(G(n,m))| and its expectation from above. This estimate can be surmethas follows.

Proposition 1 There iss; — 0 such that fork < (2 — 4)n In(d)/d we have

|Sk(G(n,m))| > E|Sk(G(n,m))| - exp (—1471\/1115 d/d3)

with probability at leastl — exp [—n/(2d? In* d)].
Before we prove Propositidd 1 in Section]3.2, let us inditene it implies Theorernls.

Corollary 7 There iss4 — 0 such that fork < (2 — g4)n1n(d)/d the following is true. Let

Z= {(G,a) € Ag(n,m) : |Sk(G)| > E[Sk(G(n,m))| - exp (—1471\/1115 d/d3) } . (20)

ThenPy, (,,m) [Z] = 1 — o(1), and for any evenB C A(n, m) we have

Py (nm) [BIZ] < (1 + 0(1)) exp (—14m/1n5 d/d3) - Ppy(nm) Bl
Proof: Propositior]L directly implies that
Pr(nmy [2] =1 = o(1). (21)

Furthermore, by the definitiob (1L8) of the uniform distriiout,

Puptnm) [BNZ] = Z [<(53>|Sk(0)|]1

(G,0)eBNZ

_ - n 1
< ew[unfrye] T [(Dpscmm]  pyeo
- LG opesnz LN
= exp |14ny/In° d/d3| Pp, (n,m) BN Z] [by (@I8)]
< exp [14ny\/In’ d/d? Pp,(nm) B (22)
The assertion is immediate from{21) ahdl(22). O
Proof of Theorem[§: The theorem follows directly from Corollaky 7. O
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3.2 Proof of Proposition[1

Since the second moment method fails to yield a lower bounttherypical number of independent sets
|Sk(G(n,m))|, we need to invent a less direct approach to prove PropoEitidf course, the demise of
the second moment argument also presented an obstaclete EtD] in his proof that

a(G(n,m)) > (2 —¢eq)nln(d)/d  w.h.p. (23)

However, unlike thenumber|S; (G(n,m))| of independent sets(G(n,m)), the sizeof the largest one
actually is concentrated about its expectation. In factarmenal of large deviations inequalities applies
(e.g., Azuma’s and Talagrand’s inequality), and [10] ukes¢ to bridge the gap left by the second moment
argument.Unfortunately, these large deviations inetjealdraw a blank oS, (G (n,m))|. Therefore, we
are going to derive the desired lower bound8p(G(n, m))| directly from [23).

To simplify our derivations we consider the model of randampisG*(n, m) and we show the fol-
lowing proposition.

Proposition 2 There iss; — 0 such that fork < (2 — 4)nIn(d)/d we have

|Sk(G*(n,m))| > E|Sk(G*"(n,m))| - exp (—1471\/1115 d/d3) (24)
with probability at leastl — exp [—n/(d1In* d)?].

Then, Propositionl1 follows by Lemmbk 1 ddd 2.
Given some integek > 0 andq € [0, 1], let Z,(G*(n, m)) = |Sk(G*(n,m))| and let

M}! = max{m € N : Pr[Z,(G*(n,m)) > 0] > 1—gq}.

In words, M} is the largest number of edges that we can squeeze in whifgirigethe probability that
G*(n,m) has an independent set of sizeabovel — ¢q. The following lemma summarizes the key step
of our proof of Propositioh]2. The idea is that Lemila 4 givesadeoff between thékely number of
independent set of sizk in the random graph withn < M}! edges and thexpectechumber of such
independent sets in the random graph wiffj edges.

Lemma 4 Suppose that,m > 0,¢ € [0, 1] are such thain < M}!. Then

) E[Z,(G(n,m))
Pr | Zy(G*(n,m)) < SB[ 20 (G (n, MT))] < 2q.
Proof: Let M = M. The random grapt¥*(n, M) is obtained by choosing/ pairs of vertices indepen-
dently and inserting the corresponding edges (while ongjttbops and reducing multiple edges to single
edges). Let us think of thé&/ pairs as being generated in two rounds. In the first round, eveigten
pairs, which induce the random gragh = G*(n, m). In the second round, we choose a furthér— m
pairs independently and add the corresponding edgés {@gain, omitting self-loops and reducing mul-
tiple edges to single edges) to obtéip = G*(n, M).

By the linearity of the expectation and becauserthesp.M) pairs that the random graygh, (resp.
() consists of are chosen independently, we have[{cf. (7))

sz = (j)a-emar, e
B = () (/2" = BZ(G] - (1= (/) 25)

Furthermore, with respect to the number of independentafetize k in G2 giventheir number in the
outcome( of the ‘first round’, we have

E[Zi(G2)|Zk(G1)] = Zr(G1)(1 — (k/n)*)M ™. (26)
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Indeed, for each independent §gbf sizek in G; each of the\l — m additional random pairs has its two
vertices inQ with probability (k/n)?. Hence, [[2b) follows because theke — m pairs are independent
and by the linearity of the expectation.

Now, let&; be the event that

E[Zx(G1)]

) < E G

Then by and Markov’s inequality and {26),

1 E[Zk(G1)] - (1 = (k/n)>)M ™™
5 < Pr [Zk(GQ) < 2E [Zk(G2)|51] |51] < Pr |:Zk(G2) < K E[Zk(GQ)] 51:| R
whence
. o n 2\M—m
Pr | Zu(Gs) < E[Z"’(Gl)]E[(Zlk(G(f)]/ ) ] > Prl&] /2. 27)
Combining [27) and(25), we see that [£;] < 2 Pr[Z,(G2) < 1] < 2¢q, as claimed. O

Proof of Proposition[2. ConsideiG* (n, m) of expected degreand let: = 2 (Ind — Inlnd + 1 — In2).
We are going to show thdi{R4) holds f6F (n, m) andk with probability at least — exp [—n/(d In? d)?].

Consider, now, the grap&(n, M) of expected degreé™ = 2% + % wheres = k/n. Ac-
cording td4 it holds thaPr(|Sy,(G(n, M))| > 0] > 1 — 12exp (—n/(d?In” d)) andE|S,(G(n, M))| <
exp <14 hz;d>

The proposition will follow by just showing that < M, i.e.d™ > d, and using Lemmia4. Note, first,
that

Inlnd — 1+ 1n2
s+l = Ind—Inlnd+1—In2—In(1_ 2md-t+m2
Ind
Inlnd—1+1In2
> 1nd—1n1nd+1—1n2+“1dl—d+n. [as1 — o < e~ 7]
n

Using the above, it is elementary to derive thét“‘j—“ > d. Then, it follows that{™ > d as promised(]

3.3 Proof of Corollary @

In this section we keep the assumptions of Corol[dry 6, Wwe.Jetk, d be such thalOn/d < k < (2 —
eq)nln(d)/d, with ;4 — 0 sufficiently slowly in the limit of largel.

Lemma 5 There is a numbeg > 0 such that the following is true. LG, o) be a pair chosen from the
distribution P, (n, m). Let X be the number of isolated verticesGh Then

P [X < 2nexp(—d)] < exp(—3&n). (28)

Proof: Leta = k/n. Itis convenient to first consider the following variant detplanted distribution:
given a setr C V of sizek, let G’ be the random graph obtained by including each of(fp)e— (’;)
possible edges that do not link two verticegriwith probability

m m d
S I R (TR R )

independently. Hence, the total number of edges'iis binomially distributed with meam. By Stirling’s
formula, the evenf thatG’ has preciselyn edges has probabili® (m—'/2), and given thaf occurs, the
pair (G', o) has the same distribution as the p@i, o) chosen from the distributioRy (n, m). Therefore,
for any event4 we have

P[(G,0) € A =P[(G',0) € AIE] < O(Vm) - P[(G',0) € A (29)
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Now, consider the numbe¥’ of vertices ino that are isolated i’ Since each possible edge is presentin
G’ with probability g independently, the degree of each vertex o has a binomial distributioBin(n —

k,q) with mean
1-am=4d l-a _d
4 U 1—-a?2 14a

In particular, for eachv € o we have
P [visisolated inG’] ~ exp(—(1 + «)d).

Furthermore, becauseis an independent set, the degrees of the verticesare mutually independent.
Hence, X’ has a binomial distributioBin (%, (1 + o(1)) exp(—(1 + «)d)) with mean

E[X'] ~ anexp(—d/(1+a)) > nexp [fd (1 —a+ Od(oﬂ))}
> nexp[—d— 10 + 04(1)] > 100n exp(—d) [as we assuma > 10/d],

provided thatd is sufficiently large. Since&” is binomially distributed, Chernoff bounds yield a number
& = &(d) > 0 such that
P [X' < 2nexp(—d)] < exp(—4&n). (30)

Finally, combining[(3D) and(29), we obtain
Pp, (nm) [X < 2nexp(—d)] < O(Vm)P [X < 2nexp(—d)] < exp(—3¢n),

as claimed. 0

Proof of Corollary Bl Let B C Ax(n,m) be the set of all pair$G, o) such thatG has fewer than
2n exp(—d) isolated vertices. Lemmés 3 dnld 5 entail that

Pty (n,m) [B]=1-0(1) while Pp,(n,m) [B] < exp(—&n). (31)

SincePy(n, m) is the uniform distribution ovet (n, m), (31) implies that

Bl < |Ax(nim)| - exp(—€n) = ((3))E|sk<c<n,m>>| exp(—n). (32)

m

Now, let.A C Ax(n,m) be the set of all pair§G, o) such thalS,(G)| > exp(—&n/3)E|Sk(G(n,m))],
and assume for contradiction that there is a fixed 0 such thaiP;,, ,, . [A] > €. Then[31) implies that

Pty (nm) [ANB] > e—o(1)

Therefore,

m

B 2 14051 (&) P (40 B8] expl—g0/3)B1S Gl )

n

> e o) &) explgn/BBIS GO0 2 (e — o) expl—en/3) - [t

which contradictd(32). Henc®y,, (,,,m) [A] = o(1), as claimed. O

4 Proof of Theorem[1

Instead of the random graph mod&(n, m) we consider the modé¥(n, p), wherep = d/n for fixed real
d and we prove the following theorem.

Theorem 9 There isz; — 0 such thatSy,(G(n, d/n)) is O(1)-connected for ang < (1 —e4)2¢ - n, with

probability at leastl — exp (_ ) dn)_
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Figure 1: The short chains

Figure 2: o, 7 with Propertyl’

Theorenf ] follows by using standard arguments, i.e. theviatig corollary.

Corollary 8 For any fixedd > 0, m = dn/2 and any graph property it holds thatPr[G(n,m) € A] <
O(y/n)Pr(G(n,d/n) € Al.

Proof: Let E4 be the number of edges @(n, d/n). It holds that

Pr|G(n,d/n) € 4]

PriG(n,m) € A] = Pr|G(n,d/n) € A|Ea = dn/2] < Pr(Eq = dn/2]

E, is binomially distributed with parametef§) andd/n. Straightforward calculations yield to that
Pr[E4 = dn/2] = ©(1/4/n). The corollary follows. O

Remark. We show Theoreml9 by just considering the adjacent indepersa¢s with Hamming distance
at most20d.

For every vertex. in G(n,d/n) we let N (u) (or N,) denote the set vertices which are adjacent.téA
sufficient condition for establishing the connectivity®f(G(n, d/n)) is requiring this space to have what
we call Property™:

Property T'. For any twoo, 7 € S;(G(n,d/n)) there exist chains, ¢’, " andr, 7/, 7" of independent
sets inS, (G(n,d/n))JSk+1(G(n,d/n)) connected as in Figuké 1. Furthermore, we havedHat” €
Sk(G(n,d/n)) anddist(c”, ") < dist(o, 7). In particular it holds thafs” N 7" | = |o N 7| + 1.

The following result is straightforward.

Corollary 9 If S,(G(n,d/n)) has Propertyl’, then it is connected.

Using Corollary®, Theorei 9 will follow by showing that wigliobability1 — o(1) the setS, (G (n, d/n))
has Property’, fork < (1 —¢4) Ind/d . For this, we need to introduce the notion of “augmentingesér

Definition 3 (Augmenting vertex) For the pairo, 7 € Si(G(n,d/n)) the vertexo € V\(o U 1) is aug-
mentingif one of the following4, B holds.

A. N,Nn(cut)=10
B. N, N (o N7)=0andthere arderminal setd, () and ,,(7) of size at mostd such that
e [,(0)U{v}is anindependent set 6f(n,d/n)
e |I,(0)] =|N,No]
e Yw € I,(o) it holds that|/N,, No| = 1 and|N, N N, No| =1
The corresponding conditions should hold fo(7), as well.

Figure[2 shows an example of a pair of independent sets wheneettexy is anaugmenting vertex

We will show that for a paio, 7 € Si(G(n,d/n)) that has araugmenting vertex we can find
short chainsgr, o/, ¢” andr, 7/, 7. That is, if we can find an augmenting vertex for any two memloér
Sk(G(n,d/n)), thenS,(G(n,d/n)) has Property'.
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Figure 3: The independent set§ 7. Figure 4: Final sets

First, let us show how we can create short chains as in FIddioe tlvo independent sets, = with
augmenting vertex. For this, we introduce a process call@dllider. This process takes as an inpytr
and the augmenting vertexand returns the independent setfsandr” of the chains.

Collider (o, 7, v):
Phase 1.  /*Creation ofo’ andr’.*/

1. Derives’ from o by removing the all its vertices ifV,, N o and by insertindv} U I, (o).
2. Do the same for’.

Phase 2.  /* Creation ofg” and7'"*/.

1. o” is derived fromy’ by deleting one (any) vertex froaf\ 7’
2. 7" is derived fromr’ by deleting one (any) vertex fromi\o’.

Returns’ and7”.
End

Figure[3 shows the changes that have taken place to the indepesets in Figuild 2 at the end of “Phase
1". Note that after Phase 1 boitt, 7/ contain the augmenting vertexi.e. the overlap has increased as
o N7t = (o Nn7)U{v}. After “Phase 2", the independent sets in Figure 3 are toanmedd to those in
Figure[4. There the vertices andu; are removed frona’ andr’, correspondingly.

In the following lemma we show th&ollider has all the desired properties we promise above.

Lemma 6 Leto, 7 € Si(G) with augmenting vertex. Leto” andr” be the two sets of vertices that are
returned fromCollider(o, 7, v) . The two sets have the following properties:

1. 0", 7" € Sk(G),
2. "Nt =lenT|+1,
3. There arev’, 7" € S;4+1(G) such that’ (resp.7’) is adjacent to botlr ando” (resp.T and7’).

Proof: First we show that”” andr”, as returned byollider (o, 7,v), are independent sets. The same
arguments apply to bot#’ andr”. For this reason we only consider the case’'6fthe other case would
then be obvious.

Let v be an augmenting vertex for the pair7. Assume that”, at the end of the process, is not an
independent set, i.e. there is an edge between two ventieds iClearly, this edge must be either between
two new vertices, i.e{v} U I, (o), or between some newly inserted vertex and an old one.

The first case cannot be true since the assumptionsitisadin augmenting vertex impli€s} U I, (v)
is an independent set. As far as the second case is consiugieethat bothy and I,,(¢) have the same
neighbours inr. During the proces€ollider(o, 7, v) all the vertices irv that are adjacent toand, (o)
are removed (Phase 1, step 1). The second case cannot dbear Ehuss” and7” are independent sets.

For showing Property 1 it suffices to show that| = |7”| = k. This s straightforward by just counting
how many vertices are inserted intqresp.7) and how many are removed. Property 2 follows by noting
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thate”’ N7"” = (oN7)U{v}. Property 3 follows directly by noting thék, (o)| and|I, ()| are at mostd. O

Since for every pair, 7 € Si(G(n,d/n)) with augmenting vertex we can construct short chains as in
Figure[d by using Collider, we have the following corollary:

Corollary 10 If for any twoo, 7 € S;(G) there is anaugmenting/ertexv, thenSy, (G) has Propertyl".

We are going to use the first moment method to show that withaiitity 1 —o(1), the grapiG(n, d/n)
has no pair of independent setsSp(G(n, d/n)) with no augmenting vertex. According to Corolléryl 10,
this implies that with probability — o(1) the setS,(G(n, d/n)) has Property’. Then, Theorerf9 follows
from Corollary[9.

We compute, first, the probability for a pair&(G(n, d/n)) to have an augmenting vertex.

Proposition 3 For some integers, k, considero, 7, two sets of vertices each of sizsuch thajo N 7| =
i. LetG, , denoteG(n,d/n) conditional that each of, 7 is an independent set. Also, gt ; be the
probability that the paifo, 7 has anaugmenting vertein G, .. Then, there existg; — 0 such that for
anyes < e <1—eqandk = (1 — €)2%n the following is true

I d
DPri > 1 —exp ( 7 n>

The proof of Propositioh]3 appears in Secfiod 4.1.

Proof of Theorem[3: Let Z;, be the number of pairs of independent sets of sigeG(n, d/n) that do not
have an augmenting vertex. From Corollary 10 and Cordllaitys@ffice to show thaPr [ZkSK Zy > 0} =
o(1), whereK = (1 — ¢4)nInd/d ande; — 0 with d. For this, we are going to use Markov’s inequality,
i.e. Pr [Zkgx Zy, > O} <FE [ZkgK Zk} and we are going to show that [ZkgK Zk} = o(1).

First consider the case wh %n <k<(1- e@%n andey is as defined in the statement of

Propositio B. Using Propositigh 3 we get that

E[Z] < (Z)Q exp (11“2) dn> . (33)

2lx:idn

It follows easily that(Z)2 < (ﬁn)2 < (%)
d

there ise; — 0 with d such tha

= exp (3n1n®d/d) . Thus, from [3B) we get that

In”d
E[Zy) < exp <0.5 nd n) ,

foranyk = (1 — €)2%n, wheree; < € < 1 — €q.

Consider now the case wheke< nInd/(10d). For a pair of independent sets any vertex that is not
adjacent to the vertices of the pair is an augmenting vetteko, T be a pair of independent sets each of
sizek < (1 —¢)nlnd/d, fore > 0.9. Let R, . be the vertices not i U 7 but not adjacent to any vertex
ino U7, as well. Everyw ¢ o U 7 belongs toR,, - independently of the other vertices with probability at
least(1 — p)2* = (d°/d)*. Thus,E|R,,| > (n — 2k)(d*/d)2. Using Chernoff bounds we get

d2e dO.S
Pr(|Rs.-| = 0] < exp (—10771) < exp (—mn) [sincee > 0.9].

SinceR,, . consists ofaugmenting verticefor the pairo, 7, the probability foro, 7 not to have any aug-
menting vertex is upper bounded BYy[| R, -| = 0]. Fork < nlnd/(10d) it holds that

n 2 J40-8 n2d J0-8 J0-8
ElZ,| < e < . = < _Z ]
[Zk]) < (k:) exp ( 10dn) < exp (3 7 n) exp ( 10dn) < exp ( 15dn)

The theorem follows. O
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4.1 Proof of Proposition[3

Consider an arbitrary pair, 7 € Sj(G(n,d/n)) wherek = (1 — e)nlnd/d and10022d < e < 1 —
10018124 For the rest of the proof assume thatn 7| = ak wherea € [0,1]. Also, lete’ be such
thatl — ¢ = (1 — a)(1 — €). Clearly, it holds that’ € [100“‘“”1 1]. For proving the proposition,
we consider two cases. In the first one we take2lnd < ¢ < 1 — 100224 |n the second we take
1—1008d < ¢ <1.

Take100lnlzd < ¢ < 1 — 1002124 We will show that with sufficiently large probability there
exists a non-empty sép, of augmenting vertices for the pair, 7. The set), contains a specific kind
of augmenting vertices. That is, the cardinality@§ will be a lower bound on the actual number of
augmenting vertices. So as to specify, we need the following definitions:

Qi(0): Q1(0) € V\(o UT) contains those vertices that have exactly one neighbatiyin
Q2(0): Q2(0) C o\7is the set of vertices that have at least one neighbo@ if).
Qs(0): Everyw € Q3(0) C V\(oc UT UQ1(0)) has the following properties:

Si- Ny N (o\7) € Q2(0) and|N,, N (o\7)] < 7d.
S,;- There existsR C Q1 (0) that contains exactly one neighbour of each N,, N (o\7) in Q1 (o)
and no other vertex. Furthermoi@,U {w} is an independent set.

In an analogous manner we defiQe(r), Q2(7) andQs(7).
For each augmenting vertex< @ the following should hold(A) u € Q3(c) N Q3(7), (B) N, N
(0\7) € Q2(c) andN, N (7\0) € Q2(7), (C) 1,(0) € Q1(0)\Q1(7) and I, (1) € Q1(T)\Q1(0)

Remark. Observe that each € Q3(o) N Q3(7) is not necessarily augmenting. However, if, additionally,
u it does not have any neighboursdm 7, then it is augmenting.

Consider a process where we reveal all the égi®), Q:(7), fori = 1,2, 3 in steps. In each step we
reveal a certain amount of information regarding these aig.sSinceR; (o) is symmetric toQ;(7) for
everyi = 1,2, 3 we just presents results related@p(c) while those forQ;(7) follow immediately. The
results appear as a series of claims whose proofs appeathafieroof of this proposition.

InStep 1, we reveal the sef®, (o), Q1(7). There we have the following result.

Claim 1 Let X, = [Q1(0)\Q1(7)|. It holds thatE[X,] = (=14 (1 — ¢;) — O(1), wheree, — 0 as
d grows. Furthermore, it holds that

Pr|X: — B[X1]| > 0.5E[X1]] < 2exp (—ndé’/d) .

Remark. After St ep 1, for eachv € V\{Q1(0) UQ:(7) Uo U7} we have the information that both the
number of edges that connectvith o\ 7 and the number edges that conneetith 7\ o are different than
1.

Then, we proceed witBt ep 2 where we reveal); (o) and@Qz (7). Also reveal the edges betwe@n (o)
and@, (o) as well as the edges betwe@n(7) and@ (7). There we have the following result.

Claim 2 Let X, = |Q2(0)|. Fory = 1 — In"° d, it holds that
Pr{Xs < - |o\7]|F1] < exp (—ndf’ /(4d 1n° d)) :
whereF; = {|X; — E[X1]]| < 0.5E[X1]}.

Revealing the setQ3(0) and@s(7) is, technically, a more complex task. Let us make some ohtens
regarding these sets. Assume that some vertexV’\ (o U T U Q1 (c)) satisfies conditidhS;. So asu

to belong toQ; () there should exist a sét C (Q)1(o) as specified in the conditioB,. However, the
possibility of edges between vertices(nh (o) leaves open whether we can have such a sei.fdio this
end consider the following.

2In the definition of seQ3 (o).
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Definition 4 For every; = 1...7d, let.A; be the family of subsefs C Q- (c) of cardinality: which have
the following property: There exists independentBeC ((c) that contains exactly one neighbour of
eachv € B in (o) and no other vertex.

That is, a vertex. which satisfiesS; satisfies als®- (i.e. belongs ta)s;(o)) only if N, N (a\7) € A;,

for some appropriate> 0 or N,, N (o\7) = 0. Observe that the familied, are uniquely determined by
the edges whose both ends arejn(c). In St ep 3 we reveal exactly these edges, i.e. with both ends
either inQ; (o) orin @Q+(7). This results to the following.

Claim 3 LetF; = {F; and X, > ~ - |o\7|}. For every2 < i < 7d it holds that
|Q2(0)]

i

Pr||A] < (- 2d5/n)( )|]—'2] < 2exp (—nd2€’ /d) .
Itis direct to see that it always holds thdf = Q2 (o).

Let the setV’ = V\(c UT U Q1(0) UQ1(7)). In Step 4, we reveal the vertices that belong in
Qs(0) N Qs(7). This step amounts to revealing the edges between each veetd’’ and the set§); (o)
and@;(7), fori = 1,2. In particular, revealing the edges betweeand the set); (o) U Q2(c) (resp.
Q1(7) U Q2(7)) specifies whether € Q3(o) (resp.v € Q3(7)), or not.

Despite the information we have forc V', fromSt ep 1, the edge events betweemnd the vertices
in Q1(0) U Q2(o) are independent of the edge events betweand the vertices i1 (7) U Q2(7). That
is Prlv € Q3(c) N Qs3(7)] = (Prlv € Q3(0)])?. Also, it is easy to observe thate Qz(c) N Q3(7)
independently of the other verticesif.

For everyv € V' let J, be an indicator random variable such that= 1 if v € Q3(c) N Q3(7) and
J, = 0 otherwise. The observations in the previous paragraphestgigat/,s are independent with each
other andE[J,] = Pr[v € Q3(0)]?.

Claim 4 Let the evenfs = {]—‘2 and|A4;| > (1 - 2d5/n)(|Q21.(">|)}. For everyu € V', it holds that

Prlu € Q3(0)|Fs] > 9/10.
Let X3 = ", J, wherev varies over all vertices ift". Using ClainT1 and Claifil4 we get that
E[X3|F5] > (1 104 1nd/d) n- Priu € Qs(o)|Fs] > 8n/10,
Applying Chernoff bounds and get that
Pr[X;3 < 0.7n|F3] < exp (—n/350). (34)

Finally, in St ep 5 we reveal which vertices iQ3(o) N Q3(7) are augmenting, i.e. those which are
adjacenttar N 7. Only these vertices will belong the 3@¢.

Due to edge independence@(n,d/n), everyu € Qs(o) N Q3(7) is augmenting independently of
all the rest vertices with probability= =) + O(n~1). Let the eventF, = {F3 and X3 > 0.7n}. Itis
direct thatE[|Qol||F4] > 0.7nd~*(*=¢) — O(1). Sincea € [0, 1], there exist® = §(e,a) > € such that
a(l —e) =1 — 4. Applying Chernoff bounds we get that

Pr(|Qo| = 0|F4] < exp (—0.2d°n/d) < exp (—0.2dn/d) [asd > €]. (35)

Using Claim(3, Claini2, Claifil3 anf{B4) we get tHat[F;] > 1 — 20 exp (—ndG/ /(4d In° d)). Com-
bining the probability bound foPr[F,] with (35) we get that

Pr[|Qo| = 0] < 30exp (—ndg//(?mlln5 d)) < exp (—nIn* d/d) (36)

as100zlnd < ¢ <7 — j00lind,
nd Ind
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It remains to study the case where- 10023124 < ¢/ < 1. There, it holds thafo U 7| = ko <

(1 — e)2dn 4 100224y Let R, be the set of vertices, outside 7, that are not adjacent to any
vertex inoc U 7. Everyw ¢ o U 7 belongs toR,, - independently of the other vertices with probability
(1 —p)ko < (d*/2/d). Thus,E|R,, ;| > (n — ko)d</?/d. Using Chernoff bounds we get

de/Q
Pr(|Ry.-| = 0] < exp (— 5 n) . (37)

SinceR, ; consists ofaugmenting verticefor the pairo, 7, the probability that there is no augmenting
vertex is upper bounded byr[| R, -| = 0]. The proposition follows fron{{36) and{B7). O

Proof of Claim [T} Letr be the probability for a vertex outsides, 7, to have exactly one neighbour in
o\7. It holds that

r=(1-akp(l—p)t= 1 =(1-¢)Ind/d"~¢ —O(n).

Of course, with the same probabilityhas exactly one neighbour if\o. Then, the probability fop to
be inQ1(0)\Q1(7) isp1 = r(1 — r). Observe that belongs taQ:(0)\Q1(7) independently of the other
vertices. It is direct that there exists — 0 such that

(1—¢€)Ind

E[Xl] = (n — Qk)pl = dl—e/

n(l—eq) —O(1).
The claim follows by applying the Chernoff bounds. O

Proof of Claim 2} Due to symmetry each vertex € Q1(o) is adjacent to exactly one random vertex
in o\, independently of the other verticesdh (¢). An equivalent way of looking adjacencies between
vertices inQ (o) ando\7 is by assuming that the vertices@h (o) are balls and each vertexn 7 is a
bin and each ball is thrown intorandombin. The non-empty bins correspond to verticeg)is(o). The
claim will follow by deriving an appropriate tail bound oretmumber of occupied bins.

s’

Let N denote the number or balls amd denote the number of bins, it holds that > “-n and
m = (1—¢€)2%n. Forc € (0,1), let P. be the probability that there is a subset of bins of sizethat
contains all the balls. FaB,. a fixed subset of bins of sizen and for a fixed balt, it holds that

me

P, <m> (Pr[r is placed into some bin if,])" < (—)m N
cm

cm
< exp(em(l —Ine)+ Nlne).

Forcy = (1 — In~° d) we have that

Ind d
P, < exp (2%71 - mn) [asl —x > exp(—z/(1 —z) for0 < z < 0.1]
< exp (—ndel/(SdlnE’ d)) [for larged].

It is easy to check that for any < ¢ < ¢y we haveP. < P.,. Hence, lettingt,, be the event that “there
is a subset of at most, - m bins that has all the balls”, it holds that

P[E.,] < exp (fndel /(4d1n° d)) :
The claim follows. O
Proof of Claim Bl The cardinality of each family;, for 2 < ¢ < 7d, depends on the edges whose both

ends are iQ, (o). As afirst step we estimate how many are these vertices comalibn the evenfs.
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Let R, be the set of edges whose both ends ar@io). The bound onX; and the cardinality of
Q1(0) that F» specifies as well as the fact that each edge appears indefilgndih probability d/n
yields to the following relation.

’
d*n

E[|R1||F] =C (1—¢)?In?d,

wherel /8 < C < 9/8. Chernoff bounds yield to the following inequality.
Pr [|R1| > n/d1’3€/|f2} < exp <fnd25, /d) . (38)

Let the eveniHl = {F, and|R, | < n/d' =3},

Next, we computeZ[|.4;||H]. Note that the evenll specifies, only, an upper bound 6R; | and it
does not tell where the edges are placed. That is, all subkéls(o) of cardinality: are symmetric thus
they belong ta4; with the same probability. By the linearity of expect we deitt

E[|A;|H] = ('QQl,(J)')Pr[L ¢ A\ H| [for a fixed L C Q,(c) and|L| = i]

Let M}, be the family of subsets @}, (o), each of cardinality, such that for eachV € M, the following is
true: The sevV contains exactly one neighbour of each vertex L and no other vertex. By definition the
family M must have at least one member. Moreover, if there existsetria 8/;, which is independent,
thenL € A;.

When we reveal the edges between the verticeQ:ifv) it is easy to see that the probability that
M, contains no independent set is maximized whén is a singleton. GivenR,| and X, observe that
each pair of vertices i), (o) is adjacent with probability at mosR, |/(*!). Each subset of); (o) of
cardinalityi has expected number of adjacent verti¢BgR: |/ (%) < d*/n, for larged. That is, the
probability that)/;, does not contain an independent set is at mdgt. Thus,

B[l A;|H] > <1 - %4> <|Q2.(”>|>. (39)

7

Having calculated a lower bound fé|.4; || H] we will show that given the everdi, |.A4;| is tightly con-
centrated about its expectation. Then, claim will be imratdi So as to show the concentration result, we
use an edge exposure martingale argument for the eddesand then we apply Azuma’s inequality (see
e.g. [28] Theorem 2.25).

Observe that the revelation of each edgeéincannot reduce the cardinality gf; by more tharc =
()%_52) < (X2)""2/(i — 2)! sets. Standard arguments with Azuma’s inequality yield&t for any\ > 0
it holds that

)\2
Pr|Ai| < E[A;|H] = A|[H] < exp (W)

Setting)\ = d* X! /i! we get that

d5 QQ(O‘) d8X22
prliars (1-22) ()] < e (~3oL) < e (i),

where the last derivation follows by using the factthat i < 7d, |R1| < n/d1*3€’ and100Inlnd/Ind <
1—¢ <1-100Inlnd/Ind. The claim follows by just using the law of total probabilénd get that

pr [IAA < (1 —2%5) (QQZ.(”))VQ] Pr [IAZ-I < (1 —2%5) (Q?("))m} + Pr [|Rl| > n/d' 3 | Fy

IN

7

IN

2 exp (—nd2€//d) .
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O

Proof of Claim@} Consider some € V\(oc UTUQ1(0)). Letd, ,(u) be the number of vertices in\ 7
which are adjacent ta. Also, let the evenE; = {N,, N (o\7) € A;} fori > 0andEy = {N, N (o\7) =
(}. By the law of total probability we get that

Priu e Q3(0)|F3] > ZPr[u € Qs(0)|dor =i, E;, F3) - Pr[E;|de,r =i, F3] - Prlds » = i|F3]. (40)
i=0

We impose the bound < 7d since no vertex inQs(o) can have more thafd neighbours inQz (o).
Conditional ond,, - (u) = i, all the subsets of sizein o\ are equiprobably adjacent to Thus, we get
that

Pr(E;|dsr =1,F3] = A > (1 —2d°/n) (%) [by Claim[3]
i |Wo,T yv 3 (‘G\T‘) sl (|U\T|) y
Xo \' i
> (Z) - o) 2 - o) (@1)
wherey = 1 — In"? d. Also, it is easy to see that
Prlu € Q3(0)|dy.r =14, F;, F3] > (1 —d/n)" > 1 —7d*/n. [as0 <i<7d]  (42)

Let the evenC' ="d, -(u) # 1 andd, ,(u) < 7d". Observe that the variabl&, - (u) is distributed as in
B((1 — a)k, d/n) conditional on the eventt’. Using this along with[{42) and_(#1) we can rewr[tel(40) as
follows:

1_0(1) 7d (1—a)k i 1—a)k—i_i (1—a)k 1—a)k—1
Priu e Q3|F;] > W Lz_:( : )p(l—p)( Vi _7( . )p(1_p)( Yk ]
7d 1—a 4
(1—o(1 (1 —p)=k=iyi _g=(- €>1nd] (43)
|J—O ( )

where the last inequality follows from the fact thatPr[C|F5] < 1 and a simple derivation which implies
that (“2F)p(1 — p)I=k=1 < ¢=(=<)Ind. Also, note that

Y

(1—a)k (1—a)k
L—a)k\ ; —a)k—iLi L—a)k) ; —a)k—i
> <( . ) >pz(1p)(1 Byt <y <( . ) )p(lp)(1 I [as0 <y < 1]
i=7d+1 i=7d+1
< exp(—T7d). (44)

The last inequality follows by noting that the summation be t.h.s. of the first line is equal to the
probability Pr[B((1—a)k,d/n) > 7d] and bounding it by using Chernoff bound (as it appears in Térao
2.1in [28]). Using[[4%), we get that

7d
Z ((1 i(l)k>pi(1 - p)(lfa)kfi,yi > (1 - pln_5 d)(lfa)k . exp(f7d)
i=0
>exp [—(1—¢€) In~*d— O(n™")] — exp(—7d) [asln(l — z) = —z — O(2?)]

1 _ !
>1- 1 4; —exp(—7d) —O(n™ 1) [asl + z < €]
n
> 95/100. (45)
The claim follows by pluggind(45) intd(43) and get tHait[u € Q3|F3] > 9/10. O

23



5 Proof of Theorem[2

The following proposition reduces the problem of estalitiglshattering to an exercise in calculus.

Proposition 4 There exist a constanky > 0 ande; — 0 such that for alld > d, the following is true.
Supposethat = (1 +¢)Ind/dforegs < g < (1 —¢4) and let

d s2(1— (1 —x)?)
Y(x) =Yg s(x) =2$(2—2Inz —Ins) + 5111 <1 — —) .

1— 52
If there is areald < b < 1 such that
P(b) < —18gs and (46)

suptp(z) < —sln(s) — (1 —s)In(l —s) + gln(l — 5%) — 20s 47)
z<b

thenSy; (G(n,m)) shatters, withn = dn/2 andk = sn.

Proof of Theorem[2 (assuming Propositioi 4):Let e; be as in Propositiof] 4, assume thiat> dy is
sufficiently large, let = 5Inlnd/Ind and set

(14+6)Ind < (2—5d)1nd.
d - d

Moreover, leth = 20In~' d. We are going to verify[{46) an@ (#7). Then Theorigm 2 will dall from
Propositiori¥. Indeed, using the elementary inequality — =) < —x, we find

k=sn with

2
(z) < sz(2—2Inz—Ins)— %(1 —(1-2)?)
= sx(2—2Ilnx —1Ins—ds+ dsx/2)
< sz(2—2Inz—1Ind —ds + dsxz/2) [ass > Ind/d]
< szx(2—-2Inz—4dIlnd+ dsz/2) [ass > (1 +9)Ind/d]. (48)

Hence, ford > d, sufficiently large our choice af, b ensures that
9
P(b) < bs(2242Inlnd —In20 — glnd) < —1—0bsqlnd < —18gs.

Thus, we have verified (46).
Starting from[(4B), we see that for apy< b andd > d, large,

P(B) < Ps(22—-2In —1001nlnd) [aspds < 40 and by the choice af]
< —28slnfg < s, (49)

because-zInz < 1/2forall z > 0. By comparison, fos < (2 — 0) Ind/d we have

d 9 ds*>  ds* . 9
—sln(s)—(1—s)ln(1—s)—|—§ln(1—s) > _81DS+S_T_T [usingln(l — ) > —a — 7]
> s(—Ilns—ds/2+1)
1—
> s< 2qlndlnlnd+1)24051nlnd. (50)

Combining [49) and{30), we obtain
P(P) < —sln(s)—(1—s)In(1—s)+ g In(1—-s%)—s < —sln(s)—(1—s)In(1—s)+ g In(1—s%)—20s
ass > Ind/d. Thus, we have gof(47).

Lemma15 (in a following section) states explicitly whatrsgilied in this proof. That is there exists
0 < b < 1 such that[(4B) and(4#7) hold. Thus, we are going to use the peve for Lemm&1l5. O

24



5.1 Proof of Proposition[4

Let (G, o) be a pair chosen from the planted mo@&!(n, m). To prove the proposition, we are going
to show that under the assumptiohs](46) dnd (47) the indeme¢rsettc belongs to a small ‘cluster’ of
independent sets that is separated from the others by a lfsaming distance with a probability very
close to one. We will then use Theoréin 8 to transfer this teésuhe distributiortd, (n, m), which will
imply thatSj (G(n, m)) shatters w.h.p.

Let Z; 3 be the number of independent sets S;(G) such thato N 7| = (1 — 5)k.

Lemma 7 We have: InEp, (, 1n) [Zk,5] < 9(8) + o(1).
Proof: LetT C V be such thalo N 7| = (1 — $)k. The total number of graphs with in which botho, 7
are independent sets equals

C@—z@+«ﬂﬁ%)

m

For we can choose any edges out of those potential edges that do not join two \e=taf eithers or
7. Since botho, 7 have sizek and|c N 7| = (1 — )k, the number of such bad’ potential edges is

2(2) (%) by inclusion/exclusion. Sina@ is chosen uniformly among aﬂﬁ ) graphs in which
o is independent, we thus get
P [r is independent = < (1 ﬂ)k))/<(g);(§)>
a0 j<<@>%@+akf%>m
J[[o (5) = ()~ - () - (5)
— <1 —ﬂmz +0(1/n ))m
< 0(1)- ( W) [ask = sn]. (51)

Furthermore, the total number of ways to choose a seith o N 7| = (1 — )k equals((l_kﬁ)k) . (nﬁ—kk)

(choose thé1 — B)k vertices in the intersectionN 7 and then choose the remainifig vertices). By the
linearity of the expectation, we get froln {51)

- o (8)-(48) (-2

< oo(5) () ()

= 0O(1)- (%) . (1 - W) [ask = snandm = dn/2].
Taking logarithms and dividing by completes the proof. O

Let us call an independent setof sizek of a graphG (b1, b2, v)-goodif G has no independent set
suchthatl—b1)k < |oN7| < (1-bo)kandif|{7 € Sk(G) : [oc N7| > (1 — ba)k}| < exp(—yn)|Sk(G)|.
Moreover, let

Zak = {(G,O‘) € Ag(n,m) : |Sk(GQ)| > E|Sk(G(n,m))| - exp (—1471\/1115 d/d3)} . (52)
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Corollary 11 Suppose that > 0 is such that[(46) and (47) hold. Then there ekisth, v > 0 such that
Prt(nm) [(G, ) is (b1, b2,7)-900d Zq,k] > 1 — exp(—n).

Proof: The functiony is continuous. Therefore, i (#6) and {47) are satisfied tonsb < 0 then there
existb; > by and¢ > 0 such that

sup ¥(B) < —18¢gs—¢ and (53)
b <B<by

sup () < —sln(s) — (1 —s)In(1 —s) + gln(l —s%) —d™ 9 (. (54)
r<bs

Let Zy 1, .6, (G, o) be the number of € Si(G) such tha{l —b1)k < |[ocN7| < (1—b2)k. Then Lemmal7,
(53), and Markov’s inequality yield

Pp.tnm) [Zkpibe > 01 < Eptnm) [Zk,by be] < Z Ep, (n,m) [Zr.5/k]
bok<j<bik

IN

exp [n ( sup  ¥(B) + 0(1))] <exp[-nlnlnd/d]. (55)

ba<B<by

The last inequality follows by taking > 100Inlnd/Ind and thenl8¢s > Inlnd/d Similarly, let
Zr,<b, (G, 0) be the number of € |S,(G)| such thatoc N 7| > (1 — b2)k. Moreover, lets = k/n

and let
E|Sk(G(n,m))| - exp (1471\/1115 d/d3)
O(1) (Z) (1 — (k/n)*)™ - exp (—1471\/ In° d/d3 + 0(n)) [by Corollary(2]

- wpP(ﬂm@_u_gmu_g—gmu_fqumﬁwﬁ+dnﬂ,

where in the last step we used Stirling’s formula. Us[nd @4d Markov’s inequality, we find that

I

PPk(n,m) [Zk,<b2 >M] < Pr(n, L[ k,<b] < Z Pr(n, L[ k,y/k]

j<bok

IN

%exp ln <sup P(B) + 0(1))] <exp[-nlnd/d]. (56)

B<bz
Combining [55) and_(36) with Corollafy 7, and letting, say= d—2, we see that
Py (n,m) [(G,0) isnot(bi, b2,7)-9g00dZak] < Puy(nm) [Zk,<by > 108 Zipy b, > 0]
< (1 + 0(1))P7’k(n7m) [Zk,>b2 > or Zk,bl,bQ > 0] - exp |:14TM/ In® d/d3:|

eXp(ifyn)v

IN

as claimed. 0

Proof of Proposition[4: Let Z be the event that

|Sk(G(n,m))| > E|Sk(G(n,m))| - exp <14n\/ln5 d/d3> .

CorollaryI1 implies that there exishs, b2, v such that giverg, w.h.p.G = G(n, m) has the property that
all butexp(—~yn)|Sk(G(n,m))| independent sets € Si(G) are(by, b2, v)-good. LetG denote this event.
As Lemmdl ensures thét(n, m) € Z w.h.p., we have

P[] >P[GNZ]=P[G|Z]-P[2] =1 o).
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As a consequence, we just need to show that the two conditiddsfinition[] are satisfied i occurs.

Thus, letG € G. We construct a decomposition 8f,(G) into pairwise disjoint subsets; , ..., Sy
inductively as follows. Suppose> 1. If the setS,(G) \ U;;ll S; does not contain &, b2, y)-good
anymore, letV = i, set

N-1
Sn =S\ | 8

and stop. Otherwise, choose somes S, (G) \ U;;ll S; thatis (b1, b2, v)-good, let

1—1
Si={r € S(@) :lont|>bk}\ ]S,

j=1

and proceed to + 1.

Let ¢ = k(by — b2)/n. We claim that this construction satisfies the two condgion Definition[1.
Indeed, eachr; is (b1, b2, v)-good for all, we havésS;| < exp(—vyn) |Sk(G)| forall i < N. Furthermore,
asG € G we have|Sy| < exp(—yn) |Sk(G)|. Thus, the partitiorby, . . ., Sy satisfies the first condition
in Definition[.

With respect to the second condition, tete S; andr’ € S; with1 < ¢ < j < N. Assume for
contradiction thadlist(r, 7') < ¢{n. Then, for somer; € S; we have that

dist(oy,7') < dist(o;, 7) + dist(7,7") = 2(k — |0y N 7]) + (n < 2bok + n,

and thuslo; N 7| = k — dist(oy,7')/2 < (1 — b2)k — (n/2 € [(1 —b1)k, (1 — be)k]. This contra-
dicts the fact that; is good (which implies that there is no independentsesuch thatjo; N 0’| €
[(1 = b1)k, (1 — ba)k]. Thus, we have established the second condition in Defiriftio O

6 Proof of Theorem[3

In this section we assume that> d, for some large enough constafit > 0. Moreover, lets; — 0
be a function ofd that tends td) sufficiently slowly, and assume that = (1 — ¢)nlnd/d for some
€ € leq, 1 —e4).

Our goal is to show that for a random péir, o) chosen fronif, (n, m) w.h.p. there is a larger inde-
pendent set in G that containg as a subset. More precisetyjs supposed to have siz¢1 + 12—_65)- In
order to construct such a setve need the following concept.

Definition 5 A vertexv € V\o is calledo-pure in G if it is not adjacent to any vertex is.

Basically, in order to expand we are going to show tha¥ has an independent sétC V' \ o of size
|| = 2ek/(1 — ) consisting ofr-pure vertices. Then = o U I is the desired larger independent set. We
begin by estimating the number efpure vertices and the density of the graph that they span.

Lemma 8 Let (G, o) be chosen frorP(n, m), wherek = (1 — ¢)22n withe € [10Inlnd/Ind, 1]. Let
Q be the set of-pure vertices. Then with probability 1 — exp (—g) the following two statements hold.

1. LetN = |Q|. ThenN > (1 — o4(1))d*~!n.

2. LetM be the number of edges in the induced subgréfty]. ThenM < (1 + §)d*~'n, with
0<§<2d™/3.

Proof: Instead of working directly with the distributioRy (n, m), let us consider the following variant
P;.(n,m). First, choose aset C V of sizek uniformly at random. Then, constrict a graghby inserting
each of the(’}) — (%) possible edges that do not join two vertices-iwith probabilityp = m/((3) — (%))
independently.
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Thus, the number of edges @ is binomially distribution with meamn. Furthermore, given tha®’
has preciselyn edges, it is a uniformly random graph with this property inethy’ is an independent set.
Therefore, for any evend we have

Poinm) A = Ppium [AlE(G)] =m]
P [Bin ((3) = (5).p) = m]

where the last step follows from Stirling’s formula.

Now, let N’ be the number of’-pure vertices inG’. For each vertex ¢ o the number of neighbours
in o is binomially distributed with meakp. In effect,v is pure with probability(1 — p)*. Since these
events are mutually independent foralf o, N’ has a binomial distributioBin(n — &, (1 — p)*). Hence,
lettings = k/n = (1 — €) Ind/d, we have

=O(vVm) - Pp (nm) [Al, (57)

BN = <nk>a,z»kfv<1s)nexp(kp>ﬁd<1s)nexp[lf?SQ}
> (1—s)nexp[—ds(1+2s%)] >0.99nd"",

provided thatd is sufficiently big. Lettingy = d—/% = 04(1), we obtain from Theoreiid 5 (the Chernoff
bound)

P[N'<(1—vnd'] < exp {—nd5/3_1/4} <exp[—2n/d

for d large enough. Together with (567) this implies the first aaser
To prove the second assertion, we need an upper bouAd.o@nce more by the Chernoff bound,

P[N'>1+v)nd"'] < exp {—nds/gfl/S} < exp|[—2n/d] (58)

for d large enough. Le®) be the set 0&’-pure vertices irG’. Since each potential edge that does not link
two vertices ino’ is present inG’ with probabilityp independently, given the value &f the number\/’

of edges spanned ki is binomially distributed with mea(f\;)p. Therefore,

2,2 1262
1+'y)2n d . ndTi/Qk < 1—1—23'ynd28_1,
() - G)

provided thatl is large. Hence, by the Chernoff bound ad (58),

E[M'|N"<(1+y)nd] < (

P [M’ > (% + 27) nd28_1] < P [M’ > (% + 27) nd* N < (1 +y)nd!
+P [N > (1 +7)nd* "]
< exp [-nd* ' /8] + exp[-2n/d] < 2exp[-2n/d]  (59)
for d big. Finally, the second assertion follows fradml(57) dnd)(59 O

Proof of Theorem([3. Suppose that = (1 — ¢)nlnd/d. Let (G, o) be a pair chosen from the distribution

Pr(n,m). Let@ be the set ob-pure vertices and leV, M be as in LemmBl8. Crucially, gived, N, M,

the induced subgrapfi [@] is just a uniformly random graph oN vertices withM edges, because the

conditioning only imposes the absencept-edges. In other words; [Q] is nothing but a random graph

G(N, M). We are going to use this observation to show th&)] contains a large independent set w.h.p.
Let A be the eventthaV > (1 — 04(1))d* *n andM < (5 + 04(1))d**~'n. Then by Lemma@l8

Py [A] = 1= exp(—n/d). (60)
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Given A, the average degree 6f[Q)] is

D= % < (1+ Od(l))g = (1 +o0q(1))d".

d

Let B be the event that(G [Q]) > (2 — 04(1)) 2482 SinceG Q] is distributed a7 (N, M), Corollary(®
implies that

8n
P B|A] > 1— — . 61
Pr(n,m) [ |A] = exp ( €3d1H3 d) ( )
Combining [60) and{81) with Theordm 8, we thus get
Prty(nm) [ANB] =1 —o(1). (62)

Now assume that7, o) € AN B. Let I be the largest independent set®fQ]. Then

i = (1- od(l))Qda_Z—;ln(da) =(1- Od(l))QEilnd = (1 —o04(1)) fikg-

(63)

Sinceo U I is independent{(63) shows thats ((2 — 04(1))e/(1 — ), 0)-expandable. Thus, the assertion
follows from (62). O

7 Proof of Theorem[4

Leteq = 3lnlnd/Ind — 0. In this section we assume thiat= (1 + ¢)nlnd/dwithey < e <1 —gg4,
and thatd > d, for some large enough constalfagt > 0. Assuming thaty, 6 > 0 are reals such that

2(e —e4q)

> e and o<
vy d v+ 112

; (64)
we are going to showthatin a péé, o) chosen from the distributidy (n, m), o is not(~, §)-expandable.

To see why this is plausible, consider a p@i¥, o) chosen from the distributiof®;,(n, m). (The
following argument is not actually needed for our proof ofedhenmi¥; it is only included to facilitate
understanding.) Then for each verte¥ o theexpectechumber of neighbours af inside ofc is greater
thankd/n = (1 + ¢) Ind. Indeed, one could easily show that for each vertéxe number of neighbours
in o dominates a Poisson variali?e((1 + <) Ind). Hence, the probability thatis o-pure is bounded by
exp(—(1+¢)Ind) = d~°~1, and thus the expected numberepure vertices is< nd ==~ = o4(1) - k.
In effect, in order to expand significantly we would have to include some vertices thatraves-pure.
But each such vertex would ‘displace’ some other vertex feofny the very definition o&-pure). In fact,
most vertices that are netpure have several neighboursanand thus it seems impossible to expand
substantially without first removing a significant sharetsfiertices.

To actually prove Theoreid 4 we use a first moment argument. &inkoy analysing the planted
model.

Lemma 9 Withd > dy sufficiently large and:, v, § as above, we have

Pp, (n,m)lo is not (v, d)-expandablg > 1 — exp (73) .

Proof: Let s = k/n. For (G, o) chosen from the distributio®, (n, m), let X be the number of indepen-
dent sets such that

|7l = (1 +~y)kand|rNna| > (1 —d)k. (65)
The total number of ways to choose aset V satisfying [€b) is
k n—~k

= () (0 o) (©9
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(first choosg1 — 0)k vertices froms, then choose the remainify+ v)k — (1 — §)k = (v — 0)k vertices
from V' \ o). Furthermore, for any C V satisfying [€b) the probability of being independent is

o ((Z) = (5) = (") + ((125)k))/((§) - (5)) (67)

m m
Indeed, in order for both andr to be independent we have to forbid all edges that connectsévtices
in either set, and the number of potential such edgé§lis+ (7') — (17571) by inclusion/exclusion. This
explains the numerator ifiL{(67), and the denominator simgilects thatG is chosen randomly from all
graphs in whichy is independent.
Combining [66) and{87) and using the linearity of the exptaoh, we see that

E[X] = H-P. (68)

We are going to show th&@t [ X] and then apply Markov’s inequality to obtain the lemma.
We begin by estimating{ andP separately. FOH we get

w = (W) <@ (@)
exp [s [5(1ln5)+(7+5) <1+1n<ﬁ>)}n]

< expls[0(1—Ind)+ (y+9)(1—1In(y+0) —Ins)n].

As we assume that> Ind/d andy > ¢4 > 1/Ind andd > 0, we have—Ins < Ind and—In(y + §) <
Inlnd. Furthermore, the function — 2(1 — Inx) is monotonically increasing for < 1. Hence,
if v+0 < 1,thené(1 —Ind) < (v + ) (1 —In(y+0)). If, on the other handy + § > 1, then

d(1 —Ind) <1 <~ +94. Ineither case we obtain

1
—InH < s(y+9)(1+Inlnd—1Ind). (69)
n

With respect tdP, we have

£ - ((Z) - () - (“3)’“) + (“‘2‘”’“)>/<(Z) - (’5))
”ﬁl (5) = () - Tg”””‘)ﬂl ) =i _ <(Z) ~ () - (“?”"H(“Q‘”’“))m
=0 (3) = () -7
_ o<1>.(1—s2—<1+lv>2§+<1—6> s2)m:o(1>.(_s?(wf)@;—é))m

Sincem = dn/2 andd = (1 + ¢) Ind/d, the elementary inequality(1 — ) < —z yields

—1n5<62lln(1—s(’y+5)(2+’y §)) < —s(y+9) ( ) (14¢)Ind. (70)
n
Finally, plugging[(69) and (70) int@(68), we get fér> d, large enough

lhaE[X] = lln’;'-L—l—lhm‘)S s(y+9) [1+1nlnd—lnd— (1+7T_6) (1+5)lnd}
n n n

IN

s(y + 0) [1 +Inlnd — (5+ WT_‘S) 1nd}

s(y+9) [1 +Inlnd — 5—2‘1 In d} [by our assumptiori (64) and 4]

—s(y+9) [ases = 3Inlnd/Ind]
—seq < —1/d [asy > e ands > Ind/d].

IN

VANVAN

Thus, the assertion follows from Markov’s inequality. O

Theorenf # follows directly from Lemnid 9 and Theorgm 8.
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8 Proof of Corollary f

Letey — 0 slowly. Throughoutthis section we assume that

Ind Ind
(1 +5d)n7 0 < B[u(Gn,m),\)] < (275(1)117 ‘. (71)
The proof of Corollary 1l amounts to showing that the Metragpptocess can be “trapped” in a relatively
small group of independent sets and it escapes only aftex@onentially large number of steps. To be
more specific, let
K = {k: [E[(Gnm,N)] — k| < dn/d}. (72)

We show that J,. - S can be partitioned into disconnected parts, i.e. it is nssjide for the process
to move from one part to another without using independdstafesize much smaller than the minimum
k € K. However, we show that once the process gets to a “typicdépendent set i), .- Sy it will
need to wait for exponential time so as to escape by visitisigall independent set.

Before showing Corollari]1 we provide some auxiliary resufEhe following proposition shows that
for a given parametex the stationary distribution of the Metropolis process @nicates on a small range
of sizes of independent sets.

Proposition 5 With probability at leastl — 2 exp [—n/(2d? In* d)] the random grapl; = G(n,m) has
the following property.

For an independent st chosen from the stationary distribution of the Metropolisgess on
G we have
Pr{|Z] ¢ K] < exp(—n/d) (73)

(where in [ZB) probability is taken over the choiceZodnly).
The proof of Propositiofi]5 appears in Secfiod 8.1.

Lemma 10 W.h.p. the random grapty = G(n,m) has the following property. The sg}, ;- Sk (G)
admits a partition into class&$, . . . ,Cn such that the following three statements hold.

C1. The distance between any two independent sets in diffdesses is at least.

C2. For arandom sef chosen from the stationary distribution of the Metropolisqess we have

Pr(Z € ;] < 5exp (—n/(2d*In* d)) foreachi <i < N.

C3. Furthermore,Pr(Z € <,y Ci] > 1 — 5exp (—n/(2d*In* d)).

The proof of Lemm&7l0 appears in Section 8.2.

Proof of Corollary [1 Let K be as in[(7R) and assume th@t= G, ,, is such that J, . x Sk(G) has a

partitionCy, ..., Cy satisfyingC1-C3in LemmaID. We are going to show that the mixing time of the

Metropolis process exceedsp (n/d®). The proof is by contradiction. Thus, assume that the miing

of the Metropolis process iE < exp (n/d?). LetZ, be the state of the Metropolis process at tihe: (0).
Lett; = n?T andty = 2nT. SinceT is the mixing time, for anyt; < t < t, the distribution

of Z, is extremely close to the stationary distribution. Moregsely, if Z., chosen from the stationary

distribution, then for any € [¢1, t2] we have

1Tt = Zooly, < exp (—1%).

ThereforeC3 implies that for any € [t1, t2],

Pr [It ¢ U cz} < Pr {L,o ¢ U CZ-] + || T — Zncll,, < 6exp [-n/(2d* In* d)] .

1<i<N 1<i<N
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Applying the union bound, we get far> d, large enough

n n
<6oxp (——1 4 n/d®) <exp(——1— ). (74
= eXp( 2zmta )—eXp( 3d21n4d) (74)

In other words, we have shown that to get fr@m to Z,,, the Metropolis process very likely only passes
through independent sets frdm, ., ., Ci.

Most likely, the two independent sefs,, Z;, belong to different classes of the partiti6y, . . ., Cy,
because the time differen¢e — t; = n?T is much bigger than the mixing timg. Formally, if Z., is
chosen from the stationary distribution aindsuch thatZ;, € C;,, then byC2

Pridn<t<t,:Li¢ |J G
1<i<N

PZi, €Cy] < PlZoo €Cil+ | Zts—t, — Zoollyy < 2 exp(—n/(3d In*d)). (75)
Combining [7#) and{45), we thus get
Pr[3i,j € [N),i #j: T, € Ci ATy, €Cj] > 1 —exp(—n/(3d* In* d)). (76)

Thus, assume that there are two distingt € [N] such thatZ,, € C; andZ;, € C;. Lett > t; be the
first time thatZ, ¢ C;. Then by definition of the Metropolis procesBst(Z;,Z;—1) < 1. Consequently,
I, ¢ UleN C; because otherwise there would be two independent setsémetif classes at distance one.
Thus,

Pr(3i,j €[Ni#j T, €C;AT, €CI<Pr|3h<t<ty:T, ¢ ] G,
1<i<N

in contradiction to[(7¥) and (76). O

8.1 Proof of Proposition%

For a graplG, let
Rg(k,\) = |Sk(G)|A*.
It is easy to deduce from the definition of Metropolis prooges e.g.[[16]) that for any set of integets
it holds that
Pr(|Z| € Al o< Y Ra(k, N).
ke A
Therefore, we have

Zng.A Ra(k,A) < Zkg.A Ra(k,A)
Zk RG(kaA) - ZkEA RG(kvA)
Consider some\ that satisfied (71). Then, Propositidn 5 will follow by boimgiappropriately the right-

most ratio above, fod = K (as defined in[(42)) an@ being a typical instance @ (n, m).

Remark. Observe that when the graphis distributed as irf7(n, m) the quantityR; is a random variable
which dependsnly on the underlying graph.

Pr{z] ¢ Al (77)

Before proving the proposition we need some preliminaryltes With the parametek > 0 and the
expected degreein mind, for anyz € (0, 1) we define the following function:

fl@)=—(zlnz+ (1 —z)ln(l —2)) + Cgln(l —z%) +zln .

It is straightforward to verify that In E[R¢(k, \)] ~ fi(k/n). fx(z) is twice differentiable, as a matter
of fact it holds that
X

fAlz) = ln(lfx)—lnx—dl_trQJrln)\ (78)
Y - 1 1+ 22
@) = e Yoz (79)
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For any\ andz € (0,1) it holds thatf{'(z) < 0. Thatis, f{ (z) is strictly decreasing. Furthermore, if for
given ), d there exists;, € (0,1) such that

Zo i)
A exp (dl — xQ) , (80)

_17$0 0

then f1(zo) is a global maximum forfy. Sincef} () is strictly decreasing, for any giveri € (0,1) and
d, we can find unique, > 0 such thatf,,(x) is maximized when: = 2.

Claim 5 Takez, € (0,1) and let\ be such thaf (z) is maximized for: = x,. Then for any: such that
|x — 0| = t it holds that
1
In(x) < falzo) — §t2d-

Proof: From [79) it is easy to show that for any € (0, 1), it holds thatf{(z) < —d. Also, for any
x € (0,1) we can find appropriate € [(0, 1) such that

(x - 1}0)2 "

) = fA(fEO)ﬂL(J?—on)fi(l’O)JFT 1 (€)

(x — x0)
2

< falzo) — d, [as 4 (zo) = 0 and f{ (x) < —d]
as promised. O

Let \. be such thaf_ () is maximized forz = (1 + ¢) Ind/d.

Lemma 11 For ¢ € [eq, 1 — 4] andk = (1 + ¢)24p, it holds that
Pr RG(n,m) (ka )‘c) < exp <14n \/ In® d/d3> ’ E[RG(n,m)(ka )‘c)]:| < exp [*H/(de In* d)] :

Proof: The lemma follows directly from Propositi@nh 1. O

Lemma 12 For ¢ € [e4, 1 — 4], letk = (1 + ¢)2¢n and

Re = exp (14m/1n5 d/d3) B[R (n,m) (K, ).

It holds that

<exp(—n/(2d)).

Pr{ > R(K,\)>exp(—n/d)Re

k’:‘k—k’|>1'3"

Proof: Observe that for any integer< &’ < 2nInd/ditholds thatE[Rg (p m) (K, Ae)] = exp [f(K'/n)n + o(n)].
Since the functiorf, (z) is increasing for ever§ < x < (1+4c¢)Ind/d and decreasing fdil +c) Ind/d <
x < 1, for kg = k — 1.9n/d and sufficiently large: it holds that

E[R ko, A)] > E[Ren (A 81
[Re(nm) (Ko, ,)]_k/:‘k,g‘g.%/d{ [Rein,m) (K's Ac)] } (81)

Furthermore, using Claifd 5 we get that

E[RG(n,m)(kO; )‘c)] < E[RG(n,m) (k7 )‘c)] eXp (_% + 0(”)) : (82)
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LetQ == Zk’:|kfk’/‘>% R(kf’, )\C)' It h0|dS that

EQ = ) E[R(K\)
k| k—k! > 190
< nE[RG(n,m) (kOv )‘C)] [from (B1)]
1.8
< BlRagum (b A exp (-5 4 o). ffrom @) (83)
The lemma follows by applying Markov’s inequality. Thatfisy sufficiently larged it holds that
n
PriQzexp(-n/d)R] < Pr|Q=ElQlexp (55)] [from @3)]
< exp (_ﬁ) , [from Markov’s inequality]
as promised. O

Proof of Proposition[3: Letc € (4,1 — €4), foreq — 0.
Observe that quantity (G, A) for fixed A andG distributed as irG(n, m) is a random variable which

depends only on the gragh We are going to show that for. it holds that

Ind 1.95n

w(G(n,m),Ac) — (1 + C)TTL >

P

] < exp[—n/(2d)). (84)

Observe that once we have the above tail bound, the propo$itilows easily from Lemm@aZ2. In partic-
ular (82) implies that

\Ewcm,m), A= (140 2] < L9 e (2], (85)

Also, from LemmdIR and{T7) we have the following: Consider Ketropolis process with underlying
graphG(n, m) and parametex.. Then, with probability at leadt—exp(—n/(2d)) over the graph instances
G(n,m), if we chooseZ according to the stationary distribution of the Metropgliscess, then

PriZ ¢ K] < exp (—n/d), (86)

whereK = {keN: [k — (1+ c)2dn| < L9} The proposition follows fron{{85) anE(B6).

It remains to show[{84). By definition we have that for any fixgephdG it holds thatu (G, \) =
#A) Y op_q kRg(k,)\), whereZ(G,\) = >_;_; Ra(k,\). From Lemmd&IR we have that with proba-
bility at leastl — exp [—n/(2d)] over the graph instancés(n, m) it holds that

0< Z(G(n,m),Ae) = Y Ranm (ks Ae) < exp (—n/d) (Z R (s /\C)) (87)

keK keK

and

0< Y kRG(m) (ks Ae) = Y kRG(nm) (B, Ae) < mexp (—n/(2d)) (Z kR (nm) (ks A )) . (88)
k=0

keK keK

Combining [8Y) and (88) we get that with probability at lebstexp [—n/(2d)] overG(n,m) it holds that

keK

for somefr| < 2nexp(—n/(2d)). Then, itis elementary to verify that the summation on thesr.is a
convex combination of values d@fin K. That is, the summation is at mastax{k € K} and at least
min{k € K}. Then [84) follows. O
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8.2 Proof of Lemmal10
As in (52) let
Zag = {(G,O‘) € Ap(n,m) : |Sk(GQ)| > E|Sk(G(n,m))| - exp (—14n\/ln5 d/d3)} .
Lemma 13 Let (G, o) € Ai(n,m) be distributed as i/, (n, m), for k € K, whereK andu(G, \) are
as in [Z2) and[(ll), respectively. The §gt_ - Sx(G) admits a partition into classe&s, . . ., Cx such that
1. Prio € Ci|Zq4x] < exp[—n/(2d"?)], for anyi € [N]
2. Prlo & Uiev Cil Zak] < exp(—n/d)

3. The distance between two independent sets in differesges is at lealt.

Proof of Lemmal1Qd (Given Lemmd&1B):ConsideiG(n, m) and the Metropolis process with parameter
for X as in [71). Let the independent §ebe chosen according to the stationary distribution of tleeess.

Conditional thaZ| = k, Z is distributed uniformly at random 8 (G(n,m)), for anyk. For any
A c 2["] it holds that

PT[I € A|Zd_’k] PT[I S A|Zd7k, |I| S K] + PT[|I| ¢ K|Zd7k]

Ikneal)((Pr[I S A|Zd7k, |I| = k] + PT[|I| ¢ K|Zd7k].

<
<

the last inequality follows from the fact th&tr[Z € A|Z, 4, |Z| € K] is a convex combination dPr[Z €
A|Zq k., |Z| = j]for j € K. Also, it holds that

Pr(|Z| ¢ K|Zq4k] < PrilZ) ¢ K] <2Pr[|Z| ¢ K] [from Propositior 1]
) P?‘[Zd,k]
< dexp(—n/(2d*In* d)) [from Propositiorib].
Hence,
PriZ € A|Zqy] < max Pr(L € A|Zqy, |Z] = k] + 4exp (—n/(2d°In* d)) . (89)
€

Also, from the law of total probability we get that

PriT e Al < Pr[I e A|lZqx]+ PriZg,] [Z4 x is the complement o 4]
< PriT € A|Zg4) +exp (—n/(2d* In* d)) [from PropositiofL]
< max Pr(L € A|Zqy,|Z] = k] + 5exp (-n/(2d*In* d)) [from B9)]. (90)
€

The statemen€C; holds from the statement 3 in Lemral 13. Settihg= C; in (@0) and using State-
ment 1 from Lemmd_13, we get the stateméht. Similarly, statemenC; follows by settingA =

(Urex Sk) \ (Uie[N] Ci) in (@J) and using Statement 2 from Lemma 13. O

8.3 Proof of Lemmal13

Consider a uniform paiftG,o) € Ag(n,m), for somek € K. For fixed0 < 8 < 1, and|y| < 1,
let Zx 5., be the number of independent sets S14.)x(G) such thato N 7| = (1 — B)k. Also, for

0 < B1 < B < 1 consider3 = [B1, B2] and let the independent sete caIIed(ﬁ,y, 0)-goodif G has no
independent set such
o 7Sy =UL" L SH(G)

° (1—62)k<|0‘ﬂ7’|<(1—ﬁ1)k’
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while [{7" € Sk : (cN7") > (1 = B1)k}| < exp (—dn)|Sk(G)|.

Lemma 14 For (z) is as defined in statement of Propositidn 4 and k/n, it holds that

%ln EPk(n,m) [Zkﬁﬂ] < (B) +£(B,7v) +o(1),

where

§(x,y):s[—xln(1+y/x)+y(1flnsfhl($+y>>]+gln (152 2y + y? >

1—(142z—22?)s?

Proof: Let C V be such thatr| = (1 + )k and|oc N 7| = (1 — B)k. With application of in-
clusion/exclusion principle we get that the total numbegadphs withm edges in whichr and r are

independent sets equals
((Z) = () = (") + (“2")’“))_
m

SinceG is chosen uniformly at random among éﬁ@;t(;c)) graphs om vertices andn edges such that
is an independent set, we get that

P[r is independent

<(3) = () = ("M + (“‘f”“)) /<(3) - (’5))

T 6 = () = (M) + ()

-1 ()~ (5) i
(o)
(2) - (2)
(1+7)%K> = (1 - B)%k? "
< <1 . s n O(l/n)>
< 0(1)- <1 _ 2t 7)1 :3(21 =5 ) [ask = sn].

The total number of ways to choose a set of vertices size(1 + )k such thato N 7| = (1 — B)k is

equal to((l_’“B)k) ((W”J:ﬂ"”’)k). By the linearity of expectation, we get that

Bzl = o) ( ) (oA (o)
= o (ﬂkk) ' ((vngﬂk)k) ' (1 -8 +”f:§§ _B)Q)m
< o (5)" (L) (1 ety

< o). (E)ﬂk . (ﬁ)(wmk . (1 Y ) B)Q)M (1)

B v+ B 1—s?
By definition (see Propositidd 4), it holds that
Bk Bk 1 a2y dn/2
o= (5) (5) (-5 (92)

Combining [91) and{92) we get that

= (i) (o) (ratme) o
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since

(v+8)k Bk Bk ~k
(1—s)e (1—s)e _ (B (1—s)e
((7+ﬂ)8) / ((v+ﬂ)s) = (B-M) ((v+6)8) and

149)2-(1-p)? ) /2 -2\ "2 _ S
(1—52%) /(1_52%) - (1_82W) '

Taking the logarithm and dividing by the quantities in[(d3) we get the lemma. O

Lemma 15 There exist a constanl; > 0 ande; — 0 such that for alld > d, the following is true:
Suppose that = (1 + ¢)Ind/d, whereey < ¢ < 1 — ¢4, then forb = 20/ Ind we have that

P(b) < —18¢s (94)
supt(z) < —slns—(1—s)In(l —s)+ C§lln(1 — 5%) — 20s. (95)

z<b o

The lemma above states explicitly what is implied by the pofdrheoreni2. Thus, the proof of Lemma
[13 is exactly the same as the one of Thedrém 2.

Lemma 16 There ise; — 0 such that for(1 + e;)nInd/d < k < (2 — e4)nInd/d the following is true:
Fory =4/Ind, andé = 1/d*? there isg € [0, 1]? such that

Puk(n,m) [(Ga J) is (Ba Vs 5)'900qzk,d] >1- exp(fn/d)

Proof: Lete; = 100Inlnd/Ind. Assume thak = (1 + ¢) Ind/d for someq € [eq, 1 — €4]. Consider the
functionsy (z) andé(z, y) as defined in the statement of Lemima 14. In what follows take2% . Let

Hi(z) = Y(x) + ([%%g&&(ﬁ,p),

whereA = {(8, p) € [0,b] x [-v,7]|8 + p > 0}. Our choices fob and~ ensure that for anys, p) € A
it holds that

d 2 2
6.0 = sl-OI(1+ p/8) 4 p(1— s (3 )]+ i (1o 22
< s[=(B+p) (B +p) + BIn(B) + p(1 — Ins)] — dsp — ds?p” /2.
< s {2511?? +p(l—Ins— ds)} [~z Inxisincreasing fof < x < 1/eandS1n S < 0]
< s {25hiind —i—vqlnd] [ass = (1+¢)Ind/dandp > —9]
< 5gs [asq > 1001nInd/ Ind]. (96)

Using [96) and[(94), from Lemniall5, we get that
Hi(b) < —13¢s < —13001nInd/d. 97)
The function?{, (z) is continuous, therefore there exist> b; > 0 and( such that

sup Hp(f) < —1300Inlnd/d —C
b1 <B< P2

supHr(8) < —sln(s) — (1 —s)In(l —s) + C—llm(l —5%) =155 — (.
b>p 2

The last relation follows fronf(95), of Lemriall5 and](96).
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Let Uy, 4, 5, (G, 0), be the number of € Uijﬁi)k&(@ suchtha({l — b))k < |oN7| < (1 —by)k.
Then, Markov's inequality yields

PPk(n,m) [Wk7b17b2 > 0] < Epk(n,m) [‘Ijk-,bl-,bz] = Z Z Eka(”J”) [Zk,j/k,i/k]
icAjeB

whereA = [—4k/Ind, 4k/Ind] andB = [b1k, bok]. Using Lemm& T4 we get
ba<B<by

Pp, (n,m) [Pk by 6, > 0] < exp ln < sup H(B) + 0(1))] < exp(—10n/d). (98)

Let ¥y, (G, o) be the number of € UE:]EM S¢(G) such thate N 7| > (1 — by)k. Moreover, let

E[|Sk(G)|] exp (—n/d1'2)

= exp {n <slns —(1-=5)In(1—s)— gln(l — %) —n/d"?+ 0(1))} .

I

For the derivation in the second line, see in the proof of Ganp[I1. ForA’ = [-4k/Ind,4k/Ind] and
B’ =0, b1k), it holds that

IN

Ep, (n.m) [ Yr,b,] Ep,(n.m)[Zk,j ki k]
PPk(n,m)[\Ijk’,bl >M] x (n,m) < Z Z & ( )lu 3/ ki

K i€A’ jeB’

IN

%exp ln (sup H(B) + 0(1))] <exp(—15n/d).

B<by
The lemma follows by noting the following fér= 144/In° d/d3,

Puy(nm) [(G,0) is nOt(Bﬁ, 5)'900q3d,k] < Puenm) [Wrp > p0r Wiy b, > 01244

< (1 — 0(1))P77k(n,m) [\Ilkybl > por \Ilk,bl,bz > 0|Zd,k] - exp |:14n\/1n5 d/dg]
S exp(—n/d),
as claimed. O

Now, LemmdIB follows from the above lemma and by using arguswery similar to those in the proof
of Propositior 4.
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