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Abstract. We present a concentration result concerning random weighted projections in high
dimensional spaces. As applications, we prove
• New concentration inequalities for random quadratic forms.
• The infinity norm of most unit eigenvectors of a random ±1 matrix is of order O(

√
logn/n).

• An estimate on the threshold for the local semi-circle law which is tight up to a
√

logn factor.

1. Introduction

1.1. Projection of a random vector. Consider Cn with a subspace H of dimension d. Let
X = (ξ1, . . . , ξn) be a random vector. In all considerations in this paper, we assume that X is in
isotropic position, namely EX ⊗X = Id. The length of the orthogonal projection of X onto H is
an important parameter which plays an essential role in the studies of random matrices and related
areas.

In [26], Tao and the first author showed that (under certain conditions) this length is strongly
concentrated. In other words, the projection of X onto H lies essentially on a circle centered at the
origin. This fact played a crucial role in the studies of the determinant of a random matrix with
independent entries (see [26, 20]). We say that ξ is K-bounded if |ξ| ≤ K with probability 1.

Lemma 1.1 (Projection lemma, [26] ). Let X = (ξ1, . . . , ξn) be a random vector in Cn whose
coordinates ξi are independent K-bounded random variables with mean 0 and variance 1, where
K ≥ 10(E|ξi|4 + 1) for all i. Let H be a subspace of dimension d and ΠHX be the length of the
projection of X onto H. Then

P(|ΠHX −
√
d| ≥ t) ≤ 10 exp(− t2

20K2
).

The projection lemma follows from the Talagrand’s inequality ([17, Chapter 4]). The constants
10 and 20 are rather arbitrary. We make no attempt to optimize the constants in this paper.

Notation. We use standard asymptotic notations such as O, o,Θ, ω,� etc., under the assumption
that n→∞. For a vector X, ‖X‖ is its Euclidean norm and ‖X‖∞ its infinity norm. For a matrix

Key words and phrases. random weighted projections; random quadratic forms; infinity norm of eigenvectors; local
semi-circle law; random covariance matrix.
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2 V. VU AND K. WANG

A ∈ Cn×n, ‖A‖F and ‖A‖2 denote its Frobenius and spectral norm, respectively. All eigenvectors
have unit length.

1.2. Weighted projection lemmas. Let us fix an orthonormal basis {u1, . . . , ud} of H. We can
express ΠHX as

(1) ΠHX = (

d∑
i=1

|u∗iX|2)1/2.

In recent studies, we came up with situations when the roles of the axes are not compatible.

Formally speaking, one is required to consider a weighted version of (1) where (
∑d

i=1 |u∗iX|2)1/2 is

replaced by (
∑d

i=1 ci|u∗iX|2)1/2 with ci being non-negative numbers (weights).

We are able to prove a variant of Lemma 1.1 for this more general problem, which turns out to
be useful in a number of applications, some of which will be discussed in the paper. Furthermore,
we can also weaken the assumption on random vector X in various ways.

We say a random vector X = (ξ1, . . . , ξn) is K-concentrated (where K may depend on n) if there
are constants C,C ′ > 0 such that for any convex, 1-Lipschitz function F : Cn → R and any t > 0

(2) P(|F (X)−M(F (X))| ≥ t) ≤ C exp(−C ′ t
2

K2
),

where M(Y ) denotes the median of a random variable Y (choose an arbitrary one as there are
many).

Notice that the notion of K-concentrated is somewhat similar to the notion of threshold in random
graph theory in the sense that if X is K-concentrated then it is cK-concentrated for any constant
c > 0. (Similarly, if p(n) is a threshold for a property P (say, containing a triangle) then cp(n)
is also a threshold.) One can also replace the median by the expectation (see Lemma 2.1). The
dependence on K on the RHS of (2) is flexible (one can replace K2 by any function f(K)); however,
the quality of the concentration bound will depend on f(K) and we leave it as an exercise for the
reader to work out this dependence.

Examples of K-concentrated random variables

• If the coordinates of X are iid standard gaussian (real or complex), then X is 1-concentrated
(see [17]).
• If ξi are independent and ξi are K-bounded for all i, then X is K-concentrated (this is a

corollary of Talagrand’s inequality; see [17, Chapter 4] or [27, Theorem F.5]).
• If X satisfies the log-Sobolev inequality with parameter K2, then it is K-concentrated (see

[17, Theorem 5.3]).
• The coordinates ξi of X come from a random walk satisfying certain mixing properties

(see [25, Corollary 4]; in this corollary ‖Γ‖ plays the role of K). In this and the previous
example, the coordinates of X are not necessarily indepedent.

Lemma 1.2. Let X = (ξ1, . . . , ξn) be a K-concentrated random vector in Cn. Then there are
constants C,C ′ > 0 (which depend on, but could be different from the constants in (2)) such that
the following holds. Let H be a subspace of dimension d with an orthonormal basis {u1, . . . , ud}.
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Then for any 1 ≥ c1, . . . , cd ≥ 0

P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ C exp(−C ′ t
2

K2
).

In particular, by squaring, it follows that

(3) P

| d∑
j=1

cj |u∗jX|2 −
d∑
j=1

cj | ≥ 2t

√√√√ d∑
j=1

cj + t2

 ≤ C exp(−C ′ t
2

K2
).

Another way to weaken the K-bounded assumption is to consider truncation. If ξ is not bounded,
but has light tail, then by setting K appropriately, we can show that P(|ξ| ≥ K) is negligible with
respect to the probability bound we want to prove.

Assume that the ξi are independent with mean zero and variance one. Choose a number K > 1
and let ε1 := max1≤i≤nP(|ξi| > K). Set ξ′i := ξiI|ξi|≤K and let µi and σ2

i denote its mean and

variance. Set ε2 := max1≤i≤n |µi| and ε3 := max1≤i≤n |σ2
i − 1|. Assume all εj ≤ 1/2 (in practice

this assumption is satisfied easily).

Lemma 1.3. There are constants C,C ′ > 0 such that the following holds. Let X = (ξ1, . . . , ξn)
be a random vector in Cn whose coordinates ξi are independent random variables with mean 0 and
variance 1. Under the above notations, we have, for any 1 ≥ c1, . . . , cn ≥ 0 and any t > 0

(4) P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t+ 4n2K2(ε2 + ε3)

 ≤ C exp(−C ′ t
2

K2
) + nε1.

1.3. Concentration of random quadratic forms. Consider a quadratic form Y := X∗AX
where X = (ξ1, . . . , ξn) is, as usual, a random vector and A = (aij)1≤i,j≤n a deterministic matrix.
As application of the new projection lemmas, we prove a large deviation result for Y , which can
be seen as the quadratic version of the standard Chernoff bound.

Theorem 1.4 (Concentration of quadratic forms I). Let X be a K-concentrated random vector in
Cn. Then there are constants C,C ′ > 0 such that for any matrix A

(5) P(|X∗AX − trace(A)| ≥ t) ≤ C log n exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}).

Theorem 1.5 (Concentration of quadratic forms II). Let X and ε1, ε2, ε3 be as in Lemma 1.3.
There are constants C,C ′ > 0 such that the following holds. Assume n2K2(ε2 + ε3) = o(1), then

P(|X∗AX − trace(A)| ≥ t) ≤ C log n exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}) + nε1.

As an illustration, let us consider the case when ξi are sub-exponential. We say that ξ is sub-
exponential with exponent α > 0 (with accompanying positive constants a and b) if for any t > 0

P(|ξ −Eξ| ≥ tα) ≤ a exp(−bt).
Corollary 1.6 (Concentration of quadratic forms with sub-exponential variables). Assume that
ξi are independent and sub-exponential (with exponent α > 0) random variables with mean 0 and
variance 1. Then there are constants C,C ′ > 0 such that for any t satisfying

(6) t = ω((‖A‖F + logα n‖A‖2) logα+1 n),
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we have

(7) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′min{( t

‖A‖F
√

log n
)

1
α+1/2 , (

t

‖A‖2
)

1
2α+1 }).

Quadratic forms of random variables appear frequently in probability and the large deviation
problem has been considered by several researchers, with first and perhaps most famous result being
by Hanson-Wright inequality [14]. In many cases, our results improve earlier results significantly;
see Section 3 for more details.

1.4. Norm of random eigenvectors. Let Mn be a symmetric ±1 matrix (the upper diagonal
and diagonal entries are iid Bernoulli random variables taking values ±1 with probability 1/2).
This is an important object in both probabilistic combinatorics and the theory of random matrices.
Let u be an arbitrary unit eigenvector of Mn. We investigate the following natural question,

How big is ‖u‖∞ ?

A good bound on the infinity norm of the eigenvectors is important in spectral analysis of graphs
and many other applications, such as the studies of nodal domains (see for instance [7] and the
references therein). Recently, it plays a crucial role in breakthrough works concerning local statistics
of random matrices (see Section 1.5 and also [8, 31] for surverys).

Set Wn = 1√
n
Mn. Thanks to the classical Wigner’s semi-circle law (see Section 1.5), we know that

most of the eigenvalues of Wn belong to the interval (−2 + ε, 2− ε). Using our new concentration
results, we are able to obtain (what we believe to be) the optimal bound for the eigenvectors
corresponding to these eigenvalues.

Theorem 1.7 (Infinity norm of eigenvectors). Let Mn be a n × n symmetric matrix whose upper
diagonal entries are iid random variables that takes values ±1 with the same probability. Let
Wn = 1√

n
Mn. For any constant C1 > 0, there is a constant C2 > 0 such that the following holds.

• (Bulk case) With probability at least 1− n−C1, for any fixed ε > 0 and any 1 ≤ i ≤ n with
λi(Wn) ∈ [−2 + ε, 2− ε], there is a unit eigenvector ui(Wn) of λi(Wn) satisfying

‖ui(Wn)‖∞ ≤
C2 log1/2 n√

n
.

• (Edge case) With probability at least 1 − n−C1, for any ε > 0 and any 1 ≤ i ≤ n with
λi(Wn) ∈ [−2 − ε,−2 + ε] ∪ [2 − ε, 2 + ε], there is a unit eigenvector ui(Wn) of λi(Wn)
satisfying

‖ui(Wn)‖∞ ≤
C2 log n√

n
.

The best previous bound was of the form logC n
n1/2 for some large (usually not explicit) constant

C [9, 10, 11, 27]. We conjecture that the bound O(
√

log n/n) is sharp (it is easy to see that
this is the case if the entries are standard gaussian) and also that it holds for all eigenvectors.
Very recently, Rudelson and Vershynin [24] also studied the norm of random eigenvectors using a
geometric method, which is different from our approach discussed in Section 1.5.
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1.5. The local semi-circle law. Denote by ρsc the semi-circle density function with support on
[−2, 2],

(8) ρsc(x) :=

{
1

2π

√
4− x2, |x| ≤ 2

0, |x| > 2.

Let us recall the classical Wigner’s semi-circle law:

Theorem 1.8 (Semi-circular law). Let Mn be a random Hermitian matrix whose entries on and
above the diagonal are iid bounded random variables with zero mean and unit variance and Wn =

1√
n
Mn. Then for any real number x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi(Wn) ≤ x}| =

∫ x

−2
ρsc(y) dy

in the sense of probability, where we use |I| to denote the cardinality of a finite set I.

The key tool for bounding the infinity norm of an eigenvector is a statement of the following type:
any interval of length at least T (which tends to zero with n) in the spectrum [−2, 2] contains an
eigenvalue, with high probability. The quality of the bound will depend on how small T is. This
approach was developed by Erdős, Schlein and Yau in [9, 10, 11], leading to eigenvector norm bounds

of order n−2/3, n−3/4 and finally n−1+o(1). A simpler argument, following the same approach, was
developed by Tao and the first author in [27] (see [27, Section 4] for a problem concerning random
non-hermitian matrices).

One way to attack the above problem is to show that the semi-circle law holds for small intervals
(or at small scale). Intuitively, we would like to have with high probability that

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I and fixed δ > 0, where NI denotes the number of eigenvalues of Wn := 1√
n
Mn in

the interval I. Of course, the reader can easily see that I cannot be arbitrarily short (since NI is
an integer). Following [11], we call a statement of this kind a local semi-circle law (LSCL).

A natural question arises: how short can I be ? Formally, we say that the LSCL holds at a scale
f(n) if with probability 1− o(1)

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I in the bulk of length ω(f(n)) and any fixed δ > 0. Furthermore, we say that f(n)
is a threshold scale if the LSCL holds at scale f(n) but does not holds at scale g(n) for any function
g(n) = o(f(n)). (The reader may notice a similarity between this definition and the definition of
threshold functions for random graphs.) We would like to raise the following problem.

Problem 1.9. Determine the threshold scale (if exists).

We do not know a sharp estimate for the threshold for any matrix ensembles, even in the basic
GUE (random matrix with complex gaussian entries) and GOE (random matrix with real gaussian
entries) cases. A recent result by Ben Arous and Bourgade [1] shows that the maximum gap
between two consecutive (bulk) eigenvalues of GUE is of order Θ(

√
log n/n), with high probability.

Thus, if we partition the bulk into intervals of length α
√

log n/n for a sufficiently small α, one of
these intervals contains at most one eigenvalue. Therefore, we expect that in natural ensembles,
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the LSCL does not hold below the
√

log n/n scale. In [11, 29], upper bound of the form logC n/n
was proved for some large value of C. Here we are going to show

Theorem 1.10 (Threshold for local semi-circle law). Let Mn be a Hermitian matrix whose upper
diagonal entries are independent random variables with mean 0 and variance 1. Assume furthermore
that for 1 ≤ i ≤ n, the vectors Xi, obtained by deleting the i-th entry of the i-th row vector of M ,
are K-concentrated. Then the threshold scale for LSCL is bounded from above by K2 log n/n.

In the GUE case, the gap between the upper and lower bound is only O(
√

log n) and it is an
intriguing problem to remove this factor. We also conjecture that Ben Arous and Bourgade’s result
on the largest gap holds for ±1 random matrices.

The results of Section 1.4 and Section 1.5 also hold for random sample covariance matrices. We
sketch the results and proofs in the appendices.

Structure of the paper. In the next section, we prove the new projection lemmas. In Section 3,
we prove the new concentration inequalities for quadratic forms and make a comparison with prior
results. The next section, Section 4 can be seen as a preparation step in which we recall facts about
random matrices. We prove the new threshold for the local semi-circle law in Section 5, and the
bound on the infinity norm of eigenvectors in Section 6. The appendices contain proofs concerning
random sample covariance matrices.

Acknowledgement. The authors would like to thank the anonymous referees for their careful
reading and constructive suggestions.

2. Proofs of Lemmas 1.2 and 1.3

Proof of Lemma 1.2. Set f(X) :=
√∑d

j=1 cj |u∗jX|2. Thus, f is a function from Cn to R.

We first observe that f(X) is convex. Indeed, for 0 ≤ λ, µ ≤ 1 with λ+µ = 1 and any X,Y ∈ Cn,
by Cauchy-Schwardz inequality,

f(λX + µY ) ≤

√√√√ d∑
j=1

cj(λ|u∗jX|+ µ|u∗jY |)2

≤ λ

√√√√ d∑
j=1

cj |u∗jX|2 + µ

√√√√ d∑
j=1

cj |u∗jY |2 = λf(X) + µf(Y ).

Next, we show that f(X) is 1-Lipschitz. Notice that f(X) ≤
√∑d

j=1 |u∗jX|2 ≤ ‖X‖. Since f(X)

is convex, one has

1

2
f(X) = f(

1

2
X) = f(

1

2
(X − Y ) +

1

2
Y ) ≤ 1

2
f(X − Y ) +

1

2
f(Y ).

Thus f(X)− f(Y ) ≤ f(X − Y ) and f(Y )− f(X) ≤ f(Y −X) = f(X − Y ), which imply

|f(X)− f(Y )| ≤ f(X − Y ) ≤ ‖X − Y ‖.
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Thus, by the definition of K-concentrated property,

(9) P(|f(X)−M(f(X))| ≥ t) ≤ C exp(−C ′ t
2

K2
)

for some constants C,C ′ > 0.

To conclude the proof, it suffices to show |M(f(X)) −
√∑d

j=1 cj | = O(K). We use the following

lemma. The proof of the lemma is classical and thus omitted.

Lemma 2.1. Let Y be a real random variable. Assume P(|Y −µ| ≥ t) ≤ f(t), where
∫∞

0 f(x)dx =

O(1), then |EY − µ| = O(1). Assume furthermore that Y is non-negative, µ ≥ 0, σ =
√
EY 2, and∫∞

0 xf(x)dx = O(1), then |EY − σ| = O(1).

To apply this lemma, set c′i := ci
max1≤i≤d ci

, Y := 1
K

√∑d
i=1 c

′
i|u∗iX|2 and µ := M(Y ). We have, by

the K-concentration property

P(|Y − µ| ≥ t) = P(|

√√√√ d∑
i=1

c′i|u∗iX|2 −M(

√√√√ d∑
i=1

c′i|u∗iX|2)| ≥ tK) ≤ C exp(−C ′t2).

Set f(x) = C exp(−C ′x2). The assumptions on f(x) in Lemma 2.1 are trivially satisfied. As X is

isotropic, σ2 = EY 2 = 1
K2

∑d
i=1 c

′
i. It follows from Lemma 2.1 that

M(Y ) =
1

K

√√√√ d∑
i=1

c′i +O(1).

Renormalizing, we obtain

M(

√√√√ d∑
i=1

ci|u∗iX|2) =

√√√√ d∑
i=1

ci +O(K
√

max
1≤i≤d

ci),

which concludes the proof of Lemma 1.2.

Proof of Lemma 1.3. Recall that ξ′i = ξiI|ξi|≤K has mean µi and variance σ2
i . The parameters

ε1 = max1≤i≤nP(|ξi| > K), ε2 = max1≤i≤n |µi| and ε3 = max1≤i≤n |σ2
i − 1| satisfy all εj ≤ 1/2.

Define ξ̃i :=
ξ′i−µi
σi

. The ξ̃i are independent with mean zero and variance 1 and are 2K-bounded.

Let X ′ := (ξ′1, . . . , ξ
′
n) and X̃ := (ξ̃1, . . . , ξ̃n). It is obvious that

P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ P

|
√√√√ d∑

j=1

cj |u∗jX ′|2 −

√√√√ d∑
j=1

cj | ≥ t

+ nε1.

The next observation is that if ε2, ε3 are small, then
∑

1≤i≤d ci|u∗iX ′|2 and
∑

1≤i≤d ci|u∗i X̃|2 are
more or less the same. By definition, we have with probability one

|ξ′i − ξ̃i| = |
ξ′i(σi − 1) + µi

σi
| ≤ 2(Kε3 + ε2).



8 V. VU AND K. WANG

It follows that D := X ′− X̃ has norm at most 2n1/2(Kε3 +ε2) with probability one. On the other
hand, ∣∣∣ ∑

1≤i≤d
ci|u∗iX ′|2 −

∑
1≤i≤d

ci|u∗i X̃|2
∣∣∣ ≤ 2

∑
1≤i≤d

ci|u∗iX ′i||u∗iD|+
∑

1≤i≤d
ci|u∗iD|2.

As ui are unit vectors, |u∗iX ′i| ≤ ‖X ′i‖ ≤
√
nK and |u∗iDi| ≤ ‖Di‖ ≤ 2

√
n(Kε2 + ε3) (these bounds

are generous and can be improved by a polynomial factor in certain cases, but in applications such
improvement rarely matters). It follows, again rather generously,

|
∑

1≤i≤d
ci|u∗iX ′|2 −

∑
1≤i≤d

ci|u∗i X̃|2| ≤ 4n
d∑
i=1

ciK
2(ε2 + ε3) ≤ 4n2K2(ε2 + ε3).

Applying Lemma 1.2 for X̃, we obtain Lemma 1.3.

In practice, εj are typically super-polynomially small, i.e. n−ω(1), which yields 4n2K2(ε2 + ε3) =
o(1). This term can be ignored (by slightly changing the values of C,C ′ if necessary) and we end
up with a more friendly inequality

(10) P(|

√√√√ d∑
j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t) ≤ C exp(−C ′ t
2

K2
) + nε1.

In the sub-exponential case, for a sufficiently large K (compared to a and b), εj ≤ exp(− b
2K

1/α)

for j = 1, 2, 3. For K = ω(logα n), n2K2 exp(− b
2K

1/α) = o(1) and (10) yield

(11) P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ C exp(−C ′ t
2

K2
) + n exp(− b

2
K1/α).

3. Random Quadratic Forms

3.1. Proofs of new results. Let us first prove Theorem 1.4. Notice that if Y = X∗AX, then
Y + Ȳ = X∗(A+A∗)X and Y − Ȳ = X∗(A−A∗)X. Since

Y − traceA =
1

2
[(Y + Ȳ )− trace(A+A∗)] +

1

2
[(Y − Ȳ )− trace(A−A∗)],

we have

P(|Y −traceA| ≥ t) ≤ P(|(Y +Ȳ )−trace(A+A∗)| ≥ t)+P(|
√
−1(Y −Ȳ )−trace(

√
−1(A−A∗))| ≥ t).

Moreover, as ‖A+A∗‖F , ‖A−A∗‖F = O(‖A‖F ) and ‖A+A∗‖2, ‖A−A∗‖2 = O(‖A‖2), it suffices
to prove the theorem in the case A is Hermitian.

Next, we observe that any Hermitian matrix A can be written as A := A1 − A2 where Ai are
positive semi-definite and maxi=1,2 ‖Ai‖2 ≤ ‖A‖2,maxi=1,2 ‖Ai‖F ≤ ‖A‖F . (In fact, the positive
eigenvalues of A1 are the positive eigenvalues of A and the positive eigenvalues of A2 are the absolute
values of the negative eigenvalues of A.) This enables us to further reduce the problem to the case
when A is positive semi-definite.
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Finally, as the content of the theorem is invariant under scaling, we can assume that ‖A‖2 = 1.
Let 1 = c1 ≥ c2, . . . , cn ≥ 0 be the eigenvalues of A together with corresponding orthonormal
eigenvectors {u1, . . . , un}. We have

(12) X∗AX − trace(A) =

n∑
j=1

cj |u∗jx|2 −
n∑
j=1

cj .

This is precisely the setting of the projection lemmas. By Lemma 1.2, we know that for any
numbers 0 ≤ dj ≤ 1, j ∈ J ,

(13) P(|
∑
j∈J

dj |u∗jX|2 −
∑
j∈J

dj | ≥ 2t

√∑
i

di + t2) ≤ C exp(−C ′K−2t2).

However, it is somewhat wasteful to apply this directly to (12). We will perform an extra partition
step. Set

Jk := {1 ≤ j ≤ n :
1

4k+1
≤ cj ≤

1

4k
}, 0 ≤ k ≤ k0 := 10 log n,

and let Jk0+1 be the collection of the remaining indices.

For each 0 ≤ k ≤ k0 + 1, apply Lemma 1.2 to di := 4kci, ci ∈ Jk, we have, for any s ≥ 0

P(|
∑
i∈Jk

4kci(|u∗iX|2 − 1)| ≥ 2s

√∑
i∈Jk

4kci + s2) ≤ C exp(−C ′K−2s2).

Set s := t
‖A‖F and simplify by 4k, the above inequality becomes

P(|
∑
i∈Jk

ci(|u∗iX|2 − 1)| ≥ 2t

2k‖A‖F

√∑
i∈Jk

ci +
t2

4k‖A‖2F
) ≤ C exp(−C ′K−2 t2

‖A‖2F
).

Apparently,
∑k0+1

k=0
t2

4k‖A‖2F
≤ 2 t2

‖A‖2F
. Moreover,

∑
i∈Jk0+1

ci ≤ n× n−5 = n−4 and

∑
0≤k≤k0

2−k
√∑
i∈Jk

ci ≤ k
1/2
0 (

k0∑
k=0

4−k
∑
i∈Jk

ci)
1/2

≤ 8 log1/2 n(

k0∑
k=0

∑
i∈Jk

c2
i )

1/2

≤ 8 log1/2 n‖A‖F ,

by Cauchy-Schwartz inequality.

Putting the above estimates together and using the union bound, we obtain

P(|
n∑
i=1

ci(|u∗iX|2 − 1)| ≥ 16 log1/2 nt+ 2
t2

‖A‖2F
+ n−2) ≤ C log n exp(−C ′K−2 t2

‖A‖2F
).

We can ignore the small term n−2 (by slightly adjusting the constant 16), the desired bound
follows.
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Remark 3.1. If we have more information about A, the log n term can be improved. For instance,
if all eigenvalues of A are comparable, then we do not need this term.

The proof of Theorem 1.5 uses Lemma 1.3 and is left as an exercise. To prove Corollary 1.6, notice
that we can obtain an analogue of (11)

(14) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}) + n exp(− b

2
K1/α),

under the assumption that K = ω(logα n).

To optimize the bound, we choose K such that K−2 min{ t2

‖A‖2F logn
, t
‖A‖2 } = K1/α. This leads to

setting K := min{( t
‖A‖F

√
logn

)
2

2+1/α , ( t
‖A‖2 )

1
2+1/α }. Assume

(15) t = ω((‖A‖F + logα n‖A‖2) logα+1 n).

This assumption guarantees K = ω(logα n). It also implies n exp(− b
2K

1/α) ≤ exp(− b
3K

1/α),
proving Corollary 1.6.

3.2. Comparison to earlier results. In 1971, Hanson and Wright [14] obtained the first impor-
tant inequality for sub-gaussian random variables.

Theorem 3.2 (Hanson-Wright inequality). Let X = (ξ1, . . . , ξn) ∈ Rn be a random vector with ξi
being iid symmetric and sub-gaussian random variables with mean 0 and variance 1. There exist
constants C,C ′ > 0 such that the following holds. Let A be a real matrix of size n with entries aij
and B := (|aij |). Then

(16) P(|XTAX − trace(A)| ≥ t) ≤ C exp(−C ′min{ t2

‖A‖2F
,

t

‖B‖2
})

for any t > 0.

Later, Wright [34] extended Theorem 3.2 to non-symmetric random variables. Recently, Hsu,
Kakade and Zhang [16] showed that one can obtain a better upper tail (notice that ‖B‖2 is replaced
by ‖A‖2)

(17) P(XTAX − trace(A) ≥ t) ≤ C exp(−C ′min{ t2

‖A‖2F
,

t

‖A‖2
})

under a considerably weaker assumption (which, in particular, does not require the ξi to be in-
dependent). On the other hand, their method does not cover the lower tail. Let us pause here
to point out a strong distinction from the linear case and the quadratic case: In the linear case
(Chernoff type bounds), the lower tail follows from the upper tail by simply switching ξi to −ξi,
but this trick is useless in the quadratic case. Recently, Rudelson and Vershynin [23] proved the
Hanson-Wright inequality

(18) P(|XTAX − trace(A)| ≥ t) ≤ C exp(−C ′min{ t2

‖A‖2F
,

t

‖A‖2
}),

assuming ξi are sub-gaussian.

In the previous papers, the random variables ξi are required to be real. Few years ago, motivated
by the delocalization problem for random matrices, Erdős, Schlein and Yau [11] considered the
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complex case. By assuming either both the real and imaginary parts of ξi are iid sub-gaussian or
the distribution of ξi is rotationally symmetric (real and imaginary parts still sub-gaussian), they
proved

(19) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′ t

‖A‖F
).

Later, Erdős, Yau and Yin [13] showed that if ξi are independent sub-exponential random variables
with exponent α > 0, having mean 0 and variance 1, then

(20) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′( t

‖A‖F
)

1
2+2α ).

To simplify the comparison, let us ignore the log n terms in our theorems (which play little role
in practice). If K = O(1), then the main difference between Theorem 3.2 of Hanson and Wright
and Theorem 1.4 is that the term ‖B‖2 in Theorem 3.2 is now replaced by ‖A‖2. It is easy to see
that ‖B‖2 ≥ ‖A‖2 for any real matrix A. In fact, in many cases, ‖B‖2 is significantly larger than
‖A‖2. For instance, a random matrix A with entries of order 1 typically has spectral norm of order√
n, but in this case it is clear that ‖B‖2 has spectral norm of order n (as all row sums are of this

order). The same holds for several classical explicit matrices, such as the Hadamard matrix. In
these cases, our bound improves Hanson-Wright’s significantly. Furthermore, our result applies in
the complex case while the approach used by Hanson and Wright is restricted to the real case.

Comparing to (19), we do not need the fairly restricted assumption that either both the real and
imaginary parts of ξi are iid sub-gaussian or the distribution of ξi is rotationally symmetric. In the

case K = O(1), both terms t2

‖A‖2F logn
and t

‖A‖2 in our bound can be considerably larger than t
‖A‖F .

For instance, t
‖A‖2 and t

‖A‖F differ by a factor
√
n in both the random and Hadamard cases.

In order to make a Hanson-Wright type bound non-trivial, we need to assume t ≥ ‖A‖F +‖A‖2. In
many applications, we want the probability bound to be polynomially or even super-polynomially
small, i.e. n−O(1) or n−ω(1). This requires a lower bound logΩ(1) n(‖A‖F + ‖A‖2) on t, which is
consistent with the assumption (6) in Corollary 1.6.

Notice that (7) compares favorably to (20). For the term t
‖A‖F , the exponent 1

α+1/2 is superior to
1

2α+2 (notice that we are talking about a double exponent, so an improvement here could improve

the quality of the bound quite a lot). For the term t
‖A‖2 , the exponent 1

2α+1 is still better than
1

2α+2 . Furthermore, ‖A‖2 can be significantly smaller than ‖A‖F , as discussed earlier.

4. Random matrices and the Stieltjes transform

This section serves as a preparation, in which we recall several facts about random matrices. The
empirical spectral distribution (ESD) function of the n × n Hermitian matrix Wn := 1√

n
Mn =

1√
n

(ζij)1≤i,j≤n is a one-dimensional function

FWn(x) =
1

n
|{1 ≤ j ≤ n : λj(W ) ≤ x}|,

where |I| denotes the cardinality of a set I. We are going to focus on the case when the entries of
Mn are K-bounded; it is easy to extend this assumption to K-concentrated.
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The Stieltjes transform of a real measure µ(x) is defined for any complex number z not in the
support of µ as

s(z) =

∫
R

1

x− z
dµ(x).

Thus, the Stieltjes transform sn(z) of Wn is

sn(z) =

∫
R

1

x− z
dFWn(x) =

1

n

n∑
i=1

1

λi(Wn)− z
.

Furthermore, the Stieltjes transform ssc(z) of the semi-circle distribution is

ssc(z) :=

∫
R

ρsc(x)

x− z
dx =

−z +
√
z2 − 4

2
,

where
√
z2 − 4 is the branch of square root with a branch cut in [−2, 2] and asymptotically equals

z at infinity [4].

The beauty (and power) of the Stieltjes transform lies in the fact that it has a clear linear algebra
content; sn(z) of Wn is exactly the trace of the matrix (Wn− zI)−1. This allows us to compute the
Stieltjes transform by looking at the diagonal entries of (Wn − zI)−1. In matrix theory, Stieltjes
transform plays the role Fourier transform in analysis. If the Stieltjes transforms of two spectral
measures are close to each other (for all z), then the two measures are more or less the same. In
particular, if sn(z) is close to ssc(z), then the spectral distribution of Wn is close to the semi-circle
distribution (see for instance [4, Chapter 11], [10]). We are going to use the following lemma.

Lemma 4.1. Let Mn be a random Hermitian matrix with independent K-bounded entries with
mean 0 and variance 1. Let 1/n < η < 1/10 and L, ε, δ > 0. For any constant C1 > 0, there exists
a constant C > 0 such that if one has the bound

|sn(z)− ssc(z)| ≤ δ
with probability at least 1− n−C uniformly for all z with |Re(z)| ≤ L and Im(z) ≥ η, then for any
interval I in [−L+ ε, L− ε] with |I| ≥ max(2η, ηδ log 1

δ ), one has

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

This is [29, Lemma 64], which, in turn, is a variant of [10, Corollary 4.3].

An appropriate application of Lemma 4.1 will imply Theorem 1.10. (As a matter of fact, we a
going to prove a little bit more.) In order to use this lemma, we set L = 4, ε = 1, and critically

η :=
K2C2 log n

nδ6
,

where C = C1 + 104. We are going to show that

(21) |sn(z)− ssc(z)| = o(δ)

holds with probability at least 1−n−C for any fixed z in the region {z ∈ C : |Re(z)| ≤ 4, Im(z) ≥ η}.
Notice that in this statement we fix z. However, it is simple to strengthen the statement to hold for
all z, using an ε-net argument, exploiting the fact that sn(z) is Lipschitz continuous with Lipschitz
constant O(n2) (for details, we refer to [9, Theorem 1.1] or [29, Section 5.2]).
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In order to show that sn(z) is close to ssc(z), the key observation is that ssc(z) can also be defined
by the equation

(22) ssc(z) = − 1

z + ssc(z)
.

This equation is stable, so if we can show sn(z) ≈ − 1
z+sn(z) then it follows that sn(z) ≈ ssc(z).

This observation was due to Bai et al. [2], who used it to prove the n−1/2 rate of convergence of
sn(z) to ssc(z). In [9, 10, 11], Erdős et al. refined Bai’s approach to prove local semi-circle law at

scales finer than n−1/2, ultimately to n−1 logC n [10]. Our main contribution here is to push the
scale further down to n−1 log n, which we believe is (at most) a factor

√
log n from the truth.

Recall that sn(z) is the trace of (Wn − zI)−1. By computing the diagonal entires, one can show
(see [4, Chapter 11], [10] or [29, Lemma 39])

(23) sn(z) =
1

n

n∑
k=1

1

− ζkk√
n
− z − Yk

,

where

Yk = a∗k(Wn,k − zI)−1ak

and Wn,k is the matrix Wn with the k-th row and column removed, and ak is the k-th row of Wn

with the k-th element removed.

The entries of ak are independent of each other and of Wn,k, and have mean zero and variance
1/n. By linearity of expectation we have

E(Yk|Wn,k) =
1

n
trace(Wn,k − zI)−1 = (1− 1

n
)sn,k(z)

where

sn,k(z) :=
1

n− 1

n−1∑
i=1

1

λi(Wn,k)− z

is the Stieltjes transform of Wn,k. From the Cauchy interlacing law, we can get

|sn(z)− (1− 1

n
)sn,k(z)| = O(

1

n

∫
R

1

|x− z|2
dx) = O(

1

nη
) = o(δ2)

and thus

E(Yk|Wn,k) = sn(z) + o(δ2).

The heart of the matter now is the following concentration result.

Lemma 4.2. Let Mn be as in Lemma 4.1. For 1 ≤ k ≤ n, Yk = E(Yk|Wn,k) + o(δ2) holds with

probability at least 1−O(n−C) for any z with |Re(z)| ≤ 4 and Im(z) ≥ η.

To prove this lemma, we are going to make an essential use of the weighted projection lemma, as
showed in the next section.



14 V. VU AND K. WANG

5. Proof of Lemma 4.2 and Threshold of the Local Law

We are going to prove Lemma 4.2 and the following more quantitative version of Theorem 1.10.

Theorem 5.1. For any constants ε, δ, C1 > 0, there is a constant C2 > 0 such that the following
holds. Let Mn be a Hermitian matrix whose upper diagonal entries are independent random vari-
ables with mean 0 and variance 1. Assume furthermore that for 1 ≤ i ≤ n, the vectors Xi, obtained
by deleting the i-th entry of the i-th row vector of Mn, are K-concentrated. Then with probability
at least 1− n−C1, we have

|NI − n
∫
I
ρsc(x) dx| ≤ δn

∫
I
ρsc(x) dx,

for all interval I ⊂ (−2 + ε, 2− ε) of length at least C2K
2 log n/n.

First, we record a lemma that provides a crude upper bound on the number of eigenvalues in short
intervals.

Lemma 5.2. Let Mn be a random Hermitian matrix with independent K-bounded entries with
mean 0 and variance 1. For any constant C1 > 0, there exists a constant C2 > 0 such that for any

interval I ⊂ R with |I| ≥ C2K2 logn
n ,

NI � n|I|
with probability at least 1− n−C1.

This lemma is Proposition 66 in [29], which is a variant of [11, Theorem 5.1]. Notice that

(24) Yk = a∗k(Wn,k − zI)−1ak =
n−1∑
j=1

|uj(Wn,k)
∗ak|2

λj(Wn,k)− z
=

1

n

n−1∑
j=1

|uj(Wn,k)
∗Xk|2

λj(Wn,k)− z
,

where Xk =
√
nak is the k-th row of Mn with the k-th element removed. Note that the entries of

Xk are independent with mean 0 and variance 1. Therefore,

(25) |Yk −E(Yk|Wn,k)| =
1

n
|
n−1∑
j=1

|uj(Wn,k)
∗Xk|2 − 1

λj(Wn,k)− z
| = 1

n
|
n−1∑
j=1

Rj

λj(Wn,k)− x−
√
−1η
|,

where Rj := |uj(Wn,k)
∗Xk|2 − 1. By symmetry, we can restrict the sum to those indices j where

λj(Wn,k)− x ≥ 0.

Let J be the set of indices j such that 0 ≤ λj(Wn,k)− x ≤ η. Since x = Rez, η = Imz, we have

1
n |
∑

j∈J
Rj

λj(Wn,k)−x−
√
−1η
|

≤ 1
n |
∑

j∈J
λj(Wn,k)−x

(λj(Wn,k)−x)2+η2
Rj |+ 1

n |
∑

j∈J
η

(λj(Wn,k)−x)2+η2
Rj |

≤ 1
nη |
∑

j∈J
(λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
Rj |+ 1

nη |
∑

j∈J
η2

(λj(Wn,k)−x)2+η2
Rj |.

Consider the sum S1 := |
∑

j∈J
(λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
Rj |. As 0 ≤ (λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
≤ 1, we are in position

to apply Lemma 1.2. Taking t = C4K
√

log n with a sufficiently large constant C4, by (3) we have

S1 ≤
C4

nη
(2K

√
|J | log n+ C4K

2 log n)
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with probability at least 1 − C exp(−C ′C2
4 log n) ≥ 1 − n−C4/2. By Lemma 5.2, |J | ≤ Bnη with

probability at least 1− n−C4 , for some sufficiently large constant B > 0. Recall η :=
K2C2

3 logn
nδ6

; it

follows that with probability at least 1− 2n−C4/2 we have

S1 ≤ C4C
−1
3 δ3(2

√
B + C4C

−1
3 δ3).

Thus, for C3 sufficiently large compared to C4 and B, we have S1 ≤ δ3. Similarly, we can prove

the same bound for S2 := 1
nη |
∑

j∈J
η2

(λj(Wn,k)−x)2+η2
Rj |.

For the other eigenvalues, we divide the real line into small intervals. For integer l ≥ 0, let Jl be
the set of eigenvalues λj(Wn,k) such that 10lη < λj(Wn,k) − x ≤ 10l+1η. The number of such Jl
is at most 20 log n. By Lemma 5.2 one has, |Jl| ≤ 9B10lnη with probability at least 1− n−C4 , for
some sufficiently large constant B > 0. Again by Lemma 1.2 (taking t = KC4

√
log n),

1

n
|
∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
|

≤ 1

n
|
∑
j∈Jl

λj − x
(λj − x)2 + η2

Rj |+
1

n
|
∑
j∈Jl

η

(λj − x)2 + η2
Rj |

≤ 1

10lnη
|
∑
j∈Jl

10lη(λj − x)

(λj − x)2 + η2
Rj |+

1

102lnη
|
∑
j∈Jl

(10lη)2

(λj − x)2 + η2
Rj |

≤ 2C4K

10lnη
(2
√
|Jl|
√

log n+KC4 log n)

≤ δ3BC4C
−1
3 10−l/2+2

with probability at least 1− 2C exp(−C ′C2
4 log n)− n−C4 ≥ 1− n−C4/2.

Summing over l, we have

1

n
|
∑
l

∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
| ≤ 200C4C

−1
3 Bδ3 ≤ δ3

with probability at least 1−n−C4/2+1, for C3 sufficiently large. This completes the proof of Lemma
4.2.

Inserting the bounds into (23), one has

sn(z) +
1

n

n∑
k=1

1

sn(z) + z + o(δ2)
= 0

with probability at least 1 − O(n−C). The term |ζkk/
√
n| = o(δ2) as |ζkk| ≤ K by assumption.

Comparing this equation with (22), one can use a continuity argument (see [28] for details) to
obtain |sn(z)− s(z)| ≤ δ with probability at least 1−O(n−C+100).

By Lemma 4.1, it follows that for random matrices Mn with K-bounded entries, for any constant
C1 > 0, there exists a constant C2 > 0 such that for 0 ≤ δ ≤ 1/2 and any interval I ⊂ (−3, 3) of
length at least C2K

2 log n/nδ8,

(26) |NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

holds with probability at least 1− n−C1 . In particular, Theorem 5.1 follows.
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6. The infinity norm of eigenvectors

We prove Theorem 1.7 in the following more general form.

Theorem 6.1 (Optimal infinity norm of eigenvectors). Let Mn be a Hermitian matrix whose upper
diagonal entries are independent random variables with mean 0 and variance 1. Further assume
that for any index 1 ≤ i ≤ n, the vector Xi, obtained by deleting the i-th entry of the i-th row vector
of Mn, is K-concentrated. Let Wn = 1√

n
Mn. Then for any constant C1 > 0, there is a constant

C2 > 0 such that the following holds.

• (Bulk case) With probability at least 1 − n−C1, for any ε > 0 and any 1 ≤ i ≤ n with
λi(Wn) ∈ [−2 + ε, 2− ε] there is a unit eigenvector ui(Wn) of λi(Wn) satisfying

‖ui(Wn)‖∞ ≤
C2K log1/2 n√

n
.

• (Edge case) With probability at least 1 − n−C1, for any ε > 0 and any 1 ≤ i ≤ n with
λi(Wn) ∈ [−2 − ε,−2 + ε] ∪ [2 − ε, 2 + ε], there is a unit eigenvector ui(Wn) of λi(Wn)
satisfying

‖ui(Wn)‖∞ ≤
C2K

2 log n√
n

.

We give here the proof of the first part of Theorem 6.1. The proof of the second part is somewhat
different and deferred to the appendix. With the threshold for local semi-circle law, we are able to
derive the eigenvector delocalization results thanks to the next lemma.

Lemma 6.2 (Eq (4.3), [9] or Lemma 41, [29]). Let

Wn =

(
a Y ∗

Y Wn−1

)

be an n× n Hermitian matrix for some a ∈ C and Y ∈ Cn−1, and let

(
x
v

)
be an eigenvector of

Wn with eigenvalue λi(Wn), where x ∈ C and v ∈ Cn−1. Assume none of the eigenvalues of Wn−1

equals λi(Wn). Then

|x|2 =
1

1 +
∑n−1

j=1 (λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗Y |2
,

where uj(Wn−1) is a unit eigenvector corresponding to the eigenvalue λj(Wn−1).

The assumption that the eigenvalues of Wn and Wn−1 do not collide was taken care of in [32,
Section 3.1], so we can assume that the above formula makes sense in applications.

First, for the bulk case, for any λi(Wn) ∈ (−2 + ε, 2− ε), by Theorem 5.1, one can find an interval
I ⊂ (−2 + ε, 2− ε), centered at λi(Wn) and with length |I| = K2C log n/n, such that NI ≥ δ1n|I|
(δ1 > 0 small enough) with probability at least 1 − n−C1−10. By Cauchy interlacing law, we can
find a set J ⊂ {1, . . . , n − 1} with |J | ≥ NI/2 such that |λj(Wn−1) − λi(Wn)| ≤ |I| for all j ∈ J .
Let X be the first column of Mn with the first entry removed. Then X =

√
nY .
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By Lemma 6.2, we have

|x|2 =
1

1 +
∑n−1

j=1 (λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗ 1√
n
X|2

≤ 1

1 +
∑

j∈J(λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗ 1√
n
X|2

≤ 1

1 + n−1|I|−2
∑

j∈J |uj(Wn−1)∗X|2

≤ 1

1 + 100−1n−1|I|−2|J |
≤ 200|I|/δ1 ≤

K2C2
2 log n

n

(27)

for some constant C2 with probability at least 1− n−C1−10. The third inequality follows from (3)
by taking t = δ1K

√
C log n (say).

Thus, by union bound and symmetry, ‖ui(Wn)‖∞ ≤ C2K log1/2 n√
n

holds with probability at least

1− n−C1 .

Appendix A. Proof for the Edge case of Theorem 6.1

For the edge case in Theorem 6.1, we use a different approach based on the next lemma.

Lemma A.1 (Interlacing identity, Lemma 37, [28]). Let Wn−1 be the matrix Wn with the n-th row
and n-th column removed and Y is the n-th column of Wn with the n-th element ζnn/

√
n removed.

If none of the eigenvalues of Wn−1 equals λi(Wn), then

(28)
n−1∑
j=1

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
=

1√
n
ζnn − λi(Wn).

By symmetry, it suffices to consider the case λi(Wn) ∈ [2− ε, 2+ ε] for ε > 0 very small. Denote X
the n-th column of Mn with the n-th element removed. Thus Y =

√
nX. By Lemma 6.2, in order

to show |x|2 ≤ C4K4 log2 n/n (for constant C > C1 + 100) with probability at least 1 − n−C1−10,
it is enough to show

n−1∑
j=1

|uj(Wn−1)∗X|2

(λj(Mn−1)− λi(Mn))2
≥ n

C4K4 log2 n
.

By the projection lemma, |uj(Wn−1)∗X| ≤ 10K
√
C log n with probability at least 1 − 10n−C . It

suffices to show that with probability at least 1− n−C1−10,

n−1∑
j=1

|uj(Wn−1)∗X|4

(λj(Mn−1)− λi(Mn))2
≥ 100n

C3K2 log n
.

By Cauchy-Schwardz inequality, it is enough to show for some integers 1 ≤ T− < T+ ≤ n− 1 that∑
T−≤j≤T+

|uj(Wn−1)∗Y |2

|λj(Wn−1)− λi(Wn)|
≥ 10

√
T+ − T−

C1.5K
√

log n
.
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By Lemma A.1, we are going to show for some integers T+, T− satisfying T+−T− = O(log n) (the
choice of T+, T− will be given later) that

(29) |
∑

j≥T+orj≤T−

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ 2− ε− 10

√
T+ − T−

C1.5K
√

log n
+ o(1),

with probability at least 1− n−C1−10.

Let η = K2C logn
nδ8

with constant δ = ε/1000. Divide the real line into disjoint intervals Ik for k ≥ 0

where I0 = (λi(Wn)−η, λi(Wn)+η). For 1 ≤ k ≤ k0 = log0.9 n (say), |Ik| has length 2ηδ−8k = o(1)
and

Ik = (λi(Wn)− βkη, λi(Wn)− βk−1η] ∪ [λi(Wn) + βk−1η, λi(Wn) + βkη),

where we denote by βk =
∑k

s=0 δ
−8s. The distance from λi(Wn) to the interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk−1η.

For each such interval, by (26), for sufficiently large constant C > 0, the number of eigen-
values |Jk| = NIk ≤ nαIk |Ik| + δk+1n|Ik| with probability at least 1 − n−C1−100, where αIk =∫
Ik
ρsc(x)dx/|Ik|.

For the k-th interval, by (3) taking t = K
√
C log n, we have that, with probability at least

1− C ′′ exp(−C ′C log n) ≥ 1− n−C1−100 for sufficiently large C,

1

n

∑
j∈Jk

|uj(Wn−1)∗X|2

|λj(Wn−1)− λi(Wn)|
≤ 1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
1

nηβk−1
(nδk+1|Ik|+

√
2K
√
C log n

√
n|Ik|+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+ 10δk−7.

For k ≥ k0 + 1, let the interval Ik’s have the same length of |Ik0 | = 2δ−8k0η. Note that the
number of such intervals is bounded crudely by o(n). By (26), the number of eigenvalues |Jk| ≤
nαIk |Ik|+ δk0+1n|Ik| with probability at least 1− n−C1−100. And the distance from λi(Wn) to the
interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk0−1η + (k − k0)|Ik0 |.

The contribution of such intervals can be computed similarly

1

n

∑
j∈Jk

|uj(Wn−1)∗X|2

|λj(Wn−1)− λi(Wn)|
≤ 1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
δk0

k − k0

with probability at least 1− n−C1−100.
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Summing over all intervals for k ≥ 10 (say), we obtain

(30) |
∑

j≥T+orj≤T−

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ |

∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

|+ δ.

On the other hand, it follows from Riemann integration of the principal value integral that∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

= p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x
dx+ o(1),

where

p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x
dx := lim

ε→0

∫
−2≤x≤2,|x−λi(Wn)|≥ε

ρsc(x)

λi(Wn)− x
dx.

From the explicit formula for the Stieltjes transform and from residue calculus, one obtains

p.v.

∫ 2

−2

ρsc(x)

x− λi(Wn)
dx = −λi(Wn)/2

for |λi(Wn)| ≤ 2, and with the right-hand side replaced by −λi(Wn)/2 +
√
λi(Wn)2 − 4/2 for

|λi(Wn)| > 2. Finally, we always have

(31) |
∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

| ≤ 1 + 2ε.

Now for the rest of eigenvalues that satisfy |λi(Wn)−λj(Wn−1)| ≤ |I0|+ |I1|+ . . .+ |I10| ≤ 4η/δ80,
by Theorem 5.1 and Cauchy interlacing law, the number of eigenvalues is at most T+ − T− ≤
8nη/δ80 = 8CK2 log n/δ88 with probability at least 1 − n−C1−100 for sufficiently large constant
C > 0. Thus

(32)

√
T+ − T−

C1.5K
√

log n
≤ 10

δ44C
≤ ε/1000,

by choosing C sufficiently large compared to δ−44. Thus, from (29), (30), (31) and (32), we have
proved that there exits a constant C > 0 such that with probability at least 1− n−C1−10,

|x| ≤ C2K2 log n√
n

.

The conclusion of the second part of Theorem 1.7 follows from symmetry and union bounds.

Appendix B. Local Marchenko-Pastur law for random covariance matrix and
delocalization of singular vectors

In this appendix, we extend the results obtained for random Hermitian matrices discussed in the
previous sections to random covariance matrices, focusing on the changes needed for the proofs.
Interested reader can refer to closely related papers [30] and [33] (see also [12, 22]).

Let M = Mp,n = (ζij)1≤i≤p,1≤j≤n be a p × n matrix, where p = p(n) is an integer such that
p ≤ n and limn→∞ p/n = y ∈ (0, 1]. Assume the entries of Mn,p are independent random variables
with mean zero and variance one. For such a p× n random matrix M , we form the n× n (sample)
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covariance matrix W = Wp,n = 1
nM

∗M . This (non-negative definite) matrix has at most p non-zero
eigenvalues which are ordered as

0 ≤ λ1(W ) ≤ λ2(W ) ≤ . . . ≤ λp(W ).

Denote by σ1(M), . . . , σp(M) the singular values of M . It is easy to see that σi(M) =
√
nλi(W )1/2.

From the singular value decomposition, there exist orthonormal bases {u1, . . . , up} for Cn and
{v1, . . . , vp} for Cp such that Mui = σivi and M∗vi = σiui.

A fundamental result concerning the asymptotic limiting behavior of ESD for large covariance
matrices is the Marchenko–Pastur Law (see [3] and [18]).

Theorem B.1. (Marchenko–Pastur Law) Assume the entries of matrix M ∈ Cp×n are independent
random variables with mean zero and variance one and limn→∞ p/n = y ∈ (0, 1]. Then the empirical
spectral distribution of the matrix W = 1

nM
∗M converges with probability 1 to the Marchenko-

Pastur Law with a density function

ρMP,y(x) :=
1

2πxy

√
(b− x)(x− a)1[a,b](x),

where

a := (1−√y)2, b := (1 +
√
y)2.

The hard edge of the limiting support of spectrum refers to the left edge a when y = 1 where
it gives rise to a singularity of x−1/2. The cases of left edge a when y < 1 and the right edge b
regardless of the value of y are usually called the soft edge. Recent progress on studying the local
convergence to Marchenko–Pastur Law includes [12, 22, 30, 33] for the soft edge and [6, 27] for the
hard edge. We focus on improving the previous results for the soft edge in this appendix.

Our main results for the random covariance matrices are the following local Marchenko–Pastur
law (LMPL) and the delocalization property of singular vectors.

Theorem B.2. For any constants ε, δ, C1 > 0, there exists a constant C2 > 0 such that the following
holds. Assume limn→∞ p/n = y for some 0 < y ≤ 1. Let M = Mp,n = (ζij)1≤i≤p,1≤j≤n be a random
matrix whose entries are independent K-bounded random variables with mean 0 and variance 1.
Consider the covariance matrix W = 1

nM
∗M . Then with probability at least 1− n−C1, one has

|NI(Wn,p)− p
∫
I
ρMP,y(x) dx| ≤ δp

∫
I
ρMP,y(x) dx.

for any interval I ⊂ (a+ ε, b− ε) of length at least C2K
2 log n/n.

Theorem B.3 (Delocalization of singular vectors). Let Mp,n be as in Theorem B.2. For any
constant C1 > 0, there is a constant C2 > 0 such that the following holds.

• (Bulk case) With probability at least 1 − n−C1, for any ε > 0 and any 1 ≤ i ≤ p such that
σi(Mp,n)2/n ∈ [a+ ε, b− ε], there is a left singular vector ui corresponding to σi(Mp,n) such
that

‖ui‖∞ ≤
C2K log1/2 n√

n
.

The same holds for right singular vectors.
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• (Edge case) With probability at least 1 − n−C1, for any ε > 0 and any 1 ≤ i ≤ p such that
σi(Mp,n)2/n ∈ [a− ε, a+ ε]∪ [b− ε, b+ ε] if a 6= 0 and σi(Mp,n)2/n ∈ [4− ε, 4] if a = 0, there
is a left singular vector ui corresponding to σi(Mn,p) such that

‖ui‖∞ ≤
C2K

2 log n√
n

.

The same holds for right singular vectors.

Remark B.4. Theorem B.2 and Theorem B.3 actually hold for a larger class of matrices, using the
K-concentration introduced in the previous sections. For instance, Theorem B.2 holds for random
matrices Mp,n = (ζij) whose entries are independent random variables with mean 0 and variance
1, and the row vectors are K-concentrated. And Theorem B.3 holds if we further assume the
column vectors of Mp,n are also K-concentrated. Indeed, the K-bounded assumption is only used
to guarantee K-concentration.

B.1. Proof of Theorem B.2. Similarly to the Hermitian case, we compare the Stieltjes transform
of W

s(z) :=
1

p

p∑
i=1

1

λi(W )− z

with that of the Marchenko–Pastur Law

sMP,y(z) :=

∫
R

1

x− z
ρMP,y(x) dx =

∫ b

a

1

2πxy(x− z)
√

(b− x)(x− a) dx.

The explicit expression of sMP,y(z) is given by (see [4])

sMP,y(z) = −
y + z − 1−

√
(y + z − 1)2 − 4yz

2yz
,

where we take the branch of
√

(y + z − 1)2 − 4yz with cut at [a, b] that is asymptotically y+ z− 1
as z tends to infinity. Note that it is uniquely defined by the equation

sMP,y(z) +
1

y + z − 1 + yzsMP,y(z)
= 0.

We will show that s(z) satisfies a similar equation.

The analogue of Lemma 4.1 is the following lemma.

Lemma B.5. (Lemma 29, [30]) Let Mn,p be a random matrix with independent K-bounded entries
with mean 0 and variance 1. Assume limn→+∞ p/n = y ∈ (0, 1]. Let 1/n < η < 1/10, and
L1, L2, ε, δ > 0. For any constant C1 > 0, there exists a constant C > 0 such that if one has the
bound

|s(z)− sMP,y(z)| ≤ δ
with (uniformly) probability at least 1− n−C for all z with L1 ≤ Re(z) ≤ L2 and Im(z) ≥ η. Then
for any interval I in [L1 − ε, L2 + ε] with |I| ≥ max(2η, ηδ log 1

δ ), one has

|NI − p
∫
I
ρMP,y(x) dx| ≤ δp|I|

with probability at least 1− n−C1.
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The objective is to show

(33) |s(z)− sMP,y(z)| = o(δ)

with probability at least 1− n−C for any z in the region Ry, where

Ry = {z ∈ C : |z| ≤ 10, a− ε ≤ Re(z) ≤ b+ ε, Im(z) ≥ η}
if y 6= 1, and

Ry = {z ∈ C : |z| ≤ 10, ε ≤ Re(z) ≤ 4 + ε, Im(z) ≥ η}
if y = 1. We use the parameter

η :=
K2C2 log n

nδ6
,

where C = C1 + 104. Note that in the defined region Ry, |sMP,y(z)| = O(1).

First, by Schur’s complement, one can rewrite

(34) s(z) =
1

p
trace(W ∗ − zI)−1 =

1

p

p∑
k=1

1

ξkk − z − Yk

where Yk = a∗k(Wk− zI)−1ak, and Wk is the matrix W ∗ = 1
nMM∗ = (ξij)1≤i,j≤p with the k-th row

and k-th column removed, and ak is the k-th row of W with the k-th element removed. Let Mk be
the (p− 1)× n minor of M with the k-th row removed and X∗i ∈ Cn(1 ≤ i ≤ p) be the rows of M .
Thus ξkk = Xk

∗Xk/n = ‖Xk‖2/n, ak = 1
nMkXk,Wk = 1

nMkM
∗
k . Thus

Yk =

p−1∑
j=1

|a∗kvj(Mk)|2

λj(Wk)− z
=

p−1∑
j=1

1

n

λj(Wk)|X∗kuj(Mk)|2

λj(Wk)− z

where u1(Mk), . . . , up−1(Mk) ∈ Cn and v1(Mk), . . . , vn(Mk) ∈ Cp−1 are orthonormal right and left
singular vectors of Mk. Here we use the fact that a∗kvj(Mk) = 1

nX
∗
kM

∗
kvj(Mk) = 1

nσj(Mk)X
∗
kuj(Mk)

and σj(Mk)
2 = nλj(Wk).

The entries of Xk are independent of each other and of Wk, and have mean 0 and variance 1.
Since uj(Mk) are unit vectors, by linearity of expectation we have

E(Yk|Wk) =

p−1∑
j=1

1

n

λj(Wk)

λj(Wk)− z
=
p− 1

n
+
z

n

p−1∑
j=1

1

λj(Wk)− z
=
p− 1

n
(1 + zsk(z)),

where

sk(z) =
1

p− 1

p−1∑
i=1

1

λi(Wk)− z
is the Stieltjes transform of Wk. By Cauchy interlacing law, we have

|s(z)− (1− 1

p
)sk(z)| = O(

1

p

∫
R

1

|x− z|2
dx) = O(

1

pη
).

Thus

E(Yk|Wk) =
p− 1

n
+ z

p

n
s(z) +O(

1

nη
) =

p− 1

n
+ z

p

n
s(z) + o(δ2).

On the other hand, Yk is concentrated about E(Yk|Wk) with high probability:

Lemma B.6. Let Mn,p be as in Lemma B.5. For 1 ≤ k ≤ p, Yk = E(Yk|Wk) + o(δ2) holds with
probability at least 1−O(n−C) for any z in the region Ry.
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To prove Lemma B.6, we estimate

Yk −E(Yk|Wk) =

p−1∑
j=1

λj(Wk)

n

(
|X∗kuj(Mk)|2 − 1

λj(Wk)− z

)
=

1

n

p−1∑
j=1

λj(Wk)

λj(Wk)− x−
√
−1η

Rj(35)

where Rj = |X∗kuj(Mk)|2 − 1. Note that λj(Wk) = O(1). The estimation of (35) is a repetition
of the calculation in (25). Interested reader are encouraged to work out the details. Inserting the
bounds to (34), we have

s(z) +
1

y + z − 1 + yzs(z) + o(δ2)
= 0

with probability at least 1 − O(n−C). By a continuity argument (see for instance [33]), one has
|s(z) − sMP,y(z)| = o(δ) with probability at least 1 − n−C+100 (say). By Lemma B.5, we have
showed that for any constants ε, C1 > 0, there exists a constant C2 > 0 such that for 0 < δ < 1/2
and any interval I ⊂ (a−ε, b+ε) if a 6= 0 or I ⊂ (ε, 4+ε) if a = 0 of length at least C2K

2 log n/nδ8,
with probability at least 1− n−C1 ,

(36) |NI − p
∫
I
ρMP,y(x) dx| ≤ δp|I|.

In particular, Theorem B.2 follows.

B.2. Proof of Theorem B.3. To prove the delocalization of singular vectors, we need the follow-
ing formula to express the entries of a singular vector in terms of the singular values and singular
vectors of a minor. It is enough to prove the delocalization for the right (unit) singular vectors.

Lemma B.7 (Corollary 25, [30]). Let p, n ≥ 1, and let

Mp,n =
(
Mp,n−1 X

)
be a p × n matrix for some X ∈ Cp, and let

(
u
x

)
be a right unit singular vector of Mp,n with

singular value σi(Mp,n), where x ∈ C and u ∈ Cn−1. Suppose that none of the singular values of
Mp,n−1 are equal to σi(Mp,n). Then

|x|2 =
1

1 +
∑min(p,n−1)

j=1
σj(Mp,n−1)2

(σj(Mp,n−1)2−σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

,

where v1(Mp,n−1), . . . , vmin(p,n−1)(Mp,n−1) ∈ Cp is an orthonormal system of left singular vectors
corresponding to the non-trivial singular values of Mp,n−1.

In a similar vein, if

Mp,n =

(
Mp−1,n

Y ∗

)
for some Y ∈ Cn, and

(
v
y

)
is a left unit singular vector of Mp,n with singular value σi(Mp,n),

where y ∈ C and v ∈ Cp−1, and none of the singular values of Mp−1,n are equal to σi(Mp,n). Then

|y|2 =
1

1 +
∑min(p−1,n)

j=1
σj(Mp−1,n)2

(σj(Mp−1,n)2−σi(Mp,n)2)2
|uj(Mp−1,n)∗Y |2

,

where u1(Mp−1,n), . . . , umin(p−1,n)(Mp−1,n) ∈ Cn is an orthonormal system of right singular vectors
corresponding to the non-trivial singular values of Mp−1,n.
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First, if λi(Wp,n) lies within the bulk of spectrum, by Theorem B.2, one can find an interval
I ⊂ (a + ε, b − ε), centered at λi(Wp,n) and with length |I| = K2C log n/n such that NI ≥ δ1n|I|
(δ1 > 0 small constant) with probability at least 1− n−C1−10. By Cauchy interlacing law, we can
find a set J ⊂ {1, . . . , p} with |J | ≥ NI/2 such that |λj(Wp,n−1) − λi(Wp,n)| ≤ |I| for all j ∈ J .
Thus

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

≥ 1

n

∑
j∈J

λj(Wp,n−1)

(λj(Wp,n−1)− λi(Wp,n))2
|vj(Mp,n−1)∗X|2

≥ n−1|I|−2
∑
j∈J
|vj(Mp,n−1)∗X|2 ≥ 100−1n−1|I|−2|J |

≥ δ1

200
|I|−1 ≥ n

K2C2
2 log n

with probability at least 1−n−C1−10 for some constant C2 > 0. The fourth inequality follows from
(3) by taking t = δ1K

√
C log n.

Thus, by Lemma B.7 and the union bound, |x| ≤ C2K log1/2 n√
n

with probability at least 1−n−C1−10.

By symmetry and union bounds, ‖ui(Mp,n)‖∞ ≤ C2K log1/2 n√
n

holds with probability at least 1−n−C1 .

For the edge case, we consider |λi(Wp,n) − a| = o(1) (a 6= 0) or |λi(Wp,n) − b| = o(1). We first
record an analogue of Lemma A.1.

Lemma B.8 (Interlacing identity for singular values, Lemma 3.5 [33]). Assume the notations in
Lemma B.7, then for every i,

(37)

min(p,n−1)∑
j=1

σj(Mp,n−1)2|vj(Mp,n−1)∗X|2

σj(Mp,n−1)2 − σi(Mp,n)2
= ||X||2 − σi(Mp,n)2.

Similarly, we have

(38)

min(p−1,n)∑
j=1

σj(Mp−1,n)2|uj(Mp−1,n)∗Y |2

σj(Mp−1,n)2 − σi(Mp,n)2
= ||Y ||2 − σi(Mp,n)2.

By the union bound and Lemma B.7, in order to show |x|2 ≤ C4K4 log2 n/n with probability at
least 1− n−C1−10 for some large constant C > C1 + 100, it is enough to show

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2 ≥ n

C4K4 log2 n
.

By the projection lemma, |vj(Mp,n−1)∗X| ≤ 10K
√
C log n with probability at least 1− 10n−C . It

suffices to show that with probability at least 1− n−C1−10,

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|4 ≥ 100n

C3K2 log n
.
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By Cauchy-Schwardz inequality and note that |σi(Mp,n−1)| ≤ 10
√
n almost surely (See [15, 35]),

it is enough to show for some integers 1 ≤ T− < T+ ≤ min(p, n − 1) (the choice of T−, T+ will be
given later), ∑

T−≤j≤T+

1
nσj(Mp,n−1)2

|σj(Mp,n−1)2 − σi(Mp,n)2|
|vj(Mp,n−1)∗X|2 ≥ 100

√
T+ − T−

C1.5K
√

log n
.

On the other hand, by the projection lemma, with probability at least 1 − n−C1−100, ‖X‖2/n =
y + o(1). By (37) in Lemma B.8,

(39)

min(p,n−1)∑
j=1

1

n

σj(Mp,n−1)2|vj(Mp,n−1)∗X|2

σj(Mp,n−1)2 − σi(Mp,n)2
= y + o(1)− λi(Wp,n).

It is enough to evaluate ∑
j≥T+orj≤T−

λj(Wp,n−1)|vj(Mp,n−1)∗X|2

λj(Wp,n−1)− λi(Wp,n)
.(40)

The estimation of (40) is similar to that of (29). We divide the real line into disjoint intervals

Ik for k ≥ 0. Let η = K2C logn
nδ8

with small constant δ ≤ 0.01. Denote βk =
∑k

s=0 δ
−8s. Let

I0 = (λi(Wp,n)− η, λi(Wp,n) + η). For 1 ≤ k ≤ k0 = log0.9 n (say),

Ik = (λi(Wp,n)− βkη, λi(Wp,n)− βk−1η] ∪ [λi(Wp,n) + βk−1η, λi(Wp,n) + βkη),

thus |Ik| = 2δ−8kη = o(1) and the distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk−1η.

For each such interval, by (36), for sufficiently large constant C > 0, the number of eigen-
values |Jk| = NIk ≤ pαIk |Ik| + δk+1p|Ik| with probability at least 1 − n−C1−100, where αIk =∫
Ik
ρMP,y(x)dx/|Ik|.

Taking t = K
√
C log n in (3) for C sufficiently large, it follows that with probability at least

1− C ′′ exp(−C ′C log n) ≥ 1− n−C1−100,

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)∗X|2

|λj(Wp,n−1)− λi(Wp,n)|
≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(pαIk |Ik|+ δkp|Ik|+

√
2K
√
C log n

√
n
√
|Ik|+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+ 100δk−7.

For k ≥ k0 +1, let the intervals Ik’s have the same length of |Ik0 | = 2δ−8k0η. Note that the number
of such intervals is bounded crudely by o(n). The distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk0−1η + (k − k0)|Ik0 |.
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The contribution of such intervals can be estimated similarly by

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)∗X|2

|λj(Wp,n−1)− λi(Wp,n)|
≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+

δk0

k − k0

with probability at least 1− n−C1−100.

Summing over all intervals for k ≥ 10 (say), we have

k0∑
k=10

100δk−7 +
∑
k≥k0

δk0

k − k0
≤ δ.

Using Riemann integration of the principal value integral, we obtain

y
∑
Ik

(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik| = |p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx|+ o(1)(41)

where (see [33] for details)

(42) p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx =

{√
y + o(1), if |λi(Wp,n)− a| = o(1);

−√y + o(1), if |λi(Wp,n)− b| = o(1).

follows from the explicit formula for the Stieltjes transform and from residue calculus.

Now for the rest of eigenvalues such that |λi(Wp,n)−λj(Wp,n−1)| ≤ |I0|+ |I1|+ . . .+ |I10| ≤ 4η/δ80.
By Theorem B.2 and Cauchy interlacing law, the number of eigenvalues is at most T+ − T− ≤
8nη/δ80 = 8CK2 log n/δ88 with probability at least 1 − n−C1−100 for constant C > 0 sufficiently
large. Thus √

T+ − T−
C1.5K

√
log n

≤ 1

δ44C
≤ δ

again by choosing C sufficiently large. From Lemma B.7, by comparing (39), (40) and (42), one

can conclude with probability at least 1−n−C1−10, |x| ≤ C2K2 logn√
n

. The conclusion of Theorem B.3

follows from symmetry and union bounds.
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