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ASYMPTOTIC NORMALITY OF FRINGE SUBTREES AND
ADDITIVE FUNCTIONALS IN CONDITIONED
GALTON-WATSON TREES

SVANTE JANSON

ABSTRACT. We consider conditioned Galton—Watson trees and show as-
ymptotic normality of additive functionals that are defined by toll func-
tions that are not too large. This includes, as a special case, asymptotic
normality of the number of fringe subtrees isomorphic to any given tree,
and joint asymptotic normality for several such subtree counts. Another
example is the number of protected nodes. The offspring distribution
defining the random tree is assumed to have expectation 1 and finite
variance; no further moment condition is assumed.

1. INTRODUCTION

All trees in this paper are rooted and ordered (= plane). (We assume
that the trees are ordered, i.e., that the children of each node are ordered,
for technical convenience. In applications, the ordering is often irrelevant,
and we may then treat unordered trees too by using a random labelling.)
We consider in the present paper only finite trees (except 7 in Lemma [5.9)),
and denote the size (or order), i.e. the number of nodes, of a tree T by |T'|.
We let ¥ denote the countable set of all ordered rooted trees (where we
identify trees that are isomorphic in the natural way, with an isomorphism
preserving the root and the orderings of children); let further ¥,, be the
(finite) subset of all such trees of order n. (See further e.g. [15] and [30].)

Given a rooted tree T and a node v in T, let T, be the subtree of T'
rooted at v, i.e., the subtree consisting of v and all its descendents. Such
subtrees are called fringe subtrees. (By “subtree”, we mean in the present
paper always a fringe subtree, except in Example 2:41) We are interested in
the collection {T,} of all fringe subtrees of a given tree T'.

One way to study this collection is to consider the random fringe subtree
Ty, which is the random rooted tree obtained by taking the subtree T}, at a
uniformly random node v in T'. This was introduced and studied by Aldous
[2], both in general and for many important examples. We let, for T, T" € T,

np(T) = |{veT : T, =T}, (1.1)
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i.e., the number of subtrees of T' that are equal (i.e., isomorphic to) to T".
Then the distribution of T} is given by
P(T, =T") = np(T)/|T], T € %. (1.2)
Thus, to study the distribution of T} is equivalent to studying the numbers
’I’LT/(T).
A related point of view is to let f be a functional of rooted trees, i.e., a
function f: % — R, and for a tree T' € T consider the sum

F(T) = F(T; f) = Y F(T3). (13)
veT
Thus,
F(T)/IT| = E f(T:). (1.4)

One important example of this is to take f(7) = 1{T = T"}, the indicator
function that 7" equals some given tree 77 € ¥; then F(T') = ngp(T) and

(L4) reduces to (L2). Conversely, for any f,
F(T) =) f(T")np(T); (1.5)
TeT
hence any F'(T') can be written as a linear combination of the subtree counts

n7(T), so the two points of views are essentially equivalent.

Remark 1.1. Functionals F' that can be written as (L3]) for some f are
called additive functionals. The definition (L3)) can also be written recu-
sively as

d
F(T) = f(T)+Y_ F(Ty), (1.6)
i=1
where T7,...,Ty are the branches (i.e., the subtrees rooted at the children

of the root) of T'. In this context, f(7') is often called a toll function. (One
often considers toll functions that depend only on the size |T'| of T', but that
is not always the case. We emphasise that we allow more general functionals

f)

Note that when T is a random tree, as it was in [2] and will be in the
present paper, F'(T) is a random variable. In particular, ny(7) is a random
variable for each 7" € ¥, and thus the distribution of T, which is given by
(L2), is a random probability distribution on T. Note that (L2]) now reads

P(T.=T"|T) =np(T)/|T| (1.7)
and that similarly (I4]) then has to be replaced by
F(T)/IT| =E(f(T.) | T). (1.8)

Remark 1.2. This is the quenched version of the fringe subtree T}, where
we first select a realization of the random tree T', and then fix this realization
and choose v € T uniformly at random, yielding a fringe subtree T, with
a distribution depending on T'; this is thus a random distribution, as said
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above. The alternative is the annealed version where we take a random tree
T and a uniformly random node v in it as a combined random event; this
yields a random fringe subtree with a distribution that is the expectation
of the random distribution (L.2)) in the quenched version. When |T'| is fixed
(as in the cases we study in the present paper), the annealed version thus
corresponds to considering only the expectation E F(T') = |T'|E f(T%) of the
sum (L3, or equivalently E f(7), while the quenched version corresponds
to studying the conditional expectation (L.g]).

The random trees that we consider in this paper are conditioned Galton—
Watson trees, see Section [3 for definition and notation. (Related results
for some other random trees are given by Fill and Kapur [19, 20] (m-ary
search trees under different models) and Holmgren and Janson [24] (random
binary search trees and random recursive trees).) The Galton-Watson trees
are defined using an offspring distribution; we let £ denote a random vari-
able with this distribution and we assume throughout the paper that the
mean E¢ = 1 and (except in Theorem [[3) that the variance 0% := Var ¢ is
finite (and non-zero). We recall the well-known fact that several standard
examples of random trees can de defined in this way, for example uniform
random ordered trees (£ ~ Ge(1/2), 0 = 2), uniform random labelled trees
(¢ ~ Po(1), 0> = 1) and uniform random binary trees (¢ ~ Bi(2,1/2),
02 =1/2), see e.g. Aldous [3], Devroye [12], Drmota [15], Janson [30].

The results in Aldous [2] focus on convergence (in probability), as |T'| —
oo, of the fringe subtree distribution for suitable classes of random trees T,
which by (L8] is equivalent to convergence of F(T)/|T| or E F(T)/|T| for
suitable functionals f. For the conditioned Galton—-Watson trees studied
here, this is stated in the following theorem. Part (i) was proved by Aldous
[2], assuming Var £ < oo as we assume in the rest of the paper, and extended
to more general £ by Bennies and Kersting [8], and further by Janson [30];
the sharper version (ii) is proved in |30, Theorem 7.12].

Theorem 1.3 (Aldous, et al.). Let T, be a conditioned Galton—Watson tree
with n nodes, defined by an offspring distribution £ with EE =1, and let T
be the corresponding unconditioned Galton—Watson tree. Then, as n — oo:

(i) (Annealed version.) The fringe subtree T, . converges in distribution
to the Galton—Watson tree T. ILe., for every fized tree T,

Enp(T,)

n

=P(Toux=T) = P(T =T). (1.9)

Equivalently, for any bounded functional f on %,

ta

— Ef(T5..) = Ef(T). (1.10)

(ii) (Quenched version.) The conditional distributions L(Tp« | Tpn) con-
verge to the distribution of T in probability. ILe., for every fized tree
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T,
”Tfj”) = P(Trw =T | To) - P(T =1T). (1.11)
Equivalently, for any bounded functional f on %,
%ﬁ‘) =Ef(Tos | Tn) == Ef(T). (1.12)
O

Remark 1.4. The statement in [30, Theorem 7.12] uses (L.9) and (L.II)),
here expanded using (7). The equivalences with (L.I0) and (LI2]) follow
by standard properties of convergence in distribution, see e.g. [9, Theorem
2.1 and Section 4]. (Note that the set of finite ordered trees is a countable
discrete set, which simplifies the situation and e.g. justifies that it is enough
to consider point probabilities in (I.9) and (I.I1]). To show (L.I2)) it may be
convenient to use the Skorohod representation theorem |32, Theorem 4.30]
and assume that (I.IT]) holds a.s. for every T'.)

The result is easily extended to include also unbounded f with suitable
growth conditions, see for example Theorem [LH(i)l(ii)| and Remark [5.3] be-
low.

Theorem [[L3] is a law of large numbers for F'(7,). In the present paper
we take the next step and study the fluctuations of F(7,); we prove a
central limit theorem, i.e., asymptotic normality of F(7,) under suitable
assumptions. This includes, as a special case, (joint) normal convergence
of the subgraph counts ny(T'), see Corollary [[L81 Our main result is the
following. (The proof of this and the following results is given in Section [§])

Theorem 1.5. Let T, be a conditioned Galton—Watson tree of order n with
offspring distribution €, where E€ =1 and 0 < 02 := Varé < oo, and let
T be the corresponding unconditioned Galton—Watson tree. Suppose that
f % = R is a functional of rooted trees such that E|f(T)| < oo, and let

p=Ef(T).
(i) If E f(7,) — 0 as n — oo, then

E F(T,) = nu+ o(v/n). (1.13)
(i) If
E f(7,)> =0 (1.14)

as n — 0o, and

then
Var F(T,,) = ny? + o(n) (1.16)
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where
72 1= 2B(f(T)(F(T) = [Tlu) ) = Var f(T) = /o (117)
s finite; moreover,
FTw) =1t 4, no,42). (1.18)

vn
By (LI3), we may replace nu by the exact mean E F(7,) in (I.I8).

Remark 1.6. By (@I3)), the condition E|f(7)| < oo is equivalent to
S, n32E|f(T,)| < oo; in particular, this holds if E|f(7,)| = O(1), and
thus if (ILI4) holds. (It is also implied by (LIH).)

Remark 1.7. Tt follows from (LI8]) that 42 > 0. We do not know whether
72 = 0 is possible except in trivial cases when F(7,,) is deterministic for all
n.

Special cases of Theorem have been proved before, by various meth-
ods. A simple example is the number of leaves in 7,, shown to be normal by
Kolchin [37], see Example 21l (See also Aldous |2, Remark 7.5.3].) Wag-
ner [51] considered random labelled trees (the case £ ~ Po(1)) and showed
Theorem (and convergence of all moments) for this case, assuming fur-
ther that f is bounded and E|f(7,)| = O(c") for some ¢ < 1 (a stronger
assumption that our (LI4)—(TIH)).

Theorem is stated for a single functional F', but joint convergence for
several different F' (each satisfying the conditions in the theorem) follows
immediately by the Cramér—Wold device (i.e., by considering linear combi-
nations); the asymptotic covariances follow from (I.I7) by polarization in
the usual way (i.e., using e.g. Cov(X,Y) = 1(Var(X +Y) — Var(X — Y))).
One example is the following corollary for the subtree counts (L.1I); by (L7),
this corollary shows that the conditional distribution £(7, .« | 75) of the
fringe subtree 7, . of 7, has asymptotically Gaussian fluctuations around
the limit distribution given by Theorem [I.3]

Corollary 1.8. The subtree counts np(T,), T € %, are asymptotically
jointly normal. More precisely, let mp :==P(T =T),

yrr =1 — (2T — 1+ 0~ )77, (1.19)
and, for Ty # To,
v 1, = np, (1), + np (Te)7r, — (|T1| +|To| -1+ 0_2)7rT17rT2. (1.20)
Then, for any trees T, 11,15 € T,

Enr(Tn) = nmr + o(v/n), (1.21)

Var np(7T,) = nyrr + o(n), (1.22)

Cov (nTl (7;1)7 Ty (7;1)) =nyn,m + 0(”)7 (1'23)
n(Ta) — n7r 4, Zr, (1.24)

vn
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the latter jointly for all T € X, where Zr are jointly normal with mean
E Zr = 0 and covariances COV(ZTI, ZTQ) =V, T -

We say that the functional f has finite support if f(T) # 0 only for
finitely many trees T € T; equivalently, there exists a constant K such
that f(7) = 0 unless |T'| < K. Note that a functional with finite support
necessarily is bounded. By (LA]), the additive functionals F' that arise from
functionals f with finite support are exactly the finite linear combinations
of subgraph counts nyv(7"). Hence Corollary [[.§is equivalent to asymptotic
normality (with convergence of mean and variance) for F(7,) whenever f
has finite support. The asymptotic variance 42 = lim,,_,o, Var F(T,)/n is
given by (II7)) or, equivalently, follows from (LI9)-(T20).

For functionals with finite support, we can show that 42 > 0 except in
trivial cases, cf. Remark [I.7]

Theorem 1.9. Suppose that f is a functional on T with finite support, and
that v* = 0.
(i) If the support {k : pr, > 0} of & contains at least two positive integers,
then f(T)=F(T)=F(T,) =0 a.s.
(ii) Otherwise, i.e., if {k : pr > 0} = {0,7} for some r > 1, then
f(T) = al{|T| = 1} for some real a and F(T) = a(n — (n —1)/r) is

deterministic.

Equivalently, in (i), the matrix (yr, 1,) 7|, |75)<Mm (Where we only consider
trees 11, Ty with P(7T = T}) > 0) is positive definite for every M; in (ii) the
submatrix (7T17T2)2<|T1‘,‘T2|< M 1s positive definite.

Remark 1.10. The condition ([I4]) in Theorem [[Hii)| is equivalent to
E f(7,) — 0 together with Var f(7,) — 0, and it implies E|f(7,)| — 0
as assumed in Both this condition and (II5]) say that f(7) is (on
the average, at least) decreasing as |T'| — oo, but a rather slow decrease
is sufficient; for example, the theorem applies when f(T') = 1/log?|T| (for
|T'| > 1). If we assume better integrability of £, we can weaken the condition
a little, see Remark [6.9] but not by much. In particular, it is not enough to
assume that f is a bounded functional. For a trivial example, let f(T) =1
for all trees T'; then F(T') = |T'| so F(7,) = n is constant, with mean n and
variance 0. However, the first two terms on the right-hand side of (LI7])
vanish, so 2 = —0~2 < 0, which is absurd for an asymptotic variance,
and (I6) and (II8) fail. Nevertheless, in this trivial counterexample, it
is only the value of 42 that is wrong; (LI6) and (LIR) trivially hold with
v% = 0. Example is a more complicated counterexample where f is
bounded (and f(T) — 0 as |T| — oo so (LI4) holds) but at least one of
(CI6) and (LIR) fails (for any finite 72); we conjecture that both fail in
this example. Example is a related example where (LI4) holds but
Var F(T,)/n — oo.

Remark 1.11. If we go further and allow f(7') that grow with the size
|T|, we cannot expect the results to hold. Fill and Kapur [18] have made
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an interesting and illustrative study (for certain f) of the case of binary
trees, which is the case £ ~ Bin(2,1/2) of conditioned Galton—Watson tree,
and presumably typical for other conditioned Galton—Watson trees as well.
They show that for f(T) = log|T|, F(T,) is asymptotically normal, but
with a variance of the order nlogn. And if f(T') increases more rapidly,
with f(T) = |T|® for some a > 0, then the variance is of order n!*2®,
and F(7,) has, after normalization, a non-normal limiting distribution. We
conjecture that similar results hold for general conditioned Galton—Watson
trees and increasing f, but the precise limits presumably depend on the
offspring distribution &.

Intuitively, our conditions are such that the sum (3] is dominated by
the many small subtrees T,; since different parts of our trees are only weakly
dependent on each other, this makes asymptotic normality plausible. For a
toll function f that grows too rapidly with the size of T', the sum (L3 will
on the contrary be dominated by large subtrees, which are more strongly
dependent, and then other limit distributions will appear.

Remark 1.12. For the m-ary search tree (2 < m < 26) and random recur-
sive tree a similar theorem holds, but there f(7') may grow almost as |T'|'/2,
see Hwang and Neininger [26] (binary search tree, f depends on |T| only),
Fill and Kapur [19] (m-ary search tree, f depends on |T| only), Holmgren
and Janson [24] (binary search tree and random recursive tree, general f).
A reason for this difference is that for a conditioned Galton—Watson tree,
the limit distribution of the size of the fringe subtree, which by Theorem [I.3]
is the distribution of |7, decays rather slowly, with P(|T| = n) =< n=3/2,
see (4.13]), while the corresponding limit distribution for fringe subtrees in a
binary search tree or random recursive tree decays somewhat faster, as n =2,
see Aldous [2]. Cf. also the related results in Fill, Flajolet and Kapur [17,
Theorem 13 and 14], showing a similar contrast (but at orders n'/2 and n)
between uniform binary trees (an example of a conditioned Galton—Watson
tree) and binary search trees for the asymptotic expectation of an additive
functional.

The counterexamples in Examples are constructed to have rather
large correlations between f(T,) and f(T,) for different subtrees T, and
Tw. In typical applications, this is not the case, and we expect Theo-
rem to hold also for nice functions f that do not quite satisfy (L.I4])
and (LIH). A simple example is the number of nodes of outdegree r, for
some fixed r > 0 (with p, > 0). This equals F(T) if we let f(T) :=
1{the root of T" has degree r}. In this case, Kolchin [37, Theorem 2.3.1]
has proved asymptotic normality, see further Examples ZIH2Z2l We can
extend this as follows.

We say that a functional f(7") on T is local (with cut-off M) if it depends
only on the first M generations of T, for some M < oo, i.e., if we let TM)
denote T truncated at height M, then f(T) = f(T™)). More generally, we
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say that f is weakly local (with cut-off M) if f(T') depends on |T'| and TM)
for some M.

Theorem 1.13. Let 7, be a conditioned Galton—Watson tree as in Theo-
rem [L.A. Suppose that f : T — R is a bounded and local functional. Then
the conclusions (LI13), (LI6) and (LIR) hold for some 7 < .

More generally, the same holds if f is a bounded and weakly local func-
tional such that E f(T,) = 0 and >, |E f(T,)|/n < co.

The proof in Section [§ shows also that the asymptotic variance y? equals
im0 (7N))2, where (y(¥))2 is given by (83 or, in the case of a bounded
local functional, (835) applied to f(T) — E f(7T), with 7 defined in (5.39).

We give some examples in Section 2l Sections [BH4] contain preliminaries.
The expectation E F(7,) is studied in Section [, and Theorem [LHi)] is
proved. Section [0 establishes bounds for the variance Var F(7,), and proves
the asymptotic (.10 in the special case of a functional f with finite support.
Section [7 shows asymptotic normality for functionals f with finite support.
Finally, in Section B the variance bounds in Section [l and a truncation
argument are used to extend the latter results to more general f, completing
the proofs of the theorems above.

Remark 1.14. In Theorem [L.I3] 42 is not always given by (LI7)) because
E(f(T)(F(T)—|T|x)) does not necessarily exist (in the usual sense, as an
absolutely convergent integral), see Example 222} thus we in general take
limits using truncations.

Remark 1.15. Although the Galton—Watson tree 7 is finite a.s., its ex-
pected size E |T| = oo, as is seen from ([@.I3)) or directly from the definition.
Since the random fringe tree 7, . BN by Theorem [I.3] it follows that
E |Tn,«| = co; similarly, Theorem [[3((ii) implies E(|7,.+| | 7») 2, .

In fact, for any tree T with |T'| = n, letting d(v) be the depth of v and
defining a partial order on the nodes of T' by v < w if v is on the path from
the root to w,

BT =Y ITl=1 3 Ho<wh= 1 3 (@dw)+1) = 14+ 3 d(w)

veT v,weT weT weT

i.e., 1 plus the average path length. Well-known results on the average path
length in a conditioned Galton—Watson tree, see Aldous [3, 4], thus imply

T VPE(|Thal | To) -5 071, (1.25)

where £ is twice the Brownian excursion area. Hence, although the distri-
bution of the size of a random fringe tree is tight, so the size is bounded in

probability, the average fringe tree size is of the order n'/2. Similarly,
1 1
E|T.* = - 1{v<w,v<u} == d(w A 1
Ty nz {v<w,v<u} nZ((w u) +1)

v,w,ueT u,weT
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and by [28, Theorem 3.1],

nPE(|Th? | T) 5 0, (1.26)

for a certain positive random variable 1. Hence the average of the square of
the fringe tree size is of the order n3/2.

1.1. Some notation. All unspecified limits are as n — oc.

We let C1,C5,... and c1,co,... denote unspecified positive constants
(possibly depending on f and &, but not on n and other variables, and
possibly different at different occurences). (We use C; for large constants
and ¢; for small.) We also use standard O and o notation (with the limit
in 0 as n — oo unless otherwise said). Moreover, we sometimes use the less
common notation (for a,,b, = 0) a, < b, for a, = O(b,) (or, equivalently,
(079 < Clbn)

The outdegree of a node in a tree is its number of children. (This is, except
for the root, the degree minus 1.) The degree sequence of a tree T' € T,, is the
sequence (dy,...,d,) of outdegrees of the nodes taken in depth-first order,
i.e., starting with the (out)degree d; of the root and then taking the degree
sequences of the branches T}, one by one, where vy,...,v4, are the children
of the root, in order. It is easily seen that a sequence (di,...,d,) € N"
(where N := {0,1,2,...}) is the degree sequence of a tree T" € T, if and
only if

1.27

Z?:l d, =n — 1, ( )

see e.g. [30, Lemma 15.2]. Note also that a tree in ¥ is uniquely determined
by its degree sequence.

The depth of a node v in a tree is its distance to the root; we denote it

by d(v).

{Zizldl>j7 1<]<TL,

2. EXAMPLES

Example 2.1. The perhaps simplest non-trivial example is to take f(7T") =
1{|T| = 1}. Then F(T) is the number of leaves in 7. We have E f(T) =
B(|T] = 1) = P(£ = 0) = po.

Theorems and [L.T3] both apply and show asymptotic normality of
F(Ty), and so does Corollary [[L8 since F'(T") = ne(1"), where e is the tree of

order 1; (LI7) yields
v* = 2po(1 = po) — po(1 — po) — g /0™ = po — (1 + 0~ 2)pg, (2.1)

which also is seen directly from (LI9). The asymptotic normality in this
case (and a local limit theorem) was proved by Kolchin [37, Theorem 2.3.1].
By Theorem[L.9] or by a simple calculation directly from (2.]), v> > 0 except
in the case p, = 1 — pg = 1/r for some r > 2 when all nodes in 7, have 0 or
r children (full r-ary trees) and ne(7,) =n — (n — 1)/r is deterministic.
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Example 2.2. A natural extension is to consider the number of nodes of
outdegree r, for some given integer r > 1; we denote this by n,(7"). Then
n,(T) = F(T') with f(T) = 1 if the root of T" has degree r, and f(7') = 0
otherwise. Asymptotic normality of n,(7,) too was proved by Kolchin [37,
Theorem 2.3.1], with

nV2(F(To) — npy) — N(0,42) (2.2)
where

W =pr(1=p) = (r = 1)°p}/0?, (2:3)
see also Janson [27] (joint convergence and moment convergence, assuming at
least E&3 < 00), Minami [45] and Drmota [15, Section 3.2.1] (both assuming
an exponential moment) for different proofs.

It is easily checked that for r > 0, 7, > 0 except in the two trivial cases
pr = 0, when n,.(7,) =0, and p, = 1 — pg = 1/r, when all nodes have 0 or
r children (full r-ary trees) and n,(7,) = (n — 1)/r is deterministic.

In this example,

E f(T,) = P(the root of T, has degree ) — rp,. (2.4)

see [35] and [30, Theorem 7.10]. Hence (LI4) and (II5) both fail, and we
cannot apply Theorem (It does not help to subtract a constant, since
f(T,) is an indicator variable.) However, f is a bounded local functional.
Hence Theorem [[.13] applies and yields (2.2]), together with convergence of
mean and variance, for some . It is immediate from the definition of the
Galton—Watson tree T that

p:=E f(T) = P(the root of T has degree r) = p;. (2.5)

Similarly, we obtain joint convergence for different r by Theorem [[.T3] and
the Cramér-Wold device. (It seems that joint convergence has not been
proved before without assuming at least E £ < 00.)

Nevertheless, this result is a bit disappointing, since we do not obtain the
explicit formula (Z3)) for the variance. Theorem [[LT3] shows existence of >
but the formula (given by the proof) as a limit of (83 is rather involved,
and we do not know any way to derive (2.3)) from it. In this example, because
of the simple structure of f, we can use a special argument and derive both
[23) and the asymptotic covariance s for two different outdegrees r,s > 0:

Yrs = —DrPs — (1 — 1)(s — 1)prps/0'2a T # s, (26)

(as proved by [27] provided E &3 < 00); we give this proof in Section Bl
Note that by (Z2), liminf, ..o n V2 E |F(T,) — nu| > (2/7)/?,, so as-
suming v, > 0, E|F(T,,) —nu| > ¢1n'/?, at least for large n. It is easily seen
that also E f(7,)|F(T,) — np| > can'/?, at least for large n; hence, using

)

E|f(T)(E(T) = |Tu)| = > mn B[ f(To) (F(Tn) — np)| = oo,

n=1
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which shows that the expectation in (LI7)) does not exist, so 72 is not given
by (LI7).

Example 2.3. A node in a (rooted) tree is said to be protected if it is nei-
ther a leaf nor the parent of a leaf. Asymptotics for the expected number of
protected nodes in various random trees, including several examples of con-
ditioned Galton—Watson trees, have been given by e.g. Cheon and Shapiro
[11] and Mansour [42], and convergence in probability of the fraction of
protected nodes is proved for general conditioned Galton—Watson trees by
Devroye and Janson [13].

We can now extend this to asymptotic normality of the number of pro-
tected nodes, in any conditioned Galton—Watson tree 7, with E£ = 1 and
0?2 < 0o. We define f(T) := 1{the root of T is protected}, and then F(T)
is the number of protected nodes in T'. Since f is a bounded and local
functional, Theorem [[.T3] applies and shows asymptotic normality of F(7,).

The asymptotic mean p = E f(7) is easily calculated, see [13] where also
explicit values are given for several examples of conditioned Galton—Watson
trees. However, as in Example 221 we do not see how to find an explicit
value of 72 from (B3] (although it ought to be possible to use these for
numerical calculation for a specific offspring distribution). It seems possible
that there is some other argument to find v2, perhaps related to our proof
of ([26) in Section [, but we have not pursued this and we leave it as an
open problem to find the asymptotic variance +2, for example for uniform
labelled trees or uniform binary trees.

Example 2.4. Wagner [51] studied the number s(T") of arbitrary subtrees
(not necessarily fringe subtrees) of the tree T, and the number s;(T) of such
subtrees that contain the root. He noted that if T" has branches T1,...,Ty,
then s1(T") = H?Zl(l + 51(7;)) and thus

d
log(1+51(T)) = log(1+ s1(T)7") + Zlog(l + s1(T3)), (2.7)
i=1

so log(1+s1(T)) is an additive functional with toll function f(7T") = log(1+
s1(T)"), see ([L0). Wagner [51] used this and the special case of Theo-
rem [[5 shown by him to show asymptotic normality of log(1+ s1(75)) (and
thus of log s1(7y)) for the case of uniform random labelled trees (which is 7y,
with £ ~ Po(1)). We can generalize this to arbitrary conditioned Galton—
Watson trees with E¢ = 1 and E¢2 < oo by Theorem [L5] noting that
If(Tn)| < 51(Tn) ' < n! (since s1(T) > |T| by considering only paths from
the root); hence (LI4)—(LI5) hold. Consequently,

(log 1(T5) = nw) /v/n ~ N(0,77) (2.8)

for some p = Elog(1+ s1(7)!) and 72 given by (LI7) (both depending on
the distribution of £); Wagner [51] makes a numerical calculation of p and
o2 for his case.
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Furthermore, as noted in [51], s1(7T") < s(T') < |T|s1(T) for any tree (an
arbitrary subtree is a fringe subtree of some subtree containing the root),
and thus the asymptotic normality (2.8]) holds for log s(7;) too.

Similarly, the example by Wagner [51, pp. 78-79] on the average size of
a subtree containg the root generalizes to arbitrary conditioned Galton—
Watson trees (with E¢2? < oo), showing that the average size is asymptoti-
cally normal with expectation ~ pn and variance ~ ~2 for some ;> 0 and
72; we omit the details. We conjecture that the same is true for the average
size of an arbitrary subtree, as shown in [51] for the case considered there.
(Note that a uniformly random arbitrary subtree thus is much larger than
a uniformly random fringe subtree, see Remark [[.T5])

Example 2.5. Another example by Wagner [51] is the number of nodes
whose children all are leaves (i.e., no grandchildren; cf. Example 2.3]). This
is F(T') with f(T') := 1{T has no nodes of depth > 1}. This is a bounded
local functional, so Theorem [[.13] applies and shows asymptotic normality
of F(T,) for any conditioned Galton-Watson tree with E¢ = 1 and 02 < oo,
generalizing the result by Wagner [51]. Moreover, f(T') = 1 only if T is
a star, and thus E f(7,) = po_1ph "/ P(T| = n) = O(n3/2pg) so (CId)-
(LI5) hold and Theorem applies too.

3. GALTON—WATSON TREES

Given a random nonnegative integer-valued random variable &, with dis-
tribution £(§), the Galton—-Watson tree T with offspring distribution £(§)
is constructed recursively by starting with a root and giving each node a
number of children that is a new copy of £, independent of the numbers
of children of the other nodes. (This is thus the family tree of a Galton-
Watson process, see e.g. |7].) Obviously, only the distribution of £ matters;
we sometimes abuse language and say that T has offspring distribution &.
We assume that P(§ = 0) > 0 (otherwise the tree is a.s. infinite).

Furthermore, let T, be T conditioned on having exactly n nodes; this is
called a conditioned Galton-Watson tree. (We consider only n such that

P(|T| =n) > 0.)

Remark 3.1. It is well-known that the Galton—Watson tree T is a.s. finite
if and only if E€ < 1, see [7]. We will in this paper assume that E{ = 1, the
critical case. In most cases, but not all, a conditioned Galton—Watson tree
with an offspring distribution ¢ with an expectation E¢&" # 1 is equivalent
to a conditioned Galton—Watson tree with another offspring distribution &£
satisfying E £ = 1, so this is only a minor restriction. See e.g. [30] for details.

Remark 3.2. The degree sequence of the Galton-Watson tree 7 (when
finite) equals a sequence &i,&s,... of independent copies of &, truncated
at the unique place making the sequence a degree sequence of a tree, cf.
(C217). This follows immediately from (and is equivalent to) the definition
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of 7. The degree sequence of the conditioned Galton—-Watson tree 7, is
more complicated and will be described in Section [l

Remark 3.3. For any given n, T, is finite, so there is only a finite number
of possible realizations of 7,. Hence, for any functional f, the random
variables f(7,) and F'(7,) are bounded for each n; in particular they always
have finite expectations and higher moments.

Conditioned Galton-Watson trees are also known as (a special case of)
simply generated random trees, see e.g. [30].

4. PRELIMINARIES AND MORE NOTATION

We assume throughout the paper that f : € — R is a given functional
on trees, and that F is the corresponding subtree sum given by (L3]). We
assume further that 7 [7,] is a [conditioned] Galton-Watson tree with a
given offspring distribution ¢, with E€ = 1 and 0 < ¢2 := Varé < co. We
let £1,&9,... be a sequence of independent copies of &, and let

Sni=Y & (4.1)
i=1
We denote the probability distribution of & by (pg)3°, ie., pr = P(§ = k).

4.1. We recall the local limit theorem, see e.g. [37, Theorem 1.4.2] or |48,
Theorem VII.1], which in our setting can be stated as follows. Recall that
the span of an integer-valued random variable £ is the largest integer h such
that & € a+hZ a.s. for some a € Z; we will only consider £ with P(§ = 0) > 0
and then the span is the largest integer h such that {/h € Z a.s., i.e., the
greatest common divisor of {n : P({, = n) > 0}. (Typically, h = 1, but we
have for example h = 2 in the case of full binary trees, with pg = py = 1/2.)
In the case we are interested in, the local limit theorem can be stated as
follows.

Lemma 4.1. Suppose that & is an integer-valued random variable with P(§ =
0) >0, E¢ =1,0 < 02 := Varé < oo and span h. Then, as n — oo,
uniformly in all m € hZ,
h 2 2
P(S, =m) = —— e~ (m=n)*/(2no%) 4 5(1)). 4.2
(Sn=m) = ——( (1) (4.2)

O

In particular, which we will use repeatedly, as n — oo withn =1 (mod h),

P(S, =n—1) ~ e (4.3)

2mo?
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4.2. As said above, a tree in T is uniquely described by its degree sequence
(di,...,dy,). We may thus define the functional f also on finite nonnegative
integer sequences (di,...,d,), n > 1, by

f(T), (di,...,dy) is the degree sequence of a tree T,

di,...,dy) =
J(da ) {0, otherwise (i.e., (L27]) is not satisfied). (4.4)

If T has degree sequence (dy, . .., d,), and its nodes are numbered vy, ..., v,
in depth-first order so d; is the degree of v;, then the subtree T}, has degree
sequence (d;,d;y1,...,di1k—1), where k < n—i+ 1 is the unique index such
that (d;,...,d;1x—1) is a degree sequence of a tree, i.e., satisfies (L.27). By
the definition (£4]), we thus can write (L3]) as

n n—k+1
F(T)= > fldi....d)) =Y > fldi,... dipx_1). (4.5)
1<i<i<n k=1 i=1
Moreover, if we regard (dy,...,d,) as a cyclic sequence and allow wrapping

around by defining d,,+; := d;, we also have the more symmetric formula

n n
F(T) =) f(diy. ., dipi1). (4.6)
k=1 i=1
The difference from (4.3)) is that we have added some terms f(d;, ..., divk—1-n)
where the indices wrap around, but these terms all vanish by definition be-
cause (d;,...,di+k—1-n) is never a degree sequence. (The subtree with root
v; is completed at the latest by wvy; this also follows from (L.27]).)

It is a well-known fact, see e.g. [30, Corollary 15.4], that up to a cyclic
shift, the degree sequence (di,...,d,) of the conditioned Galton—Watson
tree 7,, has the same distribution as ((51, o) g+ =n— 1).
Since (A6) is invariant under cyclic shifts of (di,...,dy), it follows that,

recalling (4.1]),
F(%)g(Zz.f(&a'”ygi-l-k—lmodn)‘S :Tl—1>, (47)

k=1 1i=1

where 7 mod n denotes the index in {1,...,n} that is congruent to j modulo
n.

4.3. We let, for k£ > 1, fi be f restricted to Tj; more precisely, we define
fi for all trees T' € T by fi(T) := f(T) if |T| = k and f(T) := 0 otherwise.
In other words,

Jio(T) == f(T) - {|T| = k}. (4.8)
Extended to integer sequences as in (4.4)), this means that
feldi, ... dp) = f(dy,...,dy) - 1{n =k}. (4.9)

Note that Ty is a finite set; thus f; is always a bounded function for each k.
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We further let, for k£ > 1 and any tree T, with degree sequence (dy, ..., d,),
n—k+1

Fi(T) == F(T; f) = Z Frldiy .. digg_1). (4.10)

(We can also let the sum extend to m, wrapping around d; as in (4.6]).)
Obviously,

- Z #u(T) and F(T) = Z Fi(T) (4.11)

for any tree T, where in both sums it suffices to consider k < |T'| since the
summands vanish for k > |T].

4.4. Tt is well-known (see Otter [47], or |30, Theorem 15.5] and the further
references given there) that for any k > 1,

P(|T| = n) = %IP’(S” 1), (4.12)

Hence, by ([@3)), as n — oo with n =1 (mod h), see Kolchin [37],

h
P(|T] =n) ~ n=3/2. 4.13
(1T =)~ —— (113
In particular, P(|7] = n) > 0 for all large n with n =1 (mod h),

We sometimes use the notation
recalling (A12)-(ZI13).

5. EXPECTATIONS

We begin the proof of Theorem [[.5lby calculating the expectation E F'(7,,),
using (4.7)) which converts this into a problem on expectations of functionals
of a sequence of i.i.d. variables conditioned on their sum. Results of this type
have been studied before under various conditions, see for example Zabell
[52, 153, 154], Swensen [50] and Janson [27]. In particular, the results (and
methods) of Zabell [54] are closely related and partly overlapping (but the
setup there is somewhat different).

We assume throughout the paper that ¢ = 1 and 0 < 02 = Varé <
oo. For simplicity we also assume in some proofs in the sequel that the
span h of the offspring distribution is 1, omitting the minor (and standard)
modifications in the general case. All statements are true also for h > 1.
(Note that when h > 1, the Galton—-Watson tree 7 always has order |T| =1
(mod h), and thus we only consider k,n = 1 (mod h). The modifications
when h > 1 consist in using the periodicity of the characteristic function
©(t) and integrating only over |t| < 7/h in, for example, (5.I1]); we leave
the details to the reader.) We assume further tacitly that n is so large that

P(|T] =mn) >0, cf. (@I3).
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By (47)) and symmetry,
EF(T)=nY E(f(&,...&) | Sn=n—1). (5.1)
k=1

We consider first the expectation of each F(7,) separately, recalling
(#IT). Note that each fj is bounded, and thus trivially E|f(7)| < oc.

Lemma 5.1. If 1 <k < n, then
_ ]P)(Sn—k =n-—- k)

Proof. If fr(§1,...,&k) # 0, then Sy = & + -+ + & = k — 1 by (L.27).
Consequently, for every n > k, by (5.1]), and the fact that the &; are i.i.d.,

EFk(%) = nE(fk(fl, e ,fk) ‘ Sn =N — 1)
_ nE(fk(&, &) - {8, =n—1})

P(Sn =n — 1)
E(fu(&1,--- &) - 1{Sy — Sk =n —k})
- P(S, =n — 1)
_ nEfk(fla oo &) - P(S, — Sp=n—k)
- P(Sn =n-—- 1)
- np];fg;k:n"_—ll;?) E fr(&1,---, &) (5.3)

The result (5.2]) now follows by Remark B:2] which implies that, recalling
again that by definition f(7") = 0 unless |T| = k,

E fr(&1,-- &) = E fi(T). (5.4)

For future use, we give also an alternative derivation of (5.4]). By taking
n =k in (5.3)), we obtain
k
- & e . 5.5

(We may assume that P(|7| = k) > 0, since the result trivially is true if
P(|T| = k) =0, when f3(T) = 0 a.s.) Furthermore, since fx(7') = 0 unless
|T| = k, (L3) yields Fx(Tx) = fx(Tx) and

E Fy(Te) =

E fr(T
E F(Th) = E fi(T) = E(fu(T) | IT] = k) = ﬁ(:)k) (5.6)
Finally, recalling (£12) (which also follows by taking fi(7") = 1 in (5.5))),
B.3)-6.8) yield G.4). O

Lemma 5.2. (i) Uniformly for all k with 1 <k <n/2, asn — oo,

Sp—k=n—Fk k B
Plé(snk: - 1)) =140 (;) +o(n7'12). (5.7)
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(ii) If n/2 < k < n, then

]P)(Sn—k =n-—- k«') . nl/?
P(S, —n — 1) —O<m>- (5.8)

If £ has a finite third moment, this follows easily from the refined local
limit theorem in [48, Theorem VII.13]. Since we do not assume this, we
have to work harder and take advantage of some cancellation.

Proof. (i): We let o(t) := Ee'® be the characteristic function of ¢, and
@(t) := e p(t) the characteristic function of the centred variable & :=

f-Ee=¢— 1. ) ]
We begin with a standard estimate. Since E¢ = 0 and Var(§) = o2 < oo,
we have

ot)=1-— %02t2 + o(t?) as [t| — 0. (5.9)
It follows that |p(t)] = |@(t)| < e="**/3 for |t| < c3. Furthermore, assuming

|
that £ has span h = 1, |p(t)] < 1 for 0 < |t| < 7, so by compactness,
lp(t)] <1 —cq for eg < |t| < 7. It follows that

~ 12
lp(®)] = |@(t)| <e =", |t < (5.10)

To estimate the ratio in (5.7]), we note first that by (&3], it suffices to
estimate the difference P(S,,_r = n—k) —P(S,, = n—1). We do this in two
steps.

First, consider the difference P(S,,—y = n — k) — P(S,—1 = n—1). By
Fourier inversion,

P(Sy = n—k)—P(Sy 1 =n—1) = — /7r (@"‘k(t) - 95”_1(75)) dt

21 )y

L [ (1 - cﬁk_l(t))cﬁn_k(t) dt. (5.11)

:% .

By (59), ¢(t) = 1+ O(t?), and thus, using also |3(t)| < 1, for all j > 0 and
tER,

|7 (t) — 1| = O(jt*). (5.12)
Furthermore, by (5.10) and k& < n/2, for |t| < 7,
1" F ()| < exp(—cs(n — k)t?) < exp(—cgnt?). (5.13)
Consequently, (5.11]) yields
IP(Sp—k =n—k) —P(Sp_1 =n—1)|

s

1
< 5 fet2e~con” dt < kn~3/2, (5.14)

—Tr
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Next, consider P(S,,—1 =n — 1) — P(S,, = n — 1). By Fourier inversion,

P(Sy 1 =n—1)—P(Sy=n—1) = — / " it (gp"‘l(t) - go”(t)) dt

21 ) g

= [ (1 ew) e
= 2;7; _7; tg" 1 (t) dt + % /_1(1 + it — cp(t))@"_l(t) dt. (5.15)

Since p(t) = 1 + it + O(¢?), the second integral in (5.15) is O(n~%/2) by the
argument in (5.I4]). For the first integral, we make the change of variable

t=a/yn:
/_7; tE" () dt = %/_7:/; wg" ! (%) da. (5.16)

We have ¢"(z/y/n) — e7°%*/2 as n — oo for every z by (5.9), and thus
by dominated convergence (justified by (5.10))),

m/n ()
~n—1 x ) / —02x2/2 _
TP — | doz — xe dz =0. (5.17)
/—W\/ﬁ <\/ﬁ —00

Consequently, the expressions in (5.16]) are o(1/n), and (B.15]) yields
P(Sp—1=n—1)—P(S,=n—1)=0o(n"). (5.18)
This and (5.14) yield, together with (£3),

|P(Sp—r =n—Fk)—P(S, =n—1)] < kn=3/2 + o(n=1)

P(S, —n — 1) iz (019

and the result follows.
(ii): We use (4.3) together with the similar estimate, also from Lemmal4.T],
P(S,—r =n—k) :O((n—k:+1)_1/2). O

Proof of Theorem [LH{1)] Let ay := |E f(Tx)| = | E fx(7x)|; thus by assump-
tion a — 0 as k — oo. Moreover, by (5.6) and (£13]),

|E fo(T)| = | E fu(T)IP(T| = k) = ax P(IT] = k) = O(ark™?). (5.20)
By (4II)) and Lemma [5.1]

CEF(T)—ES(T) = Y (S ER(T) — E filT))

k=1
_ - P(Sn—k:n—k‘)_ B >
— ;21 < P(S, =n—1) 1) E fx(T) k:ZWEfk(T). (5.21)
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We split the expression in (5.2]]) into three parts. First, for k < n/2 we use
Lemma [5.2(i) and obtain, using (5.20) and a; — 0 as k — oo,

Z (S =n - I;) — 1| [E fi(T)| < Z <§ + o(n_1/2)> apk=3/?

k<n/2 ]P(Sn =n—1 k<n/2
<n! Zakk‘_l/2 + o(n_l/z) = o(n_l/z).
k<n
(5.22)
For n/2 < k < n, we use Lemma [5.2[(ii), yielding
P(S,_r =n—k) ' nl/2 —3/2
> = ERDI< Y kY
n/2<k<n P(Sp =n—1) n/2<k<n (n—k+ 1)V
1
-1 (o —1)2
<n ~ max ag Z —12—0(71 )
kenj2 (n—k+1)Y
(5.23)

Finally, for k¥ > n we have by (5.20])
Z‘E fk(T)‘ < max ay Z k3% = o(1) - Z k3% = o(n_l/Q). (5.24)

k>n k>n k>n

The result follows by (5.21))—(5.24)). O

Remark 5.3. Trivial modifications in the proof above show that if E | f(7)| <
oo and | E f(T3)| = o(k'/?), then E F(T,,) = nu+o(n), so (LIT) holds. More-

over, the quenched version (LI2) holds too; this follows easily from (LI0)

together with (LI2]) applied to truncations of f. (We omit the details.)

If we assume further moment conditions on £, we can improve the error

term in (B.7) and thus in (II3]). (Cf. Zabell [54, Theorem 4].)

Lemma 5.4. If E&219 < oo with 0 < § < 1, then, uniformly for all k and
n with 1 <k < n/2,
P(Sn—k =n- k)
P(S, =n—1)
Proof. This follows by minor modifications in the proof of Lemma [(.2(i).
We now have

=1+0 <E> +O(n=(+9/2), (5.25)

n

P(t) =1 — Lo%t2 + O(|t]*™) (5.26)
which leads to

oz . LI 22
%) 1<%>:xe *a?/2 <1+O<|n|5/2 >—|—O<;>>, (5.27)

for |z| < n%%, at least. It follows (using (5.13) for = > n%/6) that the first
integral in (517 is O(n_‘s/ ?). The rest is as before. O
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Theorem 5.5. Suppose, in addition to the assumptions of Theoremll._ﬂﬁﬂ,
that 0 < 6 < 1 and that B&>*0 < 0o and E f(T,,) = O(n=%?2). Then

E F(T,) = np+ O(n1=9/2), (5.28)

Similarly, if &3 < oo, E f(T,,) = O(n~Y2) and S |E £(T;)In" 2 < 0,
then

E F(T,) = nu+ O(1). (5.29)
Proof. As the proof of Theorem [[5|(i)| above, using (5.25]) and the assump-
tions on E f(7,). We omit the details. O

Remark 5.6. In fact, if E£3 < oo, by including the next terms explicitly
in the calculations in the proof of Lemma [5.2[i), it is easily shown that for
every fixed k, as n — oo,

P(Sp—k=n—k 1 B D »
P(S, =n—1) _H%(’”U — 30 ") +o(n), (5.30)

where sc3 = E(¢6 — E&)? is the third cumulant of £. (If E&* < oo, this also
follows easily from [48, Theorem VII.13].) Hence, if for simplicity f has
finite support, (5.21)) yields, with p:=E f(7) as above,

EF(T,) =nu+ s E(ITIF(T)) + (072 = 350 )+ o(1). (5.31)

We leave it to the reader to find more general conditions on f for (B.31]) to
hold.

The following example (adapted from [54]) shows that the sharper results
in Lemma [£.4] and Theorem do not hold without the extra moment
assumption on &.

Example 5.7. This is a discrete version of [54, Examples 5-6]. Consider,
as in Example 211 f(T) = 1{|T| = 1}. Suppose that py = P({ = k) = ak™®
for k > 2 for some a > 0 and a € (3,4). (With pg,p1 adjusted so that
Y ppe = 1 and E{ = 1; this is obviously possible if a is small.) Then
E&T < 00 <= r < a— 1; in particular, E£2? < oo but E€* = co. It can be
verified that

p(t) =1+it — SE 4+ al'(1 — ) (—it)* ! + O(t?), (5.32)
see e.g. [46, 25.12.12] or |21, Theorem VI.7]. It follows that, for || < ¢z,
log §(t) = —10%t* +al'(1 — o) (—it)* ' + O(t?), (5.33)

and hence, for |z| < n(®=3)/6 by a simple calculation,

sn—1( %\ _ —o222/2 _ _ioaa—1,(3—a)/2
@ ( =e 1+al'(1 —a)(—iz)* 'n
F)=
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Using this in (5.10)), it is easy to obtain

—i / t@" T (t) dt

:/ e—cﬂx?/g <_Tlx —I—CLF(l . Oé)(—il‘)an(l_a)/2> dz + O(n_3/2 +n2—a)

= 2al'(1 — «) cos %n(l_o‘)m / 2% 72 4 + O(n_3/2 + nz_o‘)
0

= bn1=/2 § (n(=2)/2)

for some b # 0. Using this, instead of (5.16) (G517, in the proof of Lemmal[5.2]
leads to the estimate, for some ¢ # 0,

P(Sp—1=n-1) _ 1—a/2 1—a/2
B(S, —n 1) =14cn +o(n ), (5.34)
and thus by Lemma [5.1]
E F(T,) = npo + cpon® =/ + o(n?~/?), (5.35)

showing that without further assumptions, the error term o(n~'/2) in The-
orem Dﬁﬁﬂ is essentially best possible.
We can also take a = 4 in this example; then

p(t) =1+it — SEE + Latlog|t| + O(t?), (5.36)
and similar calculations lead to, for some ¢ # 0,

E F(T,) = npo + cpglogn + O(1). (5.37)

We end this section with a result on the expectation E f(7,) in the case
of a local functional f. We first state an estimate similar to Lemma (but
somewhat coarser and simpler); it can be refined but the present version is
enough for our needs. (If £ has a finite third moment, it too, and more,
follows easily from the refined local limit theorem in [48, Theorem VII.13].)

Lemma 5.8. For any integers w,z > 0 with z < n/2,

P(Sp—r =n—z—w)
P(S, =n—1)

:1+O(w+z+l)

7 (5.38)
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Proof. We argue as in the proof of Lemma and obtain, recalling (5.12])
and (5.13),

P(Sp—r=n—z—w)—P(S,=n—-1) = ! /7r (cﬁ"_z(t)eiwt - cﬁ"(t)eit) dt

2 ),

_ i " ~n—z iwt _ ~z it
=3 _ch (t) <e o (t)e >dt
1 " ~n—z
R () (1+0(wlt) = (1+0(=£2) +O(jt])) ) dt
I S o (wtz+1
_ /_We 0 (wlt] + 2t + i) dt = O,
The result follows by division by P(S,, = n — 1), using (£.3). O

Let T be the size-biased Galton-Watson tree defined by Kesten [36], see
also Aldous [3], Aldous and Pitman [5], Lyons, Pemantle and Peres [41]
and Janson [30]; this is a random infinite tree, whose distribution can be
described in terms of the truncations 7 () by

P(TM =T) = wp(T)P(TM =T),  Teg, (5.39)

where wys(T') denotes the number of nodes of depth M in T'. Then T, 4T
as n — oo in the appropriate (local) topology, as shown by Kennedy [35]
and Aldous and Pitman [5], see also Janson [30] for details and generaliza-
tions. This means that Tn(M) L D) gy every fixed M. If f is a local
functional with cut-off M, so f(T) = f(T™)) for every finite tree T', then
we define f also for the infinite tree 7 by f(7) := f(TM)). Tt follows
that £(T,,) = F(TM) =5 f(TOD) = #(7), and thus, if f furthermore
is bounded, that E f(7,) — E f(T). We establish an upper bound on the
rate of this convergence. (Note that we do not impose any further moment
condition on ¢ beyond finite variance.)

Lemma 5.9. If f(T) is a bounded local functional on T, then
E f(T) =Ef(T)+0(n"'/?). (5.40)

Proof. Let as above M > 1 be the cut-off of f. Let T be a tree with height
< M and condition on the event that 7() = T. Then the rest of the tree,
more precisely 7\ 7M1 is a random forest consisting of w := wy(T)
independent copies of 7; denote this random forest by F,,. By an extension
of (#I12) due to Dwass [16], see also Kemperman [33,134] and Pitman [49],

P(|Fy| = n) = %IP’(S” =n—w). (5.41)

Let zp = 2z,(T) = Z?:o w;(T'), the number of nodes in the first & gener-
ations of T'. Let further wgﬂM) = P(TWM) = T) and, using (539), ﬁéﬂM) =
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P(T(M) = T) = wmpr). It follows that, for n > 2z,

P(TOD =T and [T| = n) = BT = T) P(|Fu| = n — 2ar-1)
w
= W%M)m P(Sn—zM,1 =n—2zZpy_1— W)

(M) IP’(Sn_ZMf1 =n—2Zp_1— w)
n—2Zp-1 '

Hence, recalling (£12),
BT =T)=B(T") =T ||T| =n)
]P’(T(M) =T and |T| = n)

P(IT|=n)
— 7M) n P(Sn—zpry =1 — 20—1 — W)
T n— 2y P(S,=n—1)

If zp7—1 < n/2, we thus obtain by Lemma [5.8]
(M) _ 7y — 2 (M) AM—1 T WY (M) AM_
P(TM) = T) = 44 <1 + O( 7 )) 4 <1 + O<n1/2>>. (5.42)

(Incidentally, this proves ]P’(’]}L(M) =T) — ﬁéﬂM) = P(TM = T), ie,

M L T(M) a5 asserted above.)
Consequently, since f is bounded, using (5.42)) when |T'| < n/2,

[Ef(T2) —E£(T)| = [EF(TD) = E(THD)|
= > FOBTMD = 1) = 3 F@) BT = 1)
T T

< [T = 1) (T = 1)
T

zym(T)
/2

+ Y (T =1) + P(TM = 1))

|T|>n/2

<Y P(TM =1)
T

= n V2R [T +]P’(\7;L(M)‘ >n/2) +]P>("f'(M)‘ > n/2)
< PE[TOD] 4 BT (>43)

using Markov’s inequality at the final step. Finally, we observe that
M
E|TM) =Y Ew(Ta) = O(1) (5.44)
k=0

since Ew;(T;) = O(j) for each j, see [44] (assuming that £ has an exponential
moment) and [29, Theorem 1.13] (general ¢ with E£? < oo; in fact it is
shown that the estimate holds uniformly in j); see also [1] for further results.
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Similarly, or as a consequence,

M M
BT = Ewp(T) =Y Ewp(T)? < oc. (5.45)
k=0 k=0
Hence (5.43)) yields the estimate O(n~1/2). O

6. VARIANCES AND COVARIANCES

We next consider the variance of F'(7T,). As in Section [5, we consider first
the different Fy(7,) separately; thus we study variances and covariances of
these sums. We begin with an exact formula, corresponding to Lemma [5.11

Lemma 6.1. If m <k andn > k+m —1, then

Cov{Fu () Fon(To)) = n = 2= B (T (7))
P(Sp—xr=n—k) P(Sp_m=n—m)
B - R e T A—
+nn—k—m+1DE fi(}TE f(T)-
P(Sh—k—m=n—k—m+1) P(Sp_r=n—k)P(S,—m=n-— m)>

E fi(T)E fm(T)

P(S,=n—-1) P(S,=n—-1) P(S,=n-1)
(6.1)

If m <k <n<k+m, we have instead

Con((T). Fn(T) = n et = = (4T (7))

B n2P(Sn—k =n—k) P(S_m=n-—m)
P(S, =n—1) P(S,=n—1)

Note that by (£.06]) and (@12,

Efu(T)E fu(T). (6.2)

B Ji(T) = B(T] = W E fu(Ti) =~ =" Vg pm)  63)
and similarly (again because fi(7) = 0 unless |T| = k)
E(fu(T)En(T)) =P(T| = k) E(fx(Te) Fn(Ti))- (6.4)

Proof. Note first that for n = k +m — 1 and n = k 4+ m, the formulas (6.1])
and (6.2) agree, in the latter case because P(S,_k—m =n—k—m+1) =
P(Sy =1) = 0. Hence it suffices to prove ([6.1]) for n > k + m and (6.2)) for
Ek<n<k+m-—1.

By (A1) and symmetry,

E(Fi(Tn)Fn(Tn))

=n E(fk(fh s 7€k)fm(€j+17 s 7€j+m mod n) ’ Sp=n— 1) (65)

=

|
—_

[en]
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Consider first the terms with 0 < j < k& — m; these are the terms with

{+1,...,5+m} C{1,...,k}, and we see from (4LI0) that if (&1,...,&)
is the degree sequence of a tree, then

k—

3

Fm(&j1s - &irm) = Fm(&1s -+, k) (6.6)

Il
=)

J
Hence, if we define g(T') := fx(T)Fn(T), T € ¥, and use (5.1) and Lemmal[5.1]
(or its proof), noting that g = g,

k—m
]E(fk(gb .. 7£k)fm(£j+17 cee 7£j+m) | Sn =n— 1)
=0

J

E(fk(glvvé.k)Fm(gbygk) | Sn :n_l)

= E(h(Er &) | Su=n—1) = EGL(T.)

_ P(Sn—k =n- k)
- P(S,=n-1)

This yields the first term on the right-hand side of (6.1]) and (G.2]).

Next, two subtrees of a tree are either disjoint or one is a subtree of the
other. Hence, if k—m < j < k so the index sets {1,...,k} and {j+1,...,5+
m} overlap partly, ({1,...,&) and (§41,...,&j+m) cannot both be degree
sequences of trees (this can also be seen algebraically from (L27)), and thus

fk(£17 cee 7£k)fm(£j+17 cee 7£j+m) = 0.

Hence these terms in the sum in (6.5]) vanish. The same holds if n—m < j <
n, with indices taken modulo n, when the index sets again overlap partly
(on the other side).

Finally, if £ < j < n—m (and thus n > k +m), the index sets {1,...,k}
and {j +1,...,j + m} are disjoint. By symmetry, the expectation in (6.5
is the same for all j in this range, so we may assume j = k, noting that this
term appears n — k —m + 1 times. Arguing as in (5.3]), and using (5.4)),

E(fiEry o &) fin(Ehsts- s Ebpm) | Sn=n—1)
_ E(fu(&1,- -y &) frn(hsts ooy Cogpm)1{Sn — Sksm =n—k —m +1})

E gr(T). (6.7)

P(S, =n—-1)
B S ) E fnlrrts - Serm) P(Sh = Skym =1 —k —m 4+ 1)
B P(S,=n—-1)
_ P(Sn—k—m =n—k —m + 1)Efk(7-)Efm(7—) (6‘8)

P(S,=n—-1)

The results (6] and ([€2) now follow from (6.5)—-(6.8)), subtracting the
product E Fy(7,) E F,,(7,) which is given by two applications of (5.2]). (Note
that in (6.1), this is split into two terms.) O



26 SVANTE JANSON

We next estimate one of the factors in (6.1]), where there typically is a lot
of cancellation.

Lemma 6.2. (i) As n — oo, uniformly for all k > 0 and m > 0 with k +
m < n/2,

P(Sp—k—m=n—k—m+1) P(Sp_p=n—k)P(S,—m =n—m)

P(S, =n—1) O P(S,=n—-1) P(S,=n-1)
z—n%‘z+o<1)+0<kn;?)+o(i—?). (6.9)

(ii) For allm > 1, k>0 and m >0 with n/2 < k+m < n,
P(Sp—k—m=n—k—m+1) P(Sp—p=n—k)P(Sp—m =n—m)

P(S,=n—-1) P(S,=n—-1) P(S,=n-1)
min(k, m)n'/? > < nl/? >
=0 O —— . (6.10
((n—k—m+1)3/2 L ey (6.10)
Proof. (i): By multiplying (6.9) by P(S, = n — 1)? and using ([@.3)), we see
that (6.9)) is equivalent to (assuming h = 1 for simplicity)
P(Sp—k—m =n—k—m+1)P(S, =n—1)
—P(Sp—r =n—k)P(Sp—m =n—m)
1 1 kE+m km
T 27n20t to ( ) +O< nb/2 > +O<ﬁ>' (6.11)
To prove this, we first obtain by Fourier inversion, recalling ¢(t) := e p(t),
P(Sp—k—m=n—k—m+1)P(S, =n—1)
—P(Sp—x =n—k)P(Sp—m =n—m)
1 " : 1 "

= — gk (et dt - — ¢"(u)e™ du
2 2 J_,

—T

1 (" 1 ("
S BRI / & () du

2 r

87T2/ / ~n—k— m 1t¢n—k—m(u)e—iux

<<pk(t)elt @k(u)e“‘) (@m(t)eit - cﬁm(u)ei“) dtdu. (6.12)
For all & > 0, we have by (5.12) |3*(t)el* — 1| = O(Jt| + kt?) and thus
|GF (t)elt — GF(w)e| = O(|t| + kt* + |u| + ku?); (6.13)
similarly,
‘(gbm(t)eit — @m(u)ei“) — @m(t)gbm(u)(eit - ei“) = O(mt2 + mu2). (6.14)
Furthermore, if £k +m < n/2 and [t| < 7, then by (510), or (513),
|<,0” k= m(t)| < exp(—cs(n — k —m)t?) < exp(—cgnt?). (6.15)
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Denote the left-hand side of (6I2)) by Ag,,. If we replace the factor
@ (t)el! — @™ (u)e™ in the right-hand side by @™ (t)@™ (u) (e — €), we
obtain after cancellation Ay . Using (6.13)-(6.I5]) to estimate the resulting
error we obtain

| Am — Ak
™ ™
< / / emeont*=eon® (|4 4 Juf + kt? + ku?) (mt? + mu?) dt du

—5/2 + kmn 3. (6.16)

This is covered by the error terms in (6.11]), and thus it suffices to prove
(@I for m = 0. By symmetry, we also obtain |Ag o — Ago| < kn=%2, so
it suffices to prove (6.11]) in the case k = m = 0.

In that case, ([G.12]) yields

1 " " ~n —it ~n —iu (i iu) 2
AQOZQ/_F/_W@ e " (w)e (e — ")  dt du

1 T m/n T - :

— ~n —iz/y/nn( Y —iy/v/n

- [ [T (e (e
(\/ﬁ(eiw/\/ﬁ - eiy/\/ﬁ))2 dzdy, (6.17)

and it follows by dominated convergence, using (5.9) and (5.I0)), that as
n — 0o,

1 o0 oo
n*Ago — ——/ / e T2 2 ()2 Az dy = -~
T 8meo

This shows (6.11]) in the special case k = m = 0, and thus by the estimate
(616) for all k and m with k+m < n/2, which completes the proof of (6.11])

and (6.9)).

(ii): To prove (6.I0)), we first observe that we may assume m < k by
symmetry. In this case n > k > n/4. We again multiply by P(S,, = n — 1)?
and use ([6.12]). We now use the estimate, by (5.10), for ||, |u| < ,

[@F(B)e — &M (u)e™| < [F" ()] + |7 (u)] < exp(—csht?) + exp(—cshu?).
(6.19)
Using this and (6I3) (with & replaced by m) in (€I2]) we obtain, using
k > n and symmetry,

Ap o K /7r /7r 6—65("—k—m)t2—05(n—k—m)u2 <e—05kt2 + 6_05ku2) %
([t] + mt? + [u| + mu?)) dt du

o [e.e]
< 26637r2/ / e—Cskt?—cs(n—k—m+1)u? (|t| +mt? + u| + muZ)) dt du
—o00 J —o0

<KLmn

(6.18)

1 m

< nt2(n —k—m+1) +n1/2(n—/<;—m+1)3/2'
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The result (6.10) follows by dividing by P(S,, = n — 1)2 > n~% O
In particular, we obtain a simple asymptotic result for fixed & and m.

Lemma 6.3. For any fized k and m with k > m, as n — 00,

% Cov(F(To), Fn(To)) —
E(fiu(T)En(T)) — (k+m —1+40"%)E fi(T)E fin(T).

Proof. This now follows from Lemma [6.Il After division by n, the two
first terms on the right-hand side of (G1I) converge to E(f(7T)Fn(T)) and
—(k+m —1)E fp(T)E f,(T) since the probability ratios converge to 1 by
Lemma [5.2(i). The third term divided by n is by Lemma [6.2(1)

(n+0)(=o 20 +o(n™ ) E fil(T)E fu(T) = =0 2E fiu(T)E f(T).
O

This yields immediately variance asymptotics for a functional f with finite
support.

Corollary 6.4. Suppose that f has finite support. Then, as n — oo,
%Var F(T,) —

E(J(T)(2F(T) ~ F(T))) — 2E(ITIF(T) EF(T) + (1 o) (B F(T)".
Proof. By ([@11]) and Lemma [6.3] the limit exists and equals

23" N E(f(MET) + Y E(fu(T)F(T))
k

k m<k

=Y (k+m—=1+40")E f(T)E fu(T),

k,m

where all sums are finite since fr = 0 for large k. Since fx(T) = 0 unless
IT| = k, we have fi(T)F(T) = fi(T)? and fi(T)E,,(T) = 0 for m > k,
T € T. Using this, (1)) and the similar relations Y, fx(T)? = f(T)? and
Yo kfi(T) = |T|f(T), it follows that the limit can be written as

2 S TE(fu(T)Fn(T)) = D E(fu(T)?) = 2D kE fi(T) Y E fu(T)
kE m k k m

+(1-072) (%:Efk(T)>2

— 2E(f(T)F(T)) —E(f(T)?) —2E(|T|£(T)) E £(T)+ (1—0~2) (E £(T))*.
O
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Remark 6.5. The limit in Corollary equals v2 in (LI7) for every f
with finite support, and more generally for every f such that the expres-
sion in (ILI7) is finite and E(|T||f(T)|) < co. Conversely, if E f(T) # 0,
the condition E(|T||f(T)|) < oo is necessary for the expression in Corol-
lary to be finite; note that this condition by (@I3]) is equivalent to
S L E|f(Th)|/v/n < oo and thus imposes a stronger decay of E f(7;,) than

In order to extend this to more general functionals f, we prove a general
upper bound for the variance. We first give another lemma estimating a
combination of probability ratios where there typically is a lot of cancella-
tion.

Lemma 6.6. (i) If m < k/2 and k < n, then

]P)(Sk—m =k— m)
P(Sy =k—1)

P(Sp—m =n—m)
P(S,=n—-1)
= 0(m) + O(k"?). (6.20)

k —min(k+m—1,n)
(i) If k/2 < m < k < n, then

P(Sk_m =k — m)
P(Sy = k — 1)

P(Sp—m =n—m)
P(S, =n—1)

k‘3/2
- 0(—<k — 1)1/2>. (6.21)

(iii) If furthermore E &> < oo with 0 < § < 1, then the estimate in (i) is
improved to O(m) + O(k:(l_‘s)/Q).

Proof. (i): By LemmaB.2(i) (twice),
P(Sk—m =k —m) P(Sp—m =n—m)

k

—min(k +m — 1,n)

k —(k+m-—1)

P(Sy =k 1) P(S, =n— 1)
= k<1 + O(%) + O(k‘1/2)) —(k+m— 1)(1 + O(%) + O(n—1/2)>
= O(m) + O(k'?), (6.22)

which shows ([6.20)) if also K+ m — 1 < n.
If k+m—1 > n, we have 0 < k+m—1—n < m and thus, by Lemmal[5.2)i)

again (or by @2)-(E3),

P(Sp—m =n—m)
P(S, =n—1)
and (6.20) follows by adding (6.22]) and ([6.23]).

(ii): By Lemma [5.2[(ii),
P(Sk—m =k —m)
P(Sy=k—1)

(k+m—1-n) =0(k+m—1—n)=0(m), (6.23)

P(Sp—m =n—m)

k P(S, =n—1)

—min(k +m —1,n)
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/2 nl/2
v Lk -
(k:—m+1)1/2+( +m)(n—m—|—1)1/2’
yielding the result since n/(n —m + 1) < k/(k —m + 1).

(iii): We use the improved estimate in Lemma[5. 4] instead of Lemmal[5.2(i)
in (6.22) and the result follows as above. O

<k

Theorem 6.7. For any functional f : € — R,
© / 2
Var(F(’]}L))l/2 < Cnt/? (sup VE f(T)? + Z w» (6.24)
k k=1

with Cy independent of f.

Proof. Let py :=E f(T;) = E fi(Tx). By the decomposition f(T) = f'(T) +
f"(T) where f'(T) := f(T)—pp and f"(T) := pr|, there is a corresponding
decomposition F(T,) = F'(T,) + F"(T,). Minkowski’s inequality Var(X +
V)12 < Var(X)Y2 4 Var(Y)'/? (for any random variables X and Y') shows
that it suffices to show the estimate for F'(7,) and F"(7,) separately. In
other words, it suffices to show (6.24]) in the two special cases where either
E f(Tx) = 0 for every k (so f = f), or f(T) = 7| depends on |T| only (so
f = f"). Recall the notation 7, := P(|T| = n) from @I4]).

Case 1: E f(Tx) = 0 for every k. In this case, since f(Ty) = fr(Tx), also
E fx(Tx) = 0 and by (5.06) and (5.2]) (and the trivial Fy(7,) = 0 for k > n),

Efe(T)=0, EF(T7,) =0, EF(T)= iﬂnEFk(Tn) =0, (6.25)
n=1

for all £ > 1, n > 1. Hence, (6.1) and (6.2]) yield the same result and
Lemma [6.1] reduces to, for m < k < n,
P(S,—xr =n—k)
P(S,=n—-1)
 P(Sp—k=n—k)

Consequently, using again F,,,(7;) = 0 for m > k and Fy(7x) = fx(Tx),

Cov(Fi(Tn), Fin(Tn)) =n

E(fi(T)Fn(T))

L B(7;) - %; 2_1 Cov(FL(T). Fun(T:)
_ %kg mé (2= ) COV(EL(Ta)s Fun(To)
-y mé 2= bun) i S B (T ()
= 3 Bk =0y () (2 - £6(T)) (620
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Suk=n—k
< Z st = BAUTF(T). (6.25)
By (£2)-3), (IIII{I) ([6.25)) and the Cauchy—Schwarz inequality, this yields
1 nl/2 1/2 1/2
EVarF ) < Z TN (Var fi(Te)) '~ (Var F(Ty)) /.

k=1
Let us write Var fx(7x) = a3 and Var F(T;) = kS, and let further

00 o

B := — 2

sgpak—i—; ’ (6.29)
and ) 1= supy<, ﬂk. Then we have shown
nl/2 1o
n/2
—-1/2
<<Z B—i_ Z n—k—kl)lﬂ&c

k=n/2

* Qg —1/2 g 1
<<ﬁnz_+n B, sup ay Z YA R TV
il B S (k) /

< BB:. (6.30)

In other words, 32 < C1Bf; for some Cy. The sequence 37 is increasing,
and thus we obtain

(83)° = sup B2, < C1BB;. (6.31)
1<m<n
Consequently, recalling that 3, and ) are finite by Remark [3.3]
Bn < B, < C1B, (6.32)

i.e., Var F(T,,) = nf2 < nC?B?, which, recalling (6.29)), completes the proof
of Case 1.

Case 2: f(T) = pr- In this case, f(Tx) = fu(Tx) = pr, and (6.4) and
B2) yield

E(fi(T)Fn(T)) =P(T| = k) E(fx(Te) Fn(Ti)) = P(T| = k)i E(Fn(Tr))

P(Sg_m =k —m)
=FE k E fm .
Thus Lemma can be written, for n > k > m (and assuming P(S, =
k —1) > 0; otherwise P(|7| = k) = 0 and Fk(%) = 0 a.s., SO we may ignore

this case),

- Cov(Fu(Ta), Fin(T2)
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— B AT £ulT) Ty
P(Sk—m =k —m) . P(Sp—m =n—m)
(k: P(S, =k —1) —min(k+m —1,n) (S, —n—1) >

+(n—k—m+1)4x
(P(Sn_k_m —n—k-m+1) P(Sp_r=n—k)P(Sy_m=n —m)>>

P(S,=n—-1) P(S,=n—-1) P(S,=n-1)
=: (A1 + A E fr(TE fr(T). (6.33)
We take absolute values and sum over all m < k < n (the terms with
k > m are covered by symmetry). Cancellations inside A; and Ay will be

important, but we treat the two terms A; and A, separately.
For convenience, we write

i = |l /VE. (6.34)
Thus, by (6.3) and ([@I3)),
E fi(T) = P(|T| = k)i = Ol /K*/%) = O(ap /k). (6.35)

Consequently, by (@I1]), (633) and symmetry, we have

1 TETm,
— Var F (T, A A . .
~ Var <T><<%<\ 1+ 1Az = (6.36)
kgﬁ
To estimate this sum, we consider several cases. We define
N Th e el
B ._Z—k _ZT’ (6.37)
k=1 k=1
T x|l
Byi=)_ - = > yErL (6.38)
k=1 k=1
1 < 1 <
B3y :=sup— Y xp =sup— M, (6.39)
n>1 \/’ﬁ el n=>1l V1 1 k
& T, 1 ¢ ||
B, :=su ———— < sup— _— 6.40
* npn/2\/n—/<:+1 np\/ﬁn/Q\/n—k—Fl ( )

Case 2(1): Ay for m < k/2, k < n/2. By Lemma B.2(i) (or (£2)-#3)
and Lemma [G.6](i),

|AL] < m+ kY2 (6.41)
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Hence, the contribution to (6.36]) from these terms is

PORENE = D DL D BEED Dy - me

m<k/2 k<n m<k k<n
k<n/2
\\E: <Bg+nt < Bi(Bs + Bo). (6.42)
k<n

Case 2(ii): Ay form < k/2, n/2 < k <n. By Lemmas[.2(ii) and [6.6](1),

1/2 1/2

n n’“m n
A K12 < . (6.43
’ 1‘<<(n—k—|—1)1/2(m+ ) (n—k+1)1/2+(n—/<:+1)1/2 ( )
Hence, the contribution to (6.36]) from these terms is
TkTm Tk T T
S e ¥t (Y )
_ 2
m<k/2 km n/2<k<n (n k+ 1) / m<n n m
n/2<k<n
< By(Bs + By). (6.44)

Case 2(iii): Ay for k/2 < m < k, k < n/2. By Lemma B2(i) (or (£2)-
#3))) and Lemma [B.6]ii),
1:3/2 E1/2m,
< .
(k—m+1)Y2 7 (k—m+1)1/2
Hence, the contribution to (6.36]) from these terms is

Ty — \/% Z < BiBy.

k/2<m<k k/2<m<k k<n/2
k<n/2 k<n/2

|A4;| < (6.45)

(6.46)

Case 2(iv): Ay for k/2 <m < k, n/2 < k < n. By Lemmas [(5.2(ii) and
[6.6(ii), noting k < n < m,

n1/2 k3/2 km

Al K 6.47
= (n—k+1)Y2 (k- m+1)1/2 \/n—k‘—I—l\/k: m+1 (6.47)
Hence, the contribution to (6.36]) from these terms is
TpTm 2
>l Y ——= Y ——
k/2<m<k km nj2<k<n YT k1 k/2<m<k k—m+1 6.48
n/2<k<n ( )

Case 2(v): Ag for m < k and m +k < n/2. In this case, Lemma [6.2]i)
yields

k k 2k k
+m m)\l Kkm

1
’A2‘<<(n—k—m+1)<g+m+ﬁ m (649)
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and the contribution to (6.36]) from these terms is dominated by

S e (T8 S Y e ()

k+m<n/2 k<n k<n m<n k<n

< B3 + B3By + B2 (6.50)

Case 2(vi): Az for m < k <n and m+k > n/2. Note that Ay vanishes
unless n > k + m. In this case, Lemma [6.2](ii) yields

mnl/2
(n—k—m+1)Y/2

Since k +m > n/2 and k > m imply k > n/4, the contribution from these
terms to (6.30]) is at most

2 'A2'x22”<<2 Zn_k m+1m+2 me

k4+m>n/2 = /4
< Bg(Bg + By) + B3Bs. (6.52

Conclusion: Consequently, (6.36]) together with (6.42]), (6.44)), (6.40), (6.48),
(650) and ([©.52]) show that

1
Evmfwm)<(31+Bz+B3+Bg? (6.53)

|As] < +n'/2, (6.51)

~—

Furthermore, trivially By < B and Bs, By < supy, ||, and |ux] < v/E f(Tx)?.
Hence, ([6.53]) proves (6.24)) in Case 2, which completes the proof. O

Remark 6.8. The proof actually yields, noting that Bs < By, the slightly
stronger

k
- 1/2 212 (s E f(7;)? E fir(Tk)?
vr(r(T) < o' pr%QWJF > )

Remark 6.9. Example6.I3 below shows that the term >, (E fx(Tz)?)"/? /k
in ([6.24) cannot be improved in general. In the case f(T') = pg|, there
is, however, a minor improvment in the following version of Theorem [6.7],
provided we have more than a second moment of £. This theorem implies,
as mentioned in Remark [[LT0] a corresponding minor improvement of the
condition (ILIH]) in Theorem [[L5} we omit the details. (For example, it allows
f(T) = 1/log|T|.) We do not know whether Var F(7,,) = O(n) for every
bounded f(T') that depends on |T'| only.

Theorem 6.10. Suppose that B0 < oo with § > 0 and let py, =
Ef(Te) =E fe(Tk). Then

Var(F(T;,)) "
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i Varfk’fk N2 (S g\
< 1/2 E 1/2 k .
Csn (Sup( fe(Tw)? +kE:1 + kg_l P

Proof. We use the notation of the proof of Theorem [6.7), and define Bs by
= ap=> —’f. (6.54)
k=1 k=1 k

Observe that Bs < By by the Cauchy—Schwarz inequality. We modify the
proof of Theorem [6.7] Case 1 is as before, and so are Case 2(ii),(iv),(v),(vi),
leaving only two cases where we have to replace Bj.

Case 2(i): Using Lemma [6.0(iii) instead of Lemma [6.6(i), we obtain
|A1] < m+ k17972, (6.55)

Hence, the contribution to (6.36]) from these terms is

Z [Ar|—=— xkzvm < Z makazmm Z (1+5 72 Z iy (6.56)

m<k/2
k<n/2

The second term on the right-hand side is < ), azi = B2 by two applica-
tions of the Cauchy—Schwarz inequality. The same holds for the first term,
which says that the infinite matrix (1/max{k, m});°,_, defines a bounded

operator on £2; this follows from Hilbert’s inequality > kom TkTm/ (K +m) <
7y, o7, see for example [22, Chapter IX].

Case 2(iil): We use again (6.45]), but in (6.46]) we set k = m+ j and observe
that j < k/2 < m and thus, using the Cauchy—Schwarz inequality,

e D
VivE=—m+1 Vit m+j1/4m1/4

k/2<m<k m=j+1
k<n/2
) 1 00 00 2 m—1
LT L e e € Z T
7=0 I+ 1 m= ]—i—l / m:l / j= ‘7 +

The different terms for Case 2 thus all are dominated by (Bg + B3+ B4 +
Bs)? < (B4 + Bs)?, which completes the proof. O

Remark 6.11. In (656) we used Hilbert’s inequality. One can also see
in other ways that (1/max{k,m})7",,_, defines a bounded operator on 0%
a much more general result is shown in [43] and |6, Theorem 3.1] (for the
continuous case, which implies the discrete).

In the special case of (weakly) local functionals, we can improve Theo-
rem [6.7] For simplicity we consider only bounded functionals.
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Theorem 6.12. Suppose that f(T) is a bounded and weakly local functional
on T with cut-off M. Let Ay := sup{|f(T)| : |T| = k} and px := E f(Tx).
Then,

1/2
Var(F(T,)) 2 < Cin'? <<Sl;p A, sup k,—l/4Ak> +sup il + Z !Nk\)

where the constant C1 may depend on the cut-off M but not otherwzse on f.

Proof. We modify the proof of Theorem [6.7, Case 2 is the same so we con-
sider Case 1 only. Thus assume that E f(7;) = 0 for each k. We have

=D f(Tow) = > f(Tew)+ > f(Thw) = S1+S2. (6.57)
veTy d(v)<M d(v)=M

Let again w;(T) be the number of nodes at depth j. Since |f| is bounded
by A, the sum Sy is bounded by

M-1
191 <A wy(T; (6.58)
7=0

As said in the proof of Lemma 5.8, Ew;(7x) = O(j) for each j, see [44] and
[29, Theorem 1.13]. Hence (6.58)) implies E |S1| = O(A) and

E[fe(Tr)S1] < E[ApSi] = O(ARA). (6.59)

For S5 we condition on 7;(M) and on the sizes n, of the wy,(Tx) subtrees T,

with d(v) = M. Given this, the forest Ty \ E(M_l) consists of independent
copies of random trees 7Ty, , and Sy is the sum of f(7y ,) over all nodes in these
trees, which equals the sum of F' over these trees. Since each EF(7y) =0

by Lemma [5.1], it follows that the conditional expectation E(Sg | 776(M)) =
0. However, fi(Tr) depends only on 776(M), and thus E(fk(E)Sg) = 0.
Consequently, (6.59]) yields

E(fu(TO)F(T3)) = O(AxA). (6.60)
By (6.28)), (6.60) and estimates using (£2)—(&3]) and I3 as before,
n/2
1
— Var F(T,) < Zk’ 32 ALA + sup k~ 1/2AkA
n k—1 k>n/2

and the result follows. (The exponent —1/4 can be replaced by any exponent
> —1/2.) O

Example 6.13. We show by an example, where we make correlations be-
tween different Fy(7,) large, that the condition (L.I5]) in general cannot be
relaxed. We consider any offspring distribution such that pg, p1,ps > 0.
Suppose that (a)5° is a given sequence of positive numbers. Define f; =
fo = 0 and let g3(T) := #{leaves in T} — ¢y when |T| = 3, where the
constant ¢y is chosen such that E g3(73) = 0. (Note that 73 has one or two
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leaves, both with positive probability, so g3(73) # 0.) Let f3(T) = s3g3(T)
for a constant s3 > 0 such that Var f3(73) = oz%. Continue recursively. If we
have chosen fi,..., fx_1, let for a tree T with |T'| = k,

k—1
ge(T) =D F(T) = fir,|(Tv), (6.61)
j=1

veT
where >’ denotes summation over all nodes except the root. Define
Jo(T) = spge(T), T €%y, (6.62)

for a constant s; > 0 such that Var fx(7Ty) = a%. Note that, by induction,
and Lemma 51 E fi.(Tx) = E gi(T;) = 0 for every k.

Consider f = )", fir and the corresponding F' = ), Fj. By construction,
for a tree T' with |T'| = k > 3,

F(T) = fe(T) + g&(T) = (1 + s)gx (7). (6.63)
If we let bi := Var gx(7x), we have a% = s%bi S0 oy, = sibg. Thus, for k > 3,
Var F(T;) = (1 + s¢) Var g (Ti) = (1 + 51)°08 = (o + bx)*  (6.64)
and
E(fi(Te) (2F (Te) = f(Tk))) = E(srgx(Te) (2 + sx)9r(Tk))
= 55(2 + sp)bp = i (2by + o). (6.65)

For k =3, F(T3) = f3(T3), and (6.64)—(6.65]) hold if we redefine b3 := 0.
By (6.61)), (6.27) (with f,, temporarily redefined as 0) and (6.69)),

n—1
]P’(Sn_k =N — k)
2 _ _
b = Var ga(Ta) = "k; P(S, = n—1)

T E(fx(Te) F (Tx) — fr(Ti)))

n—1
P(S, s =n—
:n];’ [EDS" L k)ﬂkak(Zbk—l-Oék).

(Sp=n-—-1) (6.66)
In particular, for n > 3, using (£.2]) (or Lemma [5.2]),
P(Sp_3 =n —
b2 >n (Sng = n 3)77304§ > cn. (6.67)

P(S,=n—-1)
If n—k > 1, @2) implies P(S,_p = n — k) = ca(n — k)"/2 > con™ /2
and thus, using also (£3)), P(S,,—r =n — k)/P(Sp—1 = n) > ¢3. Using this,
(667) and (413)) in ([6.60) yields, noting (6.64]),
n—1
Var F(Tn) 2 b > ean »_ k™3 Pag k2. (6.68)
k=4
It follows that if Y27 ; a/k = oo, then Var F(7,)/n — oc.

Consequently, the condition (I.T5]) is in general necessary for Var F(T,) =
O(n), even if we assume E f(7,) = 0. In particular, taking oy = 1/log k,
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k > 3, we find an example where E f(7;)%2 — 0 as k — 0 but Var F(T,)/n —
0.

Example 6.14. We modify example Example [6.13]to have fj(T") uniformly
bounded by defining recursively, instead of (6.62)),

fr(T) = s (sign(gx(T)) — Esign(gx(T1))), T € Ty, (6.69)

for a given bounded sequence (si)3° of positive numbers. We still have
E fx(Tx) = E gr(Tx) = 0. Furthermore,

E(fx(Ti)gx(Tx)) = sk E |gr(Ti)|- (6.70)
Since F(T,) = fu(Tn) + gn(Tn), it follows, similarly to (6.66l), that

Var F(T,) > Varg( )
—1

—n Y et S BT (F(T) - ATD)
k=3 "
n—1 n—1
> csn Y msk B gn(Th)| = con Y svElge(To)l/KY?. (6.71)
k= k=3

In particular Var gn( n) = crn. It seems likely that also
Elgn(Tn)| 2 csn 12, (6.72)

if this is the case with, for example, s, = 1/logk, then (G.71]) shows that
Var F(T,)/n — oo although f is bounded, (L14]) holds and E f(7,) = 0 for
all n.

Unfortunately, we have not been able to show (6.72]), but we note that if
(LI8) holds (with p = 0 as in our case), then liminf,, . E|F(7,)|/v/n >

2/mvy by Fatou’s lemma, and since F(7,) — gn(Tn) = fu(Tn) = O(1), it
follows that (6.72]) holds. Hence we can at least conclude that, for s =
1/log k, (LI6) and (II8) cannot both hold (for any finite 72).

7. ASYMPTOTIC NORMALITY

In this section we consider only functionals f with finite support. Recall
that this implies that f is bounded.

Lemma 7.1. Suppose that f has finite support. Then, with notations as in
Theorem [0,

F(%\}ﬁ_ ny i> N(0’72)‘ (7‘1)

Proof. We use the representation (47). Since f has finite support, there
exists m such that fr = 0 for & > m; this means that it suffices to sum over
k< m in (A7). We define

9(T1,. .., Ty Zf L1,y & :ka(:nl,...,xk). (7.2)
k=1

k=1
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Then (41) can be written (assuming n > m)

F(’ﬁ@) g (Z g(&', o 7£i+m—l mod n) Sn =n-—- 1) . (73)
=1

We now use a method by Le Cam [39] and Holst [25], see also Kudlaev [3§].
(See in particular |25, Theorem 5.1]; the conditions are somewhat different
but we use essentially the same proof.)

Note first that by (7.2) and (&.4),
Eg(&1,. . &m) = Y Efil(T) =Ef(T) = p. (7.4)
k=1

Furthermore, g is bounded, because f is.
Fix a with 0 < a < 1 and a sequence n’ = n'(n) with n’/n — «, for
example n’ = |an|. Define the centred sum

n

Y, = Z(Q(&, o ime1) — 1) (7.5)

1=1

Then, by the standard central limit for m-dependent variables [23], [14],
applied to the random vectors (9(&;, ..., &vm—1) — 1,&),

Y Sw—n' 2
Germ) e 2) oo
where
ﬁ2 = Var(g(gla cee ,gm)) +2 Z COV(g(é.lv s 7£m)7g(£i7 s 7£i+m—1))7
1=2

p=>_ Cov(g(&r, - &m), &) = Cov(g(&r, - &m), Sm)-
=1

We calculate 32 by expanding g using (7.2)) and arguing as in (6.5)—(6.8)
in the proof of Lemma (where we condition on S, = n — 1, making the
present calculation simpler). This yields, omitting the details, cf. also the

proof of Corollary [6.4], and using (.17,

B2 =32 =00 E(fu(T)FU(T)) = > (k+£—1)E fi(T)E fu(T)
1<k k,e=1
=E(f(T)2F(T) — f(T))) —2E(TIf(T))n+ 1’
=2+ pu?/o?. (7.7)

Furthermore, since fi(&1,...,&) # 0 only when (&,...,&;) is the degree
sequence of a tree, and thus Sy = k — 1, while ES; = k, and using (5.4])
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again,
Em: Cov(frlér,- - &), chov fr(&, .o &), Sk)
po 1
Zé (fe(€rr- &) (Sk — K f:lE —fe(&1, - 6))
— —ZEfk (7.8)
=t
We define for convenience
Y, :Yn—l—%(Sn—n) (7.9)

Then (7.6) yields, using (7.7)—(Z.8)),

/ 2 2/.2 2
(LSJ) < (00 (P47 0 = w (0a (3 2)).
NN 0 o 0 o
(7.10)
In other words, Y,/ /v/n and (S, —n')/y/n are jointly asymptotically normal
with independent limits W ~ N(0,ay?) and Z ~ N(0, ao?).
Next, let h be any bounded continuous function on R. Then, using (4.2])—

#.3) and (Z.10),

E(h(Yo/v/n) | Sp=n—1)
_EY (Y /VA) H{Sw = j}1{Sn = Sw =n —1—j}

P(S,=n—-1)
N Zj E(h(}}n’/\/ﬁ)l{sn’ = ]}) ]P(Sn—n’ =n—1- ])
B P(S, =n—1)

—ZE (e V1S = 33) () (e G =00%) (1)

_ (1 o Oé)_l/2 E<h(Yn//\/ﬁ)6_(5”/+1_n,)2/(2(n_n/)02)) + 0(1)
S (1—a) V2 E(h(W)e_Zz/@(l_o‘)"z))
= E(h(W))(1 — a)~ 2R e 77 /0= — g (W),

where the final equality follows by a simple calculation, or even more simply
by using the special case h = 1. Since h is arbitrary, this proves

(f/n//\/ﬁ | Sy =1 — 1) LW~ N(0,092). (7.11)
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Next, conditioned on S, = n — 1 we have by (7.5), (7.9) and symmetry
(for n so large that n’,n —n’ > m)
n
Z(g(&, sy Eitmo1modn) — 1) — Yo

i=1

n/

(9(52‘7 o &ivm—1) — ,U) + %(Sn_nr —(n—1- n’))
i=1
=Y, 4+ pjo? (7.12)

n
4

We may for notational convenience pretend that the equality in distribution
([£7) is an equality, and we then have, for each a € (0, 1), a decomposition

F(To) —np

X! X 7.13
\/ﬁ n,a+ n,a ( )
where X, , = (17”//\/5 | S, =n — 1) and, by (T12),
?_ / Iu i/_ ’
x' LI g — 1 — (s, =n—1 1).
h < v | : +02\/ﬁ v | : +O((7)14)

By (ZI0), X, 4, W/, ~ N(0,ay?). Furthermore, (n—n')/n — 1—a, and
thus by (ZIT)) applied to 1—« instead of o, X7/ , N W/~ N(0,(1—a)y?).

Now let @ — 1 (along a sequence, if you like). Then W, 4N (0,~?) and

W 25 0, and the conclusion (Z.I) follows from (Z.13), see e.g. |9, Theorem
4.2] or |32, Theorem 4.28]. O

8. FINAL PROOFS

Proof of Theorem [1.4. We have already proved part |(i)|in Section Bl

Futhermore, we have proved part in the special case of a functional
f with finite support in Corollary and Lemma [Tl In general, we use a
truncation.

We begin by verifying that 42 is finite, with the expectations in ([L17))
absolutely convergent.

First, E|f(7T)| < oo by assumption, see also Remark Similarly, by

(@13), since E f(7,)% = O(1) by (.14,
00 ) 9
Ef(T)2=anEf(%)2<Z%<oo. (8.1)
n=1 n=1

Hence Var f(T) < oc.
To show that E|f(T)(F(T)—|T|u)| < oo, note that by Theorem (.7 and

9

E(F(T,) —np)® = Var F(T,) + (EF(T,) — nu)? = O(n). (8.2)
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Thus, using the Cauchy—Schwarz inequality, (£I3]), (82) and (I.13)),

E|f(T)(F(T ITIM—Z%EU )(F(Ta) = npa)|
n=1
<3 mVETLPE(F(T) — np)
n=1
<<in 32\ /E f(Ty)2n'/? < (8.3)
n=1

Hence, 72 is well-defined by (LI7)), and finite.
Define the truncation

FNT ka T)1{|T| < N} (8:4)

and the corresponding sum F (N )(T). Furthermore, let u) .= E fN)(T)
and

(Y)2 = 2B (f(T) (PO (T) = | T1u™) ) = Var fO(T) = (™) /o2,
(8.5)
Then p) — 1 as N — oo by dominated convergence, and similarly, using
@), Var fN)(T) — Var f(7) and, using 83),
E[fN(T)(FMN(T) = [TIw)| = E|f(T)(F(T) = |Tu)]-
Finally, using (LI4) and (413,

E[f™(T)TI(n — ™) = E|fT)T| - |1 — @]
< kaE\f(ﬁ)! - Y mIEf(Te)| = O(N'2) - o(N712) = o(1),
k=1 k=N+1

as N — oo. Combining these estimates we see that (y(N))2 — ~2,
Since f™) has finite support, Corollary yields Var FN)(T,) /n —
(Y")2 as n — oo, for every fixed N. Furthermore, Theorem [6.7] applied

to f— fN) = > hen1 fr shows that

n1/2 Var(F(%) _F(N)(T))1/2 < Sup E f(Tn)? + Z M,
k=N+1 &
(8.6)

uniformly in n and N. The right-hand side is independent of n and tends
to 0 as N — oo, and it follows by Minkowski’s inequality and a standard
3e-argument (i.e., because a uniform limit of convergent sequences is con-
vergent) that n=/2 Var(F(7,))"/? = limy_ YV = ~, showing (LI6).
Similarly, Lemma[Z.T] applies to each f(™), and the uniform estimate (8.6))
implies that we can let N — oo and conclude ([LI8)), see e.g. [9, Theorem
4.2] or |32, Theorem 4.28] again. O
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Proof of Theorem[1.13. Suppose first that f is bounded and local. By re-
placing f(T) by f(T) —E f(T), which does not change F(T) — |T'|, we may
assume that E f(7) = 0. In this case Lemma 59 yields E f(7y,) = O(n=1/2)
and in particular E f(7,) — 0 and > |E f(7,)|/n < oo. Hence the condi-
tions of the second part are satisfied, so it suffices to prove it.
Hence, assume now that f is bounded and weakly local, and that E f(7,) —

0 and Y |E f(7,)|/n < co. We use truncation as in the proof of Theo-
rem and note first that Theorem applied to f — fV) yields

0= Var (F(Ta) — FT))Y? < N7V sup Ay + sup g + > g/
k>N k>N eyt

(8.7)
where the right-hand side is independent of n and tends to 0 as N — oc.

(Note that f — f(N) is weakly local with the same cut-off as f for all N.)
Similarly, if M > N, then Corollary [6.4l and Theorem [6.12] together with

Minkowski’s inequality, show, with v(V) given by (83,
"y(M) - ’y(N)| < limsupn~1/? Var(F(M)(’];L) — F(N)(’ﬁl))l/2
n—o0
< N8 sup Ay, + sup |ux| + Z || /K. (8.8)
k>N k>N gt

Consequently (7(N )) y 1s a Cauchy sequence so ~(N) — ~ for some v < 0.
The rest of the proof is the same as for Theorem O

Proof of Corollary [I.8 For any finite set 11, ..., T}, of distinct trees and real
numbers aq, ..., a4y, apply Theorem to f(T):=> ", a;1{T = T;} and
note that then F(T) = ", a;nr,(T). The assumptions (L.I4)-(LI5) hold
trivially since f has finite support. We have p=E f(T) =>.1, a; P(T =
T;) = Y., aiwr, and a simple calculation shows that (ILI7) yields ? =
ZZ}ZI a;ia;yr, ;- The results now follow from Theorem (or directly
from Corollary and Lemma [(T]), using the Cramér—Wold device. (]

Proof of Theorem [1.9. We use the notation in the proof of Lemma [Tl (but
now simply taking n’ = n so @ = 1). We showed in (Z6) and (ZI0)
asymptotic normality of Y}, S, and Y,; a simple (and well-known) cal-

culation shows that also the (co)variances converge: Var(Y,)/n — (2
Cov(Yy,, Sy)/n — p, Var(S,)/n — o2 and, recalling (7.0)(Z8),

Var 17“ 2
n o
However, by (Z9)) and (Z.5),
Y, = Z@(&, oo &itm—1), (8.10)
i=1

where

G(&is - &irm—1) =g, Siem—1) —p + %(ﬁi —1). (8.11)
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The sequence X; := §(&;,...,&+m—1) is strictly stationary and (m — 1)-
dependent, with mean E X; = 0 (by (Z.4])) and finite variance. If the partial
sums Y, satisfy (89), with limit 42 = 0, then as a consequence of a theorem
by Leonov [40], in the version given by Bradley [10, Theorem 8.6], see Janson
[31, Theorem 1.6] for details, there exists a function h : N™~! — R such
that

9, &ipm—1) = h(&it1s -, Cigm—1) — P&, - Girm—2) as. (8.12)
and thus by (810,

Yn = h(fn_H, . 7€n+m—l) - h(fl, ‘o 7€m—1) a.s. (813)
In particular, Y, depends a.s. only on &1, ...,&m—1 and Entls- s Entm—1,
but not on n or &, ..., &,.

Consider now first case (i). Take j > 0 with p; > 0 and consider the case
& = j for all i < n+ m. Then no substring of &1, ...,&,+m—1 is the degree
sequence of a tree. Thus, recalling (7.2)), g(&, - - ., &+m—1) = 0 for every i so
BII) and BIQ) yield §(&i, .-, &irm—1) = p((j —1)/0* —1) and

Y, =nu((j —1)/0* —1). (8.14)

Since this vanishes for any n by (813]), ,u((j—l)/o'2 —1) = 0. By assumption,
there exist at least two different such j, and thus g = 0. Hence, (R8I
simplifies to §(&, -, §itm—1) = 9(&is - -+, §i+m—1), and thus

Y, = Zg(gia---,gi—km—l)- (8.15)
i1

Next consider the case = 0 for all i < n +m. Since (0) is the degree
sequence of the tree e of size 1, (2] yields ¢(0,...,0) = f1(0) = f(e).
Hence, ([81IF) yields Y;, = nf(e). Since this vanishes, by [®I3) again, we
must have f(e) = 0.

Suppose, in order to obtain a contradiction, that f(7) does not vanish

a.s. We have, for some N > 1, some distinct trees 17, ...,Ty and some real
numbers aq,...,an,
N
f(T) = Z ainT; (T)7 (816)
i=1
where we may assume that a; # 0 and P(7 = T;) > 0 for all i (otherwise we
eliminate the offending terms). We may also suppose that T1,...,Ty are
ordered with |T71| < |T2| < ...; this implies that f(7') = 0 for every proper
subtree T of Ty. Let T7 have degree sequence (dy,...,dy), and consider now

the case {yj =dj, j=1,...,0,and § = 0for i <mand m+4 < i < n+m,
for n > m + £. Since f(T) =0 for all proper subtrees of T and f(0) =0,

the only non-zero contribution to Y,, is by (81%), (7.2]) and (810,
fEmtts - &mse) = fldrs. .. de) = f(Th) = ar. (8.17)
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Hence Y;, = a; # 0, which contradicts (8I3). This contradiction proves
f(T) = 0 a.s., which implies F(7) = 0 and F(7,) = 0 a.s. for every n,
completing the proof of (i).

Now consider (ii), with only py and p, non-zero. (Since E¢ = 1, we have
pr =1 —pg =1/r.) This is the case of full r-ary trees, and the random tree
T has (n — 1)/r nodes of outdegree r and n — (n — 1)/r leaves. Thus the
choice f(T) = 1{T = e}, when F(T') = ne(T") is the number of leaves in T,
yields Var F(T,) = 0 so 42 = 0, see Example 211

If f is any functional with finite support such that v? = 0, we may replace
f(T) by f(T)— f(e)1{T = e} without changing Var F'(7,), so we still have
72 = 0. Hence we may assume f(e) = 0. If we now consider the case & = 0,
i < n+m, then by (Z2)), (&, - - ., &+m—1) = f(0) = 0 and thus (81T yields
g(fla s 7€i+m—1) i ILL/O-2' Hence? (m) ylelds }7 = —TL,LL(l + 0_2)7
and (8.I3]) implies that this vanishes, and thus g = 0. The rest of the proof
is the same as for (i). O

Proof of (2.6]). This is a minor variation of arguments in Sections [BHAl using
the special simple structure of f. We omit some details.

If T has degree sequence (d1,...,dy,), then n,(T) = >_" ; 1{d; = r}. This
yields, arguing as for (4.7]),

n(To) & (Zl{&- =r}| Su=n- 1) , (5.13)

i=1
jointly for all » > 0. This yields, arguing as in (5.3]) and (€8],
P(Sp—1=n—1-r)
P(S,=n—1)

En.(T,) = n]P’(fl =r|S,=n-— 1) = np, (8.19)

and, for any integers r,s > 0,
E(nr(%)ns(%)) = 0rs Eny(Tn) +n(n — 1)P(£1 =nré=s|S,=n- 1)
P(Sp,—2=n—1—1r—23)
P(S,=n—-1)

= Ors Enr(’Tn) + ’I’L(TL - 1)prps
Hence

Cov(nr(%),ns(’];)) = 0rs Eng(Tp) — %Enr(’ﬁl) Ens(Tn) + n(n — 1)pypsX
<]P’(Sn_2:n—1—r—s) P(Sp—1=n—1—7r)P(S,—1 :n—l—s)>

P(S,=n—-1) P(S,=n—-1) P(S,=n—-1)
(8.20)
For the mean, (819) and (4.2)) yield
En.(Tn)/n = pr, (8.21)
cf. 25). (The argument is simpler than in Section [ since we consider a

fixed r.)
For the covariance, we argue as in the proof of Lemma and consider
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P(Sp—2a=n—r—s—1P(S, =n—1)
—P(Sp—1=n—r—-1)P(Sp—-1=n—s—1)
1 s

T ~n— i(r+s— 1 ~n iu
=3 %) 2(75)(3(Jr 1)tdt-%/ o™ (u)e™ du

—Tr —Tr

1 [7 ; 1 [7 ;
- (ﬁn_l(t)elrt dt - % / (ﬁn—l(u)elsu du
0

2m J_ -7
—gz [ [ e O e (e () - el
(e 3 (u) — p(1)el =) dt du.  (8.22)
We have
DG (u) — G()e I = i(r — 1)(t - u) + O + u?),

and by a change of variables as in (6.17)-(6.18]), the final double integral in

B22) is ~ —(r — 1)(s — 1)/(2r0o*n?). Hence (8.20) yields, using also (&3]

and (B.21)),
Cov(nr(Tn),ns(%))

n

showing (2.3]) and (2.6]). O

r—1)(s—1
— 57’5]77“ — PrDs — ((z_#prp& (823)
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