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Abstract

Let G be any graph of minimum degree at least k, and let Gp be the random
subgraph of G obtained by keeping each edge independently with probability p.
Recently, Krivelevich, Lee and Sudakov showed that if pk → ∞ then with prob-
ability tending to 1 Gp contains a cycle of length at least (1 − o(1))k. We give a
much shorter proof of this result, also based on depth-first search.

Let (Gk)∞k=1 be a sequence of graphs where Gk has minimum degree at least k (we
make no assumption on the number of vertices of Gk), and let 0 6 p = p(k) 6 1. Let
Gk[p] be the random spanning subgraph of Gk obtained by retaining each edge with
probability p, independently of the others. (Thus, if Gk is complete, then Gk[p] is the
classical binomial random graph.) Recently, Krivelevich, Lee and Sudakov [1] initiated
the study of this very general model, asking which results for classical random graphs
have analogues in this setting. As they point out, many questions do not make much
sense in this generality – for example, no condition on p can ever ensure that Gk[p] is
likely to contain a short cycle, since the graphs Gk may have large girth. However, some
do, and indeed have positive answers.

One of the main results in [1] is the following; here and later we often suppress the
dependence on k in the notation. An event holds with high probability or whp if its
probability tends to 1 as k →∞.

Theorem 1. Let Gk[p] be defined as above, and suppose that pk →∞ as k →∞. Then
whp Gk[p] contains a cycle of length at least (1− o(1))k.

The aim of this note is to give a short proof of this result, based on the same basic
starting point as in [1], but (sadly!) using relatively simple deterministic arguments
to avoid most of the complicated probabilistic reasoning used there. Of course, the
arguments in [1] give significant structural information about Gk[p] that cannot be
deduced from the simple proof given here.

Following [1], the first step is to explore Gp = Gk[p] by depth-first search, revealing
a rooted spanning forest T of Gp. In other words, T will be the disjoint union of one or
more rooted trees, one spanning each component of Gp. For completeness, we describe
the algorithm and its key implication, although this is of course discussed in detail in [1].

The search algorithm maintains a stack of vertices. Initially the stack is empty, and
all vertices are unreached. Each vertex v will be ‘reached’ at some point, and placed
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onto the stack. At some later point v will be removed from the stack (never to return)
and will be declared explored. More precisely, the algorithm executes the following loop,
until every vertex is explored:

If the stack is empty, pick any unreached vertex v and place it onto the stack. v will
be the root of a new component of T .

Otherwise, let u be the top vertex on the stack. If there are any not-yet-tested edges
of G = Gk from u to unreached vertices w, pick one such edge, and test whether it is
present in Gp. If so, add w to the top of the stack, and add uw to T . If there are no
not-yet-tested edges of G from u to unreached vertices, remove u from the stack and
label it as explored.

The key point is that if we find a neighbour w of u, then we postpone looking
for further neighbours of u until we have checked for neighbours of w, and so on. A
consequence is that the vertices on the stack always represent a path in T . Let us call a
path in a rooted tree vertical if it does not contain the root as an interior vertex. Let U
be the set of edges of Gk not tested during the exploration. The following two lemmas
are the key starting points for the arguments of Krivelevich, Lee and Sudakov [1]. We
include proofs for completeness.

Lemma 2. Every edge e of U joins two vertices on some vertical path in T .

Proof. Let e = uv and suppose that u was explored (left the stack) before v. When u
left the stack, v cannot have been unreached, or uv would have been tested. Also, v
cannot have been explored, by choice of u. So v was on the stack, and the stack from v
to u forms the required vertical path.

Suppressing the dependence on k, from now on we write n = n(k) = |Gk| for the
number of vertices of Gk.

Lemma 3. With high probability, at most 2n/p = o(kn) edges are tested during the
exploration above.

Proof. Each time an edge is tested, the test succeeds (the edge is found to be present)
with probability p. Comparison with a binomial distribution implies that the probability
that more than 2n/p tests are made but fewer than n succeed is o(1) (in fact, exponen-
tially small in n > k). But every successful test contributes an edge to the forest T , so
at most n− 1 tests are successful.

From now on let us fix an arbitrary (small) constant 0 < ε < 1/10. We call a vertex
v full if it is incident with at least (1− ε)k edges in U .

Corollary 4. With high probability, all but o(n) vertices of T are full.

Proof. Since G has minimum degree at least k, each v ∈ V (G) = V (T ) that is not full
is incident with at least εk tested edges. If for some constant c > 0 there are at least cn
such vertices, then there are at least cεkn/2 tested edges. But the probability of this is
o(1) by Lemma 3.

To state the new part of the argument, we need a couple of definitions. Let v be
a vertex of a rooted forest T . Then there is a unique path from v to the root of its
component. We write A(v) for the set of ancestors of v, i.e., vertices (excluding v) on
this path. We write D(v) for the set of descendants of v, again excluding v. Thus
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w ∈ D(v) if and only if v ∈ A(w). The distance d(u, v) between two vertices u and v
on a common vertical path is just their graph distance along this path. We write Ai(v)
and Di(v) for the set of ancestors/descendants of v at distance exactly i, and A6i(v),
D6i(v) for those at distance at most i. The height of a vertex v is max{i : Di(v) 6= ∅}.

Let us call a vertex v rich if |D(v)| > εk, and poor otherwise. In the next two
lemmas, (Tk)∞k=1 is a sequence of rooted forests. We suppress the dependence on k in
the notation, and write n for |Tk|.

Lemma 5. Suppose that T contains o(n) poor vertices. Then, for any constant C, all
but o(n) vertices of T are at height at least Ck.

Proof. For each rich vertex v, let P (v) be a set of dεke descendants of v, obtained by
choosing vertices of D(v) one-by-one starting with those furthest from v. For every
w ∈ P (v) we have D(w) ( P (v), so |D(w)| < εk, i.e., w is poor. Consider the set S1
of ordered pairs (v, w) with v rich and w ∈ P (v). Each of the (1 − o(1))n rich vertices
appears in at least εk pairs, so |S1| > (1− o(1))εkn.

For any vertex w we have |A6i(w)| 6 i, since there is only one ancestor at each
distance, until we hit the root. Since (v, w) ∈ S1 implies that w is poor and v ∈ A(w),
and there are only o(n) poor vertices, at most o(Ckn) = o(kn) pairs (v, w) ∈ S1 satisfy
d(v, w) 6 Ck. Thus S ′1 = {(v, w) ∈ S1 : d(v, w) > Ck} satisfies |S ′1| > (1 − o(1))εkn.
Since each vertex v is the first vertex of at most dεke ∼ εk pairs in S1 ⊃ S ′1, it follows
that n− o(n) vertices v appear in pairs (v, w) ∈ S ′1. Since any such v has height at least
Ck, the proof is complete.

Let us call a vertex v light if |D6(1−5ε)k(v)| 6 (1 − 4ε)k, and heavy otherwise. Let
H denote the set of heavy vertices in T .

Lemma 6. Suppose that T = Tk contains o(n) poor vertices, and let X ⊂ V (T ) with
|X| = o(n). Then, for k large enough, T contains a vertical path P of length at least
ε−2k containing at most ε2k vertices in X ∪H.

Proof. Let S2 be the set of pairs (u, v) where u is an ancestor of v and 0 < d(u, v) 6
(1 − 5ε)k. Since a vertex has at most one ancestor at any given distance, we have
|S2| 6 (1− 5ε)kn. On the other hand, by Lemma 5 all but o(n) vertices u are at height
at least k and so appear in at least (1− 5ε)k pairs (u, v) ∈ S2. It follows that only o(n)
vertices u are in more than (1− 4ε)k such pairs, i.e., |H| = o(n).

Let S3 denote the set of pairs (u, v) where v ∈ X ∪ H, u is an ancestor of v, and
d(u, v) 6 ε−2k. Since a given v can only appear in ε−2k pairs (u, v) ∈ S3, we see that
|S3| 6 ε−2k|X ∪H| = o(kn). Hence only o(n) vertices u appear in more than ε2k pairs
(u, v) ∈ S3.

By Lemma 5, all but o(n) vertices are at height at least ε−2k. Let u be such a vertex
appearing in at most ε2k pairs (u, v) ∈ S3, and let P be the vertical path from u to
some v ∈ Ddε−2ke(u). Then P has the required properties.

Proof of Theorem 1. Fix 0 < ε < 1/10. It suffices to show that whp Gp = Gk[p] contains
a cycle of length at least (1− 5ε)k, say.

Explore Gp = Gk[p] by depth-first search as described above (i.e., as in [1]), writing
T for the spanning forest revealed, and U for the set of untested edges. Condition on the
result of the exploration, noting that the edges of U are still present independently with
probability p. By Lemma 2, uv ∈ U implies that u is either an ancestor or a descendant
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of v. As before, let n = |Gk| = |T |. By Corollary 4, we may assume that all but o(n)
vertices are full, i.e., are incident with at least (1− ε)k edges of U .

Suppose that ∣∣{u : uv ∈ U, d(u, v) > (1− 5ε)k}
∣∣ > εk (1)

for some vertex v. Then, since εkp→∞, testing the relevant edges uv one-by-one, whp
we find one present in Gp, forming, together with T , the required long cycle. Suppose
then that (1) fails for every v.
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Suppose that some vertex v is full but poor. Since v has at most εk
descendants, there are at least (1− 2ε)k pairs uv ∈ U with u ∈ A(v). Since
v has only one ancestor at each distance, it follows that (1) holds for v, a
contradiction.

We have shown that no poor vertex is full. Hence there are o(n) poor
vertices, and we may apply Lemma 6, with X the set of vertices that are not
full. Let P be the path whose existence is guaranteed by the lemma, and
let Z be the set of vertices on P that are full and light, so |V (P )\Z| 6 ε2k.

For any v ∈ Z, since v is full, there are at least (1 − ε)k vertices u ∈
A(v)∪D(v) with uv ∈ U . Since (1) does not hold, at least (1−2ε)k of these
vertices satisfy d(u, v) 6 (1 − 5ε)k. Since v is light, in turn at least 2εk of
these u must be in A(v). Recalling that a vertex has at most one ancestor
at each distance, we find a set U(v) of at least εk vertices u ∈ A(v) with
uv ∈ U and εk 6 d(u, v) 6 (1− 5ε)k 6 k.

It is now easy to find a (very) long cycle whp. Recall that Z ⊂ V (P )
with |V (P ) \ Z| 6 ε2k. Thinking of P as oriented upwards towards the
root, let v0 be the lowest vertex in Z. Since |U(v0)| > εk and kp → ∞,
whp there is an edge v0u0 in Gp with u0 ∈ U(v0). Let v1 be the first vertex
below u0 along P with v1 ∈ Z. Note that we go up at least εk steps from
v0 to u0 and down at most 1 + |V (P ) \ Z| 6 2ε2k from u0 to v1, so v1 is
above v0. Again whp there is an edge v1u1 in Gp with u1 ∈ U(v1), and so
at least εk steps above v1. Continue downwards from u1 to the first v2 ∈ Z
below u1, and so on. Since ε−1 = O(1), whp we may continue in this way
to find overlapping ‘chords’ viui for 0 6 i 6 b10ε−1c, say. (Note that we
remain within P as each upwards step has length at most k.) These chords
combine with P to form a cycle C, as shown in the figure. Since each chord
viui corresponds to at least εk steps up P , and each of the segments viui−1
of P has length at most 2ε2k, we see that all of the b10ε−1c + 1 > 10ε−1

segments of P included in C have length at least (ε − 4ε2)k > εk/2, so C
has length at least 5k.
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