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Abstract

We prove that the empirical spectral distribution of a (dL, dR)-biregular, bipartite
random graph, under certain conditions, converges to a symmetrization of the Marčenko-
Pastur distribution of random matrix theory. This convergence is not only global (on
fixed-length intervals) but also local (on intervals of increasingly smaller length). Our
method parallels the one used previously by Dumitriu and Pal (2012).

1 Motivation

In classical random matrix theory there are two basic types of symmetric ensembles: Wigner
matrices and Wishart-like ones. There is a simple parallel between them, roughly expressed
in the following way. Given a non-symmetric real matrix G, there are two natural ways to
construct from it a symmetric matrix: if G is square, one way is to consider its symmetric part
A = G+GT

2 ; the other way works for rectangular matrices, too, and consists of multiplying
it by its transpose: W = GGT . If one starts with a random matrix G with i.i.d. entries
of norm 0 and variance 1, if G is square, the first symmetrization yields a Wigner matrix;
the second symmetrization yields a Wishart-like matrix (it is Wishart, more precisely central
Wishart, if G consists of standard normal variables; we call it Wishart-like otherwise).

The spectra and eigenvectors of Wigner and Wishart-like matrices have been shown to
exhibit universal behavior: many of their eigenstatistics have limiting distributions which
are independent of the entry distribution, modulo certain technical conditions (in addition to
being mean 0, variance 1). These results, along with successive weakenings of the technical
conditions, are the subject of a recent set of breakthrough papers [TV11, TV10, ESY09b,
ESY09a, EPR+10, ERSY10, ERS+10].

A natural question for the discrete probability community is whether this universal be-
havior extends to adjacency matrices of random graphs; we are specifically interested in the
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case of random regular or semi-regular graphs. Such graphs are known to have very interest-
ing properties: they are good expanders, some classes are quasi-Ramanujan, they have wide
spectral gaps and as such they mix rapidly, and they are of interest in computer science and
engineering and in coding theory.

Ordinary random regular graphs (or d-regular graphs), where every vertex has the same
degree (which grows as a function of the number of vertices), have been recently investigated
in [DP12, DJPP13, Joh14, JP14, TVW13, BL13]; we aim to extend some of the results to
bipartite, biregular random graphs, where the two sets of vertices have the property that all
vertices in the same set have the same degree (also growing with the total number of vertices).

The question of whether the spectra of random d-regular graphs have the same behavior
as the spectra of Wigner matrices is non-trivial in nature, since the adjacency matrices of
regular graphs have strong dependencies, namely, all rows and columns add to the same
number—their common degree. As such, they are not Wigner; in fact, for d fixed, McKay
[McK81] showed that the scaled empirical distribution function (or ESD; defined below) of
random d-regular graphs on n vertices converges in probability (and almost surely, if the
random graphs are defined on the same probability space) as n → ∞ to the Kesten-McKay
distribution, which has density

fd(x) =





d
√

4(d−1)−x2

2π(d2−x2) if |x| ≤ 2
√
d− 1,

0 otherwise.

This differs from the Wigner matrix case, where the scaled ESD converges in probability to
the semicircle law, which has density

fs(x) =

{√
4−x2

2π if |x| ≤ 2,

0 otherwise.

When d is allowed to grow with n, the scaled empirical spectral distribution of the random
d-regular graph does converge in probability to the semicircle law (see [DP12] and [TVW13]).
Thus, even if for d fixed they are rather different, the spectra of d-regular graphs with d and
n growing to infinity are similar to the spectra of large Wigner matrices.

Motivated by a question asked by Babak Hassibi, we study here the spectra of bipartite,
biregular random graphs. We find that their spectra have similar behavior to the spectra
of Wishart-like matrices; at first glance, this may appear suprising, but further examination
reveals linear algebraic reasons why this should be so. Our notation and main results are pre-
sented in Section 2. In Sections 3 and 4, we prove global and local convergence, respectively,
of the ESD to its limiting measure. The appendix contains the proofs of some statements on
the distribution of cycles in biregular bipartite graphs, used in Sections 3 and 4 to show that
our graphs are locally well approximated by trees.

2 Preliminaries and statements of results

We assume that graphs do not have loops or parallel edges. The adjacency matrix of a graph
G is defined as

A(i, j) =

{
1, if i ∼ j,
0, otherwise.

Note that A is symmetric, and therefore all of its eigenvalues are real.
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Bipartite graphs are graphs composed of two sets L and R of vertices, with edges only
between vertices from L and vertices from R. With proper labeling, their adjacency matrices
have the special form

B =

[
0 X
XT 0

]
,

where the matrix X is defined by the edges between the two classes of vertices. Note that
if L and R have sizes m and n, respectively, with m ≤ n, then X is an m × n matrix of 0s
and 1s. It is a simple linear algebra result that the non-zero eigenvalues of B come in pairs
(−λ, λ), with λ ≥ 0 an eigenvalue of XXT , and that B has (at least) n−m eigenvalues equal
to 0.

If G is a bipartite graph with vertex classes L and R, then we say it is (dL, dR)-biregular
if all the vertices in L have degree dL, and all the vertices in R have degree dR. For simplicity,
we will always assume that dR ≥ dL (and therefore that |L| ≥ |R|).

By a random (dL, dR)-biregular bipartite graph with (m + n) vertices we mean a graph
selected uniformly from the space of all (dL, dR)-biregular bipartite graphs with |L| = m and
|R| = n.

We define the empirical spectral distribution or ESD of a symmetric n × n matrix M to
be the probability measure µn on the real numbers given by

µn =
1

n

∑

i=1

δλi
,

where δx is the point mass at x and λ1, . . . , λn are the eigenvalues of M . Note that if M is
random, µ is a random probability measure.

We say that a sequence µ1, µ2, . . . of random probability measures on the real numbers
converges almost surely to a deterministic probability measure µ if as n→ ∞,

∫
f dµn →

∫
f dµ a.s.

for all bounded continuous functions f : R → R. This is equivalent to the slightly different
statement that with probability one, µn converges weakly to µ.

Following combinatorialists’ conventions, we will often refer to a random graph G when we
really mean a sequence of random graphs with an increasing number of vertices (depending
on m and n). We assume that all of these random graphs are defined on the same probability
space, but we make no assumptions about their joint distribution; all of our results hold for
any arbitrary joint distribution, so long as the marginal distributions are as described. Many
variables that we mention implicitly depend on n, and asymptotic expressions O(·) or o(·)
reflect behavior as m, n → ∞. We will occasionally use the notation OA(·) to indicate that
the constant in the big-O expression depends on some other constant A.

It is a standard result in random matrix theory that if X is an m × n random matrix
whose entries are i.i.d. real random variables with mean zero and variance one, and m/n
converges to a finite limit, then the ESD of 1

nX
TX converges to the Marčenko-Pastur law

(see [BS10], for example). We show here an analogous result:

Theorem 1. Let G be a random (dL, dR)-biregular bipartite graph on m + n vertices, with

3



the following conditions on the growth of dL and dR:

lim
n→∞

dR = ∞, (1)

for any fixed ǫ > 0, dR = o(nǫ), (2)

dR
dL

→ y ≥ 1. (3)

Let A =
(

0 X
XT 0

)
be the adjacency matrix of G (under proper labeling). Then as n→ ∞, the

ESD of 1
dR
XTX converges almost surely to the Marčenko-Pastur law with ratio y−1. This

distribution is supported on [a2, b2] and is given on that interval by the density

p(x) =
y

2πx

√
(b2 − x)(x− a2),

where a = 1− y−1/2 and b = 1 + y−1/2.

Theorem 1 agrees with the results of [MS03], in which Mizuno and Sato derive the limiting
distribution of the eigenvalues of a sequence of deterministic biregular graphs with girths
growing to infinity. They do so using the Ihara zeta function, and they express their result
in a different form from ours, which turns out to be equivalent. It should be noted that our
result is much stronger than theirs; as we will see, most bipartite biregular graphs have small
girth, but this does not affect the convergence of the ESD.

As mentioned above, the ESD of d−1
R XTX is the distribution of the squares of the non-

trivial eigenvalues of d
−1/2
R A. We can thus find the limiting distribution for the ESD of this

matrix as well:

Corollary 2. The ESD of d
−1/2
R A converges almost surely to the distribution µ supported on

[−b,−a] ∪ [a, b] and given on that set by the density

2

1 + y
p(x2)|x| = y

(1 + y)π|x|
√

(b2 − x2)(x2 − a2), (4)

along with a point mass of y−1
y+1 at 0.

It is also known that when d → ∞, the ESD of random d-regular graphs converges to
the semicircle law on short scales (see [DP12], [TVW13]). In Section 4, we prove this for the
biregular case, under slightly different conditions on the growth of dR:

Theorem 3. Let G be a random (dL, dR)-biregular bipartite graph on m+n vertices satisfying
(1)–(3), as well as the more stringent condition dR = exp(o(1)

√
log n). Fix ǫ > 0. Let A be

the adjacency matrix of G and µn be the ESD of (dR−1)−1/2A, and let µ be the limiting ESD
of Corollary 2. There exists a constant Cǫ such that for all sufficiently large n and δ > 0, for
any interval I ⊆ R avoiding [−ǫ, ǫ] and with length |I| ≥ max

(
2η, η/(−δ log δ)

)
, it holds that

|µn(I)− µ(I)| < δCǫ|I|
with probability 1− o(1/n). The quantity η, which gives the minimum length of an interval I
that we consider, is given by the following series of definitions:

a = min

(
log n

9(log dR)2
, dR

)
,

r = e1/a,

η = r1/2 − r−1/2.
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This theorem is obscured by the technicalities in its statement, so we give some discussion
of its meaning. Corollary 2 only gives information on µn(I) for fixed |I|. Theorem 3, on the
other hand, allows |I| to shrink as η does. We note that η ∼ 1/a.

We restricted our intervals I away from 0 to avoid complications caused by the point mass
that µ has when dR/dL → y > 1. Since the support of µ except for this mass is bounded
away from 0, this restriction costs us nothing.

To prove our results, we use the moment method along with Stieltjes transforms, combined
with a careful examination of the local structure of the bipartite, biregular graph. Along
the way, we need to adapt some of the results proved by McKay, Wormald, and Wysocka
[MWW04] for random d-regular graphs to our (dL, dR) biregular random graphs. We give
these results below. The method used follows [MWW04] very closely, which is why we relegate
the proofs to the appendix.

Let G be a random (dL, dR)-biregular bipartite graph on m+n vertices. Assume dL ≤ dR,
and let α = dR/dL. As always, all of these variables depend on n, and any expressions O(·)
or o(·) reflect behavior as n → ∞. We assume that α converges to a finite value as n → ∞
(this assumption is also necessary in the case of Wishart matrices). Here and throughout
the paper, “cycle” always refers to a simple cycle, with no repeated vertices. Let Xr denote
the number of cycles of length 2r in G. (Note that as G is bipartite, its cycles all have even
length.)

Proposition 4. Let

µr =
(dL − 1)r(dR − 1)r

2r
.

If dR = o(n), r = O(log n), and rdR = o(n), then

E[Xr] = µr

(
1 +O

(r(r + dR)

n

))
,

Var[Xr] = µr

(
1 +O

(
d2rR (rα2r−1 + α−rdR)

n

))

In Section 3, we use this proposition to show that with high probability, our biregular
bipartite graph G is locally well approximated by a tree. This allows us to approximate the
traces of the adjacency matrix of G, thus computing the moments of its ESD. Finally, we
refine these results in Section 4 to prove local convergence on vanishing-length intervals. To
prove this theorem, we give estimates on the rate of convergence of the Stieltjes transform of
the ESD, the same approach used in [DP12] and [TV11].

3 Global convergence to the Marčenko-Pastur law

To find the limiting ESD of a biregular bipartite graph G, we will first show that in a sense
that we will make precise, most neighborhoods in G have no cycles and are trees. This will
allow us to estimate the traces of the adjacency matrix of G, and we will find the limit of
these as G grows with a combinatorial argument.

For this entire section, let G be a random (dL, dR)-biregular bipartite graph on n + m
vertices, and assume that conditions (1)–(3) on the growth of dL and dR hold. As before, let
α = dR

dL
.

We make precise the property of G being locally a tree in the following lemma:
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Lemma 5. Let r be fixed, and let τ be the set of vertices in G whose r-neighborhoods contain
no cycles. Then, if dR satisfies (1) and (2),

P

[
1− |τ |

n+m
> n−1/4

]
= o
(
n−5/4

)

Proof. This is the same statement proven in [DP12] for regular graphs, and using Proposi-
tion 4 we can prove it in the same way. If a vertex is not in τ , then for some s ≤ r there
exists a 2s-cycle within r− s of the vertex. The size of all (r− s)-neighborhoods of 2s-cycles
hence serves as a bound on the number of “bad” vertices. For any given 2s-cycle, the size of
its (r − s)-neighborhood is bounded by 2s(dR − 1)r−s. If we define

N∗
r =

r∑

s=2

2s(dR − 1)r−sXs,

then this gives us the bound n+m− |τ | ≤ N∗
r .

Now we compute E[N∗
r ] and Var[N∗

r ]. Using our expression for E[Xr] from Proposition 4,

E[N∗
r ] =

r∑

s=2

2s(dR − 1)r−s(dL − 1)s(dR − 1)sO(1)

= (dR − 1)r
r∑

s=2

O ((dL − 1)s)

= O((dL − 1)r(dR − 1)r) = O
(
d2rR
)

To compute the variance, first notice that (2) implies that Var[Xs] = µs(1 + o(1)). By
Cauchy-Schwarz,

Var[N∗
r ] ≤ r

r∑

s=2

4s2(dR − 1)2r−2sVar[Xs]

≤ r

r∑

s=2

4s2(dR − 1)2r−2sµs (1 + o(1))

= r(dR − 1)2r
r∑

s=2

s
(dL − 1)s(dR − 1)s

(dR − 1)2s
(1 + o(1))

≤ r(dR − 1)2r(1 + o(1))

r∑

s=2

s

= O
(
d2rR
)

The rest of the lemma follows from Markov’s inequality:

P

[
1− |τ |

n+m
> n−1/4

]
= P

[
n+m− |τ | > (1 + α)n3/4

]

≤ P
[
N∗

r > (1 + α)n3/4
]

≤ Var[N∗
r ] +E[N∗

r ]
2

(1 + α)2n3/2

= O

(
d4rR
n3/2

)
= o
(
n−5/4

)
.
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This result shows that there are few “bad” vertices. It easily follows that this is true
within the left and the right vertex classes of G as well.

Corollary 6. Let τL and τR be the number of vertices in the left and right classes of G,
respectively, with acyclic r-neighborhoods. Then

P

[
m− |τL|
n+m

> n−1/4

]
= o(n−5/4),

P

[
n− |τR|
n+m

> n−1/4

]
= o(n−5/4).

Proof. Note that 1 − |τ |
n+m = m−|τL|

n+m + n−|τR|
n+m , so 1 − |τ |

n+m > c whenever m−|τL|
n+m > c or

n−|τR|
n+m > c.

Let βk(r, σ
2) be the kth moment of the Marčenko-Pastur law with ratio r and scaling

factor σ2 as defined in [BS10].

Proposition 7. Let A be the adjacency matrix of G, and let µn be the ESD of d
−1/2
R A.

Recalling that y = limn→∞ α,
∫
x2k+1 dµn(x) → 0 a.s.,

∫
x2k dµn(x) →

2

1 + y
βk(y

−1, 1) a.s.

as n→ ∞.

Proof. Consider the infinite (dL, dR)-biregular tree. Let Br denote the number of closed walks
of length r on this tree, starting from some fixed vertex of degree dL, and let Cr denote the
number of closed walks of length r starting from a vertex of degree dR. Note that as dL and
dR depend on n, so do Br and Cr.

First, we formulate the rth moment of µn in terms of Br and Cr.

∫
xr dµn(x) =

d
−r/2
R

n+m

∑

v∈V (G)

Ar(v, v).

The quantity Ar(v, v) is the number of closed walks of length r from v in G. With the same
definitions of τ , τL, and τR as in Lemma 5 and Corollary 6, this is equal to Br when v ∈ τL
and Cr when v ∈ τR. For v 6∈ τ , we can use the bound Ar(v, v) ≤ drR. Hence we can bound
the rth moment of µn by

d
−r/2
R

n+m

(
|τL|Br+|τR|Cr

)
≤
∫
xr dµn(x)

≤ d
−r/2
R

n+m

(
mBr + nCr + (n+m− |τ |)drR

)
.

Define

an = d
−r/2
R

(( m

n+m
− n−1/4

)
Br +

( n

n+m
− n−1/4

)
Cr

)
,

bn = d
−r/2
R

(
mBr + nCr

n+m
+
n−1/4

n+m
drR

)
.
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Now

P

[
an ≤

∫
xr dµn(x)

]
≥ P

[
m− |τL|
n+m

≤ n−1/4 and
n− |τR|
n+m

≤ n−1/4

]

= 1− o(n−5/4),

and in the same way, P
[∫
xr dµn(x) ≤ bn

]
≥ 1 − o(n−5/4). By the Borel-Cantelli lemma, it

holds almost surely that an ≤
∫
xr dµn(x) ≤ bn for all but finitely many n. If we show that

an and bn converge to a common limit (which we will do next), it will follow that
∫
xr dµn(x)

converges to this limit almost surely.
To find the limits of an and bn as n → ∞, we first note that n−1/4drR → 0 by (2). Since

Br, Cr ≤ drR, this also implies that n−1/4Br → 0 and n−1/4Cr → 0. So, it suffices to show
that

d
−(2k+1)/2
R

n+m
(mB2k+1 + nC2k+1) → 0, (5)

d−k
R

n+m
(mB2k + nC2k) →

2

1 + α
βk(y

−1, 1). (6)

Equation (5) is trivial, since B2k+1 = C2k+1 = 0. To prove (6), we introduce the Narayana
numbers (see [Sta99, p. 237]), defined as

N(k, a) =
1

a+ 1

(
k

a

)(
k − 1

a

)
.

The moments of the Marčenko-Pastur distribution can be given in terms of these numbers
[BS10, Lemma 3.1]:

βk(y
−1, 1) =

k−1∑

r=0

y−rN(k, r). (7)

We will give a combinatorial argument to relate the closed walks on the tree to the Narayana
numbers. We mention that another approach to proving (6) is to calculate Br and Cr using
the spectral density of the infinite (dL, dR)-biregular tree, as calculated in [GM88, (5.7)].

A Motzkin path of length 2k is a lattice path that starts at (0, 0), ends at (2k, 0), and
stays above the x-axis; each step can be a rise (ր), a fall (ց), or a level step (→). An
alternating Motzkin path is a Motzkin path that rises only on even steps and that falls only
on odd steps. See Figure 1 for an example of the five alternating Motzkin paths of length 6.

The alternating Motzkin paths have the following connection to the Narayana numbers:

Lemma 8 (Lemma 6.1.7, [Dum03]). The number of alternating Motzkin paths of length 2k
with exactly a rises is N(k, a).

We relate the Narayana numbers to the walks on a tree by the following two lemmas.
A ballot sequence of length 2k is a sequence x1, . . . , x2k of 1’s and −1’s such that all partial
sums x1 + · · ·+ xj are nonnegative.

Lemma 9. The number of ballot sequences of length 2k with a 1’s at even locations and k−a
1’s at odd locations is N(k, a).

8



Figure 1: The alternating Motzkin paths of length 6.

+1 −1 +1 +1 −1 +1 −1 −1

Figure 2: An alternating Motzkin path and its corresponding ballot sequence.

Proof. We give a bijection between alternating Motzkin paths and ballot sequences. Encode
the alternating Motzkin path as p1, . . . , p2k, where pi is 1, 0, or −1 depending on whether the
ith step is rising, level, or falling. Define a sequence by xi = 2pi + (−1)i−1. We will confirm
that this is a ballot sequence: each xi is either 1 or −1; for any j,

x1 + · · ·+ xi = 2(p1 + · · · + pi) +

j∑

i=1

(−1)i−1,

and both of these terms are nonnegative; and x1 + · · · + x2k = 2(p1 + · · · + p2k) = 0. So,
x1, . . . , x2k is a ballot sequence.

To map back from ballot sequences to alternating Motzkin paths, we let pi = (xi −
(−1)i−1)/2. For any even j,

p1 + · · ·+ pj =
1

2
(x1 + · · ·+ xj) ≥ 0.

For any odd j,

p1 + · · ·+ pj =
1

2
(x1 + · · ·+ xj − 1).

Since x1 + · · · + xj ≥ 1 when j is odd, this expression is also nonnegative. So, our path
stays above the x-axis. The other properties of being an alternating Motzkin path are easy
to check.

This bijection takes alternating Motzkin paths with a rises to ballot sequences with a 1’s
at even locations, so the lemma follows from Lemma 8.
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Lemma 10.

B2k =

k−1∑

a=0

(dR − 1)ad̃ k−a
L N(k, a), (8)

C2k =

k−1∑

a=0

(dL − 1)ad̃ k−a
R N(k, a), (9)

for some d̃L and d̃R satisfying dL − 1 ≤ d̃L ≤ dL and dR − 1 ≤ d̃R ≤ dR.

Proof. Fix some vertex v in the (dL, dR)-biregular tree with degree dL to serve as the root.
We will enumerate the closed walks of length 2k starting at v. To any such walk we can
associate a ballot sequence of length 2k, given by putting a 1 at every step of the walk going
away from v and a −1 at every step returning toward v. We will count the number of closed
walks associated to each ballot sequence.

Fix some ballot sequence, and suppose we are constructing a closed walk associated with
it. For every 1 in the ballot sequence, our walk must go outward from the root. If the 1 is
at an even location, we have dR − 1 choices for where to move; if it is at an odd location,
we have either dL or dL − 1, depending on whether we are moving from v or from some
other vertex. For every −1 in the ballot sequence, our walk must move backward towards
the root, and there is no choice to be made. So, given a ballot sequence with a rises on even
steps, the number of closed walks from v associated with that ballot sequence is between
(dR − 1)a(dL − 1)k−a and (dR − 1)adk−a

L . Using Lemma 9 to count the number of ballot
sequences with r rises on even steps, we obtain (8). The same proof starting with a vertex v
with degree dR gives us (9).

Now we finish the proof of Proposition 7 by computing the limit of

d−k
R

n+m

(
mB2k + nC2k)

as n → ∞. Recall that all of these variables depend on n except for k, which is fixed. By
Lemma 10, we can rewrite the above expression as

m

n+m

k−1∑

r=0

(dR − 1)rd−k
R

d̃ r−k
L

N(k, r) +
n

n+m

k−1∑

r=0

(dL − 1)r

d̃ r−k
R dkR

N(k, r).

Replacing m/(n+m) and n/(n+m) by α/(1+α) and 1/(1+α) respectively, and taking the
limit as n→ ∞ yields

y

1 + y

k−1∑

r=0

yr−kN(k, r) +
1

1 + y

k−1∑

r=0

y−rN(k, r).

Note that this is where we used (1). We can simplify this expression to

2

1 + y

k−1∑

r=0

y−rN(k, r).

This is exactly 2
1+yβk(y

−1, 1) as given in (7).
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Figure 3: This figure depicts the limiting density of the ESD of a random (dL, dR)-biregular
bipartite graph for two different values of α = dR

dL
. The spike at 0 denotes a point mass. The

continuous part of the density is given by (4), and the point mass has size α−1
α+1 . Each of the

left and right spikes are scaled down copies of the Marĉenko-Pastur distribution under the
transformation x 7→ √

x. When α = 1, the density reduces to that of the semicircle law.

Proof of Theorem 1. Let νn be the ESD of d−1
R XTX. As described in the introduction, the

eigenvalues of d
−1/2
R A consist of ±σi for the singular values σ1, . . . , σn of d

−1/2
R X, along with

m− n 0’s. It follows that
∫
xk dνn =

m+ n

2n

∫
x2k dµn

=
α+ 1

2

∫
x2k dµn.

It follows from Proposition 7 and the convergence of α to y that
∫
xk dνn → βk(y

−1, 1) a.s. as
n → ∞. Since the moments of νn converge almost surely to the moments of the Marčenko-
Pastur distribution, which is supported on a compact interval, νn converges almost surely to
this distribution.

To wrap things up, we compute the density of the limiting distribution of µn.

Proof of Corollary 2. We only need to show that the moments of the measure given by the
density (2/(1+y))p(x2)|x| agree with the limits of the moments of µn found in Proposition 7.
The odd moments of this measure are 0 by symmetry, and the even moments are easily
computed by integrating and substituting u = x2.

See Figure 3 for a picture of the limiting distribution for a few values of α.
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4 Convergence on short scales

To show convergence of the ESD on short scales, we will use the method of [DP12, Section 3].
The basic idea is to use the local approximation of our graph as a tree to estimate the graph’s
Stieltjes transform.

First, we will define some terms and sketch the proof. The Stieltjes transform of a
probability measure µ is the function s(z) =

∫
(z − x)−1 dµ(x) defined on the complex upper

half-plane. The Stieltjes transform of the ESD of an n × n Hermitian matrix A is then
s(z) = 1

n trR(z), where R(z) = (A − zI)−1 is the resolvent of A. If one can show that the
Stieltjes tranform of the ESD converges, standard arguments from random matrix theory
allow one to show that the ESD itself converges, with quantitative estimates on the Stieltjes
transform translating into quantitative estimates on the ESD.

To simplify language, we will refer to the resolvent of a graph instead of the resolvent of
the adjacency matrix of the graph. Similarly, we use the Stieltjes transform of a graph to
mean the Stieltjes transform of the ESD of the adjacency matrix of the graph. Our goal is to
show that the Stieltjes transform of a random biregular bipartite graph is close to its limit.
We break the proof into the following steps:

1. (Section 4.2) Compute the resolvent matrix of a biregular tree of a given depth ζ.

2. (Section 4.3) Let v be a vertex of a deterministic biregular graph G with no cycles in
its (ζ+1)-neighborhood. Show that the (v, v) entry of the resolvent of G is close to the
(root, root) entry of the resolvent of a biregular tree of depth ζ.

3. (Section 4.4) Show that nearly all the vertices of a random biregular graph have a large
acyclic neighborhood, and use this fact to transfer the estimates of the earlier parts to
random graphs, giving us an estimate of the Stieltjes transform.

We finish by invoking a standard argument from [TV11, Lemma 64] to deduce Theorem 3
from the estimate on the Stieltjes transform.

Our task is made slightly more difficult by the need to consider two different (dL, dR)-
biregular trees: one in which the root has degree dL, and one in which the root has degree
dR.

4.1 Preliminaries

We will use the following well-known formula for the inverse of a block matrix.

Proposition 11. Let A and D be n×n matrices of size n×n and m×m, respectively, and
let B be n×m. Let

M =

[
A B
BT D

]

Then

M−1 =

[
A−1 +A−1BF−1BTA−1 −A−1BF−1

−F−1BTA−1 F−1

]
, F = D −BTA−1B

12



In this section of the paper, we will define the ratio α by α = (dR − 1)/(dL − 1) rather
than dR/dL. Let Un(z) be the Chebyshev polynomial of the second kind of degree n. We
define the following shifted Chebyshev polynomial,

qn(z) = α−n/2Un

(√
α(z2 − α−1 − 1)

2

)
.

This family of polynomials satisfies the recurrence

q−1(z) = 0

q0(z) = 1

qn(z) = (z2 − α−1 − 1)qn−1(z)− α−1qn−2(z), n ≥ 1, (10)

which follows by applying the recurrence Un(z) = 2zUn−1(z)− Un−2(z).

4.2 Resolvents of trees

Our aim is to calculate the resolvents of biregular trees. We start, however, by considering
trees in which each vertex has either dL − 1 or dR − 1 children; this means that every vertex
has degree dL or dR except for the root, which has degree dL − 1 or dR − 1.

We define TL(ζ) to be the tree with depth ζ where the root has dL − 1 children, its
children each have dR − 1 children, their children each have dL − 1 children, and so on. The
tree TL(0) is a single vertex. We define TR(ζ) similarly, but with the root having dR − 1
children. To determine the adjacency matrices of these trees, we place an ordering on the
vertices as follows: If ζ = 0, then there is only one vertex and hence one possible labeling.
For ζ > 0, we will define an ordering inductively. Choose a subtree of the root and list of
all its vertices in the order already determined for ζ − 1. Then, do this with the remaining
subtrees of the root. Finally, put the root last.

Let HL and HR be the adjacency matrices of TL(ζ) and TR(ζ), respectively. We define

ϕL(ζ) = ((dR − 1)−1/2HL − z)−1
root,root

ψL(ζ) = ((dR − 1)−1/2HL − z)−1
root,leaf

We note that ψL(ζ) is independent of the particular leaf chosen. We will make use of the
recursive structure of the trees to calculate these values.

Lemma 12. (a)

ϕL(2ζ) = −qζ(z) + α−1qζ−1(z)

zqζ(z)
, ϕL(2ζ + 1) = − zqζ(z)

qζ+1(z) + qζ(z)
,

ϕR(2ζ) = −qζ(z) + qζ−1(z)

zqζ(z)
, ϕR(2ζ + 1) = − zqζ(z)

qζ+1(z) + α−1qζ(z)
,

(b)

ψL(2ζ) = ψR(2ζ) = −(dR − 1)−ζ

zqζ(z)

ψL(2ζ + 1) = − (dR − 1)−ζ−1/2

qζ+1(z) + qζ(z)
, ψR(2ζ + 1) = − (dR − 1)−ζ−1/2

qζ+1(z) + α−1qζ(z)
.
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Proof. We will start by showing that ϕL(ζ) and ϕR(ζ) satisfy the recurrences

ϕL(ζ) = −
(
z + α−1ϕR(ζ − 1)

)−1
, (11)

ϕR(ζ) = −
(
z + ϕL(ζ − 1)

)−1
. (12)

Consider the tree TL of depth ζ and let H1, . . . ,HdL−1 denote the adjacency matrices of the
subtrees of the root. Using the given ordering for the vertices, we have

1√
dR − 1

HL(ζ)− z =




1√
dR−1

HR(ζ − 1)− z
1√

dR−1
HR(ζ − 1)− z

. . . u
1√

dR−1
HR(ζ − 1)− z

uT −z




where u is a column vector representing the children of the root. This vector is (dR − 1)−1/2

in the root of each of the subtrees of the root and 0 elsewhere. Using Proposition 11 and
thinking of the −z in the bottom right corner as a 1× 1 block, we find

ϕL(ζ) =

(
−z − dL − 1

dR − 1
ϕR(ζ − 1)

)−1

which is (11). The proof for (12) is the same.
Unwinding these recurrences and noting that ϕL(0) = ϕR(0) = −z−1, we have the fol-

lowing continued fraction representation of ϕL(ζ):

ϕL(ζ) = −
1

z −
α−1

z −
1

z −
· · ·

z − z−1

.

Using standard formulas for the evaluation of continued fractions (see [LW08]), we find that

ϕL(ζ) =
Aζ

Bζ
, where

A2ζ = zA2ζ−1 −A2ζ−2, A2ζ+1 = zA2ζ − α−1A2ζ−1

B2ζ = zB2ζ−1 −B2ζ−2, B2ζ+1 = zB2ζ − α−1B2ζ−1

with the initial conditions

A0 = −1, A1 = −z,
B0 = z, B1 = z2 − α−1.

We can iterate these recurrences as follows:

A2ζ = z(zA2ζ−2 − α−1A2ζ−3)−A2ζ−2

= z
(
zA2ζ−2 −

α−1

z
(A2ζ−2 +A2ζ−4)

)
−A2ζ−2

= (z2 − α−1 − 1)A2ζ−2 − α−1A2ζ−4.
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Applying this procedure to the A2ζ+1 and to the B2ζ and B2ζ+1 cases give the same result,
yielding

Aζ = (z2 − α−1 − 1)Aζ−1 − α−1Aζ−2,

Bζ = (z2 − α−1 − 1)Bζ−1 − α−1Bζ−2.

It is easily checked using (10) that

A2ζ = −
(
qζ(z) + α−1qζ−1(z)

)
, A2ζ+1 = −zqζ(z),

B2ζ = zqζ(z), B2ζ+1 = qζ+1(z) + qζ(z).

From these expressions and (12), it is straightforward to derive the expressions for ϕR(2ζ)
and ϕR(2ζ + 1).

To compute ψL(2ζ) and ψR(2ζ), we will first show

ψL(ζ) = −(dR − 1)−1/2ϕL(ζ)ψR(ζ − 1), (13)

ψR(ζ) = −(dR − 1)−1/2ϕR(ζ)ψL(ζ − 1). (14)

Using Proposition 11, if A is the minor of (dR − 1)−1/2HL − z consisting of all but the last
row and column, we have

ψL(ζ) =

(
1√

dR − 1
HL − z

)−1

1,root

= −ϕL(ζ)(A
−1u)1

= −(dR − 1)−1/2ϕL(ζ)ψR(ζ − 1),

proving (13). Equation (14) is derived in the same way. By combining these, we get ψL(ζ) =
(dR − 1)−1ϕL(ζ)ϕR(ζ − 1)ψL(ζ − 2), whence

ψL(2ζ) = ψL(0)(dR − 1)−ζ
ζ∏

j=1

ϕL(2j)ϕR(2j − 1)

= −z−1(dR − 1)−ζ
ζ∏

j=1

qj−1(z)

qj(z)

= −(dR − 1)−ζ

zqζ(z)
.

The proof of the expression for ψR(2ζ) is identical, and the expressions for ψL(2ζ + 1) and
ψR(2ζ + 1) follow immediately by applying (13) and (14).

We now turn from these almost regular trees to the real thing. Let T̃L(ζ) be the (dL, dR)-
biregular tree of depth ζ whose root has degree dL, and let T̃R(ζ) be the (dL, dR)-biregular
tree of depth ζ whose root has degree dR. Let H̃L and H̃R be the adjacency matrices of T̃L(ζ)
and T̃R(ζ), respectively, with vertices ordered as with HL and HR. We define

ϕ̃L(ζ) = ((dR − 1)−1/2H̃L − z)−1
root,root, ϕ̃R(ζ) = ((dR − 1)−1/2H̃R − z)−1

root,root,

ψ̃L(ζ) = ((dR − 1)−1/2H̃L − z)−1
root,leaf, ψ̃R(ζ) = ((dR − 1)−1/2H̃R − z)−1

root,leaf.
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Lemma 13.

ϕ̃L(2ζ) = − qζ(z) + α−1qζ−1(z)

z(qζ(z)− 1
dR−1qζ−1(z))

, ϕ̃R(2ζ) = − qζ(z) + qζ−1(z)

z(qζ(z)− 1
dR−1qζ−1(z))

ψ̃L(2ζ) = ψ̃R(2ζ) = − (dR − 1)−ζ

z(qζ(z)− 1
dR−1qζ−1(z))

.

Proof. Because the root of H̃L has dL children instead of dL − 1, the methods of Lemma 12
give

ϕ̃L(ζ) =

(
−z − dL

dR − 1
ϕR(ζ − 1)

)−1

.

Substituting in the value for ϕR(ζ − 1) from Lemma 12 yields the desired expression. The
expression for ϕ̃R(2ζ) is derived in the same way.

The same procedure shows that

ψ̃L(2ζ) = −(dR − 1)−1/2ϕ̃L(2ζ)ψR(2ζ − 1),

and substituting the value from Lemma 12 yields the desired expression.

We will now bound the rate of convergence of some of these functions to their limits as
ζ → ∞. First, define the complex function F (z) = z +

√
z2 − 1, with branch cut [0,∞) for

the square root. Let w(z) = F
(
1
2

√
α(z2 −α−1 − 1)

)
and r(z) = |w(z)|. We will refer to w(z)

and r(z) as simply w and r. Note that r > 1 for all ℑ(z) > 0. Using a well-known expression
for the Chebyshev function Un(z) (see [MH03]), we can expand qζ(z) as

qζ(z) = α−ζ/2w
ζ+1 − w−ζ−1

w − w−1
. (15)

As we will see, the limits of ϕL(ζ) and ϕR(ζ) as ζ → ∞ are given by the following
functions, defined on the upper half-plane:

sL(z) = −1

z
− α−1/2w−1

z
, sR(z) = −1

z
− α1/2w−1

z
,

with branch cut [0,∞) for the square root. We define

s(z) =
αsL(z) + sR(z)

1 + α
=

α

1 + α


−z +

√(
z − 1− α

αz

)2

− 4,




again with branch cut [0,∞) for the square root, and we note that s(z) is the Stieltjes
transform of the limiting ESD µ of Corollary 2.

We bound the convergence in terms of r = r(z) and ζ:

Lemma 14.

|ϕL(2ζ)− sL(z)| ≤
2α−1/2r−2ζ

|z|(1 − r−2ζ−2)

|ϕR(2ζ)− sR(z)| ≤
2α1/2r−2ζ

|z|(1 − r−2ζ−2)

|ψL(2ζ)|, |ψR(2ζ)| ≤
2αζ/2(dR − 1)−ζr−ζ

|z|(1− r−2ζ−1)
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Proof. Applying (15) to the formula for ϕL(2ζ),

|ϕL(2ζ)− sL(z)| =
α−1/2

|z|

∣∣∣∣w
−1 − wζ − w−ζ

wζ+1 − w−ζ−1

∣∣∣∣

=
α−1/2

|z|

∣∣∣∣
w−2ζ−1(1− w−2)

1− w−2ζ−2

∣∣∣∣

≤ 2α−1/2r−2ζ−1

|z|(1 − r−2ζ−2)
.

The exact same procedure establishes the corresponding inequality for |ϕR(2ζ)−sR(2ζ)|. We
can similarly compute

|ψL(2ζ)| = |ψR(2ζ)| =
∣∣∣∣
(dR − 1)−ζ(w − w−1)

z(wζ+1 − w−ζ−1)

∣∣∣∣

≤ 2αζ/2(dR − 1)−ζr−ζ

|z|(1 − r−2ζ−2)
.

4.3 From trees to deterministic graphs

We now move from trees to graphs with large, acyclic neighborhoods. Let G be a deterministic
(dL, dR)-biregular graph that has a root vertex with an acyclic (ζ + 1)-neighborhood. Let A
be the adjacency matrix of this graph. Our goal is to show that the resolvent of A is well
approximated by the resolvent of H̃L or H̃R. If the root of G has degree dL, then we consider
the error term

EL(ζ) =
(
(dR − 1)−1/2A− z

)−1

root,root
− ϕ̃L(ζ),

and if the root of G has degree dR, then we consider the error term

ER(ζ) =
(
(dR − 1)−1/2A− z

)−1

root,root
− ϕ̃R(ζ).

Lemma 15. We can bound EL and ER by

|EL(ζ)| ≤
|ψ̃L(ζ)|2dL(dR − 1)⌈ζ/2⌉(dL − 1)⌊ζ/2⌋

(dR − 1)ℑ(z)

|ER(ζ)| ≤
|ψ̃R(ζ)|2dR(dL − 1)⌈ζ/2⌉(dR − 1)⌊ζ/2⌋

(dR − 1)ℑ(z)
Proof. Let CL and CR denote the number of vertices of distance ζ + 1 from the root in the
biregular trees T̃L and T̃R, respectively. We claim that

|EL(ζ)| ≤
∣∣ψ̃L(ζ)

∣∣2CL

(dR − 1)ℑ(z) , (16)

|ER(ζ)| ≤
∣∣ψ̃R(ζ)

∣∣2CR

(dR − 1)ℑ(z) . (17)

These statements can be proven exactly as in [DP12, Lemma 10]; we will only give a sketch
here. The gist of the argument is to partition the vertices of G into two parts, those at
distance ζ or less from the root and those at distance greater than ζ. This decomposes A
into blocks, one of which is simply H̃L or H̃R. An application of Proposition 11 and some
calculations then prove (16) and (17). The rest is simply a calculation of CL and CR.
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Now, we take a sequence of graphs as above and let ζ grow to infinity.

Lemma 16. Let G be a sequence of deterministic graphs, each with a root with an acyclic
2ζ + 1 neighborhood. Suppose dR → ∞ and ζ → ∞. Fix ǫ > 0, and let z be a sequence with
|Re(z)| > ǫ and |ℑ(z)| ≥ 1/dR. Suppose that r−2ζ = o(1/d2R). Then either

∣∣∣
(
(dR − 1)−1/2A− z

)−1

root,root
− sL(z)

∣∣∣ = Oǫ(1/dR),

or
∣∣∣
(
(dR − 1)−1/2A− z

)−1

root,root
− sR(z)

∣∣∣ = Oǫ(1/dR),

depending on whether the root of G has degree dL or dR. We use Oǫ(·) to indicate that the
constant in the expression depends on ǫ.

Proof. Consider the case where the root of G has degree dL. We will proceed in two steps,
bounding first |ϕ̃L(2ζ)− sL(z)| and then EL(2ζ).

We define the quantity

β =
q2ζ(z)

q2ζ(z)− (dR − 1)−1q2ζ−1(z)

=
1

1− (dR − 1)−1w−1(1−w−2ζ)
1−w−2ζ−2

This is of interest because ϕ̃L(2ζ) = βϕL(2ζ). With the assumptions of this lemma, one can
calculate directly that |β| = 1 + O(1/dR). By these assumptions and Lemma 14, |ϕL(2ζ) −
sL(z)| = oǫ(1/dR). Since sL(z) is bounded for |z| > ǫ, this also implies that ϕL(2ζ) = Oǫ(1).
Thus

|ϕ̃L(2ζ)− sL(z)| =
∣∣βϕL(2ζ)− sL(z)

∣∣
≤ |ϕL(2ζ)− sL(z)| + |(β − 1)ϕL(2ζ)|
≤ oǫ(1/dR) +Oǫ(1/dR) = Oǫ(1/dR).

Since ψ̃L(2ζ) = βψL(2ζ), by Lemma 14 and our bound on β,

|ψ̃L(2ζ)| = αζ/2(dR − 1)−ζoǫ(1/dR).

Combining this with our bound on EL(2ζ) from Lemma 15 gives

|EL(2ζ)| ≤
oǫ(1/d

2
R)

ℑ(z) = oǫ(1/dR).

These two bounds prove the lemma. The case when the root of G has degree dR is the
same.

4.4 From deterministic graphs to random graphs

The main actors of this section will be sequences s, ζ, and η. We will choose s and z in
such a way that s ≥ r(z), and ζ will represent the size of an acyclic neighborhood in the
graph. We will choose η so that we can control the Stieltjes transform of our graph on the
set U = {z : ℑ(z) ≥ η}. The following lemma gives us the relation between s and η:

18



Lemma 17. Let r = r(z), fix some s > 1, and let η = s1/2 − s−1/2. If ℑ(z) ≥ η, then r ≥ s.

Proof. First we prove this when α = 1. Consider the set Es = {z : |F (z)| < s}. This set is
the interior of an ellipse whose foci are −1 and 1 and whose radii are 1

2(s+s
−1) and 1

2(s−s−1)
(see [MH03, p. 14]). It suffices to show that if ℑ(z) ≥ η, then 1

2z
2 − 1 lies outside of Es. To

this end, we note that the transformation z 7→ 1
2z

2 − 1 takes the region given by ℑ(z) ≥ η to
the region bounded on the right by the parabola P = {1

2(t
2 − η2)− 1+ ηti : t ∈ R}. This can

be checked to touch Es at −1
2(s+ s−1) and otherwise to lie to the left of it. This proves the

lemma when α = 1.
To extend this to the case where α > 1, we consider the image of Es under the map

z 7→
(
α−1/2(2z+α1/2+α−1/2)

)1/2
, which is the inverse of 1

2

√
α(z2−α−1−1). Our argument

for α = 1 establishes that in this case, the maximum imaginary part of this set is η. It is

straightforward to check that for any z, the quantity ℑ
(
α−1/2(2z+α1/2+α−1/2)

)1/2
decreases

as α increases, which establishes the lemma.

For the remainder of this section, let G be a random biregular bipartite graph on m+ n
vertices satisfying (1)–(3) as well as the condition dR = exp

(
o(1)

√
log n

)
. Let A be the

adjacency matrix of G. We define the sequences

a = min

(
log n

9(log dR)2
, dR

)
,

s = e1/a,

ζ =
log n

8 log dR
− 1,

η = s1/2 − s−1/2.

We now show that sufficiently many vertices of G have tree-like neighborhoods.

Lemma 18. Let J be the set of vertices in G whose 2ζ-neighborhoods are acyclic. Then

P

[
1− |J |

n+m
≥ η

dR

]
= o(1/n).

Proof. This is nearly the same as Lemma 5. We may assume ζ is an integer by replacing it
with ⌊ζ⌋. We define

N∗ =
2ζ∑

i=2

2i(dR − 1)2ζ−iXi,

recalling that Xi is the random variable denoting the number of 2i-cycles in G. We have the
bound n+m− |J | ≤ N∗. Now we apply Proposition 4 to calculate

E[N∗] =
2ζ∑

i=2

2i(dR − 1)2ζ−iµi

(
1 +O

( i(i+ dR)

n

))

= O
(
d4ζR
)
,
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and

Var[N∗] ≤ 2ζ

2ζ∑

i=2

4i2(dR − 1)4ζ−2iµi

(
1 +O

(
d2iR (iα

2i−1 + α−idR)

n

))

≤ 2ζ

ζ∑

i=2

2i(dR − 1)4ζ
(
1 +O

(
n4c(ζα4ζ−1 + dR)

n

))

= O
(
ζ3d4ζR

)
.

By Markov’s inequality,

P

[
1− |J |

n+m
≥ η

dR

]
≤ P

[
N∗ ≥ (1 + α)nη

dR

]

≤ O
(
d8ζ+2
R + ζ3d4ζ+2

R

)

n2η2

≤ O
(
n−1d−4

R + n−3/2ζ3
)
= o(1/n).

Let JL and JR denote the sets of vertices with acyclic 2ζ-neighborhoods in the left and
right vertex classes, respectively. As in Corollary 6, it is immediate that

P

[
m− |JL|
n+m

≥ η

dR

]
= o(1/n)

and

P

[
n− |JR|
n+m

≥ η

dR

]
= o(1/n).

It is also straightforward to see that this lemma holds when we require the vertices to have
acyclic 2ζ + 1 neighborhoods rather than just 2ζ neighborhoods.

We can now apply all of these results to the task of bounding the rate of convergence of
the Stieltjes transform:

Theorem 19. Fix some ǫ and let U denote the set of complex numbers

U = {z ∈ C : Re(z) ≥ ǫ, ℑ(z) ≥ η}.

Let sn(z) denote the Stieltjes transform of (dR − 1)−1A. Then for sufficiently large Cǫ,

P

[
sup
z∈U

|sn(z)− s(z)| > Cǫ/dR

]
= o(1/n).

Proof. Let J denote the vertices with acyclic 2ζ + 1 neighborhoods. We condition on the
event that (m−|JL|)/(m+n) < η/dR and (n−|JR|/(m+n) < η/dR, which by the discussion
following Lemma 18 holds with probability 1 − o(1/n). We call this event Ω. We compute
sn(z) for z ∈ U , breaking up the vertices into JL, JR, and the remaining vertices:

sn(z) =
1

m+ n

∑

v∈JL

(
(dR − 1)−1/2A− z

)−1

v,v
+

1

m+ n

∑

v∈JR

(
(dR − 1)−1/2A− z

)−1

v,v

+
1

n+m

∑

v 6∈J

(
(dR − 1)−1/2A− z

)−1

v,v
.
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We begin with the third term. Applying the bound
(
(dR − 1)−1/2A− z

)−1

v,v
≤ η−1, we have

∣∣∣∣∣∣
1

n+m

∑

v 6∈J

(
(dR − 1)−1/2A− z

)−1

v,v

∣∣∣∣∣∣
≤ m+ n− |J |

(m+ n)η
<

1

dR
(18)

on the event Ω.
Since every vertex in J has an acyclic 2ζ + 1 neighborhood, we will apply Lemma 16 to

estimate the first two terms. First, we confirm that the conditions of the lemma hold. By
expanding η as a power series, we deduce the bound η ≥ 1/a ≥ 1/dR. We can calculate

s−2ζ = exp

(
−2

a

(
log n

8 log dR
− 1

))

≤ exp

(
−9

4
log dR + o(1)

)
= o(1/d2R).

By Lemma 17, it follows from ℑ(z) ≥ η that r(z) ≥ s. Hence for any sequence z ∈ U , we
have r(z)−2ζ ≤ s−2ζ = o(1/d2R). Thus the conditions of Lemma 16 hold, and so for all v ∈ JL,

∣∣∣
(
(dR − 1)−1/2A− z

)−1

v,v
− sL(z)

∣∣∣ = Oǫ(1/dR),

and for all v ∈ JR,
∣∣∣
(
(dR − 1)−1/2A− z

)−1

v,v
− sR(z)

∣∣∣ = Oǫ(1/dR).

Combining these estimates with (18),

sn(z) =
|JL|
m+ n

sL(z) +
|JR|
m+ n

sR(z) +Oǫ(1/dR)

=
m

m+ n
sL(z) +

n

m+ n
sR(z) +Oǫ(1/dR)

= s(z) +Oǫ(1/dR)

on the event Ω, which proves the theorem.

We now restate and prove our local convergence law.

Theorem 3. Fix ǫ > 0. Let µn be the ESD of (dR − 1)−1/2A, and let µ be the limiting ESD
defined in Corollary 2. There exists a constant Cǫ such that for all sufficiently large n and
δ > 0, for any interval I ⊆ R avoiding [−ǫ, ǫ] and with length |I| ≥ max

(
2η, η/(−δ log δ)

)
, it

holds that

|µn(I)− µ(I)| < δCǫ|I|

with probability 1− o(1/n).

Proof. This theorem follows from the arguments of [TV11, Lemma 64], which we will sketch.
Define

F (y) =
1

π

∫

I

η

η2 + (y − x)2
dx.
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This function F (y) approximates the indicator function on the interval I, and the following
statements hold:

∫
F (y) dµ(y) = µ(I) +Oǫ

(
η log

|I|
η

)
,

∫
F (y) dµn(y) = µn(I) +Oǫ

(
η log

|I|
η

)
.

The proofs of these statements in [TV11, Lemma 64] have µ as the semicircle law, but they
apply just as well to our limiting measure µ; the only thing necessary for the proof to go
through is that µ has a bounded density outside of the interval [−ǫ, ǫ]. On the event Ω of the
previous theorem,

∣∣∣∣
∫
F (y) dµ(y) −

∫
F (y) dµn(y)

∣∣∣∣ =
1

π

∣∣∣∣
∫

I

(
ℑ(s(x+ ηi))−ℑ(sn(x+ ηi))

)
dx

∣∣∣∣

≤ Cǫ|I|
πdR

.

As observed in [TV11], it follows from the condition |I| ≥ η/(−δ log δ) that η log |I|
η = O(δ|I|).

Since dR → ∞, for n sufficiently large,

|µ(I)− µn(I)| ≤ Cǫδ|I|

for some constant Cǫ (not necessarily the same one as before) on the event Ω.

Appendix

Our goal here is to prove Proposition 4. We mention that it is possible to prove much more
than this. The main result of [MWW04] is that the distribution of short cycles in a random
regular graph is approximately Poisson, and this result holds for biregular bipartite graphs
as well, with suitable modifications of the proofs.

We will use a theorem from [McK81] that gives us the probability that G contains some
subgraph L ⊆ Km,n. For any v ∈ Km,n, let gv and lv denote the the degree of v considered
as a vertex of G and of L, respectively. Let lmax be the largest value of li. Consider L to be
a collection of edges, so that |L| is the number of edges of L. The notation [x]a denotes the
falling factorial, x(x− 1) · · · (x− a+ 1).

Proposition 20. Let L ⊆ Km,n.

(a) If |L|+ 2dR(dR + lmax − 2) ≤ ndR − 1, then

P[L ⊆ G] ≤
∏
[gi]li

[ndR − 4d2R − 1]|L|
.

(b) If ndR − 2dR(dR + lmax − 1)− 1− |L| ≥ dRlmax, then

P[L ⊆ G] ≥
∏
[gi]li

[ndR − 1]|L|

×
[(

1− dRlmax

ndR − |L| − 2dR(dR + lmax − 1)− 1

)
/

(
1 +

d2R
ndR − 2dR(dR + lmax − 2)− 1− |L|(e− 1)/e

)]|L|
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Proof. This is an application of [McK81, Theorem 3.5], with the set H from that theorem
equal to ∅.

We are most interested in when L is a cycle with 2r edges, in which case the above
theorem reduces to the following:

Corollary 21. Let L ⊆ Km,n be a cycle with 2r edges whose presence in G we wish to test.

(a) If 2r + 2d2R ≤ ndR − 1, then

P[L ⊆ G] ≤ drL(dL − 1)rdrR(dR − 1)r

[ndR − 2d2R − 1]2r
.

(b) If ndR − 2dR(dR + 1)− 1− 2r ≥ 2dR, then

P[L ⊆ G] ≥ drL(dL − 1)rdrR(dR − 1)r

[ndR − 1]2r

×
[(

1− 2dR
ndR − 2dR(dR + 1)− 1− 2r

)/(
1 +

d2R
ndR − 2d2R − 1− 2r(e− 1)/e

)]2r
.

Proof of Proposition 4. Let L ⊆ Km,n be a cycle with 2r edges. We start by showing that

P[L ⊆ G] =
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
rdR
n

+
r2

ndR

))
. (19)

Since dR = o(n), all of the conditions for Proposition 20 and Corollary 21 apply. By
Corollary 21a,

P[L ⊆ G] ≤ (dL − 1)r(dR − 1)rα−rd2rR
(ndR − 2d2R − 2r)2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
ndR

ndR − 2d2R − 2r

)2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +

2d2R + 2r

ndR − 2d2R − 2r

)2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
rdR
n

+
r2

ndR

))
. (20)

The last line follows from the fact that if x > −1,

(1 + x)r ≤ erx = 1 +O(rx)

as rx→ 0.
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From Corollary 21b,

P[L ⊆ G] ≥ drL(dL − 1)rdrR(dR − 1)r

(ndR)2r

×
[(

1− 2dR
ndR − 2dR(dR + 1)− 1− 2r

)
/

(
1 +

d2R
ndR − 2d2R − 1− 2r(e− 1)/e

)]2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O(1/n)

1 +O(dR/n)

)2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
dR
n

))2r

=
(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
rdR
n

))
.

These two inequalities prove (19).
The number of cycles of length 2r in Km,n is [m]r[n]r/2r. Using [n]r = nr(1 +O(r2/n)),

which can be proven by showing inductively that [n]r ≥ nr(1 − r2/2n), we calculate the
expected number of such cycles:

E[Xr] =
[m]r[n]r

2r

(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
rdR
n

+
r2

ndR

))

=
(nα)rnr(1 +O(r2/n))

2r

(dL − 1)r(dR − 1)rα−r

n2r

(
1 +O

(
rdR
n

+
r2

ndR

))

= µr

(
1 +O

(
r(r + dR)

n

))
. (21)

Let C be the set of 2r-cycles in Km,n. We will calculate Var[Xr] using the equation

E[X2
r ] =

∑

C1∈C

∑

C2∈C
P[C1 ∪C2 ⊆ G].

We break up C × C to help calculate this sum.

C1 = {(C1, C2) ∈ C × C : C1 ∩C2 = ∅},
C2 = {(C1, C2) ∈ C × C : C1 ∩C2 6= ∅, but C1 6= C2},
C3 = {(C1, C2) ∈ C × C : C1 = C2}.

We are considering cycles as collections of edges, so pairs of cycles that share vertices but
not edges belong in C1 rather than C2.

For (C1, C2) ∈ C1, Proposition 20a and a calculation identical to the one in (20) show
that

P[C1 ∪C2 ⊆ G] ≤ (dL − 1)2r(dR − 1)2rα−2r

n4r

(
1 +O

(
rdR
n

+
r2

ndR

))

Bounding |C1| by |C| = ([m]r[n]r/2r)
2 and repeating the calculation in (21) gives

∑

(C1,C2)∈C1
P[C1 ∪ C2 ⊆ G] ≤ µ2r

(
1 +O

(r(r + dR)

n

))
. (22)
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For a lower bound on this sum, we note that by Proposition 20b, for any 2r-cycles C1 and
C2 that share no vertices,

P[C1 ∪ C2 ⊆ G] ≥ d2rL (dL − 1)2rd2rR (dR − 1)2r

(ndR)4r

(
1 +O(1/n)

1 +O(dR/n)

)4r

=
(dL − 1)2r(dR − 1)2rα−2r

n4r

(
1 +O

(
rdR
n

))
.

Summing this over the ([n]r[m]r/2r)([n− r]r[m− r]r/2r) such pairs of 2r-cycles provides the
bound

∑

(C1,C2)∈C1
P[C1 ∪ C2 ⊆ G] ≥ [n]r[m]r[n− r]r[m− r]rα

−2r

n4r
µ2r

(
1 +O

(
rdR
n

))

=
nrmr(n − r)r(m− r)r(1 +O(r2/n))α−2r

n4r
µ2r

(
1 +O

(
rdR
n

))

=

((
1− r

n

)(
1− r

αn

))r

µ2r

(
1 +O

(
r2

n

))(
1 +O

(
rdR
n

))

= µ2r

(
1 +O

(
r(r + dR)

n

))
.

The sum over C3 is

∑

(C1,C2)∈C3
P[C1 ∪ C2 ⊆ G] = E[Xr] = µr

(
1 +O

(r(r + dR)

n

))
. (23)

To estimate the sum over C2, we bound the number of isomorphism types of a graph
H = C1 ∪ C2 for (C1, C2) ∈ C2. Let H ′ be the graph (V (C1) ∩ V (C2), E(C1) ∩ E(C2)). Say
that H ′ has p components and j edges. As H ′ is a forest, it has p + j vertices, so H has
4r − p− j vertices. We also note that H has 4r − j edges.

Let C1 = a1a2 · · · a2r and C2 = b1b2 · · · b2r, with a1 = b1. Let A1, . . . , Ap be the compo-
nents of H ′ ordered as the appear in C1. We can encode the isomorphism type of H in the
following four sequences:

• si is the number of vertices in Ai

• ti is the smallest j such that aj ∈ Ai

• ui is the smallest j such that bj ∈ Ai

• vi specifies whether Ai is oriented the same way in C1 as in C2 (if Ai is a single vertex,
consider it to be oriented the same)

For example, the following diagram is the union of two cycles of length 8, the first colored
black and the second colored gray.
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b1 = a1

a2

b2 = a3

b3 = a4 a5

b8 = a6

b7 = a7

b6 = a8

b4

b5

The intersection graph H ′ has three components, A1 = a1 = b1, A2 = a3a4 = b2b3, and
A3 = a6a7a8 = b6b7b8. The four sequences for this graph are

s : 1, 2, 3

t : 1, 3, 6

u : 1, 2, 6

v : yes, yes, no

To illustrate that the isomorphism class of H is encoded in these sequences, We will demon-
strate how to recover it in this example. Start by drawing a cycle and labeling its vertices
a1, . . . , a8. From s and t, we can deduce that A1 = a1, A2 = a3a4, and A3 = a6a7a8. From
u and v, we deduce that b1 = a1, b2 = a3, b3 = a4, b6 = a8, b7 = a7, and b8 = a6. Since b4
and b5 are unaccounted for, we conclude that they are not contained in a1 · · · a8. Once we
add edges to connect b1 to b2, b2 to b3, and so on, we have recreated H up to isomorphism.

Now, we consider the number of possible isomorphism classes of some H = C1 ∪C2. The
sequence s is a composition of p + j into exactly p parts, so there are

(p+j−1
p−1

)
possibilities.

We know that t1 = 1, and we know that t2, . . . , tp are ordered and are distinct, so there are
at most

(2r−1
p−1

)
choices for t. We know that u1 = 1 and that u2, . . . , up are distinct but not

necessarily in any order, so there are at most
(
2r−1
p−1

)
(p − 1)! choices for u. For v, there are

2p−1 choices. For a fixed choice of of p and j, the number of possible isomorphism classes of
H is hence bounded by

(
p+ j − 1

p− 1

)(
2r − 1

p− 1

)2

(p− 1)!2p−1.

By replacing p+ j − 1 and 2r − 1 by 2r, we bound this quantity by
(

2r

p− 1

)3

(p− 1)!2p−1 ≤ (16r3)p−1

(p− 1)!2
.

Suppose an isomorphism type has a vertices from the left vertex class and b from the
right vertex class (with a + b = 4r − p − j). Then this isomorphism type can be realized in
at most [n]a[m]b + [n]b[m]a ≤ 2α4r−p−jn4r−p−j ways. By Proposition 20a, the probability of
any one of these realizations being a subgraph of G is bounded by

d
(4r−j)/2
L (dL − 1)(4r−j)/2d

(4r−j)/2
R (dR − 1)(4r−j)/2

[ndR − 4d2R − 1]4r−j
=

(dL − 1)(4r−j)/2(dR − 1)(4r−j)/2

α(4r−j)/2n4r−j
O(1).
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All together, we have the bound

∑

(C1,C2)∈C3
P[C1 ∪ C2 ⊆ G] ≤

2r∑

p=1

2r∑

j=1

(16r3)p−1

(p − 1)!2
α4r−p−jn4r−p−j (dL − 1)(4r−j)/2(dR − 1)(4r−j)/2

α(4r−j)/2n4r−j
O(1)

=

2r∑

p=1

2r∑

j=1

(16r3)p−1

(p − 1)!2
(dL − 1)(4r−j)/2(dR − 1)(4r−j)/2

αp−2r−j/2np
O(1)

= O

(
α(4r−1)/2(dL − 1)(4r−1)/2(dR − 1)(4r−1)/2

n

)
. (24)

Combining this with (22) and (23) shows

Var[Xr] = µ2r

(
1 +O

(r(r + dR)

n

))
+ µr

(
1 +O

(r(r + dR)

n

))

−E[Xr]
2 +O

(
α(4r−1)/2(dL − 1)(4r−1)/2(dR − 1)(4r−1)/2

n

)

= µr + µ2r

(
O
(r(r + dR)

n

)
+O

(r(r + dR)

µrn

)
+O

(
r2α(4r−1)/2

n(dL − 1)1/2(dR − 1)1/2

))

= µr + µ2rO

(
r
(
α(4r−1)/2r + dR

)

n

)
.

Hence

Var[Xr] = µr

(
1 + µrO

(
r
(
α(4r−1)/2r + dR

)

n

))

= µr

(
1 +O

(
d2rR (rα2r−1 + α−rdR)

n

))
.
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[ESY09b] László Erdős, Benjamin Schlein, and Horng-Tzer Yau. Semicircle law on short
scales and delocalization of eigenvectors for Wigner random matrices. Ann.
Probab., 37(3):815–852, 2009.

[GM88] C. D. Godsil and B. Mohar. Walk generating functions and spectral measures
of infinite graphs. In Proceedings of the Victoria Conference on Combinatorial
Matrix Analysis (Victoria, BC, 1987), volume 107, pages 191–206, 1988.

[Joh14] Tobias Johnson. Exchangeable pairs, switchings, and random regular graphs.
Preprint. Available at arXiv:1112.0704, 2014.

[JP14] Tobias Johnson and Soumik Pal. Cycles and eigenvalues of sequentially growing
random regular graphs. Ann. Probab., 42(4):1396–1437, 2014.

[LW08] Lisa Lorentzen and Haakon Waadeland. Continued fractions. Vol. 1, volume 1
of Atlantis Studies in Mathematics for Engineering and Science. Atlantis Press,
Paris, second edition, 2008.

[McK81] Brendan D. McKay. Subgraphs of random graphs with specified degrees. In
Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph
Theory and Computing, Vol. II (Baton Rouge, La., 1981), volume 33, pages 213–
223, 1981.

[MH03] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. Chapman &
Hall/CRC, Boca Raton, FL, 2003.

[MS03] Hirobumi Mizuno and Iwao Sato. The semicircle law for semiregular bipartite
graphs. J. Combin. Theory Ser. A, 101(2):174–190, 2003.

[MWW04] Brendan D. McKay, Nicholas C. Wormald, and Beata Wysocka. Short cycles in
random regular graphs. Electron. J. Combin., 11(1):Research Paper 66, 12 pp.
(electronic), 2004.

[Sta99] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

28



[TV10] Terence Tao and Van Vu. Random matrices: universality of local eigenvalue
statistics up to the edge. Comm. Math. Phys., 298(2):549–572, 2010.

[TV11] Terence Tao and Van Vu. Random matrices: universality of local eigenvalue
statistics. Acta Math., 206(1):127–204, 2011.

[TVW13] Linh V. Tran, Van H. Vu, and Ke Wang. Sparse random graphs: Eigenvalues and
eigenvectors. Random Structures Algorithms, 42(1):110–134, 2013.

29


	1 Motivation
	2 Preliminaries and statements of results
	3 Global convergence to the Marcenko-Pastur law
	4 Convergence on short scales
	4.1 Preliminaries
	4.2 Resolvents of trees
	4.3 From trees to deterministic graphs
	4.4 From deterministic graphs to random graphs


