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Abstract

Randomized gossip is one of the most popular way of dissem@aformation in large scale net-
works. This method is appreciated for its simplicity, rofmess, and efficiency. In tteeush protocol,
every informed node selects, at every time step (a.k.a. dpume of its neighboring node uniformly
at random and forwards the information to this node. Thigqmal is known to complete information
spreading irD(log n) time steps with high probability (w.h.p.) in several fardiofn-nodestatic net-
works. ThePush protocol has also been empirically shown to perform wellractice, and, specifically,
to be robust against dynamic topological changes.

In this paper, we aim at analyzing tir&sh protocol indynamicnetworks. We consider thedge-
Markovianevolving graph model which captures natural temporal ddeecies between the structure
of the network at time, and the one at time+ 1. Precisely, a non-edge appears with probabjljtyhile
an existing edge dies with probabiligy In order to fit with real-world traces, we mostly concerdgratir
study on the case whepe= Q(%) andgq is constant. We prove that, in this realistic scenarioptheh
protocol does perform well, completing information spriegdn O(logn) time steps w.h.p. Note that
this performance holds even when the network is, w.h.pcodisected at every time step (e.g., when
p < 1"%). Our result provides the first formal argument demonsigathe robustness of tireush
protocol against network changes. We also address othgesaf parametegsandq (e.g..p+ ¢ =1
with arbitraryp andg, andp = % with arbitraryq). Although they do not precisely fit with the measures
performed on real-world traces, they can be of independeatdast for other settings. The results in
these cases confirm the positive impact of dynamism.
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1 Introduction

1.1 Context and Objective

Rumor spreadings a well-known gossip-based distributed algorithm fosdiminating information in large
networks. According to the synchronoris sh version of this algorithm, an arbitrary source node isatlii
informed, and, at each time step (a.k.a. round), an infornoeid. chooses one of its neighbarainiformly
at random, and this node becomes informed at the next time ste

Rumor spreading (originally calledimor mongeriny was first introduced by [12], in the context of
replicated databases, as a solution to the problem ofllising updates and driving replicas towards con-
sistency. Successively, it has been proposed in several afiplication areas, such as failure detection in
distributed systems [34], peer-sampling|[27], adaptivemree discovery [25], and distributed averaging in
sensor networks [5] (for a nice survey of gossip-based #lgorapplications, see alsp [29]). Apart from
its applications, rumor spreading has also been deeplyasthfrom a theoretical and mathematical point
of view. Indeed, as already observed[inl[12], rumor sprepdifjust an example of an epidemic process:
hence, its analysis “benefits greatly from the existing mat#tical theory of epidemiology” (even if its
application in the field of distributed systems has almogiosfie goals). In particular, treompletion time
of rumor spreading, that is, the number of steps requireddardo have all nodes informed with high prob-
abilityﬂ (w.h.p.), has been investigated in the case of severaleliftenetwork topologies, such as complete
graphs[[20] 32, 28], hypercubes [15], random graphs[[1518},, preferential attachment graphs [[6] 13],
and some power-law degree graghs [19]. Besides obtainimgdsoon the completion time of rumor spread-
ing, most of these works also derive deep connections bettiecompletion time itself and some classic
measures of graph spectral theory, such as, for exampleotitictancef a graph (as far as we know, the
most recent results of this kind are the ones presentéd [8)[P71]) or itsvertex expansiofsee [[33] 22]).

It is important to observe that the techniques and the argtsredopted in these studies strongly rely
on the fact that the underlying graphstatic and does not change over time. For instance, most of these
analyses exploit the crucial fact that the degree of eveder{ao matter whether this is a random variable
or a deterministic value) never changes during the entiegewon of the rumor spreading algorithm. It is
then natural to ask ourselves what is the speed of rumordipgea the case oflynamicnetworks, where
nodes and edges can appear and disappear over time (sewerglreg networking technologies such as ad
hoc wireless, sensor, mobile networks, and peer-to-pdeionies are indeed inherently dynamic).

In order to investigate the behavior of distributed protedo the case of dynamic networks, the concept
of evolving graph has been introduced in the literature.efalving graphs a sequence of grapi&;):>o
wheret € N (to indicate that we consider the graphapshotst discrete time steps although it may
evolve in a continuous manner) with the same set nbdesd This concept is general enough for allowing
us to model basically any kind of network evolution, rangfngm adversarialevolving graphs (see, for
example,[[10, 30]) teandomevolving graphs (see, for examplel [4]).

Indeed, although only the edges are subject to changes gawtaabe all incident edges are not present at
a given step can be considered as having left the network at tiywéhere the network is viewed as the giant
component of7;. Hence, the concept of evolving graph also captures soneaes®f the node dynamics.
In the case ofandomevolving graphs, at each time step, the gréaghis chosen randomly according to
some probability distribution over a specified family of gina. One very well-known and deeply studied
example of such a family is the s}, ,, of Erd6s-Renyirandom graphs [1, 14, 23]. In the evolving graph
setting, at every time stefy each possible edge exists with probabilit{independently of the previous

*An event holds with high probability if it holds with probdiby at leastl — 1/n° for some constant > 0.
2As far as we know, this definition has been formally introdlier the first time in[[15].



graphsGy, t' < t, and independently of the other edges-).

Random evolving graphs can exhibit communication proggnivhich are much stronger than static
networks having the same expected edge density (for a reaergy on computing over dynamic networks,
see [31]). This has been proved in the case of the simplesinemmcation protocol that implements the
broadcast operation, that is, th@ coding protocol (a.k.a.broadcasting protoc9| according to which a
source node is initially informed, and, whenever an unimied node has an informed neighbor, it becomes
informed itself at the next time step. It has been shdwn [8,19,that theF1ooding completion time
may be very fast (typically poly-logarithmic in the numbdrnmdes) even when the network topology is,
w.h.p., sparse, or even highly disconnected at every timye. sTherefore, such previous results provide
analytical evidences of the fact that random network dyeambt only do not hurt, but can actually help
data communication, which is of the utmost importance iresgvcontexts, such as, e.g., delay-tolerant
networking [35[ 35].

The same observation has been made when the model includesssot oftemporaldependency, as it
is in the case of the randoadge-Markoviarmodel. According to this model, the evolving graph starthwi
an arbitrary initial grapltzy, and, at every time stefp

e if an edge does not exist ifi;, then it will appear in the next gragh,,.; with probability p, and
o if an edge exists id7;, then it will disappear in the next gragh.; with probability q.

For every initial graphzy, an edge-Markovian evolving graph will eventually coneetg a (random) graph

in G, 5 with stationary edge-probability = ﬁ. However, there is a Markovian dependence between
graphs at two consecutive time steps, hence, givgnthe next graphG;.1 is not necessarily a random
graph ing, ;. Interestingly enough, the edge-Markovian model has beeently subject to experimental
validations, in the context of sparse opportunistic mob#évorks [36], and of dynamic peer-to-peer sys-
tems [35]. These validations demonstrate a good fitting@htiedel with some real-world data traces. The
completion time of the&'1 ooding protocol has been recently analyzed in this model, for adkfide values

of p (see[B[11]). A variant of the model, in which the “birth” afdieath” probabilitiesp andq depend

not only on the number of nodes but also on some sort of disthatween the nodes, has been investigated
in [24].

TheFlooding protocol however generates high message complexity. Merealthough its comple-
tion time is an interesting analog for dynamic graphs of tlaengéter for static graphs, it is not reflecting the
kinds of gossip protocols mentioned at the beginning of ittioduction, used for practical applications.
Hence the main objective of this paper is to analyze the mi@etipalPush protocol, in edge-Markovian

evolving graphs.

1.2 Framework

We focus our attention on dynamic network topologies yieldg the edge-Markovian evolving graphs for
parameter® (birth) andq (death) that correspond to a good fitting with real-world desads, as observed
in [35,[36]. These traces describe networks with relativegh dynamics, for which the death probability
q is at least one order of magnitude greater than the birthgtioty p. In order to set parametefsand

q fitting with these observations, let us consider the exjgentanber of edges:, and the expected node-
degreed at the stationary regime, governedjy= . We havemn = ﬁ(g), andd = 22 = (n— 1),
Thus, at the stationary regime, the expected number of edtest switch their state (from non existing to

existing, or vice versa) in one time step satisfies

v=mq+((3) —m)p= n(n2_1) (% + (1 - ﬁ) p> =n(n—1)k = nqd.



Hence, in order to fit with the high dynamics observed in weatld data traces, we st constant, so
that a constant fraction of the edges disappear at every stafe a fractionp of the non-existing edges
appear. We consider an arbitrary rangegpowith the unique assumption that> % (For smallerp’s, the
completion time of any communication protocol is subjedhi® expected tim%% > 1 required for a node
to acquire just one link connected to another node). To sunwagessentially focus on the following range
of parameters:

1 <p <1 andqg=Q(1). (1)
n

This range includes network topologies for a wide interviagxpected edge density (from very sparse and
disconnected graphs, to almost-complete ones), and widxjgected number of switching edges per time
step equal to some constant fraction of the expected totabeu of edges. Other ranges are also analyzed
in the paper (e.gp + ¢ = 1 with arbitraryp andq, andp = % with arbitrary ¢), but the range in Eq[11)
appears to be the most realistic one, according to the ¢ummreasurements on dynamic networks.

Remark. It is worth noticing that analyzing theush protocol in edge-Markovian graphs is not only
subject to temporal dependencies, but alsepatial dependencies. This makes the analysis offtheh
protocol more challenging. This holds even in the simpladmn evolving graph model, i.e., the sequence
of independent random grapbs < G, ,,. Indeed, even if this case does not include temporal deperes
the Push protocol introduces spatial dependences that has to beitbateandled. To see why, consider a
time step of theeush protocol, where we have informed nodes, and let us try to evaluate how many new
informed nodes there will be in the next time step. Given dorined nodeu, let §(u) be the neighboring
node selected by according to theeush protocol (i.e.,d(u) is chosen uniformly at random among the
current neighbors of)). By conditioning on the degree af it is not hard to calculate the probability that
d(u) = v, for any non informed node. However, the eventsi{u;) = v;” and “6(uz) = wvy” are not
necessarily independent. Indeed, the evélt{) = v,” decreases the probability of the existence of an
edge between; anduy, and so it affects the value of the random variafile, ). This positive dependency
prevents us from using the classical methods for analytiegtish protocol in static graphs, or makes the
use of these methods far more complex.

1.3 Our results

For the parameter range in EQ] (1), we show that, w.h.ptirsgafrom anyn-node graphGy, the Push
protocol informs alln nodes inG(logn) time steps. Hence, in particular, even if the graphis w.h.p.
disconnected at every time step (this is the case fat 1"%), the completion time of theush protocol
is as small as it could be (theush protocol cannot perform faster thdn(logn) steps in any static or
dynamic graph since the number of informed nodes can at nootiel at every step). It is also interesting
to compare the performances of thesh protocol with the one of 1ooding. The known lower bound for
Flooding on edge-Markovian graphs [11] (which is clearly a lower bibfor Push , too) demonstrates
that forp = ©(1/n), the two protocols have the same asymptotic completion. tMaeover it is clear that,
for p = Q(1/n), the completion-time slowdown factor of tlsh protocol is at most logarithmic. This
property is a remarkable one, since the expected numbercbbaged messages per nodeeinsh may
be exponentially smaller than the onefilooding (for instance, consider the cage= ©(1/+/n) which
corresponds to an expected node de@égn)).

We also address other ranges of parametarsq. Although they do not precisely fit with the measures
in [35],[36], they can be of independent interest for otheiraggt. One such case is the sequence of indepen-
dentg,,, graphs, that is, the case where- ¢ = 1. Actually, the analysis of this special case will allow us
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to focus on the first important probabilistic issue that rsetecbe solved: spatial dependencies. Indeed, even
in this case, as already mentioned, thesh protocol induces a positive correlation among some crucial
events that determine the number of new informed nodes atekietime step. This holds despite the fact
that every edge is set independently from the others. Fog@esee of independegt, , graphs, we prove
that for everyp (i.e., also forp = 0(%)) andqg = 1 — p the completion time of theush protocol is, w.h.p.,
O(logn/(pn)), wherep = min{p, 1/n}. By comparing the lower bound f@rlooding in [11], it turns

out that this bound is tight, even for very sparse graphs.

Finally, we show that the logarithmic bound for teesh protocol holds for more “static” network
topologies as well, e.g., for the range= =~ wherec > 0 is a constant, andlis arbitrary. This parameter
range includes edge-Markovian graphs with a small expeatatber of switching edges (this happens when
g = o(1)). In this case, toopush completes, w.h.p., i®(log n) rounds. This gives yet another evidence
that dynamism helps.

Structure of the paper. In Section 2, we give the terminology and the preliminary mééins that will

be used throughout the paper. In Secfibn 3, we consider thep@ndent dynamic Erdés-Rényi graphs,
while Sectiori# provides the analysis of thesh protocol in the the case of the edge-Markovian evolving
graph model. In Sectidd 5, finally, we summarize our results@esent their extension to the case of more
“static” network topologies.

2 Preliminaries

The number of vertices in the graph will always be denotedibyVe abbreviatgn] := {1,...,n} and
(") == {{i, 5} | i, € [n]}. For any subseE C () and any two subsetd, B C [n], define

E(A) = { edges ofF incident toA } and E(A,B) = {{u,v} € E|u € A,v € B}.

We consider the edge-Markovian evolving graph ma#el, p, ¢; Ey) whereEy is the starting set of edges.
Thepush Protocol oveG(n, p, ¢; Ep) can be represented as a random process over tieaetl| possible
pairs (E, I) whereE is a subset of edges ards a subset of nodes. In particular, the combined Markov
process works as follows

edge-Markovian edge-Markovian
( —

R (Et, [t)
whereFE; and; represent the set of existing edges and the set of informeelsnat time, respectively. All
events, probabilities and random variables are definedtbeesbove random process. Given a grépk-
([n], E), a nodev € [n], and a subset of node$ C [n] we definedegy (v, A) = [{(v,a) € E | a € A}|.
When we have a sequence of graghg = ([n], £;) : t € N} we writedeg, (v, A) instead ofdeg, (v, A).
Given a graphG and an informed node € I, we defined(u) as the random variable indicating the node
selected by in graphG according to theush protocol. WhenZ and/ort are clear from the context, they
will be omitted.

Push protocol
By, L) —" (B, L)

3  Warm up: the time-independent case

In this section we analyze the special case of a sequence@bemdents,, , (observe that a sequence of
independents,, ,, is edge-Markovian witly = 1 — p). We show that the completion time of tikeish
protocol isO(logn/(pn)) w.h.p., where) = min{p, 1/n}. In TheorenfIlL we prove the result for> 1/n
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and in Theorerl2 fop < 1/n. From the lower bound on the flooding time for edge-Marko\graphs|[[11],
it turns out that our bound is optimal.

As mentioned in the introduction, even though in this caseetlis no time-dependency in the sequence
of graphs, theeush protocol introduces a kind of dependence that has to beulyréfandled. The key
challenge is to evaluate the probability thateceives the information from at least one of the informed
nodes; i.e.l — P (Nuer{d(u) # v}). We consider theush operation on anodifiedrandom graph where
we prove that the above events become independent and tHeenofmew informed nodes in the original
random graph is at least as large as in the modified version.

Definition 1 ((Z, b)-modified graph) Let G = ([n], F) be a graph, letl C [n] be a set of nodes, and
let b € [n] be a positive integer. Thél,b)-modifiedG is the graphH = ([n] U {vi,...,u}), where
{v1,...,up} is a set of extravirtual nodes, obtained fror¥ by the following operations: 1. For every node

u € I with deg(u) > b, remove all edges incident tg 2. For every node: € I with deg(u) < b, add

all edges{u,v1},...,{u, v} betweenu and the virtual nodes; 3. Remove all edges between any pair of
nodes that are both in.

Let I be the set of informed nodes performingash operation on &, , random graph. As previously
observed, ifv € [n] \ I is a non-informed node, then the evef{$s(u) = v} : u € I} are not indepen-
dent, but the event§{dy(u) = v} : uw € I} on the(I,b)-modified graphH are independent because of
Operation 3 in Definitiof1.

In the next lemma we prove that, if the informed nodes perfaensh operation both in a graph and in
its modified version, then the number of new informed nodeakeroriginal graph is (stochastically) larger
than the number of informed nodes in the modified one. We Wwihtapply this result t@-,, , random
graphs.

Lemma 1 (Virtual nodes) LetG([n], E') be a graph and leb an integer such that < b < n. LetI C [n]

be a set of nodes performing Rush operation in graphsG and H, where H is the (I, b)-modifiedG
according to DefinitiodIl. LeX andY be the random variables counting the numbers of new informed
nodes inG and H respectively. Then for evefye [0, n] it holds thatP (X < h) < P (Y < h).

Proof. Consider the following coupling: Let € I be an informed node such thétg(u) < b and let
h and k be the number of informed and non-informed neighbors oéspectively. Chooséy (u) u.a.r.
among the neighbors af in H. As for jc(u), we do the following: Ifoy(u) € [n] \ I then choose
da(u) = dg(u); otherwise (i.e., whedy (u) is a virtual node) with probability — = chooseig(u) u.a.r.
among the informed neighbors of in G, and with probabilityz chooseds(u) u.a.r. among the non-
informed ones, where = %ﬁ—‘k};{)} Every informed node: with deg(u) > b instead performs @ush
operation inG independently.

By construction we have that the set of new (non-virtualpinfed nodes irf is a subset of the set of
new informed nodes if'. Moreover, it is easy to check that, for every informed nade I, i (u) is u.a.r.

among neighbors af. O

In the next lemma we give a lower bound on the probability thabn-informed node gets informed in the
modifiedG,, .

Lemma 2 (The increasing rate of informed nodes)Let I C [n] be the set of informed nodes performing
the Push operation in aG,, ;, random graph and leX be the random variable counting the number of non-
informed nodes that get informed after thesh operation. It holds thaP (X > A - min{|I|, n — |I|}) >

A, where\ is a positive constant.



Proof. Let I be the set of currently informed nodes, (ét= ([n], E') be the random graph at the next time
step and lef/ be its(7, 3np)-modified version. Now we show that the number of nodes thistigéormed

in H is at least\ - min{|I|,n — ||} with probability at least\, for a suitable constark.

Letu € I be an informed node and lete [r] \ I be a non-informed one. Observe that by the definition
of H, u cannot choose in H if the edge{u,v} ¢ E or if the degree ok in G is larger tharBnp (see
Operation 3 in Definitiof]1). Thus the probability that nadehooses node in random graphd according

to thePush protocol is

P(g(u) =v) =P (0u(u) =v|{u,v} € E A degg(u) < 3np)P ({u,v} € G A degg(u) < 3np).
2)
If degq;(u) < 3npthen nodeu in H has exactlBnp virtual neighbors plus at most oth&np non-informed
neighbors. It follows that

P (0p(u) =v|{u,v} € E A degg(u) < 3np) > 1/(6np). (3)
We also have that
P ({u,v} € E, degg(u) <3np) = P ({u,v} € E) P (degg(u) < 3np | {u,v} € E)
= pP(degg(u) < 3np | {u,0} € ).

SinceE [degq(u) | {u,v} € E] < np+1 with np > 1, from the Chernoff bound we can choose a positive
constantc and then a positive constafit< 1 such that

P (degq(u) > 3np|{u,v} € E) < P (degg(u) >2np+1|{u,v} € B) <e P =p<1. (4)

By replacing Eq.EI3 arid 4 into Hd. 2 we d@tdy(u) = v) > <, for some constant > 0.
Since the event§{dy (u) = v},v € I} are independent, the probability that nadis not informed inH is
thus

P (Nuerdn(u) #v) < (1 — a/n)ll < emelllin,

Let Y be the random variable counting the number of new informeatkadnH. The expectation of” is
E[Y] > (n— 1)) (1= e/ > (a/2)(n = |1DI1]/n.

Hence we get

E[Y]>{ (/41| if\f\ n/2,
(/4)(n —[I)  if [I| = n/2.

SinceY < min{|I|, n — |I|}, from Observatiofl2 (see Appendix B), it follows that
P (Y > («/8) - min{|I|, n — |I|}) > «/8. Finally we get the thesis by applying Lemfda 1. O
We can now derive the upper bound on the completion time af theh protocol onG,, , random graphs.

<
Z

Theorem 1 LetG = {G; : t € N} be a sequence of independérj , with p > 1/n. The completion time
of the Push protocol overg is O(log n) w.h.p.

Proof. Consider a generic time stepof the execution of theush protocol wherel; C [n] is the
set of informed nodes anch; = |I;| is its size. For anyt such thatm; < n/2, Lemmal2 implies
that P (m:11 > (1 4+ X\)m;) > A, where\ is a positive constant. Let us define eveéht= {m; >
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(I 4+ Nmy—1} vV {mi—1 > n/2} and letY; = Yi((Ey, L),...,(E:, I;)) be the indicator random vari-

able of that event. Observe thattif= 1%?%-@) then(1 + \)* > n/2 Hence, if we sef} = ilog(’%, we
get

P (mp, <n/2) < (Zn (\/2)T >

The above probability is at most as large as the probabiiay in a sequence @f; independent coin tosses,
each one givinghead with probability A\, we see less thaf\/2)T; heads (see e.g. Lemma 3.1 ihl[2]). A
direct application of the Chernoff bound shows that thisptality is smaller thare (/9T < n=< for a
suitable constant > 0. We can thus state that, aft®x(log n) time steps, there at leasy 2 informed nodes
w.h.p.

If mp, > n/2, then, for everyt > T7, Lemmal2 implies thaP (n — my1 < (1= X)(n—my)) = A
Observe that it = 10% then(1 — \)! < 1/n, so that forl, = % . 1"% + T3 the probability that the@ush
protocol has not completed at tirfig is

P(mT2<n)<P(mT2<n|mT1 >g>—|—P<mT1 <g>

As we argued in the analysis of the spreadingitjl2, the probabilityP (m;p2 <n|mp > g) is not larger
than the probability that in a sequence%f- k’g” independent coin tosses, each one givirgad with

probability A\, there are less thaﬁﬁ heads. Again, by applying the Chernoff bound, the latter is not
larger tham ¢ for a suitable positive constant O

In order to prove the bound for < 1/n, we first show that one singkeush operation over the union of a
sequence of graphs informs (stochastically) less nodesttizasequence @&fush operations performed in
every single graph (this fact will also be used in Sediibn drtalyse the edge-MEG).

Lemma 3 (Time windows) Let{G; = ([n],E;) : t = 1,...,T} be a finite sequence of graphs with the
same set of nodéds]. LetI C [n] be the set of informed nodes in the initial graph. Suppose that at every
time step every informed node performg@ash operation, and letX be the random variable counting the
number of informed nodes at time stép Let H = ([n], ') be such that” = UL_, E; and letY be the
random variable counting the number of informed nodes whembdes in/ perform one singlePush
operation in graphH. Then for every = 0,1,...,n it holds thatP (X < /) <P (Y < /).

Proof. Consider the sequence of graphd; = ([n], F}) : t = 1,...,T} where graphH, is the union
of graphsGy, ..., Gy, i.e. for everyt we setF; = Uﬁzl E;. We inductively construct one singleush
operation ind = Hr, building it on the probability space of tirash protocol in(Gy, ..., Gr), in a way
that the set of informed nodes hf is a subset of the set of informed node<in.

For every node: that is informed at the beginning of the process,u.e I, and forevery = 1,...,T,
let N; be the set of neighbors afin graphGy, letd, = | V| be its size, let;, = |U§:1 N;| be the number
of neighbors ofu in graph H,, and leté¢, (u) be the random variable indicating the neighbor chosen by
u.a.r. inN;. Finally, let{C; : t =2,...,T} be a sequence of independent Bernoulli random variablds wit
P (C; = 1) = di/hi. Now we recursively define random variabtes, (u), ..., 0, (u):

Definedy, (u) = d¢g, (u). Fort =2,...,T define

b () = { b (u) if da,(u) € Ni\ (UIZE ) andCy =1 o

om, , (u) otherwise



By construction, it holds thaty, (u) € {dq, (u),...,dc,(u)}, hence the set of informed nodeshfy is a
subset of the set of informed node<i. Now we show that for everynodeu chooses one of its neighbors
uniformly at random inff,, i.e. for everyv € | Ji_, N; it holds thatP (6, (u) = v) = 1/h,.

We proceed by induction oh The base of the induction directly follows from the choigg (u) =
dc, (u). Now assume that for every € (J!Z] N; it holds thatP (6, ,(u) = v) = 1/h—1 and letv €
U:_, N:. We distinguish two cases:

Slfve N\ (Ug;} Ni> then, according td{5) we have thé, (u) = v if and only if 6, (u) = v and
Cy =1, hence
P (0, (u) = v) = P (0, () —v A Gy =1y = L. % _ L
' ‘ de he Iy
-1f v € J/Z] N; then we have thady, (u) = v if and only if 6z, ,(u) = v and at least one of the two

conditions in[(b) does not hold (that@ = 0 or d¢, (u) € N; N (Uﬁ;} Ni)). Hence,

t—1
P(Ct = 0) +P <5Gt(u) e NN (U NZ> AN Cy = 1)]

i=1

P (311, (u) = v) = P (3p,_, (u) = v)

By the induction hypothesis we have trBt(éHtil(u) = v) = 1/hy_1, and by observing that the size of
Nen (Uf;i Nz’) isd; + hi—1 — hy it follows that

1 <ht_dt+dt+ht—1_ht ﬂ) _ 1
ht—l ht dt ht

P (0, (w) = v) = o

O

Observe that if we look at a sequence of independgnwith p < 1/n for a time-window of approximately
1/(np) time steps, then every edge appears at least once in thensequigh probability at least/n. The
above lemma thus allows us to reduce the gasel /n to the case > 1/n.

Theorem 2 LetG = {G; : t € N} be a sequence of independé&nt , withp < 1/n and lets € [n]. The
Push protocol with sources overG completes the broadcast #(log n/(np)) time steps w.h.p.

Proof. Consider the sequence of random graphs= {Hs; : s € N} whereH; is the union of random
graphs
H, = ([n], Fs) suchthatFy = Esp U Egpyq U--- U Egpip_1 With T'= 2/(np).
Observe that everyi, is aG,, 5 with p > 1/n. Indeed, the probability that an edge does not exigiirs
1-p)T el =e2m,

Hence the probability that the edge exists is e=2/" > 1/n.
Let 7¢g andTy be the random variables indicating the completion time efthsh protocol over sequences
G andH respectively. From Theoremh 1 it follows thgy = O(logn) w.h.p. and from Lemmi 3 it follows
that for everyt it holds that

P(rg=>Tt)<P(ry>t).

Hence, it holds that

76 = O(Tlogn) =0 (kfpn) w.h.p.



4 Edge-Markovian graphs with high dynamics

In this section we prove that ttrash protocol over an edge-Markovian gragkn, p, ¢; Ey) withp > 1/n
andg = Q(1) has completion timé& (log n) w.h.p.

As observed in the Introduction, the stationary random fgiamn Erd6s-Rénydr,, 5 wherep = I%q

and the mixing time of the edge Markov chain@s(p—}rq). Thus, ifp andq fall into the range defined in

(@), we get that the stationary random graph can be sparsdiscwhnected (whep = o (1"5 ”)) and that

the mixing time of the edge Markov chain@¥1). Thus, we can omit the tertfi, and assume it is random
according to the stationary distribution.

The time-dependency between consecutive snapshots oylaenit graph does not allow us to obtain
directly theincreasing rateof the number of informed nodes that we got for the indepetdgn, model. In
order to get a result like Lemnha 2 for the edge-Markovian caseneed in fact dounded-degreeondition
on the current set of informed nodes (see Definifibn 2) thasdwt apply when the number of informed
nodes issmall (i.e., smaller thariog n). However, in order to reach a state where at léast nodes are
informed, we can use a different ad-hoc technique that aealyhe spreading rate yielded by the source
only.

Lemma 4 (The Bootstrap) LetG = G(n, p, q) be an edge-Markovian graph wigh> 1/n andq = Q(1),
and consider theeush protocol inG starting with one informed node. For any positive constanafter
O(logn) time steps there are at leagtog n informed nodes w.h.p.

Proof. We consider the message-spreading process yielded byuhseswode only and, instead of directly
analyzing this process on the edge-Markovian sequétte= ([n], E;) : t € N}, we consider it in the
sequence H; = ([n], Ea; U Eoi41)}. Thanks to Lemmal3, this is feasible since the number of inéaf
nodes inH; is stochastically smaller than the number of informed nadés,;. We split the analysis in two
casesp < logn/n andp > logn/n.

Casep > log n/n: Consider an arbitrary time stepduring the execution of the protocol and for conve-
nience’ sake let us renametit= 0. Let I be the set of informed nodes in that time step With = m <
~vlogn. Consider the next two time steps and Iét= ([n], E; U E5) be the random graph obtained by
taking the edges that are present in at least one of the tveosieps. Then apply ttreush operation of the
source node iff. From Observatiohl1 (see Appendix B), we get that every edgeohobability at least

in H. In particular, for every node, the probability that is connected to the source noglen H is

P ({s,v} € EyUER) > p.

Let X be the random variable counting the number of non-infornetes connected to the source node in
H, then the expectation of is

E[X]= Y P({s,v}€Ei1UE) > (n—m)p > 2anp
ve[n]\Io

for a suitable positive constant Since edges are independent, from the Chernoff boundatfslthat

P (X <anp) <e =™
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for a suitable positive constaat Hence, since > logn/n, it follows that there are at leastlog n nodes
n [n] \ Iy that are connected toin H w.h.p. The probability that the soureesends the message to one of
those nodes applying thlrash operation inH is

P (6u(s) € M\ Io) > P (du(s) € n]\Io| X > alogn)P (X > alogn)
> MP (X > alogn) > A
m+ alogn
for a suitable positive constant
From LemmaB, the probability that the actual numberof informed nodes after two time steps is smaller

thanmg + 1 is at most as large as the probability that the source nodenisfa new neighbor i#; i.e.,

P (mj = mo) < P (611(s) # [n] \ Io) <1 - A.

Thus for every time stepduring the bootstrap, i > log n/n, after two time steps there is at least one new
informed node with probability at least i.e.,

P (mt+2 me + 1) A

Hence, aftef4y/\) log n time steps, there are at leagiog n informed nodes w.h.p.

Casep < logn/n: In order to analyze the bootstrap phase on the sequiice= ([n], Eat U Egiy1)}, we

first condition on the evenk that in the firstl’ = (4/)\) log n time steps it never happens that a new edge
appears between the source node and a node that is alreadyédf Formally,F is the complementary
event of F' := UleFt where F; denotes the event “li{; ., at least one edge will appear between the
source node and a previously informed node”. As we will sdevieve haveP (F) = O(log®n/n) and

P (|Ir| < ylogn| F) < n~* for a suitable positive constant

Observe that if an edge does not existipthen it will appear inf;, ; with probability 1 — (1 — p)2. Since

p <logn/n < 1/4, by applying the standard inequalities?* < 1 -z < e™%, forany0 < = < % we get
2p < 1 — (1 —p)? < 4p. For F; as defined above we have

log? n
P (F) < 4plli < 4=, ©)

where in the last inequality we used the facts fhat log n/n and that, during the bootstrajd;| < +log n.
Now consider the two following events is the event “The source informs a new nodéen.;” and S} is

the event “The number of edges between the source node asettbEinformed nodes decreasesHp, 1",
i.e., St = {|Li11] = ||+ 1} and Sy = {deg; (s, [1+1) < deg,(s, ;) — 1}. Now we show that, at every
time step, at least one of the two events above holds withtaonprobability if eventF; does not hold.
Indeed, in that case, if the number of informed nodes coedeitt the source node is zero, then if some
non-informed node will be connected to the source node afollmving time step we will have at least a
new informed node (everft!) and this happens with constant probability. If there isast one informed
node connected to the source, then if one of those edgesisalgear thedeg(s, I;) will decrease (event
St). More formally, ifdeg, (s, I;) = 0 we have that

P (5'{ F)>1-(1- op)" el > 1 — eIl 5 g o=@/ lhl) 5 g T
If deg, (s, I;) > 1, we getP (S5 | F;) > q. Hence forA = min{q, 1 — ¢!}, we have that

P (S{VS5ITT) > A. )
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If we defineT” = (4+v/)) log n then we can show that aftéf time steps there are at leasltog n informed
nodes w.h.p. Indeed, 1&; and X, be the random variables indicating the number of time stegisavents
S1 and .Sy hold, respectively. Remind that its compleménts the event “In the first” time steps it never
happens that a new edge appears between the source node add that is already informed”. Since
T = O(logn), from Eq[® it follows thatP (F) = O(log® n/n). Moreover, observe that if eveiit holds
thenX; > X,. Indeed, if no edge between the source and any previoustyniefd node appears, then,
when an edge between the source node and an informed nogdpehsa (event af, type), the source must
have previously informed that nod#®,(event). Thus the probability that the bootstrap is not ceteual at
timeT is

P (|I7| < ylogn) < P (X; <~vlogn|F)+P(F) < P (X + Xy <2ylogn|F)+P(F).

Since from Eq[J7 we have that, at every time step, the egent S, holds with probability at leash,
thenP (X7 + X, < 2ylogn | F) is smaller than the probability that in a sequenc&’of= (4v/A)logn
independent coin tosses, each one gitiegid with probability A, we see less thaty log n heads: thisis
smaller tham ¢ for a suitable positive constast g

We can now start the second part of our analysis where#tsh operation of all informed nodes (forming
the subsef) will be considered and, thanks to the bootstrap, we camassiat| /| = Q(logn).

As mentioned at the beginning of the section, we need todote the concept dfounded-degree state
(E,I) of the Markovian process describing the information-sgire@ process over the dynamic graph,
whereL is the set of edges anfdis the set of informed nodes.

Definition 2 (Bounded-Degree State)A state(E, I) such that| E(I)| < (8/q)np|I| (withp = I the
stationary edge probability) will be calledlzounded-degrestate.

In the next lemma we show that, ffis the set of informed nodes witli| > log n, if in the starting random
graphG every edge exists with probability approximatély+ ¢)p, and if it evolves according to the edge-
Markovian model and the informed nodes perform thesh protocol, then for a long sequence of time
steps the random process is in a bounded-degree state. Wisevihis property in Theorem 3 by observing
that, for every initial state, aftep(log n) time steps an edge-Markovian graph with: 1/n andq € Q(1)

is in a state where every edge, v} exists with probabilitypy,, ,, € [(1 —€)p, (1 + €)p].

Lemma5 LetG = G(n,p,q, Ey) be an edge-Markovian graph starting witk, and consider theeush
protocol in G where I, is the set of informed nodes at time= 0. Then, for any constant > 0, for a
sequence aflog n time steps every state is a bounded-degree one w.h.p.

Proof. Let us fixc = 8/q as in Definitior 2. We show th&f, I;) is a bounded-degree state w.h.p. and that
if (Ey, I;) is a bounded-degree state, tHéf 11, I;+1) is a bounded-degree state as well w.h.p. Let us name
X = |E(Iy)]. The expected size dfy(ly) is

B < (181 +lilto - 1] 1+ 935 < 1+ sl

Since edges are independent; 8, andnp|ly| = Q(logn), from Chernoff bound it follows thaty (1p)| <
enp|lp| w.h.p. Now lett > 0 and assume that; < cnp|ly|. Observe that the size &, ([;1) satisfies

Xer1 = B (1) + | Epr (Tgr, ) \ )| (8)
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wherele := I141 \ I;. As for the first addend, we have that

14|

E[[Ea(L) [ Xe] = (1-ag)Xe+p K 2

)+ il 15 - X
= -+ Xt | () + 10 - 1)

because all th&; edges existing at timeare still there at time + 1 with probability 1 — ¢ and all the edges
that do not exist at timeappear with probability. Sincep = p(p + q) < 2p, if p+ ¢ > 1 then

B | B (1)) < 20pl0| < Jenpli],

regardless of the value of;. If insteadp + ¢ < 1 then, if X; < cnp|l;| we have that

E (| ()] | Xe <enpll]] < (1—p—q)cenp|ly] + np|l]

N +
= cnp|1t|<1—p—q+(pcq)>
q\
< _ 1
< (1-4)enlnl, (©)

where in the last inequality we used that 0 and(p + ¢)/c < ¢/2.

As for the second addend, we observe that everyqair{u, v} with u € I,;1, v € [n] \ I;, andu # v
exists inE;. 1 (1141, [n] \ I;) with probability p. € [(1 —¢)p, (1 + )p] since it has never been observed
before timet 4 1. Hence

E (| Bosr (e, )\ 11| < e l(n = |B1)(1 + )5 < Tenpli] (10)
By (@) and [10) in[(B) we get
E[Xit1 | Xi < enplli]] < (1 - %) enp|l| < (1 - %) enp| Lyl

Since edges are independent= (1), andnp|l;+1| = Q(logn), from Chernoff bound it follows that
Xt—i—l < cnﬁ|[t+1| Whp ]
Now we can bound thimcreasing rateof the number of informed nodes in an edge-Markovian grapte T
proof of the following lemma combines the analysis adoptethe proof of Lemmal2 with some further
ingredients required to manage the time-dependency ofdipe-Barkovian model.

Lemma 6 (The increasing rate of new informed nodes).et (F, I) be a bounded-degree state and J}ét
be the random variable counting the number of non-informedes that get informed after two steps of
the Push operation in the edge-Markovian graph model. It holds BatX > ¢ - min{|I|, n — |I|}) > A,
wheres and \ are positive constants.

Proof. Let Gy = ([n], Ey) be the current graph and l&t, = ([»], E1) andG2 = ([n], E2) be the next two
random graphs obtained according to the edge-Markoviatepsgostarting frondy. Let H = ([n], Ex) be
such thatfy; = E; U E, and letH be the(I, 3cnp)-modified version off according to Definitiofil]1, where
c is a sufficiently large constant (it will be clear from whatléws that it is sufficient to have > 32/q).
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From Lemmagll and 3, we have that the number of informed nodEsis stochastically smaller than the
number of informed nodes ifi,. In what follows we evaluate the number of new informed naded and
we show that with positive constant probability it is at leasonstant fraction ahin{|I|, n — |I|}.

Let I 4 be the set of informed nodes that have degree at mgsti.e.,

Iy={uecl: degg, (u) < cnp}.
In what follows, I 4 will denote the set ofictiveinformed nodes. Observe that

> degg, (u) < 2[E(I)].

uel

Since(E, I) is a bounded-degree state, we hayB(I)| < (16/q)np|I|. Thus, ifc > 32/q then we have
that| 74| > |I]/2.
Consider an active informed nodec 14 and letv € [n] \ I be a non-informed one. The probability that
nodeu selects node in H according to theush protocol is
P (5H(u) = v) = P (5H(u) =v | {u,v} € Eg, degy(u) < 3cnﬁ) .
P (degy(u) < 3enp | {u,v} € Ex) P ({u,v} € Ex) . (11)
Indeed, by the definition off, « cannot select in H if the edge{u, v} does not exist i or if the degree

of u in H is larger tharBenp.
Now observe that

P (6;(u) =v|{u,v} € By, degy(u) < 3enp) > 1/(6cnp) . (12)

Indeed, node: has3cnp virtual neighbors irl plus up ta3enp non-informed neighbors. As f@ ({u,v} € Ey),
from Observationll (see Appendix B), it follows that

P({u,v} € Eg) 2p=p(p+q)=>q-p. (13)

We now show thaP (degy (u) < 3cnp | {u,v} € Ey) is larger than a positive constant. Observe that we
can write

degH (’LL) = Z Xw )
we[n]\{u}

whereX,, is the indicator random variable of the evént w} € Ef. Thus,

E[degy(u) | {u,0} € Byl= >  P(Xy=1|{u,v} € En). (14)
wefn]\{u}

Now observe that, forw # v, P (X, =1|{u,v} € Ey) = P (X, =1) and it can have two values,
depending on whether or not ed@e, w} existed inGy,

P(Xy =1[{u,w} ¢ Ey) = p+(1—-p)p,
P (X, =1[{u,w} € Ey) = 1—-q+qp.

Hence, if we split the sum if_(14) in the's that were neighbors af in E, and those that were not, we get
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E[degy(u) [{u,v} € En] < 1+ (1—q+gp)degg,(u) + (n —degg,(v))(p + (1 — p)p)
< 14 degg, (u) + (n —degg, (u))2p
< enp+ 3np
< 2enp,

where, from the first line to the second one we usedzhat(l — p)p < 2p and1 — ¢ + ¢gp < 1, from the
second to the third line we used thatl np and thatdeg (u) < cnp, because: € 14, and from the third
line to the fourth one we used that= (p + q)p < 2p andc > 6. From Markov’s inequality it thus follows
that

P (degy(u) > 3np| {u,v} € En) <2/3. (15)

By combining [(12),[(IB), and (15) ib (L1) we get

P (65(u) =v) =

S

for a suitable positive constant R
Since the event$o ; (u) # v : u € 14} are independent, the probability that nadis not informed inH
is

P ( m 8 (u) # v) <(1- a/n)u‘” < e~olal/n o= (e/2)|/n
uel g

Let X be the random variable counting the number of new informetesan 2. The expectation o is

thus
E[X] > (n— |1]) (1= e @2} > (a/a)(n — |1)I1]/n.

Hence we have that

a/8) |1 if Il <n/2,
B[X] > (/8|1 _H /
(a/8)(n — |I|) if |[I| >n/2.
SinceX < min{|I|, n — |I|} the thesis then follows from Observatioh 2 (see Appehdiix B). O

Now we can prove that id(log n) time steps theush protocol informs all nodes in an edge-Markovian
graph, w.h.p.

Theorem 3 LetG = G(n,p,q, Ey) be an edge-Markovian graph with > 1/n andq¢ = (1) and let
s € [n] be a node. Theush protocol with sources completes the broadcast ov@rin O(log n) time steps
w.h.p.

Proof. Lemmal4 implies that afte®(log n) time steps there ar@(logn) informed nodes w.h.p. From
Observation 1 (see AppendiX B) and Leminha 5, it follows théigrdurther O (log n) time steps, the edge-
Markovian graph reaches a bounded-degree state and resmafos furtherQ(log n) time steps. Let us
renamet = 0 the time step where there aff{log n) informed nodes and every edgec () exists

with probability p. € [(1 — ¢)p, (1 + ¢)p]. We again abbreviatey, := |I;|. Observe that if recurrence

Ma41y = (1 + €)mg; holdslog n/log(1 + €) times, then there ane/2 informed nodes. Let us thus name

T= %1();‘2%_28). If at time 27" there are less than/2 informed nodes, then recurrenegy, 1y > (1+¢)ma;
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held less thal\T'/2 times. Since, at each time step, the recurrence holds wathapility at least\ (there
are less tham /2 informed nodes and the state is a bounded-degree one wthgabove probability is
at most as large as the probability that in a sequencg iatlependent coin tosses, each one givirgd
with probability \, we see less thaf\/2)T heads (see, e.g., Lemma 3.1 inl[2]). By the Chernoff bound
such a probability is smaller tham 7, for a suitable positive constant Sincey and\ are constants and
T = O(log n) we have that

P (mor <n/2) <n”° (16)

for a suitable positive constafit Whenm, is larger tham /2 and the edge-Markovian graph is in a bounded-
degree state, from Lemrha 6 it follows that recurrence m;+1 < (1 — ¢)(n — m;) holds with probability

at least\. If this recurrence hold®gn/log (1/(1 — ¢)) times then the number of informed nodes cannot
be smaller tham. Hence, if we nam@ := (2/\)logn/log (1/(1 — ¢)), with the same argument we used
to get [I8), we obtain that aftefl” + 27 time steps all nodes are informed w.h.p. O

5 Conclusions

In this paper we studied tieush protocol over edge-MEGs. We first analyzed the independgnt case
(i.e. the edge-MEG witly = 1 — p) and we showed that the completion tim&lglog n/np) w.h.p., where
p = min{p, 1/n}. Then we studied the general edge-MEG model with 1/n andg = Q(1) and we
showed that the completion time is logarithmic. This boundhiviously tight because tirush protocol
cannot informn nodes in less thalog, n time steps.

Our results can be extended to the case of “more static” sglgrsamic graphs. Indeed, we can provide
a logarithmic bound on the completion time of thaesh protocol over the&j(n, p, ¢) model even fop =
©(1/n) and forg = o(1). The proof of the following result combines some new couplnguments with a
previous analysis of theush protocol for static random graphs givenin[15] (a sketchhefproof is given
in Appendix(B).

Theorem 4 Letp = % for some absolute constadte N and letq = g(n) be such that(n) = o(1). The
Push protocol over edge-Markovian graphs @{n, p, ¢) completes irO(log n) time, w.h.p.

We believe that the most challenging question is to analye®or spreading over more general classes
of evolving graphs where edges may be not independent: $tarice, it would be interesting to analyze the
Push protocol over geometric models of mobile networks [11, 26].
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Appendix

A Sketch of proof for Theorem[4
The proof makes use of the following previous result.

Lemma 7 (Theorem 12 in [15]) For anye > 0, consider an Erds-Renyi random grapl@ (n, p) with p >
(1+ 5)10%. Then, thepush protocol has w.h.p. completion tint&log n).

We start by giving an equivalent formulation of the edge-ké&fan model. Let = {u,v} be a pair of
nodes (unordered) artd= N. We define two families of Bernoulli random variablgs, ;} and{V. ;} with
parameterg andg respectively. At each time stepwe first set edge to emptyif V., = 1 and leave it
unchanged iV, ; = 0; then we set edgeto full if U.; = 1 and leave it unchangedf. ; = 0.

It is easy to verify that this process is equivalent todiie, p, ¢) process by taking = p andq = ¢(1 — p),
aslongad —p=0(1).

It is also useful to consider the following partial order avde configurations(7, [n] \ I), whereI is the
subset of the informed nodes. We say that configuratienbelowconfigurationC’ if every informed node
of C is also an informed node ¢f.

In order to prove the theorem, we need to analyze some rangesf ¢(n) separately.

- q¢(n) = o(1/logn). Under this condition, the stationary graph is w.h.p. fulgnnected withp =
w(l"%). Moreover w.h.p. the degree of every node is larger tiwai(n) for some (small) positive constant
a. The key observation here is to observe that the death regesoasmall that a static approximation will
suffice. We make this idea more formal by introducing anotioempling that requires this time to look into
the future. Let’s look at the evolution of the edges fdog n steps, wheré is a (sufficiently) large constant
and mark all the edges that will die during that time periode Méw modify the dynamics as follows:
whenever a marked edge is selected byHheh to transmit the message, then the transmission does not
take place. This process is clearly below the one we are @emsg, under the partial order introduced
above. Thus the completion timféof the new process is larger than that of the original one.

Observe that, for each node, the probability to ever be dethie use of an edge, within the time window
under consideration, is onb(1). This makes the dynamics only negligibly slower and theetbe com-
pletion timeT will be only a constant-factor larger than that in the precedth no deaths. We can thus
apply Lemmd[ and get the thesis.

- q(n) from O(1/logn) to o(1). Under this condition, the stationary graph has edge préityapi= niq
and onlyo(n) nodes do not belong to the giant component. Moreover theageetdegree i®(1/¢) and,
by a standard application of Chernoff’s bound, the prolitghtihat a node has degree betweefy(n) and
B/q(n) is bounded b)exp(—an) for some realV/ depending orx and 5 but not onn. The analysis of the
Push protocol is organized in stages.

- Stage O:If the source node does not belong to the giant component,niyeneed to waitO(1/¢(n))
steps for the message to infect one node of the giant compoifaéhe source node belongs to the giant
component, this stage can be skipped.

- Stage l:Letm; = |I;| be the number of informed nodes at timeThis stage concerns the process while
my is in the rangel < m; < n, for some absolute constaft> 0. We will consider a modification of
the process so that a node is only allowed to transmit theagedork times, wheret will be fixed later.
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Clearly, the modified process is below the original one. A&k the bad event “an informed node is selected
by therPush to receive the source message”. Then observe that

P(A) < kq(n)+ % < 4/, for some constant’
This implies
E [me1 [me] = my + (1 =P (A))(me — my—g) = mye+ (1 =) (me — me—p)
Taking the expectation and settiliym;| = 1, we have
e = (2= e+ (L=~ )
Now, we can choose € (0,1) (thusy’) andk € N so that the equation
FH - 2-9))F - (17

has one root larger than 1. This ensures exponential grofyth and thus completion time of Stage 1 in
O(log n) steps. Observe that the above bound holds w.h.p. Indeedl bletthe largest root of the above
indicial equation. Sincen, is a Markov chain, the events

{mi1 > Emgq [ my]}
are independent for differents. Moreover we have the deterministic bounds
my < M1 < 2my
From this, we get that (e.g from the Paley-Zygmund ineqgyalit
P (mep1 > E[myp [me]) 20 >0

By a standard application of Chernoff's Bound, for any iieg we can fix a suitable constait such that,
aftert > Dlogn steps , we geP (m; > ¢"') > 1 — .

- Stage 2: After Stage 1, by waitinQ(k/q(n)) steps we can ensure that, w.h.p., for every nodan
arbitrarily-large constant fraction of theedges will be new, i.e. they were not in existence at the énd o
Stage 1. This is equivalent to randomizing the informed sode

- Stage 3: We now consider a nodend estimate the probability thathas not received information after
D log n further steps. We call a vertggoodif it has degree betweemn/q(n) andj3/q(n), otherwise we call

it bad First observe that for arbitrarily small> 0 andn large enough, it holds

_ M-« __M_ M
e 4 < Dlogne «m < e a0

So that the probability that a node is ever bad in a time ialevf’length D log n is bounded bye%. Let
v be good for all the time. The probability that the source ragsss not transmitted toin a given step is

bounded above by
Y gty o
<1_Q(n)> () ~ e—’YE
g

Now, afterfi—fE log n steps, the probability the has not received the message is boundead b, So the
probability that there is a good vertex which has not yet befarmed is bounded by 2.
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Stage 4:We are now left with at mosD(n e «™ ) non-informed nodes. In order to show that they have
actually been informed during Stage 3, we need to look morefuléy at how the degree of a given node
evolves in time. This is a Markov chain @0, . .., n] with stationary measurg which is binomial with

parametergn, #(n)). As we observed before, it holds that

M

u(lagyt, Bay']) = 1— e(‘m)

By taking D large enough, we get that the chain will spend a positiveibraof the time inja./q(n), Sq(n)]
with probability at least — % We then get that the probability that there is a pair of nadeish are both
bad for a positive fraction of the time is boundedby?. By restricting information transmission to pairs
of good nodes, we can again use the analysis of Stage 3.

-q(n) = O(1/logn). This case is similar to previous one, but it is easier, sollthvei omitted.

B A few observations
Observation 1 Consider the general two state Markov chain

| 0 1
0/1—0p P
1 q 1—g¢q

Then

e For every initial stater € {0, 1}, the probability that the chain is is statein at least one of the first
two time steps is
P(XQZIOI'X1:1|X0:$) =D

e Letp; = P (X, = 1) be the probability that the chain is in stateat timet¢. Then

P p t
p=—+<po——> l—=p—q
"t rra) )

Observation 2 Let X be a random variable taking values betweéeandm, for some positive reah. If
E [X] > Am for somed < A < 1, then

P<X> %m) > \/2
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