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5 Sapienza Università di Roma

Abstract

Randomized gossip is one of the most popular way of disseminating information in large scale net-
works. This method is appreciated for its simplicity, robustness, and efficiency. In thePush protocol,
every informed node selects, at every time step (a.k.a. round), one of its neighboring node uniformly
at random and forwards the information to this node. This protocol is known to complete information
spreading inO(log n) time steps with high probability (w.h.p.) in several families ofn-nodestaticnet-
works. ThePush protocol has also been empirically shown to perform well in practice, and, specifically,
to be robust against dynamic topological changes.

In this paper, we aim at analyzing thePush protocol indynamicnetworks. We consider theedge-
Markovianevolving graph model which captures natural temporal dependencies between the structure
of the network at timet, and the one at timet+1. Precisely, a non-edge appears with probabilityp, while
an existing edge dies with probabilityq. In order to fit with real-world traces, we mostly concentrate our
study on the case wherep = Ω( 1

n
) andq is constant. We prove that, in this realistic scenario, thePush

protocol does perform well, completing information spreading in O(log n) time steps w.h.p. Note that
this performance holds even when the network is, w.h.p., disconnected at every time step (e.g., when
p ≪ logn

n
). Our result provides the first formal argument demonstrating the robustness of thePush

protocol against network changes. We also address other ranges of parametersp andq (e.g.,p+ q = 1
with arbitraryp andq, andp = 1

n
with arbitraryq). Although they do not precisely fit with the measures

performed on real-world traces, they can be of independent interest for other settings. The results in
these cases confirm the positive impact of dynamism.
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1 Introduction

1.1 Context and Objective

Rumor spreadingis a well-known gossip-based distributed algorithm for disseminating information in large
networks. According to the synchronousPush version of this algorithm, an arbitrary source node is initially
informed, and, at each time step (a.k.a. round), an informednodeu chooses one of its neighborsv uniformly
at random, and this node becomes informed at the next time step.

Rumor spreading (originally calledrumor mongering) was first introduced by [12], in the context of
replicated databases, as a solution to the problem of distributing updates and driving replicas towards con-
sistency. Successively, it has been proposed in several other application areas, such as failure detection in
distributed systems [34], peer-sampling [27], adaptive machine discovery [25], and distributed averaging in
sensor networks [5] (for a nice survey of gossip-based algorithm applications, see also [29]). Apart from
its applications, rumor spreading has also been deeply analyzed from a theoretical and mathematical point
of view. Indeed, as already observed in [12], rumor spreading is just an example of an epidemic process:
hence, its analysis “benefits greatly from the existing mathematical theory of epidemiology” (even if its
application in the field of distributed systems has almost opposite goals). In particular, thecompletion time
of rumor spreading, that is, the number of steps required in order to have all nodes informed with high prob-
ability1 (w.h.p.), has been investigated in the case of several different network topologies, such as complete
graphs [20, 32, 28], hypercubes [15], random graphs [15, 17,18], preferential attachment graphs [6, 13],
and some power-law degree graphs [19]. Besides obtaining bounds on the completion time of rumor spread-
ing, most of these works also derive deep connections between the completion time itself and some classic
measures of graph spectral theory, such as, for example, theconductanceof a graph (as far as we know, the
most recent results of this kind are the ones presented in [7,8, 21]) or itsvertex expansion(see [33, 22]).

It is important to observe that the techniques and the arguments adopted in these studies strongly rely
on the fact that the underlying graph isstatic and does not change over time. For instance, most of these
analyses exploit the crucial fact that the degree of every node (no matter whether this is a random variable
or a deterministic value) never changes during the entire execution of the rumor spreading algorithm. It is
then natural to ask ourselves what is the speed of rumor spreading in the case ofdynamicnetworks, where
nodes and edges can appear and disappear over time (several emerging networking technologies such as ad
hoc wireless, sensor, mobile networks, and peer-to-peer networks are indeed inherently dynamic).

In order to investigate the behavior of distributed protocols in the case of dynamic networks, the concept
of evolving graph has been introduced in the literature. Anevolving graphis a sequence of graphs(Gt)t≥0

wheret ∈ N (to indicate that we consider the graphsnapshotsat discrete time stepst, although it may
evolve in a continuous manner) with the same set ofn nodes.2 This concept is general enough for allowing
us to model basically any kind of network evolution, rangingfrom adversarialevolving graphs (see, for
example, [10, 30]) torandomevolving graphs (see, for example, [4]).

Indeed, although only the edges are subject to changes, a node whose all incident edges are not present at
a given stept can be considered as having left the network at timet, where the network is viewed as the giant
component ofGt. Hence, the concept of evolving graph also captures some essence of the node dynamics.
In the case ofrandomevolving graphs, at each time step, the graphGt is chosen randomly according to
some probability distribution over a specified family of graphs. One very well-known and deeply studied
example of such a family is the setGn,p of Erdős-Ŕenyi random graphs [1, 14, 23]. In the evolving graph
setting, at every time stept, each possible edge exists with probabilityp (independently of the previous

1An event holds with high probability if it holds with probability at least1− 1/nc for some constantc > 0.
2As far as we know, this definition has been formally introduced for the first time in [16].
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graphsGt′ , t′ < t, and independently of the other edges inGt).
Random evolving graphs can exhibit communication properties which are much stronger than static

networks having the same expected edge density (for a recentsurvey on computing over dynamic networks,
see [31]). This has been proved in the case of the simplest communication protocol that implements the
broadcast operation, that is, theFlooding protocol (a.k.a.broadcasting protocol), according to which a
source node is initially informed, and, whenever an uninformed node has an informed neighbor, it becomes
informed itself at the next time step. It has been shown [3, 9,11] that theFlooding completion time
may be very fast (typically poly-logarithmic in the number of nodes) even when the network topology is,
w.h.p., sparse, or even highly disconnected at every time step. Therefore, such previous results provide
analytical evidences of the fact that random network dynamics not only do not hurt, but can actually help
data communication, which is of the utmost importance in several contexts, such as, e.g., delay-tolerant
networking [35, 36].

The same observation has been made when the model includes some sort oftemporaldependency, as it
is in the case of the randomedge-Markovianmodel. According to this model, the evolving graph starts with
an arbitrary initial graphG0, and, at every time stept,

• if an edge does not exist inGt, then it will appear in the next graphGt+1 with probabilityp, and
• if an edge exists inGt, then it will disappear in the next graphGt+1 with probabilityq.

For every initial graphG0, an edge-Markovian evolving graph will eventually converge to a (random) graph
in Gn,p̃ with stationary edge-probabilitỹp = p

p+q . However, there is a Markovian dependence between
graphs at two consecutive time steps, hence, givenGt, the next graphGt+1 is not necessarily a random
graph inGn,p̃. Interestingly enough, the edge-Markovian model has been recently subject to experimental
validations, in the context of sparse opportunistic mobilenetworks [36], and of dynamic peer-to-peer sys-
tems [35]. These validations demonstrate a good fitting of the model with some real-world data traces. The
completion time of theFlooding protocol has been recently analyzed in this model, for all possible values
of p̃ (see [3, 11]). A variant of the model, in which the “birth” and“death” probabilitiesp andq depend
not only on the number of nodes but also on some sort of distance between the nodes, has been investigated
in [24].

TheFlooding protocol however generates high message complexity. Moreover, although its comple-
tion time is an interesting analog for dynamic graphs of the diameter for static graphs, it is not reflecting the
kinds of gossip protocols mentioned at the beginning of thisintroduction, used for practical applications.
Hence the main objective of this paper is to analyze the more practicalPush protocol, in edge-Markovian
evolving graphs.

1.2 Framework

We focus our attention on dynamic network topologies yielded by the edge-Markovian evolving graphs for
parametersp (birth) andq (death) that correspond to a good fitting with real-world data traces, as observed
in [35, 36]. These traces describe networks with relativelyhigh dynamics, for which the death probability
q is at least one order of magnitude greater than the birth probability p. In order to set parametersp and
q fitting with these observations, let us consider the expected number of edges̄m, and the expected node-
degreed̄ at the stationary regime, governed byp̃ = p

p+q . We havem̄ = p
p+q

(n
2

)

, andd̄ = 2m̄
n = (n− 1) p

p+q .
Thus, at the stationary regime, the expected number of edgesν that switch their state (from non existing to
existing, or vice versa) in one time step satisfies

ν = m̄q + (
(n
2

)

− m̄)p = n(n−1)
2

(

pq
p+q +

(

1− p
p+q

)

p
)

= n(n− 1) pq
p+q = nqd̄.
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Hence, in order to fit with the high dynamics observed in real-world data traces, we setq constant, so
that a constant fraction of the edges disappear at every step, while a fractionp of the non-existing edges
appear. We consider an arbitrary range forp, with the unique assumption thatp ≥ 1

n . (For smallerp’s, the
completion time of any communication protocol is subject tothe expected time1np ≫ 1 required for a node
to acquire just one link connected to another node). To sum up, we essentially focus on the following range
of parameters:

1

n
6 p < 1 and q = Ω(1). (1)

This range includes network topologies for a wide interval of expected edge density (from very sparse and
disconnected graphs, to almost-complete ones), and with anexpected number of switching edges per time
step equal to some constant fraction of the expected total number of edges. Other ranges are also analyzed
in the paper (e.g.,p + q = 1 with arbitraryp andq, andp = 1

n with arbitraryq), but the range in Eq. (1)
appears to be the most realistic one, according to the current measurements on dynamic networks.

Remark. It is worth noticing that analyzing thePush protocol in edge-Markovian graphs is not only
subject to temporal dependencies, but also tospatial dependencies. This makes the analysis of thePush

protocol more challenging. This holds even in the simpler random evolving graph model, i.e., the sequence
of independent random graphsGt ∈ Gn,p. Indeed, even if this case does not include temporal dependencies,
thePush protocol introduces spatial dependences that has to be carefully handled. To see why, consider a
time step of thePush protocol, where we havek informed nodes, and let us try to evaluate how many new
informed nodes there will be in the next time step. Given an informed nodeu, let δ(u) be the neighboring
node selected byu according to thePush protocol (i.e.,δ(u) is chosen uniformly at random among the
current neighbors ofu). By conditioning on the degree ofu, it is not hard to calculate the probability that
δ(u) = v, for any non informed nodev. However, the events “δ(u1) = v1” and “δ(u2) = v2” are not
necessarily independent. Indeed, the event “δ(u1) = v1” decreases the probability of the existence of an
edge betweenu1 andu2, and so it affects the value of the random variableδ(u2). This positive dependency
prevents us from using the classical methods for analyzing thePush protocol in static graphs, or makes the
use of these methods far more complex.

1.3 Our results

For the parameter range in Eq. (1), we show that, w.h.p., starting from anyn-node graphG0, thePush
protocol informs alln nodes inΘ(log n) time steps. Hence, in particular, even if the graphGt is w.h.p.
disconnected at every time step (this is the case forp ≪ logn

n ), the completion time of thePush protocol
is as small as it could be (thePush protocol cannot perform faster thanΩ(log n) steps in any static or
dynamic graph since the number of informed nodes can at most double at every step). It is also interesting
to compare the performances of thePush protocol with the one ofFlooding . The known lower bound for
Flooding on edge-Markovian graphs [11] (which is clearly a lower bound for Push , too) demonstrates
that forp = Θ(1/n), the two protocols have the same asymptotic completion time. Moreover it is clear that,
for p = Ω(1/n), the completion-time slowdown factor of thePush protocol is at most logarithmic. This
property is a remarkable one, since the expected number of exchanged messages per node inPush may
be exponentially smaller than the one inFlooding (for instance, consider the casep = Θ(1/

√
n) which

corresponds to an expected node degreeΘ(
√
n)).

We also address other ranges of parametersp andq. Although they do not precisely fit with the measures
in [35, 36], they can be of independent interest for other settings. One such case is the sequence of indepen-
dentGn,p graphs, that is, the case wherep + q = 1. Actually, the analysis of this special case will allow us
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to focus on the first important probabilistic issue that needs to be solved: spatial dependencies. Indeed, even
in this case, as already mentioned, thePush protocol induces a positive correlation among some crucial
events that determine the number of new informed nodes at thenext time step. This holds despite the fact
that every edge is set independently from the others. For a sequence of independentGn,p graphs, we prove
that for everyp (i.e., also forp = o( 1n)) andq = 1− p the completion time of thePush protocol is, w.h.p.,
O(log n/(p̂n)), wherep̂ = min{p, 1/n}. By comparing the lower bound forFlooding in [11], it turns
out that this bound is tight, even for very sparse graphs.

Finally, we show that the logarithmic bound for thePush protocol holds for more “static” network
topologies as well, e.g., for the rangep = c

n wherec > 0 is a constant, andq is arbitrary. This parameter
range includes edge-Markovian graphs with a small expectednumber of switching edges (this happens when
q = o(1)). In this case, too,Push completes, w.h.p., inO(log n) rounds. This gives yet another evidence
that dynamism helps.

Structure of the paper. In Section 2, we give the terminology and the preliminary definitions that will
be used throughout the paper. In Section 3, we consider the independent dynamic Erdős-Rényi graphs,
while Section 4 provides the analysis of thePush protocol in the the case of the edge-Markovian evolving
graph model. In Section 5, finally, we summarize our results and present their extension to the case of more
“static” network topologies.

2 Preliminaries

The number of vertices in the graph will always be denoted byn. We abbreviate[n] := {1, . . . , n} and
([n]
2

)

:= {{i, j} | i, j ∈ [n]}. For any subsetE ⊆
([n]
2

)

and any two subsetsA,B ⊆ [n], define

E(A) = { edges ofE incident toA } and E(A,B) = {{u, v} ∈ E | u ∈ A, v ∈ B}.

We consider the edge-Markovian evolving graph modelG(n, p, q;E0) whereE0 is the starting set of edges.
ThePush Protocol overG(n, p, q;E0) can be represented as a random process over the setS of all possible
pairs(E, I) whereE is a subset of edges andI is a subset of nodes. In particular, the combined Markov
process works as follows

. . . → (Et, It)
edge-Markovian−→ (Et+1, It)

Push protocol−→ (Et+1, It+1)
edge-Markovian−→ . . .

whereEt andIt represent the set of existing edges and the set of informed nodes at timet, respectively. All
events, probabilities and random variables are defined overthe above random process. Given a graphG =
([n], E), a nodev ∈ [n], and a subset of nodesA ⊆ [n] we definedegG(v,A) = |{(v, a) ∈ E | a ∈ A}|.
When we have a sequence of graphs{Gt = ([n], Et) : t ∈ N} we writedegt(v,A) instead ofdegGt

(v,A).
Given a graphG and an informed nodeu ∈ I, we defineδG(u) as the random variable indicating the node
selected byu in graphG according to thePush protocol. WhenG and/ort are clear from the context, they
will be omitted.

3 Warm up: the time-independent case

In this section we analyze the special case of a sequence of independentGn,p (observe that a sequence of
independentGn,p is edge-Markovian withq = 1 − p). We show that the completion time of thePush
protocol isO(log n/(p̂n)) w.h.p., wherêp = min{p, 1/n}. In Theorem 1 we prove the result forp > 1/n
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and in Theorem 2 forp 6 1/n. From the lower bound on the flooding time for edge-Markovinagraphs [11],
it turns out that our bound is optimal.

As mentioned in the introduction, even though in this case there is no time-dependency in the sequence
of graphs, thePush protocol introduces a kind of dependence that has to be carefully handled. The key
challenge is to evaluate the probability thatv receives the information from at least one of the informed
nodes; i.e.,1 −P (∩u∈I{δ(u) 6= v}). We consider thePush operation on amodifiedrandom graph where
we prove that the above events become independent and the number of new informed nodes in the original
random graph is at least as large as in the modified version.

Definition 1 ((I, b)-modified graph) Let G = ([n], E) be a graph, letI ⊆ [n] be a set of nodes, and
let b ∈ [n] be a positive integer. The(I, b)-modifiedG is the graphH = ([n] ∪ {v1, . . . , vb}), where
{v1, . . . , vb} is a set of extravirtual nodes, obtained fromG by the following operations: 1. For every node
u ∈ I with degG(u) > b, remove all edges incident tou; 2. For every nodeu ∈ I with degG(u) 6 b, add
all edges{u, v1}, . . . , {u, vb} betweenu and the virtual nodes; 3. Remove all edges between any pair of
nodes that are both inI.

Let I be the set of informed nodes performing aPush operation on aGn,p random graph. As previously
observed, ifv ∈ [n] \ I is a non-informed node, then the events{{δG(u) = v} : u ∈ I} are not indepen-
dent, but the events{{δH(u) = v} : u ∈ I} on the(I, b)-modified graphH are independent because of
Operation 3 in Definition 1.

In the next lemma we prove that, if the informed nodes performaPush operation both in a graph and in
its modified version, then the number of new informed nodes inthe original graph is (stochastically) larger
than the number of informed nodes in the modified one. We will then apply this result toGn,p random
graphs.

Lemma 1 (Virtual nodes) LetG([n], E) be a graph and letb an integer such that1 6 b 6 n. LetI ⊆ [n]
be a set of nodes performing aPush operation in graphsG and H, whereH is the (I, b)-modifiedG
according to Definition 1. LetX andY be the random variables counting the numbers of new informed
nodes inG andH respectively. Then for everyh ∈ [0, n] it holds thatP (X 6 h) 6 P (Y 6 h).

Proof. Consider the following coupling: Letu ∈ I be an informed node such thatdegG(u) 6 b and let
h andk be the number of informed and non-informed neighbors ofu respectively. ChooseδH(u) u.a.r.
among the neighbors ofu in H. As for δG(u), we do the following: IfδH(u) ∈ [n] \ I then choose
δG(u) = δH(u); otherwise (i.e., whenδH(u) is a virtual node) with probability1 − x chooseδG(u) u.a.r.
among the informed neighbors ofu in G, and with probabilityx chooseδG(u) u.a.r. among the non-
informed ones, wherex = k(b−h)

(h+k)b . Every informed nodeu with degG(u) > b instead performs aPush
operation inG independently.

By construction we have that the set of new (non-virtual) informed nodes inH is a subset of the set of
new informed nodes inG. Moreover, it is easy to check that, for every informed nodeu in I, δG(u) is u.a.r.
among neighbors ofu. �

In the next lemma we give a lower bound on the probability thata non-informed node gets informed in the
modifiedGn,p.

Lemma 2 (The increasing rate of informed nodes)Let I ⊆ [n] be the set of informed nodes performing
thePush operation in aGn,p random graph and letX be the random variable counting the number of non-
informed nodes that get informed after thePush operation. It holds thatP (X > λ ·min{|I|, n− |I|}) >
λ, whereλ is a positive constant.

6



Proof. Let I be the set of currently informed nodes, letG = ([n], E) be the random graph at the next time
step and letH be its(I, 3np)-modified version. Now we show that the number of nodes that gets informed
in H is at leastλ ·min{|I|, n − |I|} with probability at leastλ, for a suitable constantλ.
Let u ∈ I be an informed node and letv ∈ [n] \ I be a non-informed one. Observe that by the definition
of H, u cannot choosev in H if the edge{u, v} /∈ E or if the degree ofu in G is larger than3np (see
Operation 3 in Definition 1). Thus the probability that nodeu chooses nodev in random graphH according
to thePush protocol is

P (δH(u) = v) = P (δH(u) = v | {u, v} ∈ E ∧ degG(u) 6 3np)P ({u, v} ∈ G ∧ degG(u) 6 3np) .
(2)

If degG(u) 6 3np then nodeu in H has exactly3np virtual neighbors plus at most other3np non-informed
neighbors. It follows that

P (δH(u) = v | {u, v} ∈ E ∧ degG(u) 6 3np) > 1/(6np). (3)

We also have that

P ({u, v} ∈ E, degG(u) 6 3np) = P ({u, v} ∈ E)P (degG(u) 6 3np | {u, v} ∈ E)

= p ·P (degG(u) 6 3np | {u, v} ∈ E) .

SinceE [degG(u) | {u, v} ∈ E] 6 np+1 with np > 1, from the Chernoff bound we can choose a positive
constantc and then a positive constantβ < 1 such that

P (degG(u) > 3np | {u, v} ∈ E) 6 P (degG(u) > 2np+ 1 | {u, v} ∈ E) 6 e−cnp = β < 1. (4)

By replacing Eq.s 3 and 4 into Eq. 2 we getP (δH(u) = v) > α
n , for some constantα > 0.

Since the events{{δH(u) = v}, v ∈ I} are independent, the probability that nodev is not informed inH is
thus

P (∩u∈IδH(u) 6= v) 6 (1− α/n)|I| 6 e−α|I|/n.

Let Y be the random variable counting the number of new informed nodes inH. The expectation ofY is

E [Y ] > (n− |I|)
(

1− e−α|I|/n
)

> (α/2)(n − |I|)|I|/n.

Hence we get

E [Y ] >

{

(α/4)|I| if |I| 6 n/2 ,

(α/4)(n − |I|) if |I| > n/2 .

SinceY 6 min{|I|, n− |I|}, from Observation 2 (see Appendix B), it follows that
P (Y > (α/8) ·min{|I|, n− |I|}) > α/8. Finally we get the thesis by applying Lemma 1. �

We can now derive the upper bound on the completion time of thePush protocol onGn,p random graphs.

Theorem 1 LetG = {Gt : t ∈ N} be a sequence of independentGn,p with p > 1/n. The completion time
of thePush protocol overG is O(log n) w.h.p.

Proof. Consider a generic time stept of the execution of thePush protocol whereIt ⊆ [n] is the
set of informed nodes andmt = |It| is its size. For anyt such thatmt 6 n/2, Lemma 2 implies
that P (mt+1 > (1 + λ)mt) > λ, whereλ is a positive constant. Let us define eventEt = {mt >

7



(1 + λ)mt−1} ∨ {mt−1 > n/2} and letYt = Yt((E1, I1), . . . , (Et, It)) be the indicator random vari-
able of that event. Observe that ift = logn

log(1+λ) then(1 + λ)t > n/2. Hence, if we setT1 = 2
λ

logn
log(1+λ) , we

get

P (mT1 6 n/2) 6 P

(

T1
∑

t=1

Yt 6 (λ/2)T1

)

.

The above probability is at most as large as the probability that in a sequence ofT1 independent coin tosses,
each one givinghead with probabilityλ, we see less than(λ/2)T1 heads (see e.g. Lemma 3.1 in [2]). A
direct application of the Chernoff bound shows that this probability is smaller thane−(1/4)λT1 6 n−c, for a
suitable constantc > 0. We can thus state that, afterO(log n) time steps, there at leastn/2 informed nodes
w.h.p.
If mT1 > n/2, then, for everyt > T1, Lemma 2 implies thatP (n−mt+1 6 (1− λ)(n−mt)) > λ.
Observe that ift = logn

λ then(1− λ)t 6 1/n, so that forT2 =
2
λ · logn

λ + T1 the probability that thePush
protocol has not completed at timeT2 is

P (mT2 < n) 6 P

(

mT2 < n |mT1 >
n

2

)

+P

(

mT1 <
n

2

)

.

As we argued in the analysis of the spreading tilln/2, the probabilityP
(

mT2 < n |mT1 > n
2

)

is not larger

than the probability that in a sequence of2
λ · logn

λ independent coin tosses, each one givinghead with

probability λ, there are less thanlognλ heads. Again, by applying the Chernoff bound, the latter is not
larger thann−c for a suitable positive constantc. �

In order to prove the bound forp 6 1/n, we first show that one singlePush operation over the union of a
sequence of graphs informs (stochastically) less nodes than the sequence ofPush operations performed in
every single graph (this fact will also be used in Section 4 toanalyse the edge-MEG).

Lemma 3 (Time windows) Let {Gt = ([n], Et) : t = 1, . . . , T} be a finite sequence of graphs with the
same set of nodes[n]. LetI ⊆ [n] be the set of informed nodes in the initial graphG1. Suppose that at every
time step every informed node performs aPush operation, and letX be the random variable counting the
number of informed nodes at time stepT . LetH = ([n], F ) be such thatF = ∪T

t=1Et and letY be the
random variable counting the number of informed nodes when the nodes inI perform one singlePush
operation in graphH. Then for everyℓ = 0, 1, . . . , n it holds thatP (X 6 ℓ) 6 P (Y 6 ℓ) .

Proof. Consider the sequence of graphs{Ht = ([n], Ft) : t = 1, . . . , T} where graphHt is the union
of graphsG1, . . . , Gt, i.e. for everyt we setFt =

⋃t
i=1Ei. We inductively construct one singlePush

operation inH ≡ HT , building it on the probability space of thePush protocol in(G1, . . . , GT ), in a way
that the set of informed nodes inH is a subset of the set of informed nodes inGT .

For every nodeu that is informed at the beginning of the process, i.e.u ∈ I, and for everyt = 1, . . . , T ,
let Nt be the set of neighbors ofu in graphGt, let dt = |Nt| be its size, letht = |⋃t

i=1Ni| be the number
of neighbors ofu in graphHt, and letδGt(u) be the random variable indicating the neighbor chosen byu
u.a.r. inNt. Finally, let{Ct : t = 2, . . . , T} be a sequence of independent Bernoulli random variables with
P (Ct = 1) = dt/ht. Now we recursively define random variablesδH1(u), . . . , δHT

(u):

DefineδH1(u) = δG1(u). For t = 2, . . . , T define

δHt(u) =

{

δGt(u) if δGt(u) ∈ Nt \
(

⋃t−1
i=1 Ni

)

andCt = 1

δHt−1(u) otherwise
(5)
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By construction, it holds thatδHT
(u) ∈ {δG1(u), . . . , δGT

(u)}, hence the set of informed nodes inHT is a
subset of the set of informed nodes inGT . Now we show that for everyt nodeu chooses one of its neighbors
uniformly at random inHt, i.e. for everyv ∈ ⋃t

i=1 Ni it holds thatP (δHt(u) = v) = 1/ht.
We proceed by induction ont. The base of the induction directly follows from the choiceδH1(u) =

δG1(u). Now assume that for everyv ∈ ⋃t−1
i=1 Ni it holds thatP

(

δHt−1(u) = v
)

= 1/ht−1 and letv ∈
⋃t

i=1Ni. We distinguish two cases:

- If v ∈ Nt \
(

⋃t−1
i=1 Ni

)

then, according to (5) we have thatδHt(u) = v if and only if δGt(u) = v and

Ct = 1, hence

P (δHt(u) = v) = P (δGt(u) = v ∧ Ct = 1) =
1

dt
· dt
ht

=
1

ht

- If v ∈
⋃t−1

i=1 Ni then we have thatδHt(u) = v if and only if δHt−1(u) = v and at least one of the two

conditions in (5) does not hold (that isCt = 0 or δGt(u) ∈ Nt ∩
(

⋃t−1
i=1 Ni

)

). Hence,

P (δHt(u) = v) = P
(

δHt−1(u) = v
)

[

P (Ct = 0) +P

(

δGt(u) ∈ Nt ∩
(

t−1
⋃

i=1

Ni

)

∧ Ct = 1

)]

By the induction hypothesis we have thatP
(

δHt−1(u) = v
)

= 1/ht−1, and by observing that the size of

Nt ∩
(

⋃t−1
i=1 Ni

)

is dt + ht−1 − ht it follows that

P (δHt(u) = v) =
1

ht−1

(

ht − dt
ht

+
dt + ht−1 − ht

dt
· dt
ht

)

=
1

ht

�

Observe that if we look at a sequence of independentGn,p with p 6 1/n for a time-window of approximately
1/(np) time steps, then every edge appears at least once in the sequence with probability at least1/n. The
above lemma thus allows us to reduce the casep 6 1/n to the casep > 1/n.

Theorem 2 LetG = {Gt : t ∈ N} be a sequence of independentGn,p with p 6 1/n and lets ∈ [n]. The
Push protocol with sources overG completes the broadcast inO(log n/(np)) time steps w.h.p.

Proof. Consider the sequence of random graphsH = {Hs : s ∈ N} whereHs is the union of random
graphs

Hs = ([n], Fs) such thatFs = EsT ∪ EsT+1 ∪ · · · ∪ EsT+T−1 with T = 2/(np).

Observe that everyHs is aGn,p̂ with p̂ > 1/n. Indeed, the probability that an edge does not exist inFs is

(1− p)T 6 e−pT = e−2/n.

Hence the probability that the edge exists is1− e−2/n > 1/n.
Let τG andτH be the random variables indicating the completion time of thePush protocol over sequences
G andH respectively. From Theorem 1 it follows thatτH = O(log n) w.h.p. and from Lemma 3 it follows
that for everyt it holds that

P (τG > T t) 6 P (τH > t) .

Hence, it holds that

τG = O(T log n) = O
(

log n

np

)

w.h.p.

�
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4 Edge-Markovian graphs with high dynamics

In this section we prove that thePush protocol over an edge-Markovian graphG(n, p, q;E0) with p > 1/n
andq = Ω(1) has completion timeO(log n) w.h.p.

As observed in the Introduction, the stationary random graph is an Erdős-RényiGn,p̃ wherep̃ = p
p+q

and the mixing time of the edge Markov chain isΘ
(

1
p+q

)

. Thus, ifp andq fall into the range defined in

(1), we get that the stationary random graph can be sparse anddisconnected (whenp = o
(

logn
n

)

) and that

the mixing time of the edge Markov chain isO(1). Thus, we can omit the termE0 and assume it is random
according to the stationary distribution.

The time-dependency between consecutive snapshots of the dynamic graph does not allow us to obtain
directly theincreasing rateof the number of informed nodes that we got for the independent-Gn,p model. In
order to get a result like Lemma 2 for the edge-Markovian case, we need in fact abounded-degreecondition
on the current set of informed nodes (see Definition 2) that does not apply when the number of informed
nodes issmall (i.e., smaller thanlog n). However, in order to reach a state where at leastlog n nodes are
informed, we can use a different ad-hoc technique that analyzes the spreading rate yielded by the source
only.

Lemma 4 (The Bootstrap) LetG = G(n, p, q) be an edge-Markovian graph withp > 1/n andq = Ω(1),
and consider thePush protocol inG starting with one informed node. For any positive constantγ, after
O(log n) time steps there are at leastγ log n informed nodes w.h.p.

Proof. We consider the message-spreading process yielded by the source node only and, instead of directly
analyzing this process on the edge-Markovian sequence{Gt = ([n], Et) : t ∈ N}, we consider it in the
sequence{Ht = ([n], E2t ∪ E2t+1)}. Thanks to Lemma 3, this is feasible since the number of informed
nodes inHt is stochastically smaller than the number of informed nodesin G2t. We split the analysis in two
cases:p 6 log n/n andp > log n/n.

Casep > log n/n: Consider an arbitrary time stept during the execution of the protocol and for conve-
nience’ sake let us rename itt = 0. Let I0 be the set of informed nodes in that time step with|I0| = m 6

γ log n. Consider the next two time steps and letH = ([n], E1 ∪ E2) be the random graph obtained by
taking the edges that are present in at least one of the two time steps. Then apply thePush operation of the
source node inH. From Observation 1 (see Appendix B), we get that every edge has probability at leastp
in H. In particular, for every nodev, the probability thatv is connected to the source nodes in H is

P ({s, v} ∈ E1 ∪E2) > p .

Let X be the random variable counting the number of non-informed nodes connected to the source node in
H, then the expectation ofX is

E [X] =
∑

v∈[n]\I0

P ({s, v} ∈ E1 ∪E2) > (n−m)p > 2αnp

for a suitable positive constantα. Since edges are independent, from the Chernoff bound it follows that

P (X 6 αnp) 6 e−εnp

10



for a suitable positive constantε. Hence, sincep > log n/n, it follows that there are at leastα log n nodes
in [n] \ I0 that are connected tos in H w.h.p. The probability that the sources sends the message to one of
those nodes applying thePush operation inH is

P (δH(s) ∈ [n] \ I0) > P (δH(s) ∈ [n] \ I0 |X > α log n)P (X > α log n)

>
α log n

m+ α log n
P (X > α log n) > λ

for a suitable positive constantλ.
From Lemma 3, the probability that the actual numberm2 of informed nodes after two time steps is smaller
thanm0 + 1 is at most as large as the probability that the source node informs a new neighbor inH; i.e.,

P (m2 = m0) 6 P (δH(s) /∈ [n] \ I0) 6 1− λ .

Thus for every time stept during the bootstrap, ifp > log n/n, after two time steps there is at least one new
informed node with probability at leastλ; i.e.,

P (mt+2 > mt + 1) > λ .

Hence, after(4γ/λ) log n time steps, there are at leastγ log n informed nodes w.h.p.

Casep 6 log n/n: In order to analyze the bootstrap phase on the sequence{Ht = ([n], E2t ∪ E2t+1)}, we

first condition on the eventF that in the firstT = (4γ/λ) log n time steps it never happens that a new edge
appears between the source node and a node that is already informed. Formally,F is the complementary
event ofF := ∪T

t=1Ft whereFt denotes the event “InHt+1 at least one edge will appear between the
source node and a previously informed node”. As we will see below, we haveP (F ) = O(log3 n/n) and
P
(

|IT | 6 γ log n |F
)

≤ n−ε for a suitable positive constantε.
Observe that if an edge does not exist inHt then it will appear inHt+1 with probability1− (1− p)2. Since
p 6 log n/n 6 1/4, by applying the standard inequalitiese−2x 6 1− x 6 e−x, for any0 6 x 6 1

2 , we get
2p 6 1− (1− p)2 6 4p. ForFt as defined above we have

P (Ft) 6 4p|It| 6 4γ
log2 n

n
, (6)

where in the last inequality we used the facts thatp 6 log n/n and that, during the bootstrap,|It| 6 γ log n.
Now consider the two following events:St

1 is the event “The source informs a new node inHt+1” andSt
2 is

the event “The number of edges between the source node and theset of informed nodes decreases inHt+1”;
i.e.,St

1 = {|It+1| = |It|+ 1} andSt
2 = {degt+1(s, It+1) 6 degt(s, It) − 1}. Now we show that, at every

time step, at least one of the two events above holds with constant probability if eventFt does not hold.
Indeed, in that case, if the number of informed nodes connected to the source node is zero, then if some
non-informed node will be connected to the source node at thefollowing time step we will have at least a
new informed node (eventSt

1) and this happens with constant probability. If there is at least one informed
node connected to the source, then if one of those edges will disappear thendeg(s, It) will decrease (event
St
2). More formally, ifdegt(s, It) = 0 we have that

P
(

St
1 |Ft

)

> 1− (1− 2p)n−|It| > 1− e−2p(n−|It|) > 1− e−(2/n)(n−|It|) > 1− e−1 .

If degt(s, It) > 1, we getP
(

St
2 |Ft

)

> q. Hence forλ = min{q, 1− e−1}, we have that

P
(

St
1 ∨ St

2 |Ft

)

> λ . (7)
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If we defineT = (4γ/λ) log n then we can show that afterT time steps there are at leastγ log n informed
nodes w.h.p. Indeed, letX1 andX2 be the random variables indicating the number of time steps that events
S1 andS2 hold, respectively. Remind that its complementF is the event “In the firstT time steps it never
happens that a new edge appears between the source node and a node that is already informed”. Since
T = O(log n), from Eq. 6 it follows thatP (F ) = O(log3 n/n). Moreover, observe that if eventF holds
thenX1 > X2. Indeed, if no edge between the source and any previously informed node appears, then,
when an edge between the source node and an informed node disappears (event ofS2 type), the source must
have previously informed that node (S1 event). Thus the probability that the bootstrap is not completed at
timeT is

P (|IT | 6 γ log n) 6 P
(

X1 6 γ log n |F
)

+P (F ) 6 P
(

X1 +X2 6 2γ log n |F
)

+P (F ) .

Since from Eq. 7 we have that, at every time step, the eventS1 ∨ S2 holds with probability at leastλ,
thenP

(

X1 +X2 6 2γ log n |F
)

is smaller than the probability that in a sequence ofT = (4γ/λ) log n
independent coin tosses, each one givinghead with probabilityλ, we see less than2γ log n heads: this is
smaller thann−ε for a suitable positive constantε. �

We can now start the second part of our analysis where thePush operation of all informed nodes (forming
the subsetI) will be considered and, thanks to the bootstrap, we can assume that|I| = Ω(log n).
As mentioned at the beginning of the section, we need to introduce the concept ofbounded-degree state
(E, I) of the Markovian process describing the information-spreading process over the dynamic graph,
whereE is the set of edges andI is the set of informed nodes.

Definition 2 (Bounded-Degree State)A state(E, I) such that|E(I)| 6 (8/q)np̃|I| (with p̃ = p
p+q the

stationary edge probability) will be called abounded-degreestate.

In the next lemma we show that, ifI is the set of informed nodes with|I| > log n, if in the starting random
graphG0 every edge exists with probability approximately(1± ε)p, and if it evolves according to the edge-
Markovian model and the informed nodes perform thePush protocol, then for a long sequence of time
steps the random process is in a bounded-degree state. We will use this property in Theorem 3 by observing
that, for every initial state, afterO(log n) time steps an edge-Markovian graph withp > 1/n andq ∈ Ω(1)
is in a state where every edge{u, v} exists with probabilityp{u,v} ∈ [(1− ε)p̃, (1 + ε)p̃].

Lemma 5 Let G = G(n, p, q, E0) be an edge-Markovian graph starting withG0 and consider thePush
protocol inG whereI0 is the set of informed nodes at timet = 0. Then, for any constantc > 0, for a
sequence ofc log n time steps every state is a bounded-degree one w.h.p.

Proof. Let us fixc = 8/q as in Definition 2. We show that(E0, I0) is a bounded-degree state w.h.p. and that
if (Et, It) is a bounded-degree state, then(Et+1, It+1) is a bounded-degree state as well w.h.p. Let us name
Xt = |Et(It)|. The expected size ofE0(I0) is

E [X0] 6

[(|I0|
2

)

+ |I0|(n− |I0|)
]

(1 + ε)p̃ 6 (1 + ε)np̃|I0| .

Since edges are independent,c > 8, andnp̃|I0| = Ω(log n), from Chernoff bound it follows that|E0(I0)| 6
cnp̃|I0| w.h.p. Now lett > 0 and assume thatXt 6 cnp̃|I0|. Observe that the size ofEt+1(It+1) satisfies

Xt+1 = |Et+1(It)|+ |Et+1(Ît+1, [n] \ It)| , (8)
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whereÎt+1 := It+1 \ It. As for the first addend, we have that

E [|Et+1(It)| | Xt] = (1− q)Xt + p

[(|It|
2

)

+ |It|(n− |It|)−Xt

]

= (1− (p + q))Xt + p

[(|It|
2

)

+ |It|(n − |It|)
]

because all theXt edges existing at timet are still there at timet+1 with probability1− q and all the edges
that do not exist at timet appear with probabilityp. Sincep = p̃(p+ q) 6 2p̃, if p+ q > 1 then

E [|Et+1(It)|] 6 2np̃|It| 6
q

4
cnp̃|It| ,

regardless of the value ofXt. If insteadp+ q 6 1 then, ifXt 6 cnp̃|It| we have that

E [|Et+1(It)| | Xt 6 cnp̃|It|] 6 (1− p− q) cnp̃|It|+ np|It|

= cnp̃|It|
(

1− p− q +
(p+ q)

c

)

6

(

1− q

2

)

cnp̃|It| , (9)

where in the last inequality we used thatp > 0 and(p+ q)/c 6 q/2.
As for the second addend, we observe that every paire = {u, v} with u ∈ Ît+1, v ∈ [n] \ It, andu 6= v
exists inEt+1(Ît+1, [n] \ It) with probability pe ∈ [(1− ε)p̃, (1 + ε)p̃] since it has never been observed
before timet+ 1. Hence

E

[

|Et+1(Ît+1, [n] \ It)|
]

6 |Ît+1|(n − |It|)(1 + ε)p̃ 6
q

4
cnp̃|It| . (10)

By (9) and (10) in (8) we get

E [Xt+1 | Xt 6 cnp̃|It|] 6
(

1− q

4

)

cnp̃|It| 6
(

1− q

4

)

cnp̃|It+1| .

Since edges are independent,q = Ω(1), andnp̃|It+1| = Ω(log n), from Chernoff bound it follows that
Xt+1 6 cnp̃|It+1| w.h.p. �

Now we can bound theincreasing rateof the number of informed nodes in an edge-Markovian graph. The
proof of the following lemma combines the analysis adopted in the proof of Lemma 2 with some further
ingredients required to manage the time-dependency of the edge-Markovian model.

Lemma 6 (The increasing rate of new informed nodes)Let (E, I) be a bounded-degree state and letX
be the random variable counting the number of non-informed nodes that get informed after two steps of
thePush operation in the edge-Markovian graph model. It holds thatP (X > ε ·min{|I|, n− |I|}) > λ,
whereε andλ are positive constants.

Proof. Let G0 = ([n], E0) be the current graph and letG1 = ([n], E1) andG2 = ([n], E2) be the next two
random graphs obtained according to the edge-Markovian process starting fromG0. LetH = ([n], EH ) be
such thatEH = E1∪E2 and letĤ be the(I, 3cnp̃)-modified version ofH according to Definition 1, where
c is a sufficiently large constant (it will be clear from what follows that it is sufficient to havec > 32/q).
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From Lemmas 1 and 3, we have that the number of informed nodes in Ĥ is stochastically smaller than the
number of informed nodes inG2. In what follows we evaluate the number of new informed nodesin Ĥ and
we show that with positive constant probability it is at least a constant fraction ofmin{|I|, n− |I|}.

Let IA be the set of informed nodes that have degree at mostcnp̃, i.e.,

IA = {u ∈ I : degG0
(u) 6 cnp̃} .

In what follows,IA will denote the set ofactiveinformed nodes. Observe that
∑

u∈I

degG0
(u) 6 2|E(I)|.

Since(E, I) is a bounded-degree state, we have2|E(I)| 6 (16/q)np̃|I|. Thus, ifc > 32/q then we have
that |IA| > |I|/2.
Consider an active informed nodeu ∈ IA and letv ∈ [n] \ I be a non-informed one. The probability that
nodeu selects nodev in Ĥ according to thePush protocol is

P
(

δĤ(u) = v
)

= P
(

δĤ(u) = v | {u, v} ∈ EH , degH(u) 6 3cnp̃
)

·
·P (degH(u) 6 3cnp̃ | {u, v} ∈ EH)P ({u, v} ∈ EH) . (11)

Indeed, by the definition of̂H, u cannot selectv in Ĥ if the edge{u, v} does not exist inH or if the degree
of u in H is larger than3cnp̃.
Now observe that

P
(

δĤ(u) = v | {u, v} ∈ EH , degH(u) 6 3cnp̃
)

> 1/(6cnp̃) . (12)

Indeed, nodeu has3cnp̃ virtual neighbors inĤ plus up to3cnp̃ non-informed neighbors. As forP ({u, v} ∈ EH),
from Observation 1 (see Appendix B), it follows that

P ({u, v} ∈ EH) > p = p̃(p+ q) > q · p̃ . (13)

We now show thatP (degH(u) 6 3cnp̃ | {u, v} ∈ EH) is larger than a positive constant. Observe that we
can write

degH(u) =
∑

w∈[n]\{u}

Xw ,

whereXw is the indicator random variable of the event{u,w} ∈ EH . Thus,

E [degH(u) | {u, v} ∈ EH ] =
∑

w∈[n]\{u}

P (Xw = 1 | {u, v} ∈ EH) . (14)

Now observe that, forw 6= v, P (Xw = 1 | {u, v} ∈ EH) = P (Xw = 1) and it can have two values,
depending on whether or not edge{u,w} existed inG0,

P (Xw = 1 | {u,w} /∈ E0) = p+ (1− p)p ,

P (Xw = 1 | {u,w} ∈ E0) = 1− q + qp .

Hence, if we split the sum in (14) in thew’s that were neighbors ofu in E0 and those that were not, we get
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E [degH(u) | {u, v} ∈ EH ] 6 1 + (1− q + qp)degG0
(u) + (n− degG0

(u))(p + (1− p)p)

6 1 + degG0
(u) + (n− degG0

(u))2p

6 cnp̃+ 3np

6 2cnp̃ ,

where, from the first line to the second one we used thatp + (1 − p)p 6 2p and1 − q + qp 6 1, from the
second to the third line we used that1 6 np and thatdegG0

(u) 6 cnp̃, becauseu ∈ IA, and from the third
line to the fourth one we used thatp = (p + q)p̃ 6 2p̃ andc > 6. From Markov’s inequality it thus follows
that

P (degH(u) > 3np̃ | {u, v} ∈ EH) 6 2/3 . (15)

By combining (12), (13), and (15) in (11) we get

P
(

δĤ(u) = v
)

>
α

n

for a suitable positive constantα.
Since the events{δĤ (u) 6= v : u ∈ IA} are independent, the probability that nodev is not informed inĤ
is

P





⋂

u∈IA

δĤ(u) 6= v



 6 (1− α/n)|IA|
6 e−α|IA|/n 6 e−(α/2)|I|/n .

Let X be the random variable counting the number of new informed nodes inĤ. The expectation ofX is

thus
E [X] > (n− |I|)

(

1− e−(α/2)|I|/n
)

> (α/4)(n − |I|)|I|/n .

Hence we have that

E [X] >

{

(α/8)|I| if |I| 6 n/2 ,

(α/8)(n − |I|) if |I| > n/2 .

SinceX 6 min{|I|, n− |I|} the thesis then follows from Observation 2 (see Appendix B). �

Now we can prove that inO(log n) time steps thePush protocol informs all nodes in an edge-Markovian
graph, w.h.p.

Theorem 3 Let G = G(n, p, q, E0) be an edge-Markovian graph withp > 1/n and q = Ω(1) and let
s ∈ [n] be a node. ThePush protocol with sources completes the broadcast overG in O(log n) time steps
w.h.p.

Proof. Lemma 4 implies that afterO(log n) time steps there areΩ(log n) informed nodes w.h.p. From
Observation 1 (see Appendix B) and Lemma 5, it follows that, after furtherO(log n) time steps, the edge-
Markovian graph reaches a bounded-degree state and remainsso for furtherΩ(log n) time steps. Let us
renamet = 0 the time step where there areΩ(log n) informed nodes and every edgee ∈

(

[n]
2

)

exists
with probability pe ∈ [(1 − ε)p̃ , (1 + ε)p̃]. We again abbreviatemt := |It|. Observe that if recurrence
m2(t+1) > (1 + ε)m2t holdslog n/ log(1 + ε) times, then there aren/2 informed nodes. Let us thus name

T = 2
λ

logn
log(1+ε) . If at time2T there are less thann/2 informed nodes, then recurrencem2(t+1) > (1+ε)m2t
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held less thanλT/2 times. Since, at each time step, the recurrence holds with probability at leastλ (there
are less thann/2 informed nodes and the state is a bounded-degree one w.h.p.), the above probability is
at most as large as the probability that in a sequence ofT independent coin tosses, each one givinghead

with probabilityλ, we see less than(λ/2)T heads (see, e.g., Lemma 3.1 in [2]). By the Chernoff bound
such a probability is smaller thane−γλT , for a suitable positive constantγ. Sinceγ andλ are constants and
T = Θ(log n) we have that

P (m2T 6 n/2) 6 n−δ (16)

for a suitable positive constantδ. Whenmt is larger thann/2 and the edge-Markovian graph is in a bounded-
degree state, from Lemma 6 it follows that recurrencen−mt+1 6 (1− ε)(n−mt) holds with probability
at leastλ. If this recurrence holdslog n/ log (1/(1 − ε)) times then the number of informed nodes cannot
be smaller thann. Hence, if we namẽT := (2/λ) log n/ log (1/(1 − ε)), with the same argument we used
to get (16), we obtain that after2T + 2T̃ time steps all nodes are informed w.h.p. �

5 Conclusions

In this paper we studied thePush protocol over edge-MEGs. We first analyzed the independentGn,p case
(i.e. the edge-MEG withq = 1− p) and we showed that the completion time isO(log n/np̂) w.h.p., where
p̂ = min{p, 1/n}. Then we studied the general edge-MEG model withp > 1/n andq = Ω(1) and we
showed that the completion time is logarithmic. This bound is obviously tight because thePush protocol
cannot informn nodes in less thanlog2 n time steps.

Our results can be extended to the case of “more static” sparse dynamic graphs. Indeed, we can provide
a logarithmic bound on the completion time of thePush protocol over theG(n, p, q) model even forp =
Θ(1/n) and forq = o(1). The proof of the following result combines some new coupling arguments with a
previous analysis of thePush protocol for static random graphs given in [15] (a sketch of the proof is given
in Appendix A).

Theorem 4 Let p = d
n for some absolute constantd ∈ N and letq = q(n) be such thatq(n) = o(1). The

Push protocol over edge-Markovian graphs inG(n, p, q) completes inO(log n) time, w.h.p.

We believe that the most challenging question is to analyze rumor spreading over more general classes
of evolving graphs where edges may be not independent: for instance, it would be interesting to analyze the
Push protocol over geometric models of mobile networks [11, 26].
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Appendix

A Sketch of proof for Theorem 4

The proof makes use of the following previous result.

Lemma 7 (Theorem 12 in [15]) For anyε > 0, consider an Erd̋os-Ŕenyi random graphG(n, p) with p ≥
(1 + ε) log nn . Then, thePush protocol has w.h.p. completion timeΘ(log n).

We start by giving an equivalent formulation of the edge-Markovian model. Lete = {u, v} be a pair of
nodes (unordered) andt ∈ N. We define two families of Bernoulli random variables{Ue,t} and{Ve,t} with
parameterŝp and q̂ respectively. At each time stept, we first set edgee to emptyif Ve,t = 1 and leave it
unchanged ifVe,t = 0; then we set edgee to full if Ue,t = 1 and leave it unchanged ifUe,t = 0.
It is easy to verify that this process is equivalent to theG(n, p, q) process by takingp = p̂ andq = q̂(1− p̂),
as long as1− p = Θ(1).
It is also useful to consider the following partial order on nodeconfigurations(I, [n] \ I), whereI is the
subset of the informed nodes. We say that configurationC is belowconfigurationC′ if every informed node
of C is also an informed node ofC′.
In order to prove the theorem, we need to analyze some ranges for q = q(n) separately.

- q(n) = o(1/ logn). Under this condition, the stationary graph is w.h.p. fully connected withp̃ =
ω( lognn ). Moreover w.h.p. the degree of every node is larger thanαnq(n) for some (small) positive constant
α. The key observation here is to observe that the death rates are so small that a static approximation will
suffice. We make this idea more formal by introducing anothercoupling that requires this time to look into
the future. Let’s look at the evolution of the edges fork log n steps, wherek is a (sufficiently) large constant
and mark all the edges that will die during that time period. We now modify the dynamics as follows:
whenever a marked edge is selected by thePush to transmit the message, then the transmission does not
take place. This process is clearly below the one we are considering, under the partial order introduced
above. Thus the completion timeT of the new process is larger than that of the original one.
Observe that, for each node, the probability to ever be denied the use of an edge, within the time window
under consideration, is onlyo(1). This makes the dynamics only negligibly slower and therefore the com-
pletion timeT will be only a constant-factor larger than that in the process with no deaths. We can thus
apply Lemma 7 and get the thesis.

- q(n) from O(1/ logn) to o(1). Under this condition, the stationary graph has edge probability p̃ = 1
nq

and onlyo(n) nodes do not belong to the giant component. Moreover the average degree isΘ(1/q) and,
by a standard application of Chernoff’s bound, the probability that a node has degree betweenα/q(n) and
β/q(n) is bounded byexp(−M

qn
) for some realM depending onα andβ but not onn. The analysis of the

Push protocol is organized in stages.
- Stage 0: If the source node does not belong to the giant component, we only need to waitO(1/q(n))
steps for the message to infect one node of the giant component. If the source node belongs to the giant
component, this stage can be skipped.
- Stage 1:Let mt = |It| be the number of informed nodes at timet. This stage concerns the process while
mt is in the range1 6 mt 6 γn, for some absolute constantγ > 0. We will consider a modification of
the process so that a node is only allowed to transmit the message fork times, wherek will be fixed later.
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Clearly, the modified process is below the original one. LetA be the bad event “an informed node is selected
by thePush to receive the source message”. Then observe that

P (A) 6 kq(n) +
mt+1

n
6 γ′, for some constantγ′

This implies

E [mt+1 |mt] > mt + (1−P (A))(mt −mt−k) > mt + (1− γ′)(mt −mt−k)

Taking the expectation and settingE [mt] = µt, we have

µt+1 > (2− γ′)µt + (1− γ′)µt−k

Now, we can chooseγ ∈ (0, 1) (thusγ′) andk ∈ N so that the equation

zk+1 − (2− γ′)zk − (1− γ′)

has one root larger than 1. This ensures exponential growth of µt and thus completion time of Stage 1 in
O(log n) steps. Observe that the above bound holds w.h.p. Indeed, letδ be the largest root of the above
indicial equation. Sincemt is a Markov chain, the events

{mt+1 > E [mt+1 |mt]}

are independent for differentt’s. Moreover we have the deterministic bounds

mt 6 mt+1 6 2mt

From this, we get that (e.g from the Paley-Zygmund inequality)

P (mt+1 > E [mt+1 |mt]) > η > 0

By a standard application of Chernoff’s Bound, for any integer c, we can fix a suitable constantD such that,
aftert > D log n steps , we getP

(

mt > δηt
)

> 1− 1
tc .

- Stage 2: After Stage 1, by waitingO(k/q(n)) steps we can ensure that, w.h.p., for every nodev, an
arbitrarily-large constant fraction of thev-edges will be new, i.e. they were not in existence at the end of
Stage 1. This is equivalent to randomizing the informed nodes.
- Stage 3: We now consider a nodev and estimate the probability thatv has not received information after
D log n further steps. We call a vertexgoodif it has degree betweenα/q(n) andβ/q(n), otherwise we call
it bad. First observe that for arbitrarily smallε > 0 andn large enough, it holds

e
−M−ε

q(n) < D log n e
− M

q(n) < e
− M

q(n)

So that the probability that a node is ever bad in a time interval of lengthD log n is bounded bye
M−ε
q(n) . Let

v be good for all the time. The probability that the source message is not transmitted tov in a given step is
bounded above by

(

1− q(n)

β

)γ′ α
q(n)

≃ e
−γ′ α

β

Now, after 4β
γα log n steps, the probability thev has not received the message is bounded byn−4. So the

probability that there is a good vertex which has not yet beeninformed is bounded byn−2.
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Stage 4:We are now left with at mostO(n e
M−ε
q(n) ) non-informed nodes. In order to show that they have

actually been informed during Stage 3, we need to look more carefully at how the degree of a given node
evolves in time. This is a Markov chain on[0, . . . , n] with stationary measureµ which is binomial with
parameters(n, 1

nq(n)). As we observed before, it holds that

µ([αq−1
n , βq−1

n ]) > 1− e

(

− M
q(n)

)

By takingD large enough, we get that the chain will spend a positive fraction of the time in[α/q(n), βq(n)]
with probability at least1− 1

n4 . We then get that the probability that there is a pair of nodeswhich are both
bad for a positive fraction of the time is bounded byn−2. By restricting information transmission to pairs
of good nodes, we can again use the analysis of Stage 3.

- q(n) = O(1/ logn). This case is similar to previous one, but it is easier, so it will be omitted.

B A few observations

Observation 1 Consider the general two state Markov chain





0 1

0 1− p p
1 q 1− q





Then

• For every initial statex ∈ {0, 1}, the probability that the chain is is state1 in at least one of the first
two time steps is

P (X2 = 1 or X1 = 1 |X0 = x) > p

• Letpt = P (Xt = 1) be the probability that the chain is in state1 at timet. Then

pt =
p

p+ q
+

(

p0 −
p

p+ q

)

(1− p− q)t

Observation 2 LetX be a random variable taking values between0 andm, for some positive realm. If
E [X] > λm for some0 6 λ 6 1, then

P

(

X >
λ

2
m

)

> λ/2
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