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Abstract

Dynamic networks are those where the topology changes over time and therefore efficient routes need to be
maintained by frequent updates. Such updates could be costly in terms of consuming throughput available for data
transmission, which is a precious resource in wireless networks. In this paper, we ask the question whether there exist
low-overhead schemes for dynamic wireless networks, that could produce routes that are within a small constant
factor (stretch) of the optimal route-length. This is studied by using the underlying geometric properties of the
connectivity graph in wireless networks. For a class of models for mobile wireless network that fulfill some mild
conditions on the connectivity and on mobility over the timeof interest, we can design distributed routing algorithm
that maintains the routes over a changing topology. This scheme needs only node identities and therefore integrates
location service along with routing, therefore accountingfor the complete overhead. We analyze the worst-case
(conservative) overhead and route-quality (stretch) performance of this algorithm for the aforementioned class of
wireless network connectivity and mobility models. In particular for these models, we show that our algorithm
allows constant stretch routing with a network wide controltraffic overhead ofO(n log2 n) bits per mobility time
step (time-scale of topology change) translating toO(log2 n) overhead per node (with high probability for wireless
networks with such mobility model). Additionally, we can reduce the maximum overhead per node by using a
load-balancing technique at the cost of a slightly higher average overhead. We also demonstrate through numerics
that these worst-case bounds are quite conservative in terms of the constants derived theoretically.
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I. INTRODUCTION

A major challenge in the design of wireless ad hoc networks isthe need for distributed routing algorithms that
consume a minimal amount of network resources. This is particularly important in dynamic networks, where the
topology can change over time, and therefore routing tablesmust be updated frequently. Such updates incur control
traffic, which consumes bandwidth and power. It is natural toask whether there exist low-overhead schemes for
dynamic wireless networks that could produce and maintain efficient routes. In this paper we consider dynamically
changing connectivity graphs that arise in wireless networks. Our performance metric for the algorithms is the
average signaling overhead incurred over a long time-scalewhen the topology changes continuously. We design a
routing algorithm which can cope with such variations in topology. We maintain efficient routes from any source
to any destination node, for each instantiation1 of the connectivity graph. By efficient, we mean that we want to
guarantee that the route is within a (small) constant factor, calledstretchof the shortest path length. In order to
route to a destination, we need only the identity of the destination and not its addressi.e., the control traffic to
maintain the mapping between node identity and address/location is incorporated into the overhead. Therefore, in
the wireless routing terminology, we have included the “location service” in the control signaling requirement, and
therefore hope to characterize the complete overhead needed to maintain efficient routes.

In order to develop and analyze the routing algorithms we utilize the underlying geometric properties of the
connectivity graphs which arise in wireless networks. Thisgeometric property is captured by thedoubling dimension
of the connectivity graph. A graph induces a metric space by considering the shortest path distance between nodes
as the metric distance. The doubling dimension of a metric space is the number of balls of radiusR needed to cover
a ball of radius2R. For example a Euclidean space has a low doubling dimension as will be illustrated in Section
II. A metric space having a low (constant independent of the cardinality of the metric space) doubling dimension is
called “doubling”. We show that several wireless network graphs (under conditions given in Section II) are doubling
and therefore enable the design and analysis of hierarchical routing strategies. In particular, it is not necessary to
have uniformly distributed nodes with geometric connectivity for the doubling property to hold, as illustrated in
Figure 2 in Section II. Therefore, the doubling property hasthe potential to enable us to design and analyze
algorithms for a general class of wireless networks. Moreover, for a large class of mobility models, the sequence
of graphs arising due to topology changes are all doubling (for specific wireless network models). Since there are
only “local” connectivity changes due to mobility, there isa smooth transition between these doubling graphs. We
can utilize the locality of topology changes to develop lazyupdates methods to reduce signaling overhead.

We show that several important wireless network models produce connectivity graphs that are doubling. In
particular, we show that the geometric random graph with connectivity radius growing as

√
log n with network size

n; the fully connected regime of the dense or extended wireless network with signal-to-interference-plus-noise ratio
(SINR) threshold connectivity; some examples of networks with obstacles and non-homogeneous node distribution.
We define a sequence of wireless connectivity graphs to besmoothif each of the graphs is doubling and the shortest
path distance between two nodes in the graph changes smoothly (defined in Section II). These for mild regularity
conditions on the mobility model.

Our main results in this paper are the following. (i) For smooth geometric sequence of connectivity graphs, we
develop a routing strategy based on a hierarchical set of beacons with scoped flooding. We also maintain cluster
membership for these beacons in a lazy manner adapted to the mobility model and doubling dimension. (ii) We
develop a worst-case analysis of the routing algorithm in terms of total routing overhead and route quality (stretch).
We show that we can maintain constant stretch routes while having an average network-wide traffic overhead of
O(n log2 n) bits per mobility time step. The load-balanced algorithm would requireO(log3 n) bits per node, per
mobility time. Through numerics we show that the theoretically obtained worst-case constants are conservative.

A. Related Work

Routing in wireless networks has been a rich area of enquiry over the past decade or more. The two main
paradigms for routing have been geographic routing and topology based routing. Geographic routing (see for instance
[1] and references therein) exploits the inherent geometryof wireless networks, and bases routing decisions directly

1We assume inherently that the round-trip time (RTT) of a packet from source to destination is much smaller than the time-scale of
topology change.
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on the Euclidean coordinates of nodes. Their performance depends on how well the Euclidean coordinate system
captures the actual connectivity graph, and these approaches can therefore fail in the presence of node or channel
inhomogeneity (like in Figure 2 in Section II). Another important, but often overlooked, issue with geo-routing is
that geographical positions of the nodes need to be stored and continuously updated in a distributed database in
the network, to allow sources of messages to determine the current position of the destination. This database is
called alocation service(see for instance [2]) and must be regularly updated so that source nodes can query it.
Location services typically rely on some a-priori knowledge of the geographical boundaries of the network. This
is necessary because these approaches typically establisha correspondence (for example, through a hash function)
between a node identifier and one or several geographical locations where location information about that node is
maintained. An important feature of our work is that we consider the total overhead incurred by the update and
lookup operations of the location service, and the overheadof the routing algorithm itself.

Topology based routing schemes (see [3] and [4]) do not utilize the underlying geometry of wireless connectivity
graphs, but instead compute routes based directly on that graph. To reduce overhead, most of these schemes only
establish routeson demandthrough a route discovery operation, rather than continuously maintaining a route
between every pair of destinations; in this respect, they differ significantly from their counterparts for the wired
Internet (such as OSPF, IS-IS, and RIP). Recently established routes are cached in order to allow their reuse by
future messages. In distance-vector based approaches (e.g., [3], this cached state resides in the intermediate nodes
that are part of a route, whereas in source-routing approaches (e.g., [4]), the cached state resides in the source of
a route. Despite such optimizations, topology-based approaches suffer from the large overhead of frequent route
discovery operations in large and dynamic networks. This issue was, in fact, the reason why geo-routing approaches
have reached prominence.

Two schemes that utilize the underlying geometry of graphs in staticwireless networks algorithms are the works
presented in [5] and the beacon vector routing (BVR) introduced in [6]. Both these schemes are heuristics which
build a virtual coordinate system over which routing takes place. They were shown to work well through numerics.
However, they utilize an external addressing scheme to makea correspondence between addresses and names. In
[7], routing on dynamic networks using a virtual coordinatesystem was studied. For large scale dynamic wireless
networks, these heuristics pointed to significant advantages to using some geometric properties for routing and
addressing. These results motivated the questions studiedin this paper.

There has been a vast amount of theoretical research on efficient routing schemes in wired (i.e., static) networks
(see for example [8]). Most of this work has been focused on the trade-off of memory (routing table size) and
routing stretch. There are two main variants of such routingschemes (i)labeled(or addressed) routing schemes,
where the nodes can be assigned addresses so as to reflect topological information; (ii) namedrouting, where
nodes have arbitrary names, and as part of the routing, the location (or address) of the destination needs to be
obtained (similar to a location service). This examines theimportant question of how the node addresses need to be
published in the network. Routing in graphs with finite doubling dimension has been of recent interest (see [9], and
references therein). In particular [10] showed that one could get constant stretch routing with small routing table
sizes for doubling metric spaces, when we use labeled routing. This result was improved to make routing table
sizes smaller in [11]. The problem of named routing over graphs with small doubling dimension has been studied
in [9] and [12], and references therein. To the best of our knowledge, there has been no prior work ondynamic
graphs over doubling metric spaces and on control traffic overhead. It is worth pointing out that there is no direct
correspondence between control traffic and memory. Bounds on memory do not take into account the amount of
information which needs to be sent around in the network in order to build routing tables. A good illustration is
the computation of the shortest path between two nodesu andv in a graph. While it is sufficient for every node
on the path between these two nodes to have one entry forv (of roughly log n bits i.e., the name of the next hop),
computing that shortest path requires a breadth first searchof the communication graph and leads to a control traffic
overhead ofO(n log n) bits.

II. M ODELS AND DEFINITIONS

A wireless network consists of a set ofn nodes spread across a geographic area in the two-dimensional plane.
We model the network region as the square area[0,

√
n) × [0,

√
n) . Then nodes move randomly in this area and

we denote byx(t)(u) the position of nodeu at time t. The connectivity between two nodes is represented by an
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edge on the connectivity graphG(t)
n if they can communicatedirectly over the wireless channel. The connectivity

between two nodes depends on the distance between the two nodes (and could also depend on the presence of other
nodes, see Section II-B). We consider that when a nodeu transmits on the wireless channel, it broadcasts to all
its neighbors in the connectivity graphG(t)

n . Consequently, one transmission of a packet is sufficient for all direct
neighbors to receive that packet. To make the notation lighter, we will only add the dependence on time if it is
necessary to avoid confusion. The distanced(t)(u, v) between nodesu andv is the shortest path distance between
these nodes inG(t)

n . Note thatd(., .) is a metric onG(t)
n , i.e., the distance between a node and itself is zero, the

distance function is symmetric and the triangle inequalityapplies. We will now define aball of radiusR around a
nodeu. It is simply the set of nodes within distanceR of u. More formally, we can define it more generally for
any metric space as follows:

Definition 1: A Ball B(t)
R (u) around nodeu at time t in a metric spaceX is the set

{
v ∈ X|d(t)(u, v) ≤ R

}
.

In order to bound the control traffic overhead, we will recursively subdivide the connectivity graph into balls. It
will be crucial for us to bound the number of balls of radiusR necessary to cover a ball of radius2R around some
nodeu. In other words, we want to find the smallest number of nodesvi such that all nodes within2R of u are
also withinR of some nodevi. The notion of doubling dimension of a metric space capturesthis idea.

Definition 2: The doubling dimensionof a metric spaceX is the smallestα such that any ball of radius2R can
be covered by at mostα balls of radiusR, for all R ≥ min(u,v)d(u, v) i.e., ∀u ∈ X ∃ Su ⊆ X , |Su| ≤ α and

B(t)
2R(u) ⊆

⋃

j∈Su

B(t)
R (j)

Moreover, ifα is a constant, we have the following definition:
Definition 3 (Doubling metric space):We a metric spaceX is doubling if its doubling dimension is a constant.

A good way to illustrate and understand the concept of doubling dimension and doubling metric space is to look
at the metric space defined by a set of pointsX in R

2 with the Euclidean distance. A ball of radius2R around
a pointx will simply be a disc of radius2R around this point. To cover this disc, we will select a set of points
such that all the surface is covered by the corresponding setof discs of radiusR. Note that the number of discs
required will not depend on R, and consequently this metric space would bedoubling (see Figure 1). Further, a
metric space is said to bedoubling if its doubling dimension is a constant, independent of the number of nodesn.

Fig. 1. The metric space defined by a set of points inR
2 and the Euclidean distance is doubling. Indeed, we can covera dic of radius2R

by a constant (8 in this case) number of discs of radiusR, whatever the value ofR.

In Section II-A, we describe the geometric random graph model, which will be the canonical model we will use
to illustrate the ideas of the paper. We also give an example of a non-homogeneous network to which our results
can be applied. In Section II-B, we will develop the model where connectivity is determined by the SINR, and we
have uniform transmit power and full connectivity. We give the requirements for the mobility model to result in a
smoothsequence of wireless network graphs in Section II-C. We state the underlying assumptions and give a table
of notations in Section II-D.
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A. Geometric random graph

We denote the geometric random graph byG(n, rn) and define its connectivity as follows.
Definition 4: A random geometric graphG(n, rn) has an unweighted edge between nodesu andv if and only

if ||x(u) − x(v)|| < rn, where{x(u)} are chosen independently and uniformly in[0,
√
n) × [0,

√
n) .

In this paper we will be interested in fully connected geometric random graphs, and therefore focus on the case
rn >

√
log n [13]. As a natural extension, we can also define a sequence of random graphsG(t)(n, rn) with an

unweighted edges betweenu and v at time t if ||x(t)(u) − x(t)(v)|| < rn. Whether each graph in the sequence
G(t)(n, rn) corresponds to a random geometric graph as in Definition 4, depends on the mobility model for the
nodes. We discuss this in more detail in Section II-C.

In Figure 2, we illustrate a non-homogeneous random networkwhere connectivity is not completely geometric
as in Definition 4. An obstacle prevents communication between neighboring nodes, and therefore illustrates the
complexities of wireless network connectivity. This example is revisited in Section III, where we show that though
this connectivity graph is more complicated thanG(n, rn), it is still doubling, and therefore the algorithms developed
in this paper are applicable. This illustrates the advantage of our approach to network modeling.

Fig. 2. n nodes are distributed uniformly at random on a square area ofside
√

n. A wall of width rn/c is added which only has a small
hole in the middle. Again, we assumern >

√
log n. Nodes cannot communicate through the wall. Finally, we remove the nodes below the

wall, which leads to an inhomogeneous node distribution.

B. SINR full connectivity

Since the wireless channel is a shared medium, the transmissions between nodes interfere with each other.
However, the signal strength decays as a function of the distance traveled, and therefore we can define the SINR
for transmission from nodeu to v as,

SINR =
Pn||x(u) − x(v)||−β

N0 +
∑

w 6=u,v P ||x(w) − x(v)||−β
, (1)

whereβ is a distance loss (decay) parameter depending on the propagation environment,Pn is the common transmit
power of the nodes andN0 is the noise power. We can of course easily adapt this to have power control for the
nodes. A transmission is successful if the SNIR is above someconstant threshold valueς. For static nodes, just as
in the case of geometric random graph, we assume that the nodelocations{x(u)} are chosen independently and
uniformly in [0,

√
n) × [0,

√
n) . This model for wireless networks has been extensively studied in the literature

(see [14], [15]). The authors base their analysis of the capacity of wireless networks on a TDMA scheme for the
SINR connectivity model of (1). We argue here that the structure of the resulting connectivity graph is identical to
that of G(n, rn), for rn >

√
log n. Therefore, the results we prove forG(n, rn), would also be applicable to such

graphs. In practice, it is a non-trivial task to design a distributed scheduling protocol (MAC layer protocol) that
mimics the behavior of this TDMA scheduler. However, these MAC layer implementation issues are far beyond
the scope of this document (see for instance [16]). We only make the argument here that the connectivity graph
resulting from such a TDMA scheme would yield the same behavior as aG(n, rn).

We will subdivide the network into small squares of sidesn = rn

c . We need to show that if two nodesu andv
are in neighboring small squares (and so have the guarantee that they can communicate under theG(n, rn) model
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as we will see in the sequel), then there exists a TDMA scheme that allows them to communicate under the SINR
connectivity model of (1). If this is the case, then we can apply the same proof techniques for both models. We let
the maximum transmission power grow in the same way as we did for theG(n, rn) model2 i.e. Pn ≤ (Noςrn)β.
Additionally, we want to design a TDMA scheme such that the capacity of all links is at leastO( 1

log n) [bits/sec].
It can be shown (see [17]) that every small square contains atmostO(log n) nodes. Hence, we ask that the traffic
can flow at constant rate independent ofn between neighboring small squares, and that each node is treated equally.
Note that this requirement is very similar to the scheme proposed in [14] in which one node per small square can
transmit at constant rate to any neighboring square3.

Theorem 1:There exists a TDMA scheme such that all nodes can communicate with any node located in a
neighboring small square at a rate ofO( 1

log(n)) [bits/sec]. Hence, the aggregate traffic can flow between neighboring
small squares at a constant rate independent ofn.

Proof: We take a coordinate system, and label each square with two integer coordinates. Then we take an
integerk, and consider the subset of squares whose two coordinates are a multiple ofk (see Figure 3). By translation,
we can constructk2 disjoint equivalent subsets. This allows us to build the following TDMA scheme: we definek2

time slots, during which all nodes from a particular subset are allowed to transmit for the same duration ofO( 1
log n)

seconds. Each small square contains at least one and at mostO(log n) nodes w.h.p. (see [17] and the proof of
Theorem 3). We assume also that at most one node per square transmits at the same time, and that they all transmit
with the same powerPn. Let us consider one particular square. We suppose that the transmitter in this square

Fig. 3. Illustration of the TDMA scheduling scheme

transmits towards a destination located in a square at distance at most1. We compute the signal-to-interference
ratio at the receiver. First, we choose the number of time slots k2 as follows:k = 4. To find an upper bound
to the interferences, we observe that with this choice, the transmitters in the8 first closest squares are located
at a distance at least3 (in small squares) from the receiver (see left-hand side of Figure 3). This means that the
Euclidean distance between the receiver and the8 closest interferers is at least2sn. The16 next closest squares are
at distance at least7 (in small squares), and the Euclidean distance between the receiver and the16 next interferers

2Note that theG(n, rn) model corresponds to the SNIR model without interferences.Indeed, if we remove interferences, two nodes can
communicate wheneverPn||x(u)−x(v)||−β

N0
> ς for some threshold valueς. Hence, two nodes can communicate whenever||x(u)− x(v)|| <

( Pn
Noς

)1/β . In particular, we letPn = (Noςrn)β

3The throughput achieved by this scheme isO( 1√
n log n

) [bits/second/node] when n source destination pairs are chosen uniformly at
random
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is therefore at least6sn, and so on. The sum of the interferencesI can be bounded as follows:

I ≤ ∑∞
i=1 8iPn [2sn(2i − 1)]−β

= Pn [2sn]−β ∑∞
i=1 8i [(2i− 1)]−β

= (Noςrn)β
[
2 rn

c

]−β ∑∞
i=1 8i [(2i − 1)]−β

This term clearly converges ifβ > 2. Now we want to bound from below the strength of the signal received from
the transmitter. We observe first that the distance between the transmitter and the receiver is at most

√

2(s2n) ≤ 2sn.
The strengthS of the signal at the receiver can thus be bounded by

S ≥ Pn min
{

1, 2s−β
n

}

= O(1)

Finally, we obtain the following bound on the SINR:SINR ≥ S
No+I . As the above expression does not depend

on n, the theorem is proven.

C. Uniform speed-limited (USL) mobility

Nodes are mobile and move according to the uniform speed-limited (USL) model, a fairly general mobility
model defined next. The USL model essentially embodies two conditions: (i) the node distribution at every time
step is uniform over the network domain, and (ii) the distance a node can travel over a time step is bounded. We
restrict ourselves to the case in which the maximum speed is not dependent onn. In practice, of course, such an
assumption is realistic since the maximum speed of the nodeswill not increase when new nodes join the network.

Definition 5: A collection of n nodes satisfy the uniform speed-limited (USL) mobility model if the following
two conditions are satisfied:

(i) At every time t, the distribution of nodes over the network domain is uniform;
(ii) For every nodeu and timet, the distance traveled in the next time step is bounded, i.e., ||x(t+1)(u)−x(t)(u)|| <

S.
The USL mobility model is quite general. For example, it includes the following cases: (i) The nodes perform

independent random walks (on the torus) with bounded one-step displacement. The random walks can be biased,
and the displacement distribution does not need to be homogeneous over the node population. We have to assume
that the nodes operate in the stationary regime. (ii) The nodes follow the random waypoint model (RWP). The
system has to be in the stationary regime. (iii) The generalized random direction models from [18], which interpolate
between the random walk and the random waypoint cases, through a control parameter that can be viewed as the
”locality” of the mobility process. (iv) We can also allow for models where nodes do not move independently. As
an illustrative example, assume we uniformly place nodes onthe square; the nodes then move in lockstep according
to any speed-limited mobility process, maintaining their relative positions to each other. Observe that the uniform
distribution is maintained for all time steps (note that we move on a torus), and that the speed-limited property is
true by definition.

We see that the USL class of mobility models is fairly general, and includes many of the models that have been
proposed in the literature. For simplicity, we consider that time is discrete. In other words, we look at a snapshot
of the network every∆T seconds. At every time step, the connectivity between nodeswill be modified. Hence, we
will work with a sequence of connectivity graphs. In order todesign a routing algorithm with a low control traffic
overhead, we will need to understand how fast the distances between nodes can evolve over time. In particular,
consider two nodesu andv at distanced = dt(u, v) at timet. We want to bound the multiplicative factor by which
this distance can change inκ time steps. Formally, we defineκ(τ, d) as follows:

Definition 6: We say that a communication network isκ(τ, d)-smooth if the shortest path distance between any
two nodesu an v at shortest path distanced cannot change by more than a factorκ(τ, d) in τ time stepsi.e.,

max

{

d(t)(u, v)

d(t+τ)(u, v)
,
d(t+τ)(u, v)

d(t)(u, v)

}

≤ κ(τ, d)

, ∀u, v.
Additionally, we simply say that the network isκ-smoothif there exists a constantν such thatκ(νd, d) ≤ κ(ν) = κ
independently ofd. In this case, the distances grow at the same speed at all scales. In the sequel, we will boundκ
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andν for our model. This USL property holds for a general class ofrandom tripmobility models studied in [19],
where it is shown that the stationary distribution of such mobility models is uniform and ergodic. We restate this
theorem without proof.

Theorem 2:( [19]) The random-trip mobility model has uniform stationary distribution on[0, a) × [0, a).

D. Assumptions

We consider that a time step∆T is much larger than the round trip time (RTT) through the network i.e. the time
scale for mobility is much larger than the time scale for communications. For clarity and in order to simplify the
analysis, we will make the assumption that nodes can communicate instantaneously through the network. We also
make the assumption that there is a random permutationπ on the nodes, and that all nodes in the network know
their rank in the permutation. In Section VI we will then dropthese assumptions and consider practical aspects of
the implementation. Finally, we say that a result holds withhigh probability (w.h.p.) if it holds with probability at
least(1 −O( 1

nρ )), for some constantρ > 0. In table I, we summarize the notations used in this paper.

x(t)(u) Position of nodeu at time t

d(t)(u, v) Shortest path distance fromu to v at time t
rn Wireless communication radius

G(n, rn) Random geometric graph
B(t)

R (u) Ball of radiusR aroundu

κ(τ, d) max
{

d(t)(u,v)

d(t+τ)(u,v)
, d(t+τ)(u,v)

d(t)(u,v)

}

≤ κ(τ, d)

TABLE I

TABLE OF NOTATIONS

III. N ETWORK PROPERTIES

In this section, we will prove some properties of the networkmodels presented in Section II, which will be
necessary to analyze the performance of our algorithm. We will focus our attention on the geometric random graph
G(n, rn), but all the arguments can be extended to the SINR full connectivity model with TDMA scheduling,
discussed in Section II-B. In particular, forG(n, rn), we will now consider the case in which the communication
radiusrn is such thatrn =

√

(1 + ǫ) log n > log1/2 n, whereǫ > 0.
For uniform speed-limited (USL) mobility models discussedin Section II-C, at each time, the node locations

{x(t)(u)} have an empirical distribution that is uniform over[0,
√
n) × [0,

√
n) . Therefore, we now discuss the

property of a sequence of geometric random graphs,G(t)(n, rn), with USL mobility model. We subdivide the
network area on which the nodes live into smaller squares of side rn

c , wherec is a constant chosen such that nodes
in neighboring squares are connected (see Fig. 4) and that aninteger number of squares fit into the network area.
We arbitrarily setc =

√
5. We number the small squares from1 to m = n

(rn/c)2 = nc2

(1+ǫ) log n and denote byEi the

Fig. 4. Nodes in neighboring squares are connected

event that small squarei does not contain any node. In the next theorem, we show that when nodes move according
to USL mobility model, all small squares will be populated w.h.p. in a sequence of lengthnρ, for some constantρ.

Theorem 3:There exists a constantρ such that if we divide the network into small square of sider(n)
c (with

r(n) >
√

log n), every small square contains at least one node at every timestep w.h.p. in a sequence of lengthnρ
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Proof: Consider a sequence of lengthZ = nρ. Denote byE(j)
i the event the small squarei is empty at time

j. Let m = n
r(n)2 . We can compute:

P
[
⋃Z

j=1

⋃m
i=1E

(j)
i

]

≤ Z
∑m

i=1 P
[

E
(j)
i

]

= Z
∑m

i=1(1 − 1
m)n

≤ Z
∑m

i=1 e
− n

m

= Z nc2

(1+ǫ) log ne
−nc2(1+ǫ) log n

n

≤ Z nc2

(1+ǫ) log n
1

n(1+ǫ)

= Z c2

(1+ǫ)nǫ log n

≤ O(nρ

nǫ )
= O( 1

nǫ−ρ )

We can now chooseρ such thatǫ− ρ > 0 and the result follows.
It is immediate that a single instantiation of the connectivity graph, every small square is populated w.h.p.

Corollary 1: There is no empty small square with probability at least(1 −O( 1
nǫ )) in a sequence of length1.

We are now ready to show that the connectivity graph is doubling at every time step in a sequence ofnρ

connectivity graphs w.h.p. Since we have a USL mobility model, the behavior of any graphG(t)(n, rn) at time t,
is statistically identical toG(n, rn).

Theorem 4:G(n,
√

(1 + ǫ) log n) are doubling w.h.p.
Proof: By Lemma 1, all small squares contain at least one node w.h.p.Consequently, neighboring squares

(vertically and horizontally) have at least one communication link. Denote byL(m, r) the grid having the small
squares as vertices, and with edges between vertical and horizontal neighbors. Consider a ballBupper = BG

2R(u)
centered around some nodeu. Clearly, all nodes inBupper must be contained in a square which is part ofBL

4Rc(u)
i.e.,Bupper ⊆ BL

4Rc(u). This follows from the fact that no node inBupper can be further away fromu than2Rr in
Euclidean distance, and that the grid is fully connected w.h.p. Similarly, one can see thatBL

R(u) ⊆ Blower = BG
R(u).

This is a consequence of the fact thatL is a subgraph ofG i.e., two nodes in small squaresR hops a part inL
cannot be more thanR hops apart inG (see Fig. 5). It is easy to see that one can coverBL

4Rc(u) with a constant
α BL

R(vj). Hence,

Bupper ⊆ BL
4Rc(u) ⊆

α⋃

j=1

BL
R(vj) ⊆

α⋃

j=1

BG
R(vj) (2)

andG(n,
√

(1 + ǫ) log n) is doubling.
Note that it is possible to build a deterministic geometric graph for which this property does not hold (see Appendix
.0.a). Further, one can show thatG(n, rn) are not doubling w.h.p whenrn <

√
log n. We prove this result in

Appendix .0.b. At this point, we would like to emphasize the fact that even though we analyze networks in which
the nodes are uniformly distributed on a square area, the doubling property is a much more powerful tool. Indeed,
our results and algorithms depend only on the doubling constant. Consequently, the algorithms and the bounds can
be applied to any other type of networks or node configurationwhich lead to a doubling connectivity graph. For
instance, one can consider the network shown in Figure 2, described in Section II-A. It can easily be shown by
using a technique similar to the one used in Theorem 4 that this network is doubling. While we can seamlessly
apply our routing algorithm to such a network, any classicalgeographic routing algorithm would fail or require a
high control traffic overhead to get out of dead-ends. This due to the fact that nodes would get stuck against the
wall when routing packets from the lower to the upper part of the network. In turn, this would considerably affect
the performance in terms of stretch and control traffic overhead with respect to the same network without a wall. In
the next subsection we will prove a set of sufficient conditions for wireless networks to have a constant doubling
dimension.

A. Inhomogeneous Topologies

In the first part of this subsection, we will show that under certain conditions, the presence of topological holes in
the network does not increase the doubling property, or onlyby a constant factor. In particular, we are interested in
how we can alter the topology of a fully connected and dense network by removing nodes while still preserving the
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Fig. 5. Proof of theorem 4

doubling property. In the second part, we will generalize this idea to arbitrary metric spaces. Consider aG(n, rn)
with rn >

√
log n, such that full connectivity is guaranteed. We now arbitrarily remove nodes form this connectivity

graph, and denote the new graph we obtain byGn . The network area is divided into squarelets of sidern

c , wherec is
chosen such that nodes in horizontally and vertically adjacent squarelets are guaranteed to be within communication
range. We denote byLn the full grid where the squareletes are vertices and byHn the corresponding grid inGn i.e.,
the thinned out grid obtained by selecting only non-empty squarelets inGn . In bothHn andLn , we add an edge
only between horizontally and vertically adjacent squarelets (see Fig. 6). We can now define a topological hole as
follows:

Definition 7 (Topological Hole):A topological hole is a set of horizontally, vertically or diagonally contiguous
squarelets containing no nodes.
Let us denote byVk the kth such hole (k=1,2,3,...). We define the perimeterp(Vk) of Vk as the perimeter of this
hole inHn in graph distance (i.e., the number of hops of a path along the border of the hole inHn ).

Theorem 5:Let P = maxk p(Vk). Then, the doubling dimension is upper bounded byO(P 2).

Proof: Consider a ballBGn
2R (u) centered atu in Gn . First, observe thatBGn

2R (u) ⊆ BoxLn
2Rc (u), where

BoxLn
2Rc (u) is the box centered at the squarelet containingu in Ln which contains all nodes at “maximum norm”

2Rc (i.e., l∞-norm) from this squarelet. In other words, all nodes within2R hops fromu in Gn must be in a
squarelet contained in this box. We will now cover this box with smaller boxesBoxLn

max
{

1,
⌈

R

4γ

}⌉(svi
). We need

⌈
16R2c24γ2

R2

⌉

= 64c2γ2 such boxes at most. Consider the same small boxes inHn . Pick one non-empty squarelet
svi

in each such small boxes. Note that the maximum hop distancesbetween two squarelets in such a small box
in Ln is at mostR

γ . For each of these hops, we might have to make a detour of at most P steps. Consequently,
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Fig. 6. GraphsGn , Ln andHn . The network area is divided into squarelets of sidern
c

such that nodes in horizontally and vertically
adjacent squarelets are guaranteed to be within communication range.

Fig. 7. A network with holes

the same two squarelets could be at distance at mostPR
γ in Hn . Observe now that for any two nodesu and

w contained in squareletssu and sw respectively, we havedHn (su, sw) ≥ dGn (u,w). For each squareletsvi
,

we pick one nodevi contained in this squarelet. Hence, for all nodesw contained in this small box, we have
dGn (vi, w) ≤ dHn (svi

, sw) ≤ PR
γ . By settingγ = P , we obtain the claim.

We can extend this result to the case where the network can be divided into convex sets. We define a convex set
in Gn with slack as follows:

Definition 8: Let Ψ be a set of nodes inGn . Let Hn
(Ψ) be the squarelets inHn containing at least one node

in Ψ. We say that the setΨ is convexif ∀u, v ∈ Ψ, dHn
(Ψ)

(su, sv) = dLn (su, sv), wheresu and sv are the
squarelets containingu andv i.e., there must be at least one shortest path inside the convex set. We say that the
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setΨ is convex with slack Pif dHn
(Ψ)

(su, sv) ≤ PdLn (su, sv).
We can now state the following theorem

Theorem 6:Let CS1, CS2, ..., CSq be a partition of the network intoq convex sets with slackP1, P2, ..., Pq

respectively. Letper1, per2, ..., perq denote the perimeter of the convex sets. The doubling dimension is then upper

bounded bymaxu,ρ 4
∑

CSi:CSi∩Box
Ln
ρ (su)6=∅

(

⌈

peri
ρ

Pi

⌉

)2.

Proof: In the proof of Theorem 5, we have shown that any ball of radius2R around some nodeu is contained
in a boxBoxLn

ρ (su), whereρ = 2Rc. We can cover each convex setCSi intersecting this box with at most

4(

⌈

peri
ρ

Pi

⌉

)2 small boxes of radiusR/4Pi, as shown in Theorem 54. A slack of P implies that by selecting one

node in each of the small boxes, all nodes in the convex set arewithin R hops of this node inGn . If the box

BoxLn
ρ (su) is partitioned into several convex sets, selecting4(

⌈

peri
ρ

Pi

⌉

)2 nodes in each convex setCSi intersecting

this box will in turn guarantee that all nodes are covered.
In practice, this result implies that if we are given a decomposition of the network into convex sets, we can bound
the overall doubling dimension given the doubling dimension of each set separately. Further, this result implies
that networks that consist of a small number of convex areas,which can each contain arbitrarily many small holes,
have a low complexity in terms of doubling dimension. We willnow relate the “shapes” of a topological hole to
the doubling dimension. In particular, we will show that onecan relate the doubling dimension to the maximum
number of connected components in any square subarea.

Theorem 7:For anyγ ≥ 2, the doubling dimensionα is such that

α ≤ 4γ2c2 max

BoxLn
R/γ (u)

{

number of convex disconnected components with slackγ in BoxLn
R/γ (u)

}

Proof: In the proof of Theorem 5, we have shown that any ball of radius2R around some nodeu is contained
in a boxBoxLn

ρ (su), whereρ = 2Rc. In turn, we showed that by dividing this box into smaller boxes of side
R/γ, and by selecting one node in each box, we could cover the larger ball of radius2R. Now, in each small box
of sideR/γ, the presence of holes might create several disconnected components. However, we know that inside
each such component, we can cover any convex subset with slack γ with one nodes. The result follows.
This last result gives us a characterization of the alterations we can make to a fully connectedG(n, rn) network,
while only affecting the doubling dimension by a constant factor. In particular, we can remove nodes as long as we
do not create too many convex and disconnected components inany square subarea. Note that we can still remove
arbitrarily many nodes as long as we only create small holes.Theorems 5, 5, 5 imply that topologies such as the
one shown in Fig. 8 have a constant doubling dimension. The results stated above are special cases of the more
general result detailed in the sequel. Indeed, we can relatethe doubling dimension in a metric space to the doubling
dimension in another metric space if we know the distortion of the embedding that maps the points in one metric
space to the points in the other metric space. The example above is a special case of that setup where we map the
nodes of a graph to points in Euclidean space. Consider two metric spaces(X, d) and(X ′, d′), whered andd′ are
distance functions which define a metric on the sets of pointX andX ′. We could for instance consider the two
metric spaces(X , ||.||) and(H, d(., .)) i.e., the points in the plane with the Euclidean distance and the nodes in the
graph with the shortest path distance. Ametric embeddingis a bijective functionφ : X → X ′ which associates to
a point in one metric space a point in another metric space.

Definition 9 (Distortion of an Embedding):A mappingφ : X → X ′ where(X, d) and(X, d′) are metric spaces,
is said to have distortion at mostD, or to be aD-embedding, whereD ≥ 1, if there is aK ∈ (0,∞) such that
∀x, y ∈ X,

Kd(x, y) ≤ d′(φ(x), φ(y)) ≤ KDd(x, y)

if X ′ is a normed space, we typically requireK = 1 or K = 1
D . An embedding has distortionD with slackǫ if all

but anǫ fraction of node pairs have distortionD underφ. Additionally, one can loosen this definition by allowing
slack. The slack is said to beuniform if each node has distortion at mostD to a 1− ǫ fraction of the other nodes.

4A convex area of perimeterq can always be included in a square area of sideq.
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Fig. 8. A network with topological holes and a constant doubling dimension. The size of the large holes grow withn, but the network can
be divided into a constant number of areas, each being convexwith slackO(1) i.e., each of the convex areas contains only obstacles with a
constant perimeter or that can only increase the distance between nodes by a constant factor. Note that even though the doubling dimension
is low, greedy geographic forwarding of packets would fail as packets would get stuck in dead-ends against the holes. Squarelets containing
no nodes are hatched.

Finally, an embedding with distortionD and slackǫ is coarseif for every nodeu the distortion is bounded to a
node a distance greater thanrǫ = inf

{
rs.t |BX

r (u)| > ǫn
}

.
The doubling dimension of a metric space embedded into another metric space can be bounded as follows:

Theorem 8 (Bounding the Doubling Dimension):Consider a metric space(H, d) embedded in another metric
space(E , d′) by a functionφ. Let the doubling dimension ofE be β. Let the distortion of this embedding beD.
Then,H has doubling dimensionα with α ≤ O((2D)log β).

Proof: Choose any nodeu ∈ H. If the above condition is fulfilled, the images of all nodes in BH
2R(u) can

be at distanced′ at most2KDR from u at φ(u). Hence,φ(BH
2R(u)) ⊂ BE

2KDR(φ(u)). We will now try to cover
φ(BH

2R(u)) by as few ballsBE
RK(φ(v)) as possible (see Fig. 9, which illustrates this setup in the case whenH is a

graph andE the Euclidean space). To do so, let us coverBE
2KDR(φ(u)) by small balls of radiusKR in E . Covering

BE
2KDR(φ(u)) will require at mostβlog 2D balls of radiusKR in E , given thatE has doubling dimensionβ. We

know thatd(u, v) ≤ d′(u, v)/K, by definition 9. Consequently,φ−1(BE
RK(φ(v))) ⊂ BH

R (v). We can conclude that
BH

2R(u) ⊂ ⋃βlog 2D

j=1 BH
R (vj).

The presence of large obstacles in the network does not necessarily imply that the network is not doubling. In
particular,

Theorem 9:Consider a metric spaceE with doubling dimensionβ. A metric spaceH that can be divided in
k setsS1, S2, ..., Sk, such that each set embeds individually with distortionDi into E has doubling dimension at
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Fig. 9. Proof of theorem 8

most
∑k

j=1 β
2 log 2Dj .

Proof: Consider any ball of radius2R in H, such that the nodes in the ball belong to at least two different
sets (otherwise the theorem is clearly true). Note that the radius of each of these subsets can be at most4R.
Consequently, we now that the part of the ball that belongs toSi can be covered by at mostβ2 log 2Di (by applying
Theorem 8 to cover a ball of radius4R by balls of radiusR). The theorem follows.
We can now broaden the class of communication networks that have low doubling dimension. In particular, if
we can subdivide the communication graph into a constant number of subsets, such that each one embeds with
constant distortion into the Euclidean plane, the whole network is doubling. Consequently, topologies such as
the one shown in Figure 10 are doubling. In this example, we embed an unweighted graph into the Euclidean
plane. Note that the minimal Euclidean distance between nodes should beρrn (for some constantρ), such that
ρrnd(u, v) ≤ ||x(u) − x(v)|| ≤ O(1)ρrn. If this equation is true for all pairs of nodes, then the distortion is
O(1). There is an issue when the nodes are neighbors in the communication graph, as the above rule implies that
the Euclidean distance between such pairs of nodes should then be at leastO(rn). However, we can ignore the
distances below2 as we will not cover balls of radius 1 (since we have a broadcast medium, the degree of a node
does not impact the communication overhead). In such cases,it is obvious that geographic routing would fail, even
though the inherent complexity of the network is low. Indeed, packets would get stuck against walls. Remarkably,
our routing algorithm is oblivious to the topology and only depends on the doubling dimension. Hence, there is
absolutely no need to detect or identify obstacles. The communication overhead will simply depend on the doubling
dimension.

B. Sequences of Communication Graphs

We now show that a sequence ofG(t)(n, rn) of lengthnρ, for some constantρ, with the USL mobility model is
κ-smooth. As already seen in Theorem 4, such a sequence of graphs is doubling at every time instant.

Theorem 10:A sequence ofG(t)(n, r(n)) of length≤ nρ, where nodes move according to the USL mobility
model with maximum constant speedS is

max







rnd
(t)

rnd(t)√
5
√

2
− 2

√
5
√

2τS
,
√

5
√

2(1 +
2τS

√
5
√

2

rnd(t)
)






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Fig. 10. A set of doubling network topologies. The network isdense, and made inhomogeneous by the walls, which do no allowtransmissions
to go through. Note that the walls stretch whenn grows, such that the network wide distortion also grows withn. Dashed lines indicate the
separation into sets.

smooth w.h.p.
Proof: Consider two nodesu andv at Euclidean distanceq(t)2 = ||xu−xv||2 at timet. Let q(t)1 = ||xu−xv||1 =

∑2
m=1 |xm(u)−xm(v)|. Further, denote byd(t) = d(t)(u, v) their shortest path distance at timet. One can see that

q(t)
2

rn
≤ d(t) ≤

√
5
√

2q(t)
2

rn
. Indeed, the shortest possible path will follow a straight line betweenu andv. The length

of this line isq(t)2 and one hop can be of length at mostr(n). In the worst case, the shortest path fromu to v will
follow the shortest path in the grid formed by the small squares of sidern

c = rn√
5
, which exists w.h.p. Recall that

we can only guarantee horizontal and vertical connectivitybetween small squares. The number of small squares in

this path will be at most
√

5q(t)
1

rn
. One can easily show thatq(t)1 ≤

√
2q

(t)
2 . Let x =

(
x1

x2

)

=

(
x1

sx1

)

= (xu−xv).

We have
q
(t)
2 =

√

x2
1 + x2

2 = x1

√
1 + s2

= (1 + s)x1

√
1+s2

1+s = q
(t)
1

√
1+s2

1+s .

Since, we haveq
(t)
2

q(t)
1

=
√

1+s2

1+s , the term is maximized whens = 1. In Figure 11, we illustrate this point. Similarly,

at time t+ τ , the shortest path distance will be bounded byq(t+τ)
2

rn
≤ d(t+τ) ≤

√
5
√

2q(t+τ)
2

rn
. However, we know that

the Euclidean distance can change by at most2τS in τ time steps5. Consequently,

q
(t)
2 − 2τS

rn
≤ d(t+τ) ≤

√
5
√

2(q
(t)
2 + 2τS)

rn
(3)

We can now bound the multiplicative stretch as follows: Hence,

max
{

( 1√
5
√

2
− 2τS√

5
√

2q
(t)
2

)−1,
√

5
√

2(1 + 2τS)

q
(t)
2

)
}

= max
{√

5
√

2 q(t)
2

q(t)
2 −2τS

,
√

5
√

2(1 + 2τS
q(t)
2

)
}

= max

{

rnd(t)

rnd(t)
√

5
√

2
−2

√
5
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2τS

,
√

5
√

2(1 + 2τS
√

5
√

2

rnd(t) )

}

= κ(τ, d)

One can now observe that the time it takes to multiply the shortest path distance between two nodes at distanced
is proportional tod. Note that the larger the communication radiusr(n), the smallerκ. Hence, the distance grows
at most linearly with time. In particular, we have:

Corollary 2: There exist constantsν andκ defined in the proof such that a sequence ofnρ connectivity graphs,
under the USL mobility model with maximum constant speedS, is κ-smooth w.h.p.

5One can show that this remains true even if the nodes are reflected on the borders of the network
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Fig. 11. Upper and lower bounds for the shortest path

Proof: By theorem 10, we know that the sequence is

max







rnd
(t)

rnd(t)
√

5
√

2
− 2

√
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,
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5
√

2(1 +
2τS

√
5
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)







-smooth w.h.p. Note that both terms decrease as a function ofthe communication radiusrn. Hence, we can setrn = 1
without decreasingκ(τ, d). Similarly, both terms go down when the distanced(t) goes up. We can therefore also
setd(t) = 1, which is the smallest possible distance in an unweighted graph. Consequently, if we setτ = νd(t) = ν,
we can now write

κ(τ, d) ≤ max

{

1
1√
5
√

2
− 2

√
5
√

2νS
,
√

5
√

2(1 + 2νS
√

5
√

2)

}

which is constant forν constant.

IV. ROUTING ALGORITHM

We develop the routing algorithm and performance analysis for a general class of dynamic networks which
produce a sequence of doubling and smooth connectivity graphs. We have seen in Sections II and III that this
applies to a class of wireless connectivity models with USL mobility. For notational convenience we will illustrate
the ideas for a sequenceG(t)(n, rn) geometric random graphs with USL mobility.

We decompose a time step into two phases: abeaconingphase and aforwarding phase. In the former phase, a
set of routes are established by letting all or a subset of nodes flood the network at geometrically decreasing radii
and nodes register with beacon nodes. In the latter phase, this subset of routes is then utilized by source nodes to
efficiently search for the destination. Every node is equipped with a routing table as shown in Table II. We will
first describe two procedures used in the beaconing and the routing phase.

flood(R,level) procedure:When a nodeu initiates theflood(R, level) procedure, it broadcasts aflood packet
as shown in Table III to its direct neighbors inG(n, rn). The hop countfield is initialized to0 and the content
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Node identifier distance[hops] level next hop
...

...
...

...

TABLE II

ROUTING TABLE RT

of the Levelfield will be specified in the sequel. All nodes can compute themaximum hop count given the level
of the source. The neighbors which receive this packet, after increasing the hop count by1, add an entry to their

Pkt. Type Node Id. Hop Count Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

TABLE III

FLOOD PACKET

routing table for nodeu if no entry for the same node with a lower or the same hop count is present in the RT for
the same level. Thenext hopfield is set to the identifier of the node from which the packet was received. The level
field in the routing table is set to the level given in the packet. In turn, these nodes broadcast this packet to their
neighbors which follow the same procedure and update the routing table if necessary. The packet is discarded when
the hop count reaches the maximum hop count (which is a function of the level). Note that with this procedure,
every node forwards the packet at most once and the distance added to the routing table is the shortest path distance
in G(n, rn).

probe(relay,destination) procedure:This procedure consists in sending aprobe packet(see Table IV) to a relay
node for which the source has an entry in its routing table. The relay node will set the success bit to1 if it has an
entry for the destination and0 otherwise. We will make sure that all nodes on the path between the source and the
relay node have an entry for the relay node in their routing table. Additionally, nodes on the path add a temporary
entry for the source in the routing table. They set thenext hopfield to the identifier of the node from which they
received the packet and leave thelevel and distancefield empty. Upon receiving the packet, the relay node can

Pkt. Type Relay Id. Dest. Id. Success
O(1) bits O(log n) bits O(log n) bits 1 bit

TABLE IV

PROBE PACKET

either answer to the source on the reverse path we just created if the answer is negative. Alternatively, it can take
action as explained in the sequel if it has an entry for the destination.

We now separately detail the beaconing and the routing algorithms underlying our routing protocol

A. Beaconing Algorithm

We will first describe the first time step, where nodes have notyet moved. Let thecover radiusat level i, for
i = 1, ..., log ∆ (∆ being the diameter of the network), be defined asri = 2i and theflooding radiusat level i be
defined asfi = κ(ri+1 + ri), whereκ is a constant chosen such thatκ(νd, d) ≤ κd, ∀d. The idea of the algorithm
is to build a hierarchical cover of the networki.e., we would like every node in the network to be withinri of a
beacon node at every leveli. We say that when a node is withinri of a beaconb at level i, it is a member ofb’s
cluster at level i. A node can only be in one cluster at every level. To achieve this, we let the nodes flood in a
random order which can change at every time step. Every nodeu is a beacon at a given levelβ(u). The flooding
radius, however, will depend on the highest level at which a node is not covered. Let us denote byh(u) the highest
level at which nodeu is not covered. When nodeu’s turn to flood comes, it will determine the value ofh(u) set
β(u) = h(u) and callflood(fh(u), h(u)). A node v which receives this flood will determine the lowest level at
which it could be a member ofu’s cluster, sayl(v). That is, it will determine the lowest valuej for l(v) such that
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d(u, v) ≤ 2j . This distanced(u, v) is known sincev just received a flood packet fromu. It will then become a
member ofu’s cluster for all levels abovel(v) for which it has no membership yet and are belowβ(u). If a node
becomes a member ofu’s cluster, it will send amembership packet(see Table V) back tou which will store the

Pkt. Type Node Id. Beacon Id. Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

TABLE V

MEMBERSHIPPACKET

identifier of the nodes in its cluster. Note that a nodev could send back none or several such packets tou. Note
that u also applies this procedure to itself, and consequently could be a beacon at leveli but not at levelj < i.

The control traffic will be dominated by the messages sent back by nodes to beacons when they become members
of a cluster. On the other hand, we do not want the distance between a node and the beacons it belongs to to grow
by more than a constant factor. Since we consider that the maximum speed of the node is constant, the higher the
level of a beacon, the more time it will take for nodes to double their distance to this beacon. We want toelectnew
beacons and update memberships only for levels at which the distances could have been multiplied byκ. Recall
that the network isκ-constrained. Consequently, the distanced(t)(u, v) between two nodesu andv cannot change
by a factorκ in less thanνd time steps (see Corollary 2). In particular, if a node is at distance2i of a beacon at
the time it becomes a member of its cluster, then we havedt+ν2i ≤ κ2i. Hence, we will update the memberships
at level i everyν2i time steps (see Figure 12). This will lead to a routing schemein which the distances can be

Fig. 12. The memberships up to leveli are updated everyν2i time steps. At the levels above, beacons elected at earlier time steps simply
flood again.
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distorted by at most a constant factor to be calculated in thesequel. Additionally, in a dynamic environment, routes
can break. This is why we let the beacons at all levels flood at every time step. Levels at which no membership
updates take place simply use the floods of the beacons to update their routes toward theses beacons. This will
ensure that a route always exists for all pair of nodes.

Fig. 13. The example start with empty routing tables. First,on the left, nodeu1 floods at level3. We focus on nodesu2 andu3. Nodeu2

is within 8 hops fromu1 but further away than4 hops. Consequently, it can only had an entry for nodeu1 at level3. At the same time,
nodeu3 can add an entry for nodeu1 at the levels2 and 3, since it is at distance4 of u1. Next, on the right,u2’s turn to flood comes
(right afteru1’s turn). This node is already covered at level3. Consequently, it will flood at level2. The nodeu3 could potentially add an
entry for this node at levels1 and 2. However, it is already covered at level2 and so adds only an entry for level1. We do not show the
entries beacons add for themselves.

In Figure 13, we give a simple with three levels. The beaconing algorithm is presented in Algorithm 1. It is
important to note that the routes are updated at every time step and consequently routing toward a beacon will
always be successful. Further, when the membership at a given level i is updated, all the memberships at the levels
j < i will also be updated, and all memberships at these levels canceled.

B. Forwarding Algorithm

The forwarding algorithms works as follows: a source nodeu wishing to communicate with a target nodev will
search forv by first probing all the level 1 beacon it knows of. To do so, it looks at the last column of its routing
table and selects all nodes it knows of at level1. If all answers are negative, it will probe all level2 beacons it
knows of. The procedure is repeated as long as all beacons answer negatively. A beacon at leveli that has an
entry for the destination in its routing table will not answer directly to the source. Rather, it will probe all the
level i − 1 beacons it knows of. We will show in the next section that one of these beacons must have an entry
for the destination. That beacon in turn probes all the beacons in knows of at leveli − 2. Meanwhile, the other
beacons at leveli − 1 will answer negatively to the beacon at leveli. The procedure is repeated recursively until
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Algorithm 1 : Beaconing Algorithm at nodeu
Data: Routing Table, Time t
begin

Let Γ = max
{
0 ≤ j ≤ log ∆|t modν2j = 0

}
;

Clear routing table entries withlevel ≤ Γ;
Let β(u) be the level at whichu is a beacon;
if π(ℓ) = u then

if β(u) ≤ Γ then
Let h(u) be the highest level at whichu is not covered;
β(u) = h(u);

end
flood(fh(u), h(u));

end
end

the target itself is reached. The target will then answer to the source on the reverse path which will later be used
for communication between the source and the destination. We illustrate the forwarding procedure conceptually in
Figure 14.

C. Load-balancing

This approach guarantees a low network wide control traffic overhead. Even though over a long period of time
all nodes will get approximately the same average overhead,beacons at the highest levels might get overloaded by
the membership packets of the nodes in their cluster when a membership update takes place. These nodes will be
hot spots in the network for a short period of time. To work around this problem, memberships can be distributed
in the cluster instead of stored at the beacon itself. First,we now setf ′i = κ(2ri+1 + ri). Additionally, whenever
a beacon floods at leveli, it includes its membership at leveli + 1 in the packet. This information is stored by
all nodes that receive this flood packet. This will guaranteethat all nodes that are members of a cluster at leveli,
know how to reach all beacons at leveli− 1 inside that cluster. A node that becomes a member of the cluster of
beaconbi(u) at leveli will now send its membership packet directly toward the beaconψi−1(u) at leveli−1 inside
this cluster with the identifier closest tou’s. In turn, as soon as the packet reaches a node which is a member of
ψi−1(u)’s cluster at leveli−1, the membership packet is redirected toward the beaconψi−2(u) which is a member
of ψi−1(u)’s cluster at leveli− 1 and has the identifier closest to nodeu’s. The process is repeated until we reach
a single node, which will storeu’s identifier on behalf ofbi(u). Note that the membership can only be registered
at a single location in the cluster reachable through a unique sequence of clusters. This remains true even when
nodes move. Indeed, the nodes in the cluster ofbi(u) will only forward the packet to beacons at leveli− 1 which
were in the same cluster at the time the membership for this level got updated. Of course, whenever level aj < i
is updated, we do now not only need to sendu’s identifier toward its new beacon at that level. Additionally, the
node that holdsu’s identifier at levelj might not anymore be reachable through a path of clusters with identifiers
closest tou’s. Consequently, this node will need to forwardu’s identifier toward the beacon at levelj with the
identifier closest tou’s. Again the process will be repeated recursively until a single node is reached. As we will
see, the cost of avoiding hot spots is a factorlog n in the total control traffic. Finally and most importantly, with
this procedure beacons will no longer get overloaded. Rather, the traffic will be distributed in its cluster.

The data forwarding process remains the same except that thesource node will not probe the beacon itself, but
rather search for the node in the beacon’s cluster that should hold the destination’s identifier. If this node holds the
identifier, it will then probe the beacons one level below in the same way. Recall that the nodes which potentially
hold u’s membership can be reached at any given instant in time through a unique sequence of clusters. The
procedure is repeated until the destination is reached.

V. PERFORMANCEANALYSIS

In this section, we will analyze the performance of our algorithm analytically both in terms of control traffic and
of route stretch. As in Section IV, we will do this for a sequence of doubling and smooth connectivity graphs, and
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Fig. 14. Nodeu has a packet for nodev. It searches in its routing table for all beacons it knows of at level 1 and sends them a probe
packet containingv’s identifier. None of the beacons at level1 has an entry for this node and consequently they all answer negatively to
nodeu. Next, nodeu repeats the same procedure with all the beacons it knows of atlevel 2. Again, all beacons answer negatively. On the
third level, now, a beacon has an entry for nodev. This beacon will probe all the beacons it knows of at level2, while the other beacons at
level three will answer negatively tou. A beacon at level2 must have an entry forv. This beacon again probes all the beacons it knows of
at level1 among which one must have an entry forv itself. Meanwhile, the other beacons reply negatively as they do not have any entry
for v.

will use G(t)(n, rn) with USL mobility for illustration.
The bounds derived in this section hold with w.h.p. when we are in a sequence ofα-doubling connectivity graphs

of lengthnρ. In the sequel,α, κ andν are the constants derived in Section III. Let us denote by∆ = O(
√

( n
log(n)))

the diameter of the network. To bound the control traffic necessary for beaconing, we will rely on theα-doubling
property of the metric space to show that a node can only hear aconstant number of beacons at every layer. We
will first show that a ball of radius2R around any nodeu can only contain at constant number of balls (clusters)
of radiusR, when we select the centers of the balls of radiusR in an arbitrary order and ensure that two centers
cannot be closer thanR. We will later use this result to show that a node can hear at most a constant number of
beacons at any given level.

Theorem 11 (Random Cover):Let BX
2R(u) be a ball of radius2R in a graph metric(X, d) with doubling constant

α centered atu. Then, one can select at mostk ≤ α2 nodesvi, (i = 1, 2, .., k) such thatBX
2R(u) ⊆

⋃k
i BX

R (vi) and
min(i,j)d(vi, vk) > R.

Proof: By definition of anα-doubling metric space, there must exist a cover of a ball of radius2R consisting
of at mostα balls of radiusR. Recursively, there must also exist anR

2 -cover consisting ofα2 points. One can
select at most one centervi in each ball of radiusR/2, as any other point inside this ball is withinR of vi. Hence,
one can select at mostα2 such centers.

Corollary 3: Let B be a ball of radiusR > R′ in an α-doubling metric space(X, d). Then, one can select
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at mostk ≤ ( R
R′ )2log(α) nodesvi, (i = 1, 2, .., k) such thatBX

R (u) ⊆ ⋃k
i BX

R′(vi) andmin(i,j)d(vi, vj) > R′. In
particular, ifR = ηR′ for some constantR, thenk is at most a constant(η)2log(α) independent ofn.

Proof: Let R = 2iR′. Hence,R′ is doubledlog R
R′ times to obtainR. By Theorem 11,B can be covered by

α2log R

R′ = ( R
R′ )

2log(α) balls of radiusR′.
Here, one can think of the radiusR of the large balls as the flooding radius, and of the radiusR′ of the small balls
as the cover radius. Indeed, we use this result to show that a nodeu can hear the floods of all beacons within a
given radiusR. Moreover, this ball of radiusR can contain at most( R

R′ )2log(α) beacons, since beacons must be at
leastR′ apart.

A. Control Traffic

Theorem 12:The average control traffic overhead per time step for beaconing is at mostO(n log2 n) bits.
Proof: We will analyze the control traffic at leveli. Recall that a beacon at leveli floods a distancefi =

κ(2i+1 + 2i) at every time step. Further, at the time the memberships are updated at leveli, a beacon node at this
level cannotbe within ri = 2i of another beacon at that level. If it were the case, this nodewould not elect itself
as a beacon at this level. Leveli is updated everyν2i time steps. Consider a nodeu. By corollary 10, only nodes
that are withinκfi at the time the memberships are updated at leveli could move withinfi of u in at mostν2i

time steps. That is before this level is updated again. Consequently, the number of beacons whose flood can reach
u at any given time step is at most the number of leveli beacons in a ball of radiusκfi at the time the membership
is updated. In turn, nodeu will broadcast6 the flood packets of at most that many beacons for this leveli. By
corollary 3, this number is a constant7 given by (κfi

2i )2log(α) = (3κ2)2 log α. Given that there areO(log n) levels,
that there aren nodes and that a flood packet has sizeO(log n) bits, the average control traffic overhead per time
step for beaconing is at mostO(n log2 n) bits.
We now compute the control traffic overhead necessary for nodes to update their memberships with beacons. Recall
that leveli and all levels below are updated everyν2i times steps and that a node can only be a member of one
cluster at every level. Furthermore, a node only becomes a member of a cluster if it is within2i of the corresponding
beacon.

Theorem 13 (Membership Update Overhead):The average control traffic overhead per time step to update mem-
berships without load-balancing is at most

n log ∆ log n

ν
= O(n log2 n)

bits.
Proof: Consider a sequence ofT time steps. The memberships will be updated up to leveli everyν2i time

steps, soT
ν2i times in a sequence of lengthT . At the time of the update, a node can be at distance at most2i from

a beacon at leveli. Consequently, the overhead in bits generated by a node in a sequence ofT time steps is upper
bounded by

∑log ∆
i=1

T
ν2i 2

i log n = log ∆
ν log n.

Finally, we will show that the average control traffic overhead when load-balancing is used is increased by at most
a factorlog n.

Theorem 14 (Membership Update Overhead):The average control traffic overhead per time step to update mem-
berships with load-balancing is at most

n log2 ∆ log n

ν
= O(n log3 n)

bits.
Proof: Consider a sequence ofT time steps. The memberships will be updated up to leveli everyν2i time

steps, soT
ν2i times in a sequence of lengthT . At the time of the update, a node can be at distance at most2i+1 from

a beacon at leveli− 1 inside its cluster at leveli. Similarly, a node can be at distance at most2i from a beacon at
level i− 2 inside its cluster at leveli− 1. In the load balanced scheme, we have to count the overhead togo down
the hierarchy of beacons. For a beacon at leveli, this is at most2i×2. Consequently, the overhead in bits generated

6recall that when a node broadcasts a packet it is received by all direct neighbors in the connectivity graph. Consequently, there is one
packet transmission per beacon of which a flood packet is received.

7In the load-balanced scheme, this constant is(5κ2)2 log α.
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by a node in a sequence ofT time steps is upper bounded by4
∑log ∆

i=1
T

ν2i 2i log n = 4 log ∆
ν log n. However, nodeu

is a member of a cluster at alllog ∆ levels. Recall that the node that holdsu’s identifier must always be reachable
through a path by choosing the beacon (cluster) with the identifier closest tou’s. Hence, whenever leveli gets
updated, alllog ∆ nodes that holdu’s identity must follow the same procedure asu itself. We conclude that the
overhead is upper bounded bylog ∆4 log ∆

ν log n bits.

B. Route Stretch

In this section we will show that the route found with the forwarding algorithm is only a constant factor longer
than the shortest path. Additionally we show that the destination location discovery takes a negligible fraction of
a flow throughput.

Theorem 15 (Routing Stretch):The worst case multiplicative routing stretch isO(1).
Proof: We first analyze the stretch without load balancing. Consider that we want to route from a nodeu to a

nodev, and that we had2k ≤ d(u, v) ≤ 2k+1, the last time levelk was updated before the route search takes place.
Let us denote bybi(v) the beacon to which nodev had registered the last time leveli ≤ k was updated before the
route search takes place. Clearly, we haved(u, bv(k)) ≤ κ(2k+1 +2k), andd(bi(v), bi−1(v)) ≤ κ(2i +2i−1). This is
true since the membership of nodev at leveli must have been updated at mostν2i time steps before the routing takes
place, and that at the time the time leveli gets updated, we haved(bi(v), bi−1(v))) ≤ d(bi(v), v)+d(v, bi−1(v)) by
triangle inequality. Note thatd(bi(v), bi−1(v)) ≤ fi−1 and thatd(u, bv(k)) ≤ fk. Hence, a route must exist between
u andv and the lengthr(t+τ)(u, v) of the route at timet is at most:

r(t)(u, v) ≤ ∑k
i=1 fk = κ

∑k
i=1(2

i+1 + 2i)

= 3κ
∑k

i=1 2i = 3κ2k+1−1
2−1 ≤ 6κd(t)(u, v)

In the worst cast, nodesu andv have moved closer together (by a factorκ) while the beacons have moved further
apart. Indeed, we haved(t+τ)(u, v) ≤ κd(t)(u, v) for τ ≤ ν2k as our network isκ-constrained. Note that if we
waited longer thatν2k, memberships would be updated again at levelk and we could find another beacon at

distance2k at most fromv at levelk. Hence, the worst case stretch isr(t+ν2k)(u,v)

d(t+ν2k)
≤ 6κ2 = O(1).

Every node can only hear floods from a constant number (µ = (3κ2)2 log α, see Theorem 12) of beacons at every
level. Recall that the source will first probe all beacons at level 1, then all beacons at level2 and so on. The
procedure is repeated up to levelk at which the sourceu will send a packet tobk(v). Note that the distance from
u to this beacon can be at mostκ2k+1 + 2k = fk and so it must hear its floods. In turn, when routing down the
hierarchy, beaconbj(v) will probe at most a constant number ((3κ2)2 log α of beacons at levelj − 1. Finally, the
distance between a nodeu and a beacon at leveli can be at mostfi and a probe packet will traverse at most2fi

packets when a beacon at leveli is probed (back and forth). This means that for discovery of the location of the
destination, we need a probe overhead of at mostµ6κd(u, v) packet transmissions. Therefore, this is a negligible
part of the throughput of a flow since it consumes roughly the equivalent of a few packet headers of a flow from
source to destination. A similar statement can be made for the load-balanced case.

VI. I MPLEMENTATION ISSUES

In Section V, we have computed worst case bounds which may be conservative in terms of constants. In this
section, we explore this aspect by looking at simulation results for the control traffic and for the stretch. Recall
that we had computed that for each of theO(log n) levels, a node has to retransmit a packet of at most(3κ2)2 log α

beacons. Even if we set the maximum speed as well as the parameter ν to 1, this is still
√

10+20 and consequently
the constant in the bound on the overhead at least as high as(3(

√
10 + 20)2)2 ≈ 2.5 · 106! In Figure 15, however,

we show that in practice this constant is approximately 30. This simulation was run with50 up to 10000 nodes
moving at a maximum speed of1. One can observe that the experimental scaling behavior corresponds extremely
well to the theoretical behavior. To stress this fact, we also plot 100 log n as a benchmark. Note that the overhead
is expressed in number of packets rather than bits (a packet being of sizeO(log n)).

Similarly, in Figure 16 we show that for a network of1000 nodes, the stretch is at most1.5 for all node pairs.
If we compute the maximum theoretical stretch, we can show that it is again considerably larger and hence a
pessimistic bound. These small constants could make a practical implementation realistic.
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Fig. 15. Average control traffic overhead per node in packetsas a function of the network size. Nodes move at a speed of maximum speed
of 1. The confidence interval is given by the 95% and 5% percentiles. The size of a packet isO(log n) bits. We also plot100 log n to show
that our analytical predictions match the simulation results.

We have made a certain number of assumptions in our models, which we now clarify. In practice, the random
permutations on the nodes, which determines the order in which the flooding occurs, could be implemented by
using random timers; more precisely, by letting all nodes draw a random delay independently of each other every
∆T seconds. Obviously, the interval from which nodes draw thisdelay should be made sufficiently large so that we
can avoid collisions. However, a level in the hierarchy willbe rapidly covered, and in a practical implementation the
covers at different levels could be built in parallel. Further, different parts of the network are independent except
at the highest level, and we could exploit this spatial diversity to parallelize the beaconing process. Hence, we
speculate that it is possible to reduce the length of the beaconing phase to a small constant times the maximum
round-trip time. Note that one could apply the algorithms tounderlying networks that are not doubling. In this
case, we would not be able to give provable bounds on the control overhead and the stretch as we did for doubling
networks.

VII. C ONCLUSIONS

In this paper, we show that a large class of wireless network models belong to a larger class of networks, the
doubling networks, in which efficient routing can be achieved. To design an efficient routing scheme, one can
hierarchically decompose the network by relying on the doubling property to prove that the control traffic overhead
and the stretch will remain low, even for dynamic doubling networks. This holds for a fairly broad class of uniform
speed-limited (USL) mobility models. One advantage of the proposed routing algorithm is that it is robust, in that it
works well in certain situations in which other existing algorithms cannot work well. This was illustrated in Section
II-A for an example network with obstacles. We believe that many more such examples can be created where the
use of the doubling rather than geographic properties wouldbe crucial. To the best of our knowledge, our results
are the first provable bounds for routing quality and costs for dynamic wireless networks. These techniques might
give us insight into algorithm design for more sophisticated wireless network models.
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APPENDIX

a) Unit Disc Graphs: Another common model used in studies on wireless networks are Unit Disk Graphs
(UDG), which are the deterministic variants of the random geometric graphs. The randomness of the positions of
the nodes is removed and they can be placed arbitrarily on a finite of infinite area. The channel model is completely
deterministic as before and nodes are connected if their Euclidean distance is below a threshold distancer, called the
communication radius. In mathematical terms, two nodesu andv with positionsx(u), x(v) ∈ [0, R]2 are connected
if and only if ||x(u) − x(v)|| < r. We will now show that there exist UDG which are notα-doubling (see Section
II for a definition of anα-doubling metric).

Theorem 16:There exists an infinite UDG for which is no constant that upper bounds the doubling dimension
i.e., UDG are not doubling.

Proof: Consider the graph shown in Figure 17. To show that this graphis notα-doubling, we must show that

Fig. 17. An infinite UDG obtained by deleting all the nodes in every second column of a grid, except for the nodes on the the middle row.
Consequently, “columns” are2r apart.

there exists no constant such that all balls of radiusR can be covered a constantα number of balls of radiusR/2,
for all R. Consider the ball centered aroundu in the figure. One can see that there areR/4 + 1 “columns” which
cross the middle row at a distance less thanR/2 from u (that is, the intersection of the column and the row is
less thanR/2 hops away fromu). The intersection of each of these columns withBu(R) is of length more than
R (see hatched zones on Figure 17). Consequently, for each of these columns there is at least one node at distance
more thanR/2 from the middle row. To cover these nodes, we need to place at least one ball of radiusR/2 on
each of these columns. Hence, the doubling dimension is lower bounded byR/4 and tends to infinity asR goes
to infinity.
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One can notice that in the non-doubling UDG in the proof of Theorem 16 results from a careful construction.
In Appendix .0.b, we show however that such a structure will occur with high probability whenrn <

√
log n in

random geometric graphs.
b) Random Geometric Graphs withrn <

√
log n: We first consider the case in which the communication

radiusr is such thatrn = r = (log n)
1

2
− θ

2 < log1/2 n andθ ∈ ] ζ, 1 ]. ζ is a constant such that0 < ζ < 1.
Lemma 1:For any constantβ, there exists constantsγ > 0 and b > 0 such that a small square area of sideγr

with b nodes contains a subgraph of doubling dimensionβ + 1 with probability p > 0.
Proof: Consider the small square shown in Fig. 18 of sideγr, whereγ is a constant independent ofn to be

Fig. 18. Graph for the proof of lemma 1

specified later. Subdivide the small square further into mini-squares of sider/c. Choose the constantc such that
there exists a constantk satisfying

√
2(k − 2) > c ≥

√
k2 + 1. Under these conditions, two nodes in mini-squares

separated by(k − 2) other mini-square will be connected, but not mini-squaresr(k − 2)
√

2/c apart (see right
hand side of Fig. 18). Consider now the graph on the left hand side of Fig. 18. Assume that each full (colored)
mini-square contains exactly one node. We now focus on the ball BG

2R(u) and will lower bound the number of
balls of radiusR necessary to cover it. On the⌊R/2⌋ first vertical branches from the left, the last node of the
branch inside that ball (circled) must be covered by a ball ofradiusR centered on the same branch. This is clear
since the length of the branch is larger thanR. Consequently, the doubling dimension of this graph is at least
⌊R/2⌋ ≥ R−1

2 . We want the doubling dimension to be larger thanβ, which can be easily achieved by choosingR
such thatR−1

2 > β. LetR = 2β+2 > 2β+1. Further, we can now setγ = (2R+5)(k−1)/c = (4β+9)(k−1)/c

and b = (2R + 1)
⌈

2R+1
2 + 1

⌉
= (4β + 5)

⌈
4β+5

2 + 1
⌉

. This ensures that the doubling dimension is strictly larger
thanβ.
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It remains to be shown that when such a small square containsb nodes, the graph constructed above occurs with
probability p > 0. The numberm of mini-squares contained in a small square of sideγr is m = γ2r2

r2/c2 = γ2c2

which is constant. Each node can fall in any of them squares with equal probability. Hence, allmb configurations
are equiprobable andp = 1

mb > 0.
We number the small squares from1 to m = n

(γr)2 = n
γ2 log1−θ n

and denote byXb
i the indicator variable that takes

value1 when small squarei contains exactlyb nodes.
Lemma 2:There are at leastn1/2 squares containingb nodes with probability at least(1 − O( 1

en0.25 )) for n
sufficiently large

Proof:
E [X] = E

[∑m
i=1X

b
i

]

=
∑m

i=1 P
[
Xb

i

]

=
∑m

i=1

(
n
b

)
( 1

m)b(1 − 1
m)n−b

≥ m(n
b )b( 1

m)b(1 − 1
m)n

≥ n
bb (γ

2 log1−θ n)b−1(1 − 1
m)mγ2 log1−θ n

≥ n
bb (γ2 log1−θ n)b−1 1

22γ2 log
1−θ
2

n/ log
1−θ
2

e

≥ O(n
1−O( 1

logθ n
)
)

≥ O(nδ)

whereδ ≥ 7
8 for n sufficiently large, sinceθ > ζ.

Let Si be the random variable representing the small square into which theith node falls. LetF be the number of
small squares containing exactlyb nodes after all nodes have been placed. Then the sequenceZi = E [F |S1, ..., Si]
is a Doob Martingale. One can show thatF = f(S1, S2, ..., Sn) satisfies the Lipschitz condition with bound1.
Indeed, changing the placement of theith ball can only modify the value ofF by at most1. We therefore obtain:

P
[
|F − E [F ]| ≥ n5/8

]
≤ 2e−2n10/8−1

= 2
1

e2n1/4

by the Azuma-Hoeffding inequality. Consequently,

P
[
F < n1/2

]
< P




F < E [F ] − n5/8

︸ ︷︷ ︸

=n7/8−n5/8>n1/2






≤ 2 1
e2n1/4 ≤ 2 1

en1/4

and
P

[
F ≥ n1/2

]
≥ (1 − 2

1

en1/4
)

It now remains to show that in this regime,G(n, r) are not doubling with high probability.
Theorem 17:G(n, (log n)

1

2
− θ

2 ), whereθ ∈ ] ζ, 1 [ andζ is a constant such that0 < ζ < 1, are notdoublingwith
high probability.

Proof: By Lemma 1, for any constantβ, a small square area of sideγr with b nodes contains a graph of
doubling dimension> β with probability p > 0. By Lemma 2, there aren1/2 such small squares containingb
nodes w.h.p. LetF denote the number of small squares containing exactlyb nodes. Consequently, the probability
that at least one of this squares contains a graph of doublingdimension> β is given by:

P [not doubling] =
∑m

j=1 P [not doubling|F = j]P [F = j]

≥ (1 −O( 1
en0.25 ))

∑m
j=n1/2(1 − (1 − p)j)

≥ (1 − (1 − p)n
1/2

)(1 −O( 1
en0.25 ))

≥ (1 − (1 − p)n
1/2

)2

≥ (1 − 2
xO(n) )

wherex = ( 1
1−p) > 1. Consequently, with probability at least(1 − 2

xO(n) ), there exists no constant which bounds

the doubling dimension ofG(n, (log n)
1

2
− θ

2 ).


