Hierarchical Routing over Dynamic Wireless
Networks

Dominique Tschopp, Suhas Diggavi, and Matthias Grossglaus
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
Email: Dominique.Tschopp@epfl.ch, Suhas.Diggavi@epfMatthias.Grossglauser@epfl.ch

Abstract

Dynamic networks are those where the topology changes awer dnd therefore efficient routes need to be
maintained by frequent updates. Such updates could beydngtrms of consuming throughput available for data
transmission, which is a precious resource in wireless orisv In this paper, we ask the question whether there exist
low-overhead schemes for dynamic wireless networks, thatdcproduce routes that are within a small constant
factor (stretch) of the optimal route-length. This is sadliby using the underlying geometric properties of the
connectivity graph in wireless networks. For a class of nieé@ mobile wireless network that fulfill some mild
conditions on the connectivity and on mobility over the tiofénterest, we can design distributed routing algorithm
that maintains the routes over a changing topology. Thissehneeds only node identities and therefore integrates
location service along with routing, therefore accounting the complete overhead. We analyze the worst-case
(conservative) overhead and route-quality (stretch)qguerance of this algorithm for the aforementioned class of
wireless network connectivity and mobility models. In partar for these models, we show that our algorithm
allows constant stretch routing with a network wide contraffic overhead ofD(n log?n) bits per mobility time
step (time-scale of topology change) translatingidog® n) overhead per node (with high probability for wireless
networks with such mobility model). Additionally, we candiee the maximum overhead per node by using a
load-balancing technique at the cost of a slightly higherage overhead. We also demonstrate through numerics
that these worst-case bounds are quite conservative irstefrthe constants derived theoretically.



. INTRODUCTION

A major challenge in the design of wireless ad hoc networkkésneed for distributed routing algorithms that
consume a minimal amount of network resources. This is quaatily important in dynamic networks, where the
topology can change over time, and therefore routing tablest be updated frequently. Such updates incur control
traffic, which consumes bandwidth and power. It is naturahs& whether there exist low-overhead schemes for
dynamic wireless networks that could produce and maintficient routes. In this paper we consider dynamically
changing connectivity graphs that arise in wireless netaio©ur performance metric for the algorithms is the
average signaling overhead incurred over a long time-sghkn the topology changes continuously. We design a
routing algorithm which can cope with such variations indimgy. We maintain efficient routes from any source
to any destination node, for each instantiatiaf the connectivity graph. By efficient, we mean that we want t
guarantee that the route is within a (small) constant fadalted stretchof the shortest path length. In order to
route to a destination, we need only the identity of the desittn and not its addres®., the control traffic to
maintain the mapping between node identity and addresditocis incorporated into the overhead. Therefore, in
the wireless routing terminology, we have included the dkian service” in the control signaling requirement, and
therefore hope to characterize the complete overhead ddedweaintain efficient routes.

In order to develop and analyze the routing algorithms wkzatithe underlying geometric properties of the
connectivity graphs which arise in wireless networks. aemetric property is captured by teubling dimension
of the connectivity graph. A graph induces a metric spacedmsiclering the shortest path distance between nodes
as the metric distance. The doubling dimension of a metacesis the number of balls of radidisneeded to cover
a ball of radius2R. For example a Euclidean space has a low doubling dimensiavilabe illustrated in Section
II. A metric space having a low (constant independent of #uelioality of the metric space) doubling dimension is
called “doubling”. We show that several wireless networ&girs (under conditions given in Section Il) are doubling
and therefore enable the design and analysis of hierataluigiing strategies. In particular, it is not necessary to
have uniformly distributed nodes with geometric connettifor the doubling property to hold, as illustrated in
Figure 2 in Section Il. Therefore, the doubling property llas potential to enable us to design and analyze
algorithms for a general class of wireless networks. Moegofor a large class of mobility models, the sequence
of graphs arising due to topology changes are all doubliag gpecific wireless network models). Since there are
only “local” connectivity changes due to mobility, thereassmooth transition between these doubling graphs. We
can utilize the locality of topology changes to develop lapgates methods to reduce signaling overhead.

We show that several important wireless network models ygredconnectivity graphs that are doubling. In
particular, we show that the geometric random graph witimeativity radius growing as/log n with network size
n; the fully connected regime of the dense or extended wisateswork with signal-to-interference-plus-noise ratio
(SINR) threshold connectivity; some examples of networks wbstacles and non-homogeneous node distribution.
We define a sequence of wireless connectivity graphs snimothif each of the graphs is doubling and the shortest
path distance between two nodes in the graph changes smddéfined in Section Il). These for mild regularity
conditions on the mobility model.

Our main results in this paper are the following. (i) For smhogeometric sequence of connectivity graphs, we
develop a routing strategy based on a hierarchical set afdmsawith scoped flooding. We also maintain cluster
membership for these beacons in a lazy manner adapted todh#itynmodel and doubling dimension. (i) We
develop a worst-case analysis of the routing algorithm imseof total routing overhead and route quality (stretch).
We show that we can maintain constant stretch routes whilinhaan average network-wide traffic overhead of
O(nlog®n) bits per mobility time step. The load-balanced algorithmuidorequireO(log® n) bits per node, per
mobility time. Through numerics we show that the theordifcabtained worst-case constants are conservative.

A. Related Work

Routing in wireless networks has been a rich area of enquigr the past decade or more. The two main
paradigms for routing have been geographic routing andaggdyased routing. Geographic routing (see for instance
[1] and references therein) exploits the inherent geonwtryireless networks, and bases routing decisions directly

We assume inherently that the round-trip time (RTT) of a padkom source to destination is much smaller than the tioaesof
topology change.



on the Euclidean coordinates of nodes. Their performanpertis on how well the Euclidean coordinate system
captures the actual connectivity graph, and these appesamdm therefore fail in the presence of node or channel
inhomogeneity (like in Figure 2 in Section Il). Another intpant, but often overlooked, issue with geo-routing is
that geographical positions of the nodes need to be stordccamtinuously updated in a distributed database in
the network, to allow sources of messages to determine tirerduposition of the destination. This database is
called alocation service(see for instance [2]) and must be regularly updated so thaice nodes can query it.
Location services typically rely on some a-priori knowledgf the geographical boundaries of the network. This
is necessary because these approaches typically estaldistiespondence (for example, through a hash function)
between a node identifier and one or several geographicafidms where location information about that node is
maintained. An important feature of our work is that we cdesithe total overhead incurred by the update and
lookup operations of the location service, and the overlodatle routing algorithm itself.

Topology based routing schemes (see [3] and [4]) do notzeattle underlying geometry of wireless connectivity
graphs, but instead compute routes based directly on thagahgiTo reduce overhead, most of these schemes only
establish routeon demandthrough a route discovery operation, rather than contialyomaintaining a route
between every pair of destinations; in this respect, thégrdsignificantly from their counterparts for the wired
Internet (such as OSPF, IS-IS, and RIP). Recently estaulisbutes are cached in order to allow their reuse by
future messages. In distance-vector based approaches[8.dhis cached state resides in the intermediate nodes
that are part of a route, whereas in source-routing appesa@hg., [4]), the cached state resides in the source of
a route. Despite such optimizations, topology-based ampres suffer from the large overhead of frequent route
discovery operations in large and dynamic networks. Tlsigsdsvas, in fact, the reason why geo-routing approaches
have reached prominence.

Two schemes that utilize the underlying geometry of graptstatic wireless networks algorithms are the works
presented in [5] and the beacon vector routing (BVR) intcadlin [6]. Both these schemes are heuristics which
build a virtual coordinate system over which routing takkse. They were shown to work well through numerics.
However, they utilize an external addressing scheme to rmas@respondence between addresses and names. In
[7], routing on dynamic networks using a virtual coordinaystem was studied. For large scale dynamic wireless
networks, these heuristics pointed to significant advargag using some geometric properties for routing and
addressing. These results motivated the questions studidis paper.

There has been a vast amount of theoretical research oreefficiuting schemes in wired€., static) networks
(see for example [8]). Most of this work has been focused @nttade-off of memory (routing table size) and
routing stretch. There are two main variants of such rousiogemes (ijJabeled (or addressefirouting schemes,
where the nodes can be assigned addresses so as to refldogimgdoinformation; (ii) namedrouting, where
nodes have arbitrary names, and as part of the routing, taidm (or address) of the destination needs to be
obtained (similar to a location service). This examinesitijgortant question of how the node addresses need to be
published in the network. Routing in graphs with finite dangldimension has been of recent interest (see [9], and
references therein). In particular [10] showed that onddctget constant stretch routing with small routing table
sizes for doubling metric spaces, when we use labeled puTihis result was improved to make routing table
sizes smaller in [11]. The problem of named routing over gsapith small doubling dimension has been studied
in [9] and [12], and references therein. To the best of ounmkadge, there has been no prior work dypnamic
graphs over doubling metric spaces and on control traffichmaa. It is worth pointing out that there is no direct
correspondence between control traffic and memory. Bounds\@mory do not take into account the amount of
information which needs to be sent around in the network deoto build routing tables. A good illustration is
the computation of the shortest path between two nadaadwv in a graph. While it is sufficient for every node
on the path between these two nodes to have one entry (@i roughly log » bits i.e., the name of the next hop),
computing that shortest path requires a breadth first sedtie communication graph and leads to a control traffic
overhead ofO(nlogn) bits.

II. MODELS AND DEFINITIONS

A wireless network consists of a set nfnodes spread across a geographic area in the two-dimehpiana.
We model the network region as the square doeg/n) x [0,1/n). Then nodes move randomly in this area and
we denote by:() (u) the position of node: at timet. The connectivity between two nodes is represented by an



edge on the connectivity gragh(f) if they can communicatéirectly over the wireless channel. The connectivity
between two nodes depends on the distance between the twes (et could also depend on the presence of other
nodes, see Section 1I-B). We consider that when a nodiensmits on the wireless channel, it broadcasts to all
its neighbors in the connectivity gra;ﬂf). Consequently, one transmission of a packet is sufficienaliodirect
neighbors to receive that packet. To make the notationdighte will only add the dependence on time if it is
necessary to avoid confusion. The distarte(u,v) between nodes andw is the shortest path distance between
these nodes irgﬁf). Note thatd(.,.) is a metric ongﬁf), i.e., the distance between a node and itself is zero, the
distance function is symmetric and the triangle inequaljyplies. We will now define &all of radius R around a
nodew. It is simply the set of nodes within distanée of . More formally, we can define it more generally for
any metric space as follows:

Definition 1: A Ball Bg) (u) around node: at timet in a metric spacet’ is the set{v € X|d¥) (u,v) < R}.
In order to bound the control traffic overhead, we will requgly subdivide the connectivity graph into balls. It
will be crucial for us to bound the number of balls of radidsiecessary to cover a ball of radi2® around some
nodew. In other words, we want to find the smallest number of nagesuch that all nodes withi@R of u are
also within R of some nodey;. The notion of doubling dimension of a metric space captthesidea.

Definition 2: The doubling dimensiomf a metric spacet is the smallesty such that any ball of radiudR can
be covered by at most balls of radiusk, for all R > min(uw)d(u,v) ie,Vue X 35, CAX, S, <aand

Biw) < | BY ()

Moreover, if a is a constant, we have the following djgﬁﬁition:

Definition 3 (Doubling metric space)Ve a metric space’ is doublingif its doubling dimension is a constant.
A good way to illustrate and understand the concept of daghdiimension and doubling metric space is to look
at the metric space defined by a set of poiatdin R? with the Euclidean distance. A ball of radi2$ around
a pointz will simply be a disc of radiu2R around this point. To cover this disc, we will select a set oings
such that all the surface is covered by the correspondingfseiscs of radiusk. Note that the number of discs
required will not depend on R, and consequently this mefice would bedoubling (see Figure 1). Further, a
metric space is said to lmublingif its doubling dimension is a constant, independent of tamiber of nodes:.

Fig. 1. The metric space defined by a set of point&fand the Euclidean distance is doubling. Indeed, we can @wic of radius2R
by a constantq in this case) number of discs of radilis whatever the value oR.

In Section II-A, we describe the geometric random graph rhadleich will be the canonical model we will use
to illustrate the ideas of the paper. We also give an examifpéermn-homogeneous network to which our results
can be applied. In Section II-B, we will develop the model véheonnectivity is determined by the SINR, and we
have uniform transmit power and full connectivity. We give trequirements for the mobility model to result in a
smoothsequence of wireless network graphs in Section II-C. We steg underlying assumptions and give a table
of notations in Section II-D.



A. Geometric random graph

We denote the geometric random graphdiy:, ,,) and define its connectivity as follows.

Definition 4: A random geometric grapti(n,r,) has an unweighted edge between nodemdv if and only
if |z(u) —z(v)|| < rn, where{z(u)} are chosen independently and uniformly[in\/n) x [0,/n).

In this paper we will be interested in fully connected geatnatandom graphs, and therefore focus on the case
r, > +/Iogn [13]. As a natural extension, we can also define a sequencandiom graphg/® (n,r,) with an
unweighted edges betweenand v at timet if ||z (u) — z® (v)|| < r,. Whether each graph in the sequence
G (n,r,) corresponds to a random geometric graph as in Definition gemtds on the mobility model for the
nodes. We discuss this in more detail in Section II-C.

In Figure 2, we illustrate a non-homogeneous random netwdriére connectivity is not completely geometric
as in Definition 4. An obstacle prevents communication betweeighboring nodes, and therefore illustrates the
complexities of wireless network connectivity. This exdenis revisited in Section Ill, where we show that though
this connectivity graph is more complicated th@m, r,,), it is still doubling, and therefore the algorithms deveddp
in this paper are applicable. This illustrates the advamtagour approach to network modeling.
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Fig. 2. n nodes are distributed uniformly at random on a square arsidef,/n. A wall of width r,,/c is added which only has a small
hole in the middle. Again, we assumg > +/logn. Nodes cannot communicate through the wall. Finally, weawsrthe nodes below the
wall, which leads to an inhomogeneous node distribution.

B. SINR full connectivity

Since the wireless channel is a shared medium, the trarisméisbetween nodes interfere with each other.
However, the signal strength decays as a function of themlist traveled, and therefore we can define the SINR
for transmission from node to v as,

Byllz(w) — z(v)[| 7"
No + 2 wsue Pllz(w) = z()]|7F
wheref is a distance loss (decay) parameter depending on the @b@agnvironmentpP,, is the common transmit
power of the nodes andy, is the noise power. We can of course easily adapt this to hawempcontrol for the
nodes. A transmission is successful if the SNIR is above soonstant threshold valug For static nodes, just as
in the case of geometric random graph, we assume that theloocagons{x(u)} are chosen independently and
uniformly in [0,/n) x [0,/n). This model for wireless networks has been extensivelyistlgh the literature
(see [14], [15]). The authors base their analysis of the dapaf wireless networks on a TDMA scheme for the
SINR connectivity model of (1). We argue here that the stmecbf the resulting connectivity graph is identical to
that of G(n,r,), for r, > /logn. Therefore, the results we prove f6(n,r,,), would also be applicable to such
graphs. In practice, it is a non-trivial task to design ardisted scheduling protocol (MAC layer protocol) that
mimics the behavior of this TDMA scheduler. However, thesAQVlayer implementation issues are far beyond
the scope of this document (see for instance [16]). We onlgenthe argument here that the connectivity graph
resulting from such a TDMA scheme would yield the same behaas ag(n, ).

We will subdivide the network into small squares of side= "=. We need to show that if two nodesandv
are in neighboring small squares (and so have the guardmeéhey can communicate under thén, r,) model

SINR = 1)



as we will see in the sequel), then there exists a TDMA schéaieailows them to communicate under the SINR
connectivity model of (1). If this is the case, then we canlapipe same proof techniques for both models. We let
the maximum transmission power grow in the same way as wedalithe G(n,r,) modef i.e. P, < (Nysry,)P.
Additionally, we want to design a TDMA scheme such that theacity of all links is at leasO(-1-) [bits/sec].
It can be shown (see [17]) that every small square containsoat O (log n) nodes. Hence, we ask that the traffic
can flow at constant rate independentdbetween neighboring small squares, and that each nodatedrequally.
Note that this requirement is very similar to the scheme @seg in [14] in which one node per small square can
transmit at constant rate to any neighboring sqtiare

Theorem 1:There exists a TDMA scheme such that all nodes can commenigih any node located in a
neighboring small square at a rate@ﬁ@) [bits/sec]. Hence, the aggregate traffic can flow between neighboring
small squares at a constant rate independemnt of

Proof: We take a coordinate system, and label each square with tiwgeincoordinates. Then we take an

integerk, and consider the subset of squares whose two coordinaesmaultiple ofk (see Figure 3). By translation,
we can construct? disjoint equivalent subsets. This allows us to build théofging TDMA scheme: we defing?
time slots, during which all nodes from a particular subsetadlowed to transmit for the same duration@)(floln)
seconds. Each small square contains at least one and at(nlogtn) nodes w.h.p. (see [17] and the proof of
Theorem 3). We assume also that at most one node per squasmiimat the same time, and that they all transmit
with the same powel’,. Let us consider one particular square. We suppose thatrdansniitter in this square

16 squares
Q
g/squares
. " x " 1
0 1 ¢
- -
. * x x| x 1/(Q(18g n)k?)

x: nodes transmitting in this timeslot

\

Fig. 3. lllustration of the TDMA scheduling scheme

transmits towards a destination located in a square atndistat mostl. We compute the signal-to-interference
ratio at the receiver. First, we choose the number of timésstd as follows: k& = 4. To find an upper bound
to the interferences, we observe that with this choice, thasmitters in thes first closest squares are located
at a distance at least (in small squares) from the receiver (see left-hand sideigdiré 3). This means that the
Euclidean distance between the receiver andthsest interferers is at least,,. The 16 next closest squares are
at distance at least (in small squares), and the Euclidean distance betweereti®ver and thé6 next interferers

Note that theG(n, 7,) model corresponds to the SNIR model without interferentredeed, if we remove interferences, two nodes can
communicate wheneve?”””‘%%”fﬁ > ¢ for some threshold value. Hence, two nodes can communicate whenéjuefu) — (v)|| <
(#2)"/7. In particular, we letP, = (Nosr,)”

*The throughput achieved by this schemedig
random

\/ﬁ) [bits/second/node] whenn source destination pairs are chosen uniformly at



is therefore at leadis,,, and so on. The sum of the interferendesan be bounded as follows:

I <302 8iP, [25,(2i — 1)
= P, [2s,) 7 3050, 8i[(2i — 1)) 7
= (Nosra)? [222] 77 522, 83 [(2i — 1)] 77

This term clearly converges ji# > 2. Now we want to bound from below the strength of the signa¢resd from
the transmitter. We observe first that the distance betwetransmitter and the receiver is at m&2(s2) < 2s,,.
The strengthS of the signal at the receiver can thus be bounded by

S > anin{1,2s;5}
=0(1)

Finally, we obtain the following bound on the SINBINR > NLH As the above expression does not depend

on n, the theorem is proven. [ |

C. Uniform speed-limited (USL) mobility

Nodes are mobile and move according to the uniform speeitelimUSL) model, a fairly general mobility
model defined next. The USL model essentially embodies twalitions: (i) the node distribution at every time
step is uniform over the network domain, and (ii) the diseaacnode can travel over a time step is bounded. We
restrict ourselves to the case in which the maximum speedtislependent om. In practice, of course, such an
assumption is realistic since the maximum speed of the neilesot increase when new nodes join the network.

Definition 5: A collection of n nodes satisfy the uniform speed-limited (USL) mobility nebd the following
two conditions are satisfied:

(i) At every timet, the distribution of nodes over the network domain is umfpr

(i) For every node: and timet, the distance traveled in the next time step is bounded}|i€ (u) —2® (u)|| <
S.

The USL mobility model is quite general. For example, it td#s the following cases: (i) The nodes perform
independent random walks (on the torus) with bounded oge-displacement. The random walks can be biased,
and the displacement distribution does not need to be honeages over the node population. We have to assume
that the nodes operate in the stationary regime. (ii) Theeaddllow the random waypoint model (RWP). The
system has to be in the stationary regime. (iii) The genagdlrandom direction models from [18], which interpolate
between the random walk and the random waypoint cases,ghrawcontrol parameter that can be viewed as the
"locality” of the mobility process. (iv) We can also allowrfonodels where nodes do not move independently. As
an illustrative example, assume we uniformly place nodethersquare; the nodes then move in lockstep according
to any speed-limited mobility process, maintaining theiative positions to each other. Observe that the uniform
distribution is maintained for all time steps (note that weve on a torus), and that the speed-limited property is
true by definition.

We see that the USL class of mobility models is fairly geneaad includes many of the models that have been
proposed in the literature. For simplicity, we considett ttime is discrete. In other words, we look at a snapshot
of the network every\T seconds. At every time step, the connectivity between nadébe modified. Hence, we
will work with a sequence of connectivity graphs. In orderd&sign a routing algorithm with a low control traffic
overhead, we will need to understand how fast the distaneegselen nodes can evolve over time. In particular,
consider two nodes andv at distancel = d*(u, v) at timet. We want to bound the multiplicative factor by which
this distance can change intime steps. Formally, we defingr, d) as follows:

Definition 6: We say that a communication network+ér, d)-smooth if the shortest path distance between any
two nodesu anv at shortest path distaneecannot change by more than a facidr, d) in 7 time steps.e.,

d®(u,v)  d) (u,v)
mm{ﬂ”wmm’wwmm = #(r.d)

, Yu, v.
Additionally, we simply say that the network issmoothif there exists a constamtsuch thats(vd,d) < k(v) = &
independently ofi. In this case, the distances grow at the same speed at akstalthe sequel, we will bound



andv for our model. This USL property holds for a general classamidom trip mobility models studied in [19],
where it is shown that the stationary distribution of suchbitity models is uniform and ergodic. We restate this
theorem without proof.

Theorem 2:( [19]) The random-trip mobility model has uniform statiopalistribution on[0,a) x [0, a).

D. Assumptions

We consider that a time steNT" is much larger than the round trip time (RTT) through the rogkw.e. the time
scale for mobility is much larger than the time scale for caminations. For clarity and in order to simplify the
analysis, we will make the assumption that nodes can contateinstantaneously through the network. We also
make the assumption that there is a random permutation the nodes, and that all nodes in the network know
their rank in the permutation. In Section VI we will then drityese assumptions and consider practical aspects of
the implementation. Finally, we say that a result holds wiijh probability (w.h.p.) if it holds with probability at
least(1 — O(-})), for some constant > 0. In table |, we summarize the notations used in this paper.

2O (w) Position of nodeu at timet
d"(u,v) | Shortest path distance fromto v at timet
Tn Wireless communication radius

G(n,rn) Random geometric graph
Bg)(u) Ball of radius R aroundu

®) (w0 +7) (w0
k(T,d) mazx { d(dtﬁg(;’)vw dd(t)(u(,l;) )} < k(7 d)

TABLE |
TABLE OF NOTATIONS

I1l. NETWORK PROPERTIES

In this section, we will prove some properties of the networidels presented in Section II, which will be
necessary to analyze the performance of our algorithm. Wedagus our attention on the geometric random graph
G(n,r,), but all the arguments can be extended to the SINR full cdivigcmodel with TDMA scheduling,
discussed in Section II-B. In particular, féi(n,r,), we will now consider the case in which the communication
radiusr,, is such thatr, = /(1 + ¢)logn > log'/? n, wheree > 0.

For uniform speed-limited (USL) mobility models discussadSection II-C, at each time, the node locations
{z®(u)} have an empirical distribution that is uniform ovix \/n) x [0,+/n). Therefore, we now discuss the
property of a sequence of geometric random graghs,(n,r,), with USL mobility model. We subdivide the
network area on which the nodes live into smaller squaregdef's, wherec is a constant chosen such that nodes
in neighboring squares are connected (see Fig. 4) and thiateger number of squares fit into the network area.

We arbitrarily setc = /5. We number the small squares franto m = (rn,7c)2 = (H?)cfogn and denote byz; the
A
L] ]
2r

Fig. 4. Nodes in neighboring squares are connected

event that small squariedoes not contain any node. In the next theorem, we show thamwbdes move according

to USL mobility model, all small squares will be populatedhyp. in a sequence of lengtt?, for some constani.
Theorem 3:There exists a constapt such that if we divide the network into small square of sfég@ (with

r(n) > v/logn), every small square contains at least one node at everystiegew.h.p. in a sequence of length



Proof: Consider a sequence of length= n”. Denote byEZ.(j) the event the small squatds empty at time
j. Letm = # We can compute:

PlULUL ] <zzip e

— m n

ZZZ 1(1 . _)
<z8m et

nc2(1+e) logn

= Z 0 __em

=27 1+5)10gne

nc? 1

<Z 1+¢)logn n(+e)

We can now choosg such thate — p > 0 and the result follows. |
It is immediate that a single instantiation of the connaftigraph, every small square is populated w.h.p.
Corollary 1: There is no empty small square with probability at le@st O(#)) in a sequence of length
We are now ready to show that the connectivity graph is dogbét every time step in a sequenceof
connectivity graphs w.h.p. Since we have a USL mobility mpothee behavior of any grapg® (n,r,) at timet,
is statistically identical taj(n,r,).
Theorem 4:G(n, /(1 + €) log n) are doubling w.h.p.

Proof: By Lemma 1, all small squares contain at least one node wQopsequently, neighboring squares
(vertically and horizontally) have at least one commundgatink. Denote byL(m,r) the grid having the small
squares as vertices, and with edges between vertical amebhtal neighbors. Consider a bab,,,., = BgR(u)
centered around some nodeClearly, all nodes inB,,,., must be contained in a square which is par3¢f,.(u)
I.e., Bupper C Bch(u). This follows from the fact that no node iB,,;,,.. can be further away from than2Rr in
Euclidean distance, and that the grid is fully connectedpyv.8imilarly, one can see thBﬁ(u) C Biower = B}%(u).
This is a consequence of the fact thats a subgraph ofj i.e., two nodes in small squards hops a part inl
cannot be more tha® hops apart ing (see Fig. 5). It is easy to see that one can C(B/ﬁ{c(u) with a constant
o B5(v;). Hence,

Bupper & 4Rc U fzvj ) € Jg%vj )
J=1 J=

andG(n, /(1 + ¢)logn) is doubling [ |

Note that it is possible to build a deterministic geometriag for which this property does not hold (see Appendix
.0.a). Further, one can show thé@tn,r,) are not doubling w.h.p whenr,, < \/logn. We prove this result in
Appendix .0.b. At this point, we would like to emphasize thetfthat even though we analyze networks in which
the nodes are uniformly distributed on a square area, thblidguproperty is a much more powerful tool. Indeed,
our results and algorithms depend only on the doubling esis€Consequently, the algorithms and the bounds can
be applied to any other type of networks or node configuratibich lead to a doubling connectivity graph. For
instance, one can consider the network shown in Figure Zyritbesl in Section II-A. It can easily be shown by
using a technique similar to the one used in Theorem 4 thatrtbfwork is doubling. While we can seamlessly
apply our routing algorithm to such a network, any classgsdgraphic routing algorithm would fail or require a
high control traffic overhead to get out of dead-ends. This ttuthe fact that nodes would get stuck against the
wall when routing packets from the lower to the upper parthef metwork. In turn, this would considerably affect
the performance in terms of stretch and control traffic ogathwith respect to the same network without a wall. In
the next subsection we will prove a set of sufficient condgidor wireless networks to have a constant doubling
dimension.

1

A. Inhomogeneous Topologies

In the first part of this subsection, we will show that undettaie conditions, the presence of topological holes in
the network does not increase the doubling property, or bylg constant factor. In particular, we are interested in
how we can alter the topology of a fully connected and denseark by removing nodes while still preserving the
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Fig. 5. Proof of theorem 4

doubling property. In the second part, we will generalizs itlea to arbitrary metric spaces. Considey (@, r,)
with 7, > /log n, such that full connectivity is guaranteed. We now arbiyaemove nodes form this connectivity
graph, and denote the new graph we obtairGhy The network area is divided into squarelets of sigewherec is
chosen such that nodes in horizontally and vertically ajasquarelets are guaranteed to be within communication
range. We denote bg,, the full grid where the squareletes are vertices an@{lhythe corresponding grid ig,, i.e.,
the thinned out grid obtained by selecting only non-emptyasglets inG,, . In both’,, andZ,, , we add an edge
only between horizontally and vertically adjacent squetee(see Fig. 6). We can now define a topological hole as
follows:

Definition 7 (Topological Hole):A topological hole is a set of horizontally, vertically oragjonally contiguous
squarelets containing no nodes.
Let us denote by, the k" such hole (k=1,2,3,...). We define the perimgi€¥;,) of V; as the perimeter of this
hole inH,, in graph distancei.¢., the number of hops of a path along the border of the hol#,in).

Theorem 5:Let P = maxy, p(V). Then, the doubling dimension is upper boundediy>?).

Proof. Consider a ball3;7 (u) centered at in G, . First, observe thaBssy (u) C Boxzﬁﬁc (u), where

Boxflgc (u) is the box centered at the squarelet containing £,, which contains all nodes at “maximum norm”
2Rc (i.e., loo-norm) from this squarelet. In other words, all nodes witBiR hops fromw in G, must be in a
squarelet contained in this box. We will now cover this boxhwsmaller boxesBoxﬁgx{l (R H (s0,). We need
i
{%W = 64c%y? such boxes at most. Consider the same small boxés,in Pick one non-empty squarelet
sy, In each such small boxes. Note that the maximum hop distaegeen two squarelets in such a small box
in £, is at most%. For each of these hops, we might have to make a detour of at mhaseps. Consequently,
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the same two squarelets could be at distance at rﬁﬁsfn H,, . Observe now that for any two nodesand

w contained in squarelets, and s,, respectively, we havetr (Suy Sw) > dYn (u,w). For each squarelet,,,
we pick one nodey; contained in this squarelet. Hence, for all nodesontained in this small box, we have
dYn (v, w) < dHn (Sv, s Sw) < %. By settingy = P, we obtain the claim.
[ |

We can extend this result to the case where the network carvloked into convex sets. We define a convex set
in G,, with slack as follows:

Definition 8: Let ¥ be a set of nodes if,, . Let H,, (¥) be the squarelets ift,, containing at least one node
in ¥. We say that the se¥ is convexif Yu,v € ¥, dHn (W)(su,sv) — dEn (Su, Sv), Wheres, ands, are the
squarelets containing andv i.e., there must be at least one shortest path inside the conveX/eesay that the
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setV is convex with slack Bf d’tn m(su,sv) < pdtn (Su, Sv)-
We can now state the following theorem
Theorem 6:Let C'Sq,CS,,...,CS, be a partition of the network intg convex sets with slack?, 1, ..., P,

respectively. Leper;, pers, ..., per, denote the perimeter of the convex sets. The doubling diimens then upper
peri [\2

CST;:CSmBoxpE” (su);ﬁ@d P )

Proof: In the proof of Theorem 5, we have shown that any ball of ra@idsaround some node is contained
in a box Boxf” (su), Wherep = 2Rc. We can cover each convex S€tS; intersecting this box with at most

bounded bymax,, , 4"

4( |22 )2 small boxes of radiusk/4P;, as shown in Theorem*5A slack of P implies that by selecting one
Py

node in each of the small boxes, all nodes in the convex sew#hin R hops of this node irg, . If the box

Boxf" (s,) is partitioned into several convex sets, selecting?s | )2 nodes in each convex sétS; intersecting

this box will in turn guarantee that all nodes are covered. l [ |
In practice, this result implies that if we are given a decosition of the network into convex sets, we can bound
the overall doubling dimension given the doubling dimensid each set separately. Further, this result implies
that networks that consist of a small number of convex amghigh can each contain arbitrarily many small holes,
have a low complexity in terms of doubling dimension. We widw relate the “shapes” of a topological hole to
the doubling dimension. In particular, we will show that aran relate the doubling dimension to the maximum
number of connected components in any square subarea.

Theorem 7:For any~y > 2, the doubling dimension is such that

a<4y%¢  max number of convex disconnected components with stadk Boxg/",y (u)}
Box (u)
Proof: In the proof of Theorem 5, we have shown that any ball of ra@idsaround some node is contained

in a box Boxf" (su), Wherep = 2Re. In turn, we showed that by dividing this box into smaller bsxof side
R/~, and by selecting one node in each box, we could cover therdrgll of radius2R. Now, in each small box
of side R/~, the presence of holes might create several disconnectagarents. However, we know that inside
each such component, we can cover any convex subset witk sladith one nodes. The result follows. [ |
This last result gives us a characterization of the altenative can make to a fully connectédn, r,,) network,
while only affecting the doubling dimension by a constamtda In particular, we can remove nodes as long as we
do not create too many convex and disconnected componeaty/isquare subarea. Note that we can still remove
arbitrarily many nodes as long as we only create small hdleeorems 5, 5, 5 imply that topologies such as the
one shown in Fig. 8 have a constant doubling dimension. Thelteestated above are special cases of the more
general result detailed in the sequel. Indeed, we can rédatdoubling dimension in a metric space to the doubling
dimension in another metric space if we know the distortibthe embedding that maps the points in one metric
space to the points in the other metric space. The examphleab@ special case of that setup where we map the
nodes of a graph to points in Euclidean space. Consider twdaspaces X, d) and (X', d'), whered andd’ are
distance functions which define a metric on the sets of p&irand X’. We could for instance consider the two
metric space$X’, ||.||) and(H,d(.,.)) i.e.,the points in the plane with the Euclidean distance and tliesiin the
graph with the shortest path distance nfetric embeddings a bijective functionp : X — X’ which associates to
a point in one metric space a point in another metric space.

Definition 9 (Distortion of an Embedding)A mapping¢ : X — X’ where(X,d) and(X, d’') are metric spaces,
is said to have distortion at mo#?, or to be aD-embeddingwhere D > 1, if there is aK € (0,00) such that
Ve, y € X,

Kd(z,y) < d'(¢(x), (y)) < KDd(z,y)

if X’ is a normed space, we typically requike=1 or K = %. An embedding has distortioP with slacke if all
but ane fraction of node pairs have distortiad under¢. Additionally, one can loosen this definition by allowing
slack. The slack is said to heniformif each node has distortion at mabtto a1 — e fraction of the other nodes.

4A convex area of perimeter can always be included in a square area of side
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Fig. 8. A network with topological holes and a constant dmgtdimension. The size of the large holes grow withbut the network can

be divided into a constant number of areas, each being comitexslackO(1) i.e., each of the convex areas contains only obstacles with a
constant perimeter or that can only increase the distanweeba nodes by a constant factor. Note that even though thielidg dimension

is low, greedy geographic forwarding of packets would failpackets would get stuck in dead-ends against the holesr&ets containing

no nodes are hatched.

Finally, an embedding with distortio® and slacke is coarseif for every nodeu the distortion is bounded to a

node a distance greater than= inf {rs.t|B (u)| > en}.

The doubling dimension of a metric space embedded into anatietric space can be bounded as follows:
Theorem 8 (Bounding the Doubling Dimensioi@onsider a metric spacg,d) embedded in another metric

space(&,d’) by a functiong. Let the doubling dimension of be 3. Let the distortion of this embedding be.

Then,H has doubling dimension with o < O((2D)!°8 7).

Proof: Choose any node € H. If the above condition is fulfilled, the images of all nodesA,(u) can
be at distance!’ at most2K DR from u at ¢(u). Hence,p(B3% (u)) C B pr(é(u)). We will now try to cover
o(BY(u)) by as few ballsB% - (6(v)) as possible (see Fig. 9, which illustrates this setup in #ee evhert{ is a
graph and the Euclidean space). To do so, let us coBékDR(¢(u)) by small balls of radiugC R in £. Covering
BS e pr(¢(u)) will require at most3'°s2P balls of radiusk R in &, given that€ has doubling dimensiop. We
know thatd(u,v) < d'(u,v)/K, by definition 9. Consequently,~*(B%,. (¢(v))) C BX(v). We can conclude that

Bi(u) c Ut BR(v)). 0
The presence of large obstacles in the network does not serdgsimply that the network is not doubling. In

particular,
Theorem 9:Consider a metric spacg with doubling dimension3. A metric spaceH that can be divided in
k setsSy, S, ..., Sk, such that each set embeds individually with distortidninto £ has doubling dimension at
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Fig. 9. Proof of theorem 8

mOStZ?zl ﬁZ log2D;

Proof: Consider any ball of radiug8R in H, such that the nodes in the ball belong to at least two diftere
sets (otherwise the theorem is clearly true). Note that #tbus of each of these subsets can be at maést
Consequently, we now that the part of the ball that belongs; tcan be covered by at mogt!°s2P: (by applying
Theorem 8 to cover a ball of radius? by balls of radiusR). The theorem follows. ]

We can now broaden the class of communication networks the¢ tow doubling dimension. In particular, if
we can subdivide the communication graph into a constantbearof subsets, such that each one embeds with
constant distortion into the Euclidean plane, the wholevosgt is doubling. Consequently, topologies such as
the one shown in Figure 10 are doubling. In this example, weeshan unweighted graph into the Euclidean
plane. Note that the minimal Euclidean distance betweeres@thould bepr,, (for some constanp), such that
prpd(u,v) < ||lz(u) — z(v)|] < O(1)pry,. If this equation is true for all pairs of nodes, then the aligon is
O(1). There is an issue when the nodes are neighbors in the coroatiani graph, as the above rule implies that
the Euclidean distance between such pairs of nodes shoeifdlte at leasO(r,). However, we can ignore the
distances below as we will not cover balls of radius 1 (since we have a broadoaslium, the degree of a node
does not impact the communication overhead). In such cassgxbvious that geographic routing would fail, even
though the inherent complexity of the network is low. Indepackets would get stuck against walls. Remarkably,
our routing algorithm is oblivious to the topology and onlgp&nds on the doubling dimension. Hence, there is
absolutely no need to detect or identify obstacles. The conication overhead will simply depend on the doubling
dimension.

B. Sequences of Communication Graphs

We now show that a sequence@? (n,r,,) of lengthn”, for some constant, with the USL mobility model is
rk-smooth. As already seen in Theorem 4, such a sequence disgigploubling at every time instant.

Theorem 10:A sequence oG® (n,r(n)) of length < n”, where nodes move according to the USL mobility
model with maximum constant speédis

Ld®) 27552
rnd® . ’\/5\/5(1—1_ - \2(:)\/7
N 2\/5\/57’5 Tn

max

)
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Fig. 10. A set of doubling network topologies. The networkiémse, and made inhomogeneous by the walls, which do no aosmissions
to go through. Note that the walls stretch whemrows, such that the network wide distortion also grows witlbashed lines indicate the
separation into sets.

smooth w.h.p.
Proof: Consider two nodes andv at Euclidean dlstanagt = ||z, —xy]||2 at timet. Letq(t = ||lzy—zy||1 =
anzl |Zm (1) — 2 (v)|. Further, denote byY) = d()(u,v) their shortest path distance at tirheOne can see that

qj—: < d® < M Indeed, the shortest possible path will follow a straighé Ibetweenu andv. The length

of this line ing) and one hop can be of length at mesét). In the worst case, the shortest path franto v will
follow the shortest path in the grid formed by the small sggasf side™» = =, which exists w.h.p. Recall that
we can only guarantee horizontal and vertical connectlvéfween small squares. The number of small squares in
(t)
this path will be at mos@. One can easily show thaf” < v2¢". Letz = < 21 > — ( 1 > = (24— T0).
" 2

ST1

We have
=z} + 23 =21V1 + 52

2 t 2
= (1+ )oY = ¢

Since, we havém V1+ the term is maximized when= 1. In Figure 11, we illustrate this point. Similarly,

(t47)
at timet + 7, the shortest path distance will be bounded—by— < dtHT) < ffq - . However, we know that
the Euclidean distance can change by at n2est in 7 time step% Consequently,

qé) ) < g+ < \/3\/5(% + 275)
Tn o o T
We can now bound the multiplicative stretch as follows: Henc
max {(\/—\/— \[2\}3 <t)) ! \/7\/7(1 + 2T<§) )}
—mm{fv_ VBV2( Qﬂg

o ——2V5V278 Tn

®3)

(M _2r8’

[ |
One can now observe that the time it takes to multiply thetssbpath distance between two nodes at distance
is proportional tod. Note that the larger the communication radiys ), the smallerx. Hence, the distance grows
at most linearly with time. In particular, we have:
Corollary 2: There exist constants and defined in the proof such that a sequence.oiconnectivity graphs,
under the USL mobility model with maximum constant spégds x-smooth w.h.p.

50One can show that this remains true even if the nodes aretezflen the borders of the network
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Proof: By theorem 10, we know that the sequence is

max

nd® 27552

o BVR(L+ = Z(z)f_)
Tn _ Tn
NV 2v/5v/278
-smooth w.h.p. Note that both terms decrease as a functithe@ommunication radius,. Hence, we can sef, = 1
without decreasing:(7, d). Similarly, both terms go down when the distan#€ goes up. We can therefore also
setd® = 1, which is the smallest possible distance in an unweightaglgrConsequently, if we set= vd® = v,
we can now write

k(1,d) < max { I 21\/5\/5]]5, VEV2(1 + 21/5\/3\/5)}
V5V2

which is constant for constant. [ ]

IV. ROUTING ALGORITHM

We develop the routing algorithm and performance analysisaf general class of dynamic networks which
produce a sequence of doubling and smooth connectivityhgrayye have seen in Sections Il and Il that this
applies to a class of wireless connectivity models with UShbitity. For notational convenience we will illustrate
the ideas for a sequenc¢® (n, r,,) geometric random graphs with USL mobility.

We decompose a time step into two phasebeaconingphase and &orwarding phase. In the former phase, a
set of routes are established by letting all or a subset césdldod the network at geometrically decreasing radii
and nodes register with beacon nodes. In the latter phasesuhset of routes is then utilized by source nodes to
efficiently search for the destination. Every node is eqaegith a routing table as shown in Table 1l. We will
first describe two procedures used in the beaconing and thiangophase.

flood(R,level) procedure:When a node. initiates the flood(R, level) procedure, it broadcastsflbod packet
as shown in Table Il to its direct neighbors @(n,r,). The hop countfield is initialized to0 and the content
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Node identifier| distance[hops] | level | next hop

TABLE I
ROUTING TABLE RT

of the Levelfield will be specified in the sequel. All nodes can computertteximum hop count given the level
of the source. The neighbors which receive this packetr afteseasing the hop count by, add an entry to their

Pkt. Type Node Id. Hop Count Level
O(1) bits | O(logn) bits | O(logn) bits | O(log A) bits
TABLE Il

FLOOD PACKET

routing table for node: if no entry for the same node with a lower or the same hop cauptésent in the RT for
the same level. Thaext hopfield is set to the identifier of the node from which the packasweceived. The level
field in the routing table is set to the level given in the pdcke turn, these nodes broadcast this packet to their
neighbors which follow the same procedure and update thngptable if necessary. The packet is discarded when
the hop count reaches the maximum hop count (which is a fumaif the level). Note that with this procedure,
every node forwards the packet at most once and the distaigesldo the routing table is the shortest path distance
in G(n,ry).

probe(relay,destination) procedure:This procedure consists in sending@be packe{see Table 1V) to a relay
node for which the source has an entry in its routing tables figdday node will set the success bitltaf it has an
entry for the destination an@ otherwise. We will make sure that all nodes on the path beiwiee source and the
relay node have an entry for the relay node in their routitdetaAdditionally, nodes on the path add a temporary
entry for the source in the routing table. They set tiext hopfield to the identifier of the node from which they
received the packet and leave tlewel and distancefield empty. Upon receiving the packet, the relay node can

Pkt. Type Relay Id. Dest. Id. Success
O(1) bits | O(logn) bits | O(logn) bits 1 bit
TABLE IV
PROBE PACKET

either answer to the source on the reverse path we just drdatee answer is negative. Alternatively, it can take
action as explained in the sequel if it has an entry for theinkegon.
We now separately detail the beaconing and the routing iethgas underlying our routing protocol

A. Beaconing Algorithm

We will first describe the first time step, where nodes haveyebvtmoved. Let thecover radiusat leveli, for
i=1,...,log A (A being the diameter of the network), be defined-as- 2¢ and theflooding radiusat leveli be
defined asf; = x(r;+1 + 1), wherex is a constant chosen such thdvd, d) < kd, ¥d. The idea of the algorithm
is to build a hierarchical cover of the networl., we would like every node in the network to be withip of a
beacon node at every levelWe say that when a node is withifj of a beacorb at leveli, it is a member ob’s
cluster at leveli. A node can only be in one cluster at every level. To achiei® thie let the nodes flood in a
random order which can change at every time step. Every nadea beacon at a given levgl«). The flooding
radius, however, will depend on the highest level at whiclodenis not covered. Let us denote bft:) the highest
level at which node: is not covered. When nodes turn to flood comes, it will determine the value bfu) set
B(u) = h(u) and call flood(fp(.), k(). A nodewv which receives this flood will determine the lowest level at
which it could be a member af’s cluster, say(v). That is, it will determine the lowest valugefor I(v) such that



18

d(u,v) < 27. This distanced(u,v) is known sincev just received a flood packet from It will then become a
member ofu’s cluster for all levels abové&v) for which it has no membership yet and are belé). If a node
becomes a member afs cluster, it will send anembership packdsee Table V) back ta which will store the

Pkt. Type Node Id. Beacon Id. Level
O(1) bits | O(logn) bits | O(logn) bits | O(log A) bits
TABLE V

MEMBERSHIPPACKET

identifier of the nodes in its cluster. Note that a nadeould send back none or several such packets. thote
thatu also applies this procedure to itself, and consequentlydcbe a beacon at levélbut not at level; < i.

The control traffic will be dominated by the messages serk bgaodes to beacons when they become members
of a cluster. On the other hand, we do not want the distanaeeaet a node and the beacons it belongs to to grow
by more than a constant factor. Since we consider that thenmoax speed of the node is constant, the higher the
level of a beacon, the more time it will take for nodes to deubleir distance to this beacon. We wanttectnew
beacons and update memberships only for levels at which ittendes could have been multiplied by Recall
that the network is:-constrained. Consequently, the distan€®(u, v) between two nodes andv cannot change
by a factors in less tharwd time steps (see Corollary 2). In particular, if a node is atatice2’ of a beacon at
the time it becomes a member of its cluster, then we hv&*' < x2¢. Hence, we will update the memberships
at leveli every 2! time steps (see Figure 12). This will lead to a routing sch@menhich the distances can be

Layer
log A
flood
AV AV
]
flood
+membership
I
3
2
A | T
Lt T >
V- F02468... 9i A

Fig. 12. The memberships up to leviehre updated every2’ time steps. At the levels above, beacons elected at edrtiergteps simply
flood again.
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distorted by at most a constant factor to be calculated irséggiel. Additionally, in a dynamic environment, routes
can break. This is why we let the beacons at all levels floodratyetime step. Levels at which nho membership
updates take place simply use the floods of the beacons tadeuftgir routes toward theses beacons. This will
ensure that a route always exists for all pair of nodes.

RTatu: u 5 3 u RTatu: u 4 2 u
2 1 3 3 1 4
u 4 3 ’

RT at u: u , 0 11
u 4 3 u, 2 2

RT entry: (identifier) (distance) (level) (next hop)

Fig. 13. The example start with empty routing tables. Fostthe left, nodeu; floods at level3. We focus on nodes: andus. Node us
is within 8 hops fromwu; but further away tham hops. Consequently, it can only had an entry for nedeat level 3. At the same time,
nodewus can add an entry for node; at the levels2 and 3, since it is at distance of u;. Next, on the rightu-’s turn to flood comes
(right afterw;’s turn). This node is already covered at ledelConsequently, it will flood at levet. The nodeus could potentially add an
entry for this node at levels and 2. However, it is already covered at leveland so adds only an entry for level We do not show the
entries beacons add for themselves.

In Figure 13, we give a simple with three levels. The beaarlgorithm is presented in Algorithm 1. It is
important to note that the routes are updated at every tiege ahd consequently routing toward a beacon will
always be successful. Further, when the membership at a @gvel: is updated, all the memberships at the levels
j < will also be updated, and all memberships at these levelsetaah.

B. Forwarding Algorithm

The forwarding algorithms works as follows: a source nadgishing to communicate with a target nodewill
search forv by first probing all the level 1 beacon it knows of. To do sopiKs at the last column of its routing
table and selects all nodes it knows of at levelf all answers are negative, it will probe all levelbeacons it
knows of. The procedure is repeated as long as all beacongeamggatively. A beacon at leveélthat has an
entry for the destination in its routing table will not angwdirectly to the source. Rather, it will probe all the
level i — 1 beacons it knows of. We will show in the next section that oh¢hese beacons must have an entry
for the destination. That beacon in turn probes all the besado knows of at levet — 2. Meanwhile, the other
beacons at level — 1 will answer negatively to the beacon at levelThe procedure is repeated recursively until
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Algorithm 1: Beaconing Algorithm at node

Data: Routing Table, Time t

begin
Let T' = max {O < j <log Alt modv2’ = O};
Clear routing table entries withevel < T
Let 5(u) be the level at which: is a beacon;
if w(¢) = then

if 5(u) <T then
Let h(u) be the highest level at which is not covered;

B(u) = h(u);
end
flOOd(fh(u)> h(u))7
end
end

the target itself is reached. The target will then answeh&dource on the reverse path which will later be used
for communication between the source and the destinatianillMétrate the forwarding procedure conceptually in
Figure 14.

C. Load-balancing

This approach guarantees a low network wide control traffierloead. Even though over a long period of time
all nodes will get approximately the same average overhesat,ons at the highest levels might get overloaded by
the membership packets of the nodes in their cluster whenmbmeship update takes place. These nodes will be
hot spots in the network for a short period of time. To workuena this problem, memberships can be distributed
in the cluster instead of stored at the beacon itself. Rivstnow setf/ = x(2r;+1 + ;). Additionally, whenever
a beacon floods at levé] it includes its membership at levéh- 1 in the packet. This information is stored by
all nodes that receive this flood packet. This will guarartkeg all nodes that are members of a cluster at leyvel
know how to reach all beacons at leviel 1 inside that cluster. A node that becomes a member of theeclo$t
beacor;(u) at leveli will now send its membership packet directly toward the losag;_; (u) at leveli — 1 inside
this cluster with the identifier closest tgs. In turn, as soon as the packet reaches a node which is a enevhb
i—1(u)’s cluster at level — 1, the membership packet is redirected toward the beagos(u) which is a member
of ;1 (u)’s cluster at level — 1 and has the identifier closest to nods. The process is repeated until we reach
a single node, which will store’s identifier on behalf ob;(u). Note that the membership can only be registered
at a single location in the cluster reachable through a wngpguence of clusters. This remains true even when
nodes move. Indeed, the nodes in the clustey; @f) will only forward the packet to beacons at level 1 which
were in the same cluster at the time the membership for thid got updated. Of course, whenever level & i
is updated, we do now not only need to serisl identifier toward its new beacon at that level. Additidpathe
node that holds:’s identifier at levelj; might not anymore be reachable through a path of clustets idéntifiers
closest tou's. Consequently, this node will need to forwaits identifier toward the beacon at levglwith the
identifier closest ta:’s. Again the process will be repeated recursively untilregk node is reached. As we will
see, the cost of avoiding hot spots is a fadtgyn in the total control traffic. Finally and most importantlyjtiv
this procedure beacons will no longer get overloaded. Rathe traffic will be distributed in its cluster.

The data forwarding process remains the same except thabtiree node will not probe the beacon itself, but
rather search for the node in the beacon’s cluster that dimitl the destination’s identifier. If this node holds the
identifier, it will then probe the beacons one level belowhie same way. Recall that the nodes which potentially
hold u’s membership can be reached at any given instant in timeugifir@a unique sequence of clusters. The
procedure is repeated until the destination is reached.

V. PERFORMANCEANALYSIS

In this section, we will analyze the performance of our althon analytically both in terms of control traffic and
of route stretch. As in Section 1V, we will do this for a seqoerof doubling and smooth connectivity graphs, and
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Fig. 14. Nodeu has a packet for node. It searches in its routing table for all beacons it knows tofegel 1 and sends them a probe
packet containing’s identifier. None of the beacons at levelhas an entry for this node and consequently they all answgatinely to
nodeu. Next, nodeu repeats the same procedure with all the beacons it knows lef/@lt2. Again, all beacons answer negatively. On the
third level, now, a beacon has an entry for naedélhis beacon will probe all the beacons it knows of at I&elvhile the other beacons at
level three will answer negatively ta. A beacon at leve2 must have an entry for. This beacon again probes all the beacons it knows of
at level 1 among which one must have an entry foitself. Meanwhile, the other beacons reply negatively &y ttho not have any entry
for v.

will use G® (n, r,,) with USL mobility for illustration.

The bounds derived in this section hold with w.h.p. when weiara sequence ei-doubling connectivity graphs
of lengthn”. In the sequely, ~ andv are the constants derived in Section lIl. Let us denoté\by O(\f(ﬁ))
the diameter of the network. To bound the control traffic iIsseey for beaconing, we will rely on thedou%ling
property of the metric space to show that a node can only heansatant number of beacons at every layer. We
will first show that a ball of radiu@ R around any node can only contain at constant number of balls (clusters)
of radius R, when we select the centers of the balls of radiug an arbitrary order and ensure that two centers
cannot be closer thaR. We will later use this result to show that a node can hear a&tr@aaonstant number of
beacons at any given level.

Theorem 11 (Random Coverlet BQXR(u) be a ball of radiugR in a graph metri¢ X, d) with doubling constant
a centered au. Then, one can select at mdsk o2 nodesu;, (i = 1,2, .., k) such thatBy(u) € U¥ B3 (v;) and
ming jyd(vi, vg) > R.

Proof: By definition of ana-doubling metric space, there must exist a cover of a baladius2R consisting

of at mosta balls of radiusR. Recursively, there must also exist éwcover consisting ofy? points. One can
select at most one centey in each ball of radiusk?/2, as any other point inside this ball is withi® of v;. Hence,
one can select at mosf such centers. [ |

Corollary 3: Let B be a ball of radiuskR > R’ in an a-doubling metric spacéX,d). Then, one can select
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at mostk < (£)%°9() nodesuv;, (i = 1,2,..,k) such thatBy (u) C U; By (v;) andming jd(vi,v;) > R'. In
particular, if R = nR' for some constank, thenk is at most a constarit))?°9(®) independent of..

Proof: Let R = 2!R’. Hence,R' is doubledlogg times to obtaink. By Theorem 11 can be covered by
295 = ({L)209(@) palls of radiusR’. |
Here, one can think of the radiu® of the large balls as the flooding radius, and of the raditsf the small balls
as the cover radius. Indeed, we use this result to show thatda: can hear the floods of all beacons within a
given radiusR. Moreover, this ball of radiug? can contain at mos(t%)”og(a) beacons, since beacons must be at
leastR’ apart.

A. Control Traffic

Theorem 12:The average control traffic overhead per time step for beagda at mostO(n log? n) bits.

Proof: We will analyze the control traffic at levél Recall that a beacon at levelfloods a distance; =
k(271 4-27) at every time step. Further, at the time the memberships adtated at level, a beacon node at this
level cannotbe within ; = 2¢ of another beacon at that level. If it were the case, this nedeld not elect itself
as a beacon at this level. Leviels updated every?2’ time steps. Consider a node By corollary 10, only nodes
that are withink f; at the time the memberships are updated at léwauld move withinf; of « in at mosty2
time steps. That is before this level is updated again. Gpresaly, the number of beacons whose flood can reach
u at any given time step is at most the number of levetacons in a ball of radiusf; at the time the membership
is updated. In turn, node will broadcast the flood packets of at most that many beacons for this levBly
corollary 3, this number is a constérgiven by (%f:)%°9(2) = (3x2)2lg, Given that there ar®(logn) levels,
that there arex nodes and that a flood packet has giz@og n) bits, the average control traffic overhead per time
step for beaconing is at moét(nlog?n) bits. [ |
We now compute the control traffic overhead necessary foesital update their memberships with beacons. Recall
that leveli and all levels below are updated ever¥ times steps and that a node can only be a member of one
cluster at every level. Furthermore, a node only becomesmlraeof a cluster if it is withir2? of the corresponding
beacon.

Theorem 13 (Membership Update Overheailie average control traffic overhead per time step to updata-m
berships without load-balancing is at most
nlog Alogn

2
> = O(nlog”n)

bits.
Proof: Consider a sequence @f time steps. The memberships will be updated up to léwalery2° time
steps, soy% times in a sequence of lengih At the time of the update, a node can be at distance at fadstm
a beacon at level Consequently, the overhead in bits generated by a nodeequesce ofl’ time steps is upper
bounded byZiozglA %2’ logn = # log n. [ |
Finally, we will show that the average control traffic oveatdlavhen load-balancing is used is increased by at most
a factorlog n.
Theorem 14 (Membership Update Overheaillie average control traffic overhead per time step to updeta-m
berships with load-balancing is at most
nlog? Alogn

_ 3
” = O(nlog”n)

bits.

Proof: Consider a sequence @f time steps. The memberships will be updated up to lewalery »2¢ time
steps, soy% times in a sequence of lengih At the time of the update, a node can be at distance at 2osfrom
a beacon at level— 1 inside its cluster at level. Similarly, a node can be at distance at m@strom a beacon at
level i — 2 inside its cluster at level— 1. In the load balanced scheme, we have to count the overhega down
the hierarchy of beacons. For a beacon at ley#is is at mos®’ x 2. Consequently, the overhead in bits generated

®recall that when a node broadcasts a packet it is received! ljrect neighbors in the connectivity graph. Consequgritiere is one
packet transmission per beacon of which a flood packet isveste
"In the load-balanced scheme, this constar(pis?)?'°s .
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by a node in a sequence dftime steps is upper bounded b@i‘fﬁ %2’ logn = 41"guA log n. However, node:

is a member of a cluster at dlig A levels. Recall that the node that hold's identifier must always be reachable
through a path by choosing the beacon (cluster) with thetiiikmnclosest tou’s. Hence, whenever level gets
updated, allog A nodes that hold:'s identity must follow the same procedure astself. We conclude that the
overhead is upper bounded h;gA4% log n bits. ]

B. Route Stretch

In this section we will show that the route found with the fanding algorithm is only a constant factor longer
than the shortest path. Additionally we show that the dasibn location discovery takes a negligible fraction of
a flow throughput.

Theorem 15 (Routing Stretchf:he worst case multiplicative routing stretch(§1).

Proof: We first analyze the stretch without load balancing. Condidat we want to route from a nodeto a
nodew, and that we had* < d(u,v) < 2F+1 the last time levek was updated before the route search takes place.
Let us denote by, (v) the beacon to which node had registered the last time leviek &£ was updated before the
route search takes place. Clearly, we hd{e b, (k)) < x(25T1 4-2%), andd(b;(v), bi—1 (v)) < k(20+2071). This is
true since the membership of nodat leveli must have been updated at mogt time steps before the routing takes
place, and that at the time the time levejets updated, we hav&b;(v),b;—1(v))) < d(b;(v),v)+d(v,b;—1(v)) by
triangle inequality. Note thal(b;(v),b;—1(v)) < f;—1 and thatd(u, b,(k)) < fi. Hence, a route must exist between
u andv and the length-+7)(u, v) of the route at timet is at most:

rO(uv) ST fe=rnE, @ +2)
=3s 3N 2 = 3/12k2+_11_1 < 6kd® (u,v)
In the worst cast, nodes andv have moved closer together (by a factQrwhile the beacons have moved further
apart. Indeed, we havé*™) (u,v) < kd® (u,v) for 7 < v2F as our network is<-constrained. Note that if we
waited longer that/2*, memberships would be updated again at leévednd we could find another beacon at

distance2® at most fromwv at level k. Hence, the worst case stretch% <62 =0(1). [ |

Every node can only hear floods from a constant numpet (3x2)2'°6<, see Theorem 12) of beacons at every
level. Recall that the source will first probe all beaconseskel 1, then all beacons at lev&® and so on. The
procedure is repeated up to leveht which the source will send a packet td,(v). Note that the distance from
u to this beacon can be at mas2*+! + 2¥ = f;. and so it must hear its floods. In turn, when routing down the
hierarchy, beacon;(v) will probe at most a constant numbeB?)2!°® of beacons at levej — 1. Finally, the
distance between a nodeand a beacon at leveélcan be at mosy; and a probe packet will traverse at magt
packets when a beacon at levek probed (back and forth). This means that for discoveryheflbcation of the
destination, we need a probe overhead of at mésid(u,v) packet transmissions. Therefore, this is a negligible
part of the throughput of a flow since it consumes roughly theivalent of a few packet headers of a flow from
source to destination. A similar statement can be made ®iaad-balanced case.

VI. IMPLEMENTATION ISSUES

In Section V, we have computed worst case bounds which mayohsecvative in terms of constants. In this
section, we explore this aspect by looking at simulationultssfor the control traffic and for the stretch. Recall
that we had computed that for each of t€log n) levels, a node has to retransmit a packet of at nigst)?1°e
beacons. Even if we set the maximum speed as well as the prante 1, this is still v/10+20 and consequently
the constant in the bound on the overhead at least as high(@d0 + 20)?)? ~ 2.5 - 10°! In Figure 15, however,
we show that in practice this constant is approximately 3tis Bimulation was run witth0 up to 10000 nodes
moving at a maximum speed af One can observe that the experimental scaling behavioesmonds extremely
well to the theoretical behavior. To stress this fact, we @l®t 100 log n as a benchmark. Note that the overhead
is expressed in number of packets rather than bits (a paeleg of sizeO(logn)).

Similarly, in Figure 16 we show that for a network #00 nodes, the stretch is at mosb for all node pairs.

If we compute the maximum theoretical stretch, we can shat ithis again considerably larger and hence a
pessimistic bound. These small constants could make aigakirhplementation realistic.
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Fig. 15. Average control traffic overhead per node in pacsta function of the network size. Nodes move at a speed ofmuemispeed
of 1. The confidence interval is given by the 95% and 5% percentilée size of a packet i9(log n) bits. We also plofl00 log n to show
that our analytical predictions match the simulation resul

We have made a certain number of assumptions in our modelshwfe now clarify. In practice, the random
permutations on the nodes, which determines the order ichwtiie flooding occurs, could be implemented by
using random timers; more precisely, by letting all nodesanda random delay independently of each other every
AT seconds. Obviously, the interval from which nodes draw dleisly should be made sufficiently large so that we
can avoid collisions. However, a level in the hierarchy Ww#l rapidly covered, and in a practical implementation the
covers at different levels could be built in parallel. Ferthdifferent parts of the network are independent except
at the highest level, and we could exploit this spatial diitgrto parallelize the beaconing process. Hence, we
speculate that it is possible to reduce the length of the dreéag phase to a small constant times the maximum
round-trip time. Note that one could apply the algorithmsutalerlying networks that are not doubling. In this
case, we would not be able to give provable bounds on theaanterhead and the stretch as we did for doubling
networks.

VIlI. CONCLUSIONS

In this paper, we show that a large class of wireless netwarklets belong to a larger class of networks, the
doubling networks, in which efficient routing can be achieved. To glesan efficient routing scheme, one can
hierarchically decompose the network by relying on the diagtproperty to prove that the control traffic overhead
and the stretch will remain low, even for dynamic doublingweagks. This holds for a fairly broad class of uniform
speed-limited (USL) mobility models. One advantage of treppsed routing algorithm is that it is robust, in that it
works well in certain situations in which other existing @lighms cannot work well. This was illustrated in Section
II-A for an example network with obstacles. We believe thatnyn more such examples can be created where the
use of the doubling rather than geographic properties wbaldrucial. To the best of our knowledge, our results
are the first provable bounds for routing quality and costdfmamic wireless networks. These techniques might
give us insight into algorithm design for more sophistidatéreless network models.
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Fig. 16. Empirical cumulative distribution of stretch (tedength/shortest path) for a network witl00 nodes moving at a maximum
speed ofl.
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APPENDIX

a) Unit Disc Graphs: Another common model used in studies on wireless networksUant Disk Graphs
(UDG), which are the deterministic variants of the randororgetric graphs. The randomness of the positions of
the nodes is removed and they can be placed arbitrarily orita @hinfinite area. The channel model is completely
deterministic as before and nodes are connected if theiidean distance is below a threshold distancealled the
communication radius. In mathematical terms, two nadesidv with positionsz(u), z(v) € [0, R]? are connected
if and only if ||z(u) — z(v)|| < r. We will now show that there exist UDG which are netdoubling (see Section
Il for a definition of ana-doubling metric).

Theorem 16:There exists an infinite UDG for which is no constant that wdpeunds the doubling dimension
i.e., UDG are not doubling.
Proof: Consider the graph shown in Figure 17. To show that this gigplot a-doubling, we must show that

S
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R+1
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A\
R I T H T T T H T TR TR RS
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‘ ‘ ‘ L

Ball of radius R=8 around node u r—j

Fig. 17. An infinite UDG obtained by deleting all the nodes wery second column of a grid, except for the nodes on the tlellmirow.
Consequently, “columns” argr apart.

there exists no constant such that all balls of radiusan be covered a constamtnumber of balls of radiug/2,

for all R. Consider the ball centered aroundn the figure. One can see that there &gt + 1 “columns” which
cross the middle row at a distance less thaf2 from w (that is, the intersection of the column and the row is
less thanR/2 hops away fromu). The intersection of each of these columns with(R) is of length more than

R (see hatched zones on Figure 17). Consequently, for ead¢tesé tolumns there is at least one node at distance
more thanR /2 from the middle row. To cover these nodes, we need to placeast bne ball of radiu®/2 on
each of these columns. Hence, the doubling dimension isrlbeended byR/4 and tends to infinity afk goes

to infinity. |
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One can notice that in the non-doubling UDG in the proof of dieen 16 results from a careful construction.
In Appendix .0.b, we show however that such a structure wauv with high probability when-,, < \/logn in
random geometric graphs.

b) Random Geometric Graphs with, < /logn: We first consider the case in which the communication
radiusr is such thatr, = r = (logn): % < log'/2n and@ € | ¢,1]. ¢ is a constant such that< ¢ < 1.

Lemma 1:For any constant, there exists constants> 0 andb > 0 such that a small square area of sige

with b nodes contains a subgraph of doubling dimengion 1 with probability p > 0.

Proof: Consider the small square shown in Fig. 18 of side where~ is a constant independent ofto be

2(k-Dr/c

r/c ‘ kr/c * -
[ ]
L f

r/c|

QR)(k-1)t/c

2R hops

m S

2R)(k-Drfe

\

Fig. 18. Graph for the proof of lemma 1

specified later. Subdivide the small square further intoi+sguares of side'/c. Choose the constamtsuch that
there exists a constahtsatisfying\/i(k —2) > ¢ > Vk? + 1. Under these conditions, two nodes in mini-squares
separated by k — 2) other mini-square will be connected, but not mini-squarés — 2)v/2/c apart (see right
hand side of Fig. 18). Consider now the graph on the left hadel af Fig. 18. Assume that each full (colored)
mini-square contains exactly one node. We now focus on tmeﬂg%(u) and will lower bound the number of
balls of radiusR necessary to cover it. On thig?/2| first vertical branches from the left, the last node of the
branch inside that ball (circled) must be covered by a baladius R centered on the same branch. This is clear
since the length of the branch is larger thRnh Consequently, the doubling dimension of this graph is astle
|R/2| > %. We want the doubling dimension to be larger thiarwhich can be easily achieved by choosiRg
such that®! > 8. Let R = 23+2 > 23+ 1. Further, we can now set= (2R +5)(k—1)/c = (43 +9)(k—1)/c
andb = 2R+ 1) PRTH +1] = (48 +5) {452—” + 1}. This ensures that the doubling dimension is strictly large
thang.
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It remains to be shown that when such a small square coniaindes, the graph constructed above occurs with

292

probability p > 0. The numbern of mini-squares contained in a small square of sjdels m = 7«2/02 = 72¢?
which is constant. Each node can fall in any of thesquares with equal probability. Hence, alf configurations

are equiprobable ang= -1 > 0. |
We number the small squares frointo m = (7’;)2 = 210g1 am and denote b)Xf’ the indicator variable that takes
value 1 when small squaré contains exactly nodes.
Lemma 2:There are at least'/? squares containing nodes with probability at leastl — O(o2v)) for n
sufficiently large
Proof:
EX] =€, X7

- 22%1 r [Xllb]b 1\n—b

i Zzzlb(@(bm) 1 N )

= m(z) ) (=) ,

> bﬂb(,yZ 10g1—9 ’I’L)b_l(l o %)m'y2 logt=%n

= bﬂb(ﬁy2 10g1—9 n)b_lzzﬁ logg O n/los) e

> O(n!~0=)

> 0(n’)

whered > 7 for n sufficiently large, sincé > (.

Let S; be the random variable representing the small square inichvthei** node falls. LetF be the number of
small squares containing exactiynodes after all nodes have been placed. Then the sequgnre€ [F|Sy, ..., ;]
is a Doob Martingale. One can show th&t= f(S, Ss,...,S,) satisfies the Lipschitz condition with bourid
Indeed, changing the placement of #i& ball can only modify the value of' by at mostl. We therefore obtain:

10/8—1 1

P [|F — E[F]| > n®/8] <2e72" T

by the Azuma-Hoeffding inequality. Consequently,

PIF<n'?] <P|F< E[F]-n/"
~——
=n7/8_n5/8>nl/2

<2 <24

e2n

and 1
P[F>n'/?>(1-2 nw)
[ |
It now remains to show that in this regim@(n,r) are not doubling with high probability.
Theorem 17:G(n, (log n)%_%), wheref € |, 1[ and( is a constant such that< ¢ < 1, are notdoublingwith
high probability.

Proof: By Lemma 1, for any constant, a small square area of side with b nodes contains a graph of
doubling dimensiorn> 3 with probability p > 0. By Lemma 2, there are!/? such small squares containithg
nodes w.h.p. Lef#' denote the number of small squares containing exactlpdes. Consequently, the probability
that at least one of this squares contains a graph of doutllingnsion> ( is given by:

P [not doubling = 37", P [not doublingF = j|P [ = j]
> (1= O(5mm)) it (1 = (1= p)Y)
> (1= (1=p)""")(1 - O(3=))
> (1—(1—p)"")?
> (1 — 257)
wherez = (1%]3) > 1. Consequently, with probability at leagt — —2), there exists no constant which bounds
the doubling dimension of (n, (log n)z~%). m



