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Mantel’s Theorem for Random Hypergraphs

József Balogh ∗ Jane Butterfield † Ping Hu ‡ John Lenz §

Abstract

A classical result in extremal graph theory is Mantel’s Theorem, which states
that every maximum triangle-free subgraph of Kn is bipartite. A sparse version of
Mantel’s Theorem is that, for sufficiently large p, every maximum triangle-free sub-
graph of G(n, p) is w.h.p. bipartite. Recently, DeMarco and Kahn proved this for
p > K

√

log n/n for some constant K, and apart from the value of the constant this
bound is best possible.

We study an extremal problem of this type in random hypergraphs. Denote by
F5, which sometimes called as the generalized triangle, the 3-uniform hypergraph with
vertex set {a, b, c, d, e} and edge set {abc, ade, bde}. One of the first extremal results in
extremal hypergraph theory is by Frankl and Füredi, who proved that the maximum
3-uniform hypergraph on n vertices containing no copy of F5 is tripartite for n > 3000.
A natural question is for what p is every maximum F5-free subhypergraph of G3(n, p)
w.h.p. tripartite. We show this holds for p > K log n/n for some constant K and does
not hold for p = 0.1

√
log n/n.

Keywords: Turán number, random hypergraphs, extremal problems.

1 Introduction

A classical result in extremal graph theory is Mantel’s Theorem [13], which states that every
K3-free graph on n vertices has at most ⌊n2/4⌋ edges. Furthermore, the complete bipartite
graph whose partite sets differ in size by at most one is the unique K3-free graph that
achieves this bound. In other words, every maximum (with respect to the number of edges)
triangle-free subgraph of Kn is bipartite.
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A sparse version of Mantel’s Theorem has recently been proved by DeMarco and Kahn [8]:
Let G(n, p) be the usual Erdős-Rényi random graph. An event occurs with high probability
(w.h.p.) if the probability of that event approaches 1 as n tends to infinity. We are interested
to determine for what p every maximum triangle-free subgraph of G(n, p) is w.h.p. bipartite.
DeMarco and Kahn proved that every maximum triangle-free subgraph of G(n, p) is w.h.p.
bipartite if p > K

√

logn/n for some large constant K. If p = 0.1
√

log n/n, then w.h.p. there
is a C5 in G(n, p) whose edges are not in any triangle, therefore any maximum triangle-free
subgraph of G(n, p) contains this C5 and is not bipartite. So apart from the value of the
constant the result of DeMarco and Kahn is best possible.

Problems of this type were first considered by Babai, Simonovits and Spencer [1]. Bright-
well, Panagiotou and Steger [5] proved the existence of a constant c, depending only on ℓ, such
that whenever p ≥ n−c, w.h.p. every maximum Kℓ-free subgraph of G(n, p) is (ℓ−1)-partite,
and recently, DeMarco and Kahn [9] found the appropriate range of p for this problem. Here,
we study an extremal problem of this type in random hypergraphs.

Definition. For n ∈ N and p ∈ [0, 1], let Gr(n, p) be a random r-uniform hypergraph with
n vertices and each element of

(

[n]
r

)

occurring as an edge with probability p independently of
each other. In particular, G2(n, p) = G(n, p). Denote by F5 the 3-uniform hypergraph with
vertex set {a, b, c, d, e} and edge set {abc, ade, bde}. Denote by K−

4 the 3-uniform hypergraph
with 4 vertices and 3 edges.

a

b

c

d e

(a) F5

a

b

c

d

(b) K−
4

Figure 1: The 3-uniform hypergraph F5 and K−
4 .

The Turán hypergraph Tr(n) is the complete n-vertex r-uniform r-partite hypergraph
whose partite sets are as equally-sized as possible. In particular, Mantel’s Theorem states
that the maximum triangle-free graph on n vertices is T2(n). Finding extremal graphs for
3-uniform hypergraphs is much more difficult; even the extremal hypergraph of K−

4 is not
known. The best known construction is due to Frankl and Füredi [11], with asymptotically
n3/21 edges, so a maximum K−

4 -free 3-uniform hypergraph is not tripartite. One of the first
extremal results in extremal hypergraph theory is determining the extremal hypergraph of
F5. This problem F5 was first considered by Bollobás [4], who proved results for cancellative
hypergraphs, i.e., that the maximum {K−

4 , F5}-free hypergraph is tripartite. Frankl and
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Füredi [10] proved that the maximum 3-uniform hypergraph on n vertices containing no
copy of F5 is T3(n) for n > 3000. The hypergraph F5 is the smallest 3-uniform hypergraph
whose extremal hypergraph is T3(n).

Our main result is a random variant of the theorem of Frankl and Füredi [10], i.e., that
for sufficiently large p a largest F5-free subgraph of G3(n, p) is w.h.p. tripartite, and our p is
close to best possible.

Theorem 1. There exists a positive constant K such that w.h.p. the following is true. If
G = G3(n, p) is a 3-uniform random hypergraph with p > K logn/n, then every maximum
(with respect to the number of edges) F5-free subhypergraph of G is tripartite.

If p is very small, then an F5-free subhypergraph of G is also w.h.p. tripartite since G
itself is likely to be tripartite, so this case is not so interesting for us.

If p = 0.1
√
log n/n, then w.h.p. there is a maximum F5-free subhypergraph of G3(n, p)

that is not tripartite. To see this, first using the second moment method one can prove that
w.h.p. there are n/5 vertex disjoint copies of K−

4 in G3(n, p). Then using Janson’s inequality
(which computation is quite delicate, we omit the details), one can prove that w.h.p. one
of them has the property that none of its edges are in an F5. Then a maximum F5-free
subhypergraph of G3(n, p) would contain this K−

4 , and note that K−
4 is not tripartite.

We consider that the above reasoning might be optimal, therefore we conjecture that√
log n/n is the correct order of p.

Conjecture 2. There exists a positive constant K such that w.h.p. the following is true. If
G = G3(n, p) is a 3-uniform random hypergraph with p > K

√
logn/n, then every maximum

F5-free subhypergraph of G is tripartite.

Note that a weaker result than Theorem 1 appeared in the thesis of the second author [6].
To improve the results of [6], some ideas of [8], see Lemma 14, are used in this paper, but
there are several differences as well. Our result, similar to [8], characterizes the precise
structure of the extremal subgraph of the random hypergraph.

Recently, powerful general asymptotic statements were proved about extremal substruc-
tures of random discrete structures, see Balogh–Morris–Samotij [3], Conlon–Gowers [7],
Samotij [14], Saxton–Thomason [15] and Schacht [16].

We shall use Theorem 1.8 of Samotij [14], which transferred a stability theorem of Keevash
and Mubayi [12]:

Theorem 3. For every δ > 0 there exist positive constants K and ε such that if pn ≥
K/n, then w.h.p. the following holds. Every F5-free subgraph of G3(n, pn) with at least
(2/9 − ε)

(

n
3

)

pn edges admits a partition (A1, A2, A3) of [n] such that all but at most δn3pn
edges have one vertex in each Ai.

The hypergraph F5 is an example of what Balogh, Butterfield, Hu, Lenz, and Mubayi [2]
call a “critical hypergraph”; they proved that if H is a critical hypergraph, then for suffi-
ciently large n the unique largest H-free hypergraph with n vertices is the Turán hypergraph.
We could prove results analogous to Theorem 1 for the family of critical hypergraphs, as
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some ideas of our proofs are from [2], but this extension to critical hypergraphs is likely to
be very technical, and probably we would not be able to determine the whole range of p
where the sparse extremal theorem is valid.

The rest of the paper is organized as follows. In Section 2 we introduce some more
notation and state some standard properties of G3(n, p). In Section 3 we provide our main
lemmas and prove them. We prove our main result, Theorem 1, in Section 4. To simplify
the formulas, we shall often omit floor and ceiling signs when they are not crucial.

2 Notations and Preliminaries

For the remainder of the paper, G will always denote the 3-uniform random hypergraph
G3(n, p). The size of a hypergraph (graph) H, denoted |H|, is the number of hyperedges
(edges) it contains. We denote by t(G) the size of a largest tripartite subhypergraph of G.

We write x = (1 ± ε)y when (1 − ε)y ≤ x ≤ (1 + ε)y. We say Π = (A1, A2, A3) is a
balanced partition if |Ai| = (1 ± 10−10)n/3 for all i. Given a partition Π = (A1, A2, A3) and
a 3-uniform hypergraph H, we say that an edge e of H is crossing if e∩Ai is non-empty for
every i. We use H[Π] to denote the set of crossing edges of H.

The link graph L(v) of a vertex v in G is the graph induced by the edge set {xy : xyv ∈ G}.
The crossing link graph LΠ(v) of a vertex v is the subgraph of L(v) whose edge set is {xy : xyv
is a crossing edge of G}. The degree d(v) of v is the size of L(v) (i.e. the number of edges
in L(v)), and the crossing degree dΠ(v) of v is the size of LΠ(v). The common link graph
L(u, v) of two vertices u and v is L(u) ∩ L(v) and the common degree d(u, v) is the size of
L(u, v). The common crossing link graph LΠ(u, v) of two vertices u and v is LΠ(u) ∩ LΠ(v)
and the common crossing degree dΠ(u, v) is the size of LΠ(u, v). Given two vertices u and
v, their co-neighborhood N(u, v) is {x : xuv ∈ G}; the co-degree of u and v is the number of
vertices in their co-neighborhood.

Given two disjoint sets A and B, we use [A,B] to denote the set {a ∪ b : a ∈ A, b ∈ B}.
We will use this notation in two contexts. First, if both A and B are vertex sets, then [A,B]
is a complete bipartite graph. Second, if A is a subset of a vertex set V and B is a set of
pairs of vertices of V \A, then [A,B] is a 3-uniform hypergraph. In these two contexts, given
a graph or hypergraph H, let H[A,B] denote the set H ∩ [A,B]. Note that in the first case
H[A,B] is the bipartite subgraph of H induced by A and B. In the second case, H[A,B] is
the 3-uniform subhypergraph of H whose edges have exactly one vertex in A and contain a
pair of vertices from B.

We say a vertex partition Π with three classes, which we will call a 3-partition, is maxi-
mum if |G[Π]| = t(G). Let F be a maximum F5-free subhypergraph of G. Clearly t(G) ≤ |F|.
To prove Theorem 1, we will show that w.h.p. |F| ≤ t(G) is also true for an appropriate
choice of p. Moreover, we will prove that if F is not tripartite, then w.h.p. |F| < t(G).

We will make use of the following Chernoff-type bound to prove Propositions 5-11, which
state useful properties of G3(n, p). The proofs of those propositions are standard applications
of the Chernoff bound, therefore we omit some of them.
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Lemma 4. Let Y be the sum of mutually independent indicator random variables, and let
µ = E[Y ]. For every ε > 0,

P [|Y − µ| > εµ] < 2e−cεµ,

where cε = min{− ln
(

eε(1 + ε)−(1+ε)
)

, ε2/2}.

For the rest of this paper, we always use cε (which depends on ε) to denote the constant
in Lemma 4.

Proposition 5. For any ε > 0, there exists a constant K such that if p > K log n/n, then
w.h.p. the co-degree of any pair of vertices in G is (1± ε)pn.

Proposition 6. For any ε > 0, there exists a constant K such that if p > K
√
log n/n, then

w.h.p. the common degree d(x, y) of any pair of vertices (x, y) in G is (1± ε)p2n2/2.

Proposition 7. For any ε > 0, there exists a constant K such that if p > K log n/n2, then
w.h.p. for any vertex v of G, we have d(v) = (1± ε)pn2/2.

Proposition 8. For any ε > 0, there exists a constant K such that if p > K/n, then w.h.p.
for any 3-partition Π = (A1, A2, A3) with |A2|, |A3| ≥ n/20 and any vertex v ∈ A1, we have
dΠ(v) = (1± ε)p|A2||A3|.

For a vertex v and a vertex set S, let E be a subset of {vxw ∈ G : x ∈ S} satisfying that
for every x ∈ S, there exists an e ∈ E such that x ∈ e, and let T be a subset of L(v). Define

Kv,E [S, T ] = {xyz : x ∈ S, yz ∈ T, ∃e ∈ E s.t. x ∈ e, y, z /∈ e},

and Gv,E [S, T ] := Kv,E [S, T ] ∩ G. Observe, since G is the random hypergraph, we have

E[|Gv,E [S, T ]|] = p |Kv,E [S, T ]| .

Then for any xyz ∈ Gv,E [S, T ] with x ∈ S, yz ∈ T , we can find an F5 = {vxw, vyz, xyz}
where vxw ∈ E . The condition y, z /∈ e in the definition of Gv,E [S, T ] guarantees that we
can find such an F5 instead of only a K−

4 . The somewhat artificial definition of Gv,E [S, T ] is
needed for given v, E , S and T to forbid many hyperedges, which could create an F5.

Proposition 9. For any constants ε, ε1, ε2 > 0, there exists a constant K such that if
p > K log n/n, then w.h.p. for every choices of {v, S, E , T} as above with |S| ≥ ε1n and
|T | ≥ ε2pn

2, we have |Gv,E [S, T ]| = (1± ε)p|S||T |.

Proof. Note that here we first reveal the edges containing v; given this choice we fix S, T
and E . We also assume that the conclusions of the previous propositions hold. For x ∈ S,
let dE(x) = |{e ∈ E : x ∈ e}| and Tx = {yz ∈ T : vxy ∈ E}. If dE(x) > 2, then clearly
[x, T ] ⊆ Kv,E [S, T ]. If dE(x) ≤ 2, then by Proposition 5, we have |Tx| ≤ 2 · 2pn = 4pn, and
clearly [x, T \ Tx] ⊆ Kv,E [S, T ]. Therefore,

|[S, T ]| − |Kv,E [S, T ]| ≤
∑

x∈S,dE(x)≤2

|Tx| ≤ |S| · 4pn.

5



We have |[S, T ]| = |S||T | ≥ |S1|ε2pn2, so |Kv,E [S, T ]| = (1−o(1))|S||T |. Let µ = E[|Gv,E [S, T ]|] =
p |Kv,E [S, T ]| = (1− o(1))p|S||T |. By Lemma 4 we have

P [||Gv,E [S, T ]| − µ| > εµ] < 2e−cεµ.

For sets S, T with |S| = s and |T | = t, we have at most n choices for v,
(

n
s

)

choices for S,

22spn choices for E and
(

pn2

t

)

choices for T . Then by the union bound, the probability that
the statement of Proposition 9 does not hold is bounded by

∑

s≥ε1n

∑

t≥ε2pn2

n

(

n

s

)

22spn
(

pn2

t

)

2e−cεµ ≤
∑

s≥ε1n

∑

t≥ε2pn2

n

(

n

s

)

22spn
(

pn2

t

)

2e−cεst/2 = o(1).

The proof of the following proposition is based on Theorem 3.

Proposition 10. Let δ be a small positive constant. Then there is an ε > 0 and a large
constant K = K(δ, ε) such that if p > K/n and F is a maximum F5-free subhypergraph of
G, then |F| ≥ (2/9 − ε)

(

n
3

)

p. Furthermore, for every F5-free subhypergraph F of G and a
3-partition Π maximizing |F [Π]|, where |F| ≥ (2/9− ε)

(

n
3

)

p, the partition Π = (A1, A2, A3)
is balanced and all but at most δn3p edges have one vertex in each Ai.

Proof. We may assume that δ, ε < 10−100, where ε is determined by Theorem 3 given δ. For
a partition Π = (A1, A2, A3), Proposition 8 implies that w.h.p. |G[Π]| = (1± ε)p|A1||A2||A3|
if |A2|, |A3| ≥ n/20. Clearly |F| ≥ t(G) ≥ |G[Π]|. If |A1| = |A2| = |A3| = n/3, then we have
|F| ≥ (2/9 − ε)

(

n
3

)

p. Theorem 3 implies that if Π maximizes |F [Π]|, then G[Π] ≥ F [Π] ≥
(2/9− ε− δ)

(

n
3

)

p, and the number of non-crossing edges is at most δpn3.
If Π is not balanced and |A2|, |A3| ≥ n/20, then |G[Π]| ≤ (1 + ε)p|A1||A2||A3| < (2/9 −

2ε)
(

n
3

)

p. If Π is not balanced and one of |A1|, |A2|, |A3| is less than n/20, then Proposition 7
implies that |G[Π]| < n/20 · (1 + ε)pn2/2 < (2/9 − ε − δ)

(

n
3

)

p. Therefore, if Π maximizes
|F [Π]|, then Π is balanced.

Given a balanced partition Π = (A1, A2, A3), let Q(Π) = {(u, v) ∈
(

A1

2

)

: dΠ(u, v) <
0.8n2p2/9}. In words, Q(Π) is the set of pairs of vertices in A1 that have low common
crossing degree (in G).
Proposition 11. There exists a constant K such that if p > K/n, then w.h.p. for every
balanced partition Π and every vertex v, we have dQ(Π)(v) < 0.001/p.

Proof. Let ε = 0.1. By Proposition 8, we may assume that dΠ(v) ≥ (1 − ε)pn2/9, and
therefore, dΠ(u, v) ≤ 0.8

1−ε
dΠ(v)p for (u, v) ∈ Q(Π).

If a vertex v and a balanced partition Π violate the statement of Proposition 11, then
there are S ⊆ V and T = LΠ(v) with |S| := s = ⌈0.001/p⌉ and |G[S, T ]| ≤ 0.8

1−ε
|S||T |p. We

have at most 3n choices of |Π|, n choices of v,
(

n
s

)

choices of S, so the probability of such a
violation is at most

3nn

(

n

s

)

exp(−c · 0.001/p · pn2 · p) = o(1),

where c is some small constant.
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The following statement is heavily used in the proof of Lemma 13, which is one of the
two main lemmas we use to prove our main theorem.

Lemma 12. Let a and r be positive integers. For any ε > 0, there exists a constant K such
that if p > K logn/n, a ≤ εn and

(

n

a

)

·
(

n2/2

r

)

· exp(−c1εpnr) = o(1), (1)

then w.h.p. the following holds. For any set of vertices A with |A| = a, there are at most r
pairs {u, v} ∈

(

V (G)\A
2

)

such that |N(u, v) ∩A| > 2εpn.

Proof. Fix a set A of size a. We shall show that there are at most r pairs u, v in
(

V (G)\A
2

)

for which |N(u, v) ∩ A| is large. For each pair of vertices u and v, let B(u, v) be the event
that |N(u, v) ∩A| > 2εpn ≥ 2pa. By (a slight variant of) Chernoff’s inequality,

P[B(u, v)] < e−cεpn

for c = c1 in Lemma 4. If {u, v} 6= {u′, v′} then B(u, v) and B(u′, v′) are independent events.
Consequently, the probability that B(u, v) holds for at least r pairs is at most

(

n2/2

r

)

e−cεpnr.

There are
(

n
a

)

choices of A. Therefore, if (1) holds, then w.h.p. there are at most r pairs

{u, v} ∈
(

V (G)\A
2

)

such that |N(u, v) ∩A| > 2εpn.

3 Key Lemmas for Theorem 1

Let F be an F5-free subhypergraph of G; we want to show that |F| ≤ t(G). The following
lemma proves this with some additional conditions on F . The shadow graph of a 3-uniform
hypergraph H is the graph with xy an edge if and only if there exists some hyperedge of H
that contains both x and y.

Lemma 13. Let F be an F5-free subhypergraph of G and Π = (A1, A2, A3) be a balanced
partition maximizing |F [Π]|. Let Bi = {e ∈ F : |e ∩ Ai| ≥ 2} for 1 ≤ i ≤ 3. There exist
positive constants K and δ such that if p > K log n/n and if the following conditions hold:
(i)

∑

i |Bi| ≤ δpn3,

(ii) the shadow graph of B1 is disjoint from Q(Π),

then w.h.p. |F [Π]|+ 3|B1| ≤ |G[Π]|, where equality is possible only if F is tripartite.

If F is a maximum F5-free subhypergraph of G and not tripartite, then by Proposition 10,
for every δ > 0, w.h.p. Condition (i) of Lemma 13 holds. Without loss of generality, we may
assume that |B1| ≥ |B2|, |B3|, in particular B1 6= ∅. If Q(Π) = ∅, then Condition (ii) of

7



Lemma 13 holds and we get |F| < t(G), a contradiction. If Q(Π) = ∅ for every balanced
partition Π = (A1, A2, A3), then the proof would be completed. Unfortunately, we are only
able to prove this property for p > K/

√
n with some large K, so Lemma 13 implies that

Theorem 1 is true for p > K/
√
n. To improve the bound on p from the order of 1/

√
n to

log n/n, we prove that Q(Π) = ∅ for every maximum 3-partition Π. (Recall that a 3-partition
Π is maximum if t(G) = |G[Π]|.) This is stated in the following lemma, which says that if
Q(Π) 6= ∅, then Π is far from being a maximum 3-partition. The proof of Lemma 14 is along
the lines of the proof of Lemma 5.1 in DeMarco–Kahn [8].

Lemma 14. There exist positive constants K and δ such that if p > K log n/n and the
3-partition Π is balanced, then w.h.p.

t(G) ≥ |G[Π]|+ |Q(Π)|δn2p2,

where equality is possible only if Q(Π) = ∅.

Note that if Q(Π) = ∅, then by definition t(G) ≥ |G[Π]|. We will use Lemmas 13 and 14
to prove Theorem 1. In the next two subsections we prove these two lemmas.

3.1 Proof of Lemma 13

We will begin with a sketch of the proof of Lemma 13, which will motivate the following
lemmas.

Let M be the set of crossing edges of G \ F , and assume that |B1| ≥ |B2|, |B3|. If
|B1| = 0, then we have |F [Π]| + 3|B1| ≤ |G[Π]|, so to prove Lemma 13, it suffices to prove
that if B1 6= ∅, then 3|B1| < |M|. So we assume for contradiction that |M| ≤ 3|B1| ≤ 3δpn3,
where the second inequality follows from Condition (i) of Lemma 13.

For each edge e = w1w2w3 ∈ B1 with w1, w2 ∈ e ∩A1, because w1w2 /∈ Q(Π), there exist
at least 0.8p2n2/9 choices of y ∈ A2 and z ∈ A3 such that w1yz and w2yz are both crossing
edges of G. By Proposition 5, the co-degree of w1 and w3 is w.h.p. at most 2pn. Therefore,
there are at least 0.8p2n2/9−2pn ≥ p2n2/12 choices of such pairs (y, z) such that w3 /∈ {y, z},
and then each of these pairs (y, z) together with e form a copy of F5 = {w1w2w3, w1yz, w2yz}
in G. Since F contains no copy of F5, at least one of w1yz, w2yz must be in M.

We will count elements of M by counting the embeddings of F5 in G that contain some
e ∈ B1. Each such F5 contains at least one edge from M, and this will provide a lower bound
on the size of M in terms of |B1|. Instead of counting copies of F5 itself, we will count copies
of F̂5 which is a 4-set {w1, w2, y, z} such that there exists e ∈ B1 with w1, w2 ∈ e∩A1, y, z /∈ e
and w1yz, w2yz being crossing edges. It is easy to see that each F̂5 yields at least one F5

containing some e ∈ B1. So for each pair w1, w2 ∈ e ∩ A1 for any e ∈ B1, there are at least
p2n2/12 copies of F̂5 containing w1, w2. We will count copies of F̂5 in G by considering several
cases, based on the relative sizes of the sets C1 and C2, defined below.

Let

ε1 =
1

960
, ε2 =

1

400
, δ =

ε21ε2
108 · 160 and ε3 =

108δ

ε1
. (2)
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Denote by J the shadow graph of B1 on the vertex set A1. Let C = {x ∈ A1 : dJ(x) ≥ ε1n},
C1 be the set of every vertex in C that is in at least ε2pn

2 crossing edges of F and let
C2 = C \ C1.

With these definitions in hand, we are prepared to prove the following lemmas, which
will lead to a proof of Lemma 13 at the end of this subsection.

Lemma 15. |C| ≤ ε3n.

Proof. For each edge wx ∈ E(J), since wx /∈ Q(Π), there are at least p2n2/12 choices of
y ∈ A2, z ∈ A3 such that {w, x, y, z} spans an F̂5 in G. Then xyz, wyz ∈ G and one of
these two edges must be in M, otherwise F contains a copy of F5. On the other hand, by
Proposition 5 with ε = 0.5, for each edge xyz ∈ M with x ∈ A1, y ∈ A2, z ∈ A3, there are
at most 3pn/2 choices of w such that wyz ∈ G. Therefore, we have 3

2
pn|M| ≥|J |p2n2/12.

We assume 3δpn3 ≥ |M|, so 3
2
pn · 3δpn3 ≥ 3

2
pn|M|. It follows that 54δn2 ≥ |J |.

Now, every vertex in C has degree at least ε1n in J , so ε1n|C| ≤ 2|J | ≤ 108δn2 implies
that |C| ≤ 108δε−1

1 n = ε3n.

Lemma 16. |M| ≥ 20pn2|C1|.
Proof. Assume |C1| ≥ 1, otherwise this inequality is trivial. For each x ∈ C1, let Tx :=
{(y, z) ∈ A2 × A3 | xyz ∈ F} ⊆ LΠ(x). By the definition of C1, we have |NJ(x)| ≥ ε1n
and |Tx| ≥ ε2pn

2 for each x ∈ C1. We will count the number of copies of F̂5 : {x, w, y, z}
in G with x ∈ C1, w ∈ NJ(x), xyz ∈ F and wyz ∈ G. By Proposition 9 with v = x, S =
NJ(x), E = {e ∈ B1 : x ∈ e} and T = Tx, there are at least 1

2
dJ(x)|Tx|p such copies of F̂5

for each x ∈ C1. Therefore, the total number of such copies of F̂5 is at least

∑

x∈C1

1

2
dJ(x)|Tx|p ≥ 1

2
|C1| · ε1n · ε2pn2 · p =

1

2
ε1ε2p

2n3|C1|. (3)

Say that an edge wyz ∈ M is bad if w ∈ A1, y ∈ A2, z ∈ A3, and there are at least
2ε3pn vertices x ∈ C1 for which xyz ∈ G. Because |C1| ≤ |C|, which by Lemma 15 has size
at most ε3n, we can apply Lemma 12 with ε = ε3, a = εn, r = (log log n)/p and A = C1 to
show that there are at most (log logn)/p pairs (y, z) ∈ A2 × A3 that are in some bad edge.
By Proposition 5, the co-degree of each such pair (y, z) is at most 2pn. Therefore, each (y, z)
is in at most

(

2pn
2

)

F̂5’s, and so the number of copies of F̂5 estimated in (3) that contain a
non-bad edge from M is at least

1

2
ε1ε2p

2n3|C1| −
(

2pn

2

)

· log log n
p

.

Now,
(

2pn

2

)

· log log n
p

≤ 2pn2 log logn ≤ 1

4
ε1ε2p

2n3 ≤ 1

4
ε1ε2p

2n3|C1|,

where the second inequality follows from p ≥ logn/n. Therefore, at least

1

2
ε1ε2p

2n3|C1| −
1

4
ε1ε2p

2n3|C1| =
1

4
ε1ε2p

2n3|C1|
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of the copies of F̂5 estimated in (3) contain a non-bad edge from M. Each such non-bad
edge from M is contained in at most 2ε3pn = 216δε−1

1 pn such copies of F̂5, and so

|M| ≥ ε21ε2p
2n3|C1|

4 · 216δpn =
ε21ε2

8 · 108δ pn
2|C1| = 20pn2|C1|.

Lemma 17. If J ′ is a subgraph of J such that ∆(J ′) ≤ ε1n, then

|M| ≥ 20pn|J ′|.

Proof. For each wx ∈ E(J ′), since wx /∈ Q(Π), there are at least p2n2/12 choices of (y, z) ∈
A2×A3 such that {w, x, y, z} spans an F̂5 in G. There are therefore at least 1

12
|J ′|p2n2 copies

of F̂5, and at least one of wyz, xyz must be in M for each of these copies of F̂5.
Consider an edge xyz ∈ M with x ∈ V (J ′). We will count how many of these copies of

F̂5 in G contain xyz. Say that xyz is bad if there exist at least 2ε1pn vertices w ∈ NJ ′(x)
with wyz ∈ G. For each x ∈ V (J ′), let dx = dJ ′(x) and denote by rx the number of pairs
(y, z) such that xyz is bad. By Proposition 5, the co-degree of each such pair (y, z) is at
most 2pn, so there exist at most min{2pn, dx} vertices w ∈ NJ ′(x) with wyz ∈ G. Then the
number of copies of F̂5 that contain a non-bad edge from M is at least

1

2

∑

x∈V (J ′)

dx
p2n2

12
−

∑

x∈V (J ′)

rx ·min{2pn, dx}. (4)

We will prove 1
2
dx · p2n2/12 ≥ 2rx ·min{2pn, dx} for every vertex x∈ V (J ′) by applying

Lemma 12 with ε = ε1, A = NJ ′(x) and various choices of a and r depending on dx. Note
that dx ≤ ∆(J ′) ≤ ε1n. So dx will fall into one of the following three cases.

1. dx > 2pn and logn
p2n

≤ dx ≤ ε1n. We apply Lemma 12 with a = ε1n and r = (log log n)/p

to obtain that rx ≤ (log log n)/p.

2. dx > 2pn and logn
pk+2nk+1 ≤ dx ≤ logn

pk+1nk for some integer k ∈ [1, logn
log logn

]. We apply

Lemma 12 with a = logn
pk+1nk and r = a/100 to obtain that rx ≤ logn

100pk+1nk ≤ pndx/100.

3. dx ≤ 2pn. We apply Lemma 12 with a = 2pn and r = p2n2/50 to obtain that
rx ≤ p2n2/50.

As long as a and r are positive integers and satisfy (1), we can apply Lemma 12. For
each of these three cases, we can easily check that

1

2
dx

p2n2

12
≥ 2rx ·min{2pn, dx}.

Therefore, the number of copies of F̂5 estimated in (4) is at least

1

2

∑

x∈V (J ′)

dx
p2n2

12
−

∑

x∈V (J ′)

rx ·min{2pn, dx} ≥ 1

4

∑

x∈V (J ′)

dx
p2n2

12
=

1

24
|J ′|p2n2.
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By definition, an edge that is not bad is in at most 2ε1pn of the copies of F̂5 estimated in (4).
Therefore,

|M| ≥ 1

24
· |J

′|p2n2

2ε1pn
=

1

48ε1
· pn|J ′| = 20pn|J ′|.

Lemma 18. |M| ≥ 1
20
pn2 |C2|.

Proof. For every vertex x ∈ C2, the number of edges in F [Π] that contain x is at most ε2pn
2,

but by Proposition 8, w.h.p. the crossing degree of x in G, dΠ(x), is at least pn2/10. Thus,
there are at least pn2/20 edges of M incident to x, so |M| ≥ |C2| pn2/20.

Proof of Lemma 13. Let δ be as defined in (2) and K sufficiently large that all the previous
lemmas and propositions are applicable. We now have three different lower bounds on the
size of M. We will show that |M| > 3 |B1| by proving that no matter how the edges of
B1 are arranged, one of the above lower bounds on M is larger than 3 |B1|. To do this, we
divide the edges of B1 into three classes. Let D = A1 \ C.

I. B1(1) = {e ∈ B1 : |e ∩ C| ≥ 2 or |e ∩D| ≥ 2}.
II. B1(2) = {e ∈ B1 \ B1(1) : |e ∩ C1| = 1}. Note that every edge in B1(2) contains a vertex

in C1, one in D and one outside of A1.

III. B1(3) = B1 \ B1(1) \ B1(2). Note that every edge in B1(3) contains a vertex in C2, one
in D and one outside of A1.

We now consider the following three cases on |B1(i)|.
Case 1. 3|B1(1)| ≥ |B1|.

Let J ′= J [C] ∪ J [D]. By definition, vertices x ∈ D have degree at most ε1n. For x ∈ C,
Lemma 15 shows that x has degree in J ′ at most |C| ≤ ε3n < ε1n. Proposition 5 shows that
|B1(1)| ≤ 2pn|J ′|. Combined with Lemma 17, this shows that |M| ≥ 20pn|J ′| ≥ 10 |B1(1)| >
3|B1|.
Case 2. 3|B1(2)| ≥ |B1|.

For each vertex x ∈ C1 and each y ∈ D, by Proposition 5, the co-degree of x and y is
at most 2pn. Since |D| ≤ n, there are at most 2pn2 edges of B1 \ B1(1) containing x. Thus
|B1(2)| ≤ 2pn2 |C1|, so Lemma 16 implies that |M| ≥ 20pn2 |C1| ≥ 10 |B1(2)| > 3 |B1|.
Case 3. 3|B1(3)| ≥ |B1|.

Every x ∈ C2 is in less than ε2pn
2 crossing edges of F . Note that every edge in B1(3) has

at least one vertex in C2 and is not completely contained in A1 (edges completely contained
in A1 are in B1(1).) If there exist at least ε2pn

2 edges of B1 which contain x and have a
vertex in A2, we could move x to A3 and increase the number of edges across the partition.
Similarly, there are at most ε2pn

2 edges of B1 which contain x and have a vertex in A3, since
otherwise we could move x to A2. Thus |B1(3)| ≤ 2ε2pn

2 |C2| = 1
200

pn2 |C2|. Then Lemma 18
implies that |M| ≥ 1

20
pn2 |C2| ≥ 10 |B1(3)| > 3 |B1|.

In each case we verified |M| > 3|B1|, then since one of these three cases must hold, we
have |M| > 3|B1|.
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3.2 Proof of Lemma 14

Proof. If Q(Π) = ∅, then clearly Lemma 14 is true, so we may assume Q(Π) 6= ∅.
Let

ε = 0.1, ζ = 0.001, γ = 0.1, α =
8

9
and ϕ = 0.001.

Recall that a partition Π = (A1, A2, A3) is balanced if |Ai| = (1± 10−10)n/3 for every i,
and for a balanced partition Π, Q(Π) = {(u, v) ∈

(

A1

2

)

: dΠ(u, v) < 0.8n2p2/9}.
By Propositions 6 and 8, for any balanced partition Π we have w.h.p. dΠ(v) ≥ (1 −

ε)pn2/9 = γpn2 for every vertex v and d(u, v) ≤ (1+ε)n2p2/2 for every pair (u, v) of distinct
vertices, and therefore dΠ(u, v) ≤ αpdΠ(v) for every (u, v) ∈ Q(Π).

Fix any positive δ < ϕγ/2, and let K be sufficiently large that all previous lemmas and
propositions are applicable. Let A = A(δ) be the event that for δ > 0, there exists a balanced
partition Π such that t(G) ≤ |G(Π)| + |Q(Π)|δn2p2. To prove Lemma 14, we will show that
P[A] = o(1). Since Q(Π) contains a bipartite subgraph R with at least half of the edges of
Q(Π), the event A implies that t(G) ≤ |G(Π)|+2|R|δn2p2 for some bipartite R ⊆ Q(Π). By
Proposition 11, we have dQ(Π)(v) ≤ ζ/p for every vertex v, and therefore, we have

dR(v) ≤ ζ/p. (5)

Let X, Y be disjoint subsets of V , R be a spanning subgraph of [X, Y ] satisfying (5), and
f be a function from X to {k ∈ N : k ≥ γpn2}. Denote by E(R,X, Y, f) the event that there
is a balanced partition Σ of G such that for every vertex x in X , we have

dΣ(x) = f(x), R ⊆ Q(Σ) and t(G) ≤ |G[Σ]|+ ϕ|R|γn2p2, (6)

where we should emphasize that Q(Σ) should be in the first partition class of Σ. Since
δ < ϕγ/2, the event A implies event E(R,X, Y, f) for some choice of (R,X, Y, f).

We will show that there exists a constant c such that

P[E(R,X, Y, f)] ≤ e−c|R|n2p2. (7)

There are at most
((n2)

t

)

2tn2t ways to choose (R,X, Y, f) with |R| = t. Then by the union
bound, we have

P[A] ≤
∑

t≥1

(
(

n
2

)

t

)

2tn2te−ctn2p2 ≤
∑

t≥1

(

en4

t · ecn2p2

)t

= o(1).

Now we prove (7), which completes the proof of Lemma 14. We consider revealing the
edges of G in stages:

(i) Reveal the triplets of vertices of G that contain x ∈ X .

(ii) Reveal the rest of the triplets of vertices of G except those belonging to
⋃

y∈Y [y,∪xy∈RL(x)].

(iii) Reveal the rest of the triplets of vertices of G.

12



Let G ′ be the subhypergraph of G consisting of the edges chosen in (i) and (ii), and let Γ
be a balanced partition of G ′ maximizing |G ′[Σ]| among balanced partitions Σ satisfying (6).
Recall that for any balanced partition Σ, we have dΣ(x, y) < αpdΣ(x) for all (x, y) ∈ Q(Σ).
So for any balanced partition Σ satisfying (6), we have

|G[Σ]| ≤ |G ′[Σ]| +
∑

y∈Y

∑

xy∈R

dΣ(x, y) ≤ |G ′[Γ]|+
∑

y∈Y

∑

xy∈R

dΣ(x, y)

≤ |G ′[Γ]|+
∑

y∈Y

∑

xy∈R

αpdΣ(x) ≤ |G ′[Γ]|+ αp
∑

y∈Y

∑

xy∈R

f(x). (8)

Note that the right hand side of (8) does not depend on the partition Σ, so it gives an
upper bound on |G[Σ]| for all Σ satisfying (6). On the other hand, we look at Γ. For each
y ∈ Y , set M(y) = ∪xy∈RLΓ(x). We have

t(G) ≥ |G[Γ]| = |G ′[Γ]|+
∑

y∈Y

|G[y,M(y)]|. (9)

Recall that dΓ(x) = f(x) ≥ γpn2, so for any two vertices x and x′, we have dΓ(x, x
′) ≤

d(x, x′) ≤ (1 + ε)n2p2/2 ≤ pdΓ(x)/γ. Also recall that R satisfies (5), so for each y ∈ Y we
have dR(y) ≤ ζ/p. It follows that for each y ∈ Y , we have

|M(y)| ≥
∑

xy∈R



dΓ(x)−
∑

x 6=x′∈NR(y)

dΓ(x, x
′)



 ≥
∑

xy∈R

[

dΓ(x)− dR(y) · max
x 6=x′∈NR(y)

dΓ(x, x
′)

]

≥
∑

xy∈R

[dΓ(x)− ζ/p · pdΓ(x)/γ] ≥ (1− ζ/γ)
∑

xy∈R

f(x).

Let µ be the expectation of the sum in (9). Then we have

µ = p
∑

y∈Y

|M(y)| ≥ (1− ζ/γ)p
∑

y∈Y

∑

xy∈R

f(x).

Then using Lemma 4, we know that with probability at least 1 − e−cεµ ≥ 1 − e−c|R|n2p2 for
constant c = cε(γ − ζ), the sum in (9) is at least (1 − ε)µ, and when this happens, (8) and
(9) imply that

t(G)− |G[Σ]| ≥ ((1− ε)(1− ζ/γ)− α) p
∑

y∈Y

∑

xy∈R

f(x) > ϕ|R|γn2p2,

which proves (7).

4 Proof of Theorem 1

Proof of Theorem 1. Let F̃ be a maximum F5-free subhypergraph of G, so |F̃ | ≥ t(G).
Suppose to the contrary that F̃ is not tripartite; then to prove Theorem 1, it suffices to show
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that |F̃ | < t(G). Let Π = (A1, A2, A3) be a 3-partition maximizing F̃ [Π]. By Proposition 10
we know that Π is balanced and F̃ and Π satisfy Condition (i) of Lemma 13. For 1 ≤ i ≤ 3,
let B̃i = {e ∈ F̃ , |e ∩ Ai| ≥ 2}. Without loss of generality, we may assume |B̃1| ≥ |B̃2|, |B̃3|.
Let B(Π) = {e ∈ G : ∃(u, v) ∈ Q(Π) s.t. {u, v} ⊂ e} and F = F̃ − B(Π). Observe that Π
is a maximal partition of F̃ , and F was obtained by removing some non-crossing edges of
F̃ , therefore Π is a maximal partition of F as well. Now F and Π satisfy all conditions of
Lemma 13. For 1 ≤ i ≤ 3, let Bi = {e ∈ F : |e ∩ Ai| ≥ 2}. Then we have:

|F̃ | ≤ |F̃ [Π]|+ 3|B̃1|
= |F [Π]|+ 3|B1|+ 3|F̃ ∩ B(Π)|
≤ |G[Π]|+ 3|B(Π)| (10)

≤ |G[Π]|+ 3 · 2|Q(Π)|np (11)

≤ |G[Π]|+ |Q(Π)|δn2p2

≤ t(G). (12)

Here we apply Lemma 13 to F and Π to get (10); note that equality is only possible
when F is tripartite. We apply Proposition 5 to get (11) and Lemma 14 to get (12). If F
is tripartite, but F̃ is not, then Q(Π) 6= ∅, and so equality in (12) would fail. We therefore
know that |F̃ | < t(G), a contradiction, which means F̃ is tripartite.
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