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Abstract: Graph bootstrap percolation, introduced by Bollobás in 1968, is a cellular automa-

ton defined as follows. Given a “small” graph H and a “large” graph G = G0 ⊆ Kn, in consecutive

steps we obtain Gt+1 from Gt by adding to it all new edges e such that Gt ∪ e contains a new

copy of H. We say that G percolates if for some t ≥ 0, we have Gt = Kn.

For H = Kr, the question about the size of the smallest percolating graphs was independently

answered by Alon, Frankl and Kalai in the 1980’s. Recently, Balogh, Bollobás and Morris

considered graph bootstrap percolation for G = G(n, p) and studied the critical probability

pc(n,Kr), for the event that the graph percolates with high probability. In this paper, using the

same setup, we determine, up to a logarithmic factor, the critical probability for percolation by

time t for all 1 ≤ t ≤ C log logn.

AMS 2000 subject classifications: primary 60K35; secondary 60C05.
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1. Introduction

Cellular automata, introduced by von Neumann [19] after a suggestion of Ulam [21], are dynamical
systems acting on graphs using local and homogeneous update rules. The H-bootstrap percolation
process is one example of such an automaton and can be described as follows. Given a fixed graph H
and a graph G ⊆ Kn, set G0 = G and then, for each t = 0, 1, 2, . . ., let

Gt+1 = Gt ∪ {e ∈ E(Kn) : ∃H with e ∈ H ⊆ Gt ∪ e}. (1)

Let 〈G〉H =
⋃∞

t=0 Gt denote the closure of G under H-bootstrap percolation. We say that G percolates

in the H-bootstrap process (or H-percolates), if 〈G〉H = Kn. (See Figure 1).
The notion of H-percolation, introduced by Bollobás in 1968 [7] under the name of weak satura-

tion, has been extensively studied in the case where H is a complete graph. Initially, the extremal
properties of the H-bootstrap process attracted the most attention. Alon [1], Frankl [15] and Kalai
[18] independently confirmed a conjecture of Bollobás and proved that the smallest Kr-percolating
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Fig 1. An example of the K4-bootstrap percolation process. Dashed edges are added to the graph on the next time step.

graphs on n vertices have size
(

n
2

)

−
(

n−r+2
2

)

.
Recently, Bollobás [9] observed a strong connection between weak saturation and r-neighbour

bootstrap percolation, a dynamical process suggested in 1979 by Chalupa, Leath and Reich [13]. For
an integer r ≥ 2, the r-neighbour bootstrap process on a graph G = (V,E) with an ‘initial set’ of
vertices A ⊆ V is defined by setting A0 = A and for t = 0, 1, 2, . . ., defining

At+1 = At ∪ {v ∈ V : |N(v) ∩ At| ≥ r}, (2)

where N(v) is the set of neighbours of v in G. The set 〈A〉 =
⋃∞

t=0 At is the closure of A and we say
that A percolates if 〈A〉 = V . Often, the vertices in the set At are called ‘infected’ and the remaining
vertices are ‘healthy’. The usual question asked in the context of r-neighbour bootstrap percolation is
the following: if the vertices of G are initially infected independently at random with probability p, for
what values of p is percolation likely to occur? The probability of percolation is clearly non-decreasing
in p hence it is natural to define the critical probability pc(G, r) as

pc(G, r) = inf{p : Pp(〈A〉 = V (G)) ≥ 1/2}. (3)

The study of critical probabilities has brought numerous and often very sharp results for various
graphs G and the values of the infection threshold. For example, van Enter [14] and Schonmann
[20] studied r-neighbour bootstrap percolation on Zd, Holroyd [16], Balogh, Bollobás and Morris [4],
Balogh, Bollobás, Duminil-Copin and Morris [3] analysed finite grids, while Balogh and Pittel [6],
Janson, Łuczak, Turova and Vallier [17] and Bollobás, Gunderson, Holmgren, Janson and Przykucki
[10] worked with random graphs.

Motivated by this approach, Balogh, Bollobás and Morris [5] defined the critical probability for
H-bootstrap percolation on Kn to be

pc(n,H) = inf{p : Pp(〈Gn,p〉H = Kn) ≥ 1/2}, (4)

where Gn,p is the Erdős-Rényi random graph, obtained by choosing every edge of Kn independently
at random with probability p. In [5], they showed that for all r ≥ 4, taking λ(r) =

((

r
2

)

− 2
)

/(r − 2)
and n ∈ N sufficiently large,

n−1/λ(r)

2e logn
≤ pc(n,Kr) ≤ n−1/λ(r) logn. (5)

In this paper we focus on a different question related to Kr-bootstrap percolation. Namely, for
what values of p is percolation likely to occur by time t? Defining Kr-bootstrap percolation as in (1),
let T = T (n, r,G0) = min{t : Gt = Kn in the Kr-bootstrap process}. Define the critical probability

for percolation by time t to be

pc(n, r, t) = inf{p : Pp(T ≤ t) ≥ 1/2}. (6)
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For notational convenience, for any r ≥ 4 and any t ≥ 1, set

τ = τ(r) =

(

r

2

)

− 1, et = τ t, and vt = (r − 2)
τ t − 1

τ − 1
+ 2. (7)

The following theorem is the main result of this paper.

Theorem 1.1. Let r ≥ 4 and t = t(n) ≤ log logn
3 log τ . Let (pn)

∞
n=1 be a sequence of probabilities, let

ω(n) → ∞ and let T = T (n, r,Gn,pn
). Under the Kr-bootstrap process,

(i) if, for all n, pn ≥ n−(vt−2)/et logn, then Ppn
(T ≤ t) → 1 as n → ∞ and

(ii) if, for all n, pn ≤ n−(vt−2)/et/ω(n), then Ppn
(T ≤ t) → 0 as n → ∞.

Thus, Theorem 1.1 shows that for all r ≥ 4 and 1 ≤ t ≤ log logn
3 log τ , and ω(n) → ∞, for n sufficiently

large we have
n−(vt−2)/et

ω(n)
≤ pc(n, r, t) ≤ n−(vt−2)/et logn. (8)

Similar questions related to the time of r-neighbour bootstrap percolation on grids have recently
been studied by Bollobás, Holmgren, Smith and Uzzell [11], Bollobás, Smith and Uzzell [12] and by
Balister, Bollobás and Smith [2]. The time of the r-neighbour bootstrap process on the random graph
G(n, p) was analysed in [17].

Before we continue, let us briefly discuss how the bounds on the critical probability for percolation
by time t in Theorem 1.1 relate to the bounds on pc(n,Kr) in (5). By the definitions of pc(n,Kr)
in (4) and of pc(n, r, t) in (6), we clearly have pc(n,Kr) ≤ pc(n, r, t). Ignoring the polylogarithmic
factors in the critical probability, we see that the exponent of n in (8) can be re-written using the
identities in (7) as follows, writing λ = λ(r),

−
vt − 2

et
= −

(r − 2) τ
t−1
τ−1

τ t
= −

r − 2
(

r
2

)

− 2

τ t − 1

τ t
= −

1

λ
+

1

λτ t
. (9)

For t = log logn
3 log τ , which is the maximum value of t covered by Theorem 1.1, in (9) we obtain

−
1

λ
+

1

λτ t
= −

1

λ
+

1

λτ (logτ logn)/3
= −

1

λ
+

1

λ(log n)1/3
.

Hence the exponent of n in (8) tends to the exponent in (5) for t = log logn
3 log τ . In fact, if one managed

to show that (8) holds all the way up to t = log logn
log τ then the bounds in (5) and (8) would match up

to polylogarithmic factors.
The proofs of both statements of Theorem 1.1 rely on the properties of a family of graphs, denoted

{Ft : t ≥ 1}, that are described in detail in Section 3. For each t, there is a pair of vertices in V (Ft)
so that if Ft occurs as a subgraph of G0, then that pair is guaranteed to be added to the graph by
time t. The graph Ft is thought of as ‘anchored’ on that special pair of vertices.

To prove Statement (i) of Theorem 1.1, Janson’s inequality is used to bound from below the
probability that a particular pair {x, y} is contained as the anchor vertices in some copy of Ft. To
establish a bound in this way, estimates are needed on the probability that two overlapping copies
of Ft occur in G0. This amounts to determining the minimum possible ratio of edges to vertices in
some non-trivially overlapping pair. It turns out that the minimum ratio is not obtained for one of
the extreme cases, i.e., neither for two copies of Ft that share only one vertex, nor for two copies that
share all but one vertex. Even though we do not prove it directly in this paper, the minimal density
of two overlapping copies of Ft is not monotone in the size of their common part and it can be shown
that, as t → ∞, the two overlapping copies of Ft that minimise the edge-to-vertex ratio share an
approximately 4/((r + 1)(r − 2)) proportion of the vertex set. Bounding this ratio from below for all
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possible configurations of two such copies is the main challenge in the proof of the upper bound on
pc(n, r, t), and is dealt with in detail in Section 3.1.

To prove Statement (ii) of Theorem 1.1 we employ two extremal results about graphs that add
an edge e to the graph in at most t time steps: one of them to bound the number of their vertices
from above, and one (a corollary of a highly nontrivial result in [5]) to bound their edge density from
below. Then, for p as in Statement (ii) of Theorem 1.1, we show that with high probability no such
graph can be found in Gn,p. This completes the proof of our main result.

The remaining sections of the paper are organised as follows. In Section 2 we briefly discuss the
K3-bootstrap percolation process which behaves differently than Kr-bootstrap processes when r ≥ 4.
In Section 3, we introduce the graphs Ft that are the main focus of the proofs to come and prove some
key properties. In Section 3.1, which is the crucial part of our argument, we prove some properties
of graphs consisting of two overlapping copies of Ft. In Sections 4 and 5 we prove Statements (i) and
(ii) of Theorem 1.1 respectively. Finally, in Section 6, some open problems are stated.

2. K3-bootstrap percolation

In this section we discuss the special case of the K3-bootstrap process. Observe that a graph G
percolates in K3-bootstrap percolation if and only if G is connected. Also, at every time step each
non-edge between vertices at distance 2 is added to the graph. Therefore, if G is a connected graph
with diameter d, then the diameter of the graph obtained from G after one step of the K3-bootstrap
process is ⌈d/2⌉. Hence, G percolates in ⌈log2 d⌉ time steps.

The diameter of random graphs was investigated by Bollobás [8] who proved the following theorem.

Theorem 2.1. Let Gn,p be the Erdős-Rényi random graph.

1. Suppose p2n− 2 logn → ∞ and n2(1− p) → ∞. Then Gn,p has diameter 2 whp.
2. Suppose the functions d = d(n) ≥ 3 and 0 < p = p(n) < 1 satisfy (logn)/d − 3 log logn → ∞,

pdnd−1 − 2 logn → ∞ and pd−1nd−2 − 2 logn → −∞. Then Gn,p has diameter d whp.

In order to re-phrase this result in the form of intervals for p in which the diameter is constant with
high probability, let ω(n) = o(logn) tend to infinity arbitrarily slowly. Clearly, if p ≥ 1− 1/(n2ω(n))
then whp. Gn,p = Kn which has diameter 1. Simplifying a bit, Theorem 2.1 implies that if

√

2 logn+ ω(n)

n
≤ p ≤ 1−

ω(n)

n2

then Gn,p has diameter 2, and that for 3 ≤ d ≤ logn/4 log logn, if

p(n) ∈
(

(2 logn+ ω(n))
1
dn− d−1

d , (2 logn− ω(n))
1

d−1n− d−2
d−1

)

then the random graph Gn,p(n) has diameter d with high probability. This answers the question about
the time of K3-bootstrap percolation.

3. Adding an edge to the graph using sparse subgraphs

Throughout the following sections, fix r ≥ 4. As r is fixed, for simplicity, it is often omitted from the
notation. We define a family {Ft : t ≥ 1} of graphs that add a given pair as an edge to the graph
in the Kr-bootstrap process exactly at time t. We prove that these are the “sparsest” minimal such
graphs (i.e., they minimise the ratio of the number of edges to the number of vertices). The main
result in this section, presented in Section 3.1, is a lower bound on the edge-density of two non-disjoint
copies of the graph Ft. This bound is the key element of arguments for the proof of Statement (i) of
Theorem 1.1.
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The graph Ft is defined recursively and the fixed edge that is added to the graph at time t using
Ft will always be denoted by e0 = {1, 2}.

For t = 1, set F1 = Kr − e0, an r-clique missing one edge.
For each t ≥ 1, given Ft, for each e ∈ E(Ft), let V (e) be a set of r − 2 new vertices and let K(e)

be a copy of Kr − e, an r-clique missing one edge, on vertex set V (e)∪ e. Then, Ft+1 is defined to be
the graph with vertex set

V (Ft+1) = V (Ft) ∪





⋃

e∈E(Ft)

V (e)





and edge set

E(Ft+1) =
⋃

e∈E(Ft)

E(K(e))

(see Figure 2). Note that any edge e ∈ E(Ft+1) is incident to at least one vertex in V (f) for some
f ∈ E(Ft), i.e., to a vertex in V (Ft+1) \ V (Ft).

Recall that we define τ =
(

r
2

)

− 1 and the numbers et and vt in equation (7). By induction on t, it
can be shown that for every t ≥ 1, the number of edges and vertices in the graph Ft are given by

et = e(Ft) = |E(Ft)| = τ t and (10)

vt = v(Ft) = |V (Ft)| = |V (Ft−1)|+ et−1(r − 2) = 2 + (r − 2)
τ t − 1

τ − 1
. (11)

e0

F1

e0

F2

· · · e0

Ft

}

(r − 2)(r − 1)t−1

· · · V (Ft) \ V (Ft−1)

Fig 2. Construction of the graph Ft. Note that every edge in Ft is incident to at least one vertex in V (Ft) \ V (Ft−1).

Lemma 3.1. In the Kr-bootstrap process started from Ft the edge e0 is added to the graph in
exactly t steps.

Proof. We prove this lemma by induction on t. The statement is trivial for t = 1 as F1 = Kr − e0.
Assume that the Lemma holds for t = k ≥ 1. Note that after one step of the process started from
Fk+1 we obtain a copy of Fk in our graph since Fk+1 is obtained from Fk by placing a copy of Kr

minus an edge on every edge of Fk. Thus e0 is added to the graph after at most k + 1 steps of the
process started from Fk+1.

The construction of Fk+1 can be also seen as placing a copy of Fk on each of the τ edges of
F1 = Kr − e0. By induction we know that these copies of Fk on their own add the respective edges
of F1, their anchor edges, in k time steps. This process could possibly accelerate if some interaction
between two different copies of Fk occurred early in the process, say, before time k when the Fk’s on
their own add their respective anchor edges. Therefore, let F 1, F 2, . . . , F τ be these different copies of
Fk in Fk+1. By construction of Fk+1 we have that for all i 6= j:
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1. F i and F j share at most one vertex,
2. no vertex of F i other than the vertices in its anchor edge can have a neighbour outside F i.

For every s ∈ {0, 1, . . . , k}, and i ∈ {1, 2, . . . , τ}, let Ei,s be the edges within V (F i) in the s-th
step of the Kr-bootstrap process on the subgraph induced by F i and let Es be the edges in Fk+1 in
the s-th step of the Kr bootstrap process. The aim is to show that for s ≤ k, there is no interaction
between the processes in each F i so that Es =

⋃τ
i=1 Ei,s. This is proved by induction on s. Note that

for s ≤ k−1, if it is true that Es =
⋃τ

i=1 Ei,s, then any triangle in the graph at that time is contained
entirely within the vertex set of one of the F i. Also, recall that Ei,s contains only edges within V (F i).

For s = 0, the statement E0 =
⋃τ

i=1 Ei,0 is true by construction.
Suppose that for some s ∈ [0, k − 1], that Es =

⋃τ
i=1 Ei,s and that there is an edge {w1, w2} ∈

Es+1\
⋃τ

i=1 Ei,s+1. As the edge {w1, w2} must have been added at time s+1, let w3, . . . , wr be the r−2
other vertices in the copy of Kr minus an edge that witness {w1, w2} being added at time s+1. Then,
at time s, for any i, j > 2, the vertices w1, wi, wj form a triangle, as do the vertices w2, wi, wj . Then,
by the induction hypothesis, there is an i0 so that w1, w2, wi, wj ∈ V (F i0). Again, by hypothesis, this
means that the edges {w1, wi}, {w2, wi}, {w1, wj}, {w2, wj}, {wi, wj} are all contained in Ei0,s. This
is a contradiction, as then the edge {w1, w2} would have been added within the graph F i0 at time
s+ 1. This completes the induction on s.

Thus the first k steps of the process started from Fk+1 look like τ independent processes started
from Fk’s. Hence e0 is not added to the graph by time k. This completes the proof of the lemma.

Recall that we denote

λ =

(

r
2

)

− 2

r − 2
=

r + 1

2
−

1

r − 2
(12)

and that τ can be written as

τ =

(

r

2

)

− 1 =
(r + 1)(r − 2)

2
. (13)

Note that (12) and (13) imply that
(r − 2)λ = τ − 1. (14)

Define for convenience,

ct =
1

τ t − 1
, (15)

which is used to simplify certain expressions involving et
vt−2 as in (17) below. By (11) and (14) we

have

vt − 2 = (r − 2)
τ t − 1

τ − 1
=

τ t − 1

λ
. (16)

Hence, using (10) and the above relations,

et
vt − 2

=
τ t

τ t−1
λ

= λ (1 + ct) = λ+
τ − 1

r − 2

1

τ t − 1
= λ+

1

vt − 2
. (17)

Equation (17) is used throughout this section to show that Ft is the sparsest minimal graph that adds
e0 to the graph in t time steps of the Kr-bootstrap process.

Let us recall the following Witness-Set Algorithm introduced in [5]. Given a graph G, we assign a
subgraph F = F (e) ⊆ G to each edge e ∈ 〈G〉Kr

as follows:

1. If e ∈ G then set F (e) = {e}.
2. Choose an order in which to add the edges of 〈G〉Kr

, and at each step identify which r-clique
was completed (if more than one is completed then choose one).
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3. Add the edges one by one. If e is added by the r-clique K, then set

F (e) :=
⋃

e6=e′∈K

F (e′).

A graph F is an r-witness set if there exists a graph G, an edge e, and a realization of the Witness-Set
Algorithm (i.e., a sequence of choices as in Step 2) such that F = F (e). The following highly nontrivial
extremal result occurs as Lemma 9 in [5], which is stated here without repeating the proof.

Lemma 3.2. Let F be a graph and r ≥ 4, and suppose that F is an r-witness set. Then,

|E(F )| ≥ λ(|V (F )| − 2) + 1.

We say that a graph G is a minimal graph adding e if e ∈ 〈G〉Kr
but for all proper subgraphs

G′ ( G of G we have e /∈ 〈G′〉Kr
. It’s an immediate observation that every minimal graph adding e

to G is an r-witness set. Hence we have the following corollary.

Corollary 3.3. Let r ≥ 4 and let F be a minimal graph adding e to the graph for some e ∈ 〈F 〉Kr
.

Then
|E(F )| ≥ λ(|V (F )| − 2) + 1. (18)

We now show that Ft maximises the number of vertices among all minimal graphs that add e0 to
the graph in exactly t time steps of the Kr-bootstrap process.

Lemma 3.4. Let r ≥ 4, t ≥ 1 and let F be a minimal graph adding e0 to the graph at time t in the
Kr-bootstrap process. Then |V (F )| ≤ vt = (r − 2) τ

t−1
τ−1 + 2 and |E(F )| ≤ et = τ t.

Proof. We prove the lemma by induction on t. For t = 1 the lemma is trivial as Kr − e0 is the only
minimal graph adding e0 at the first time step. Hence assume that the lemma holds for some t ≥ 1
and consider a minimal graph F such that e0 is added at time t + 1 in the Kr-bootstrap process
started from F .

After one step of the process we obtain a graph F ′ containing some minimal subgraph F ′′ that
adds e0 in t additional time steps. By induction we have |V (F ′′)| ≤ (r− 2) τ

t−1
τ−1 +2 and |E(F ′′)| ≤ τ t.

Now, since F was a minimal graph adding e0 in time t + 1, to maximise the number of vertices
and edges in F we should in the first step of the process add every edge e of F ′′ using a copy of
Kr − e disjoint from the copies adding other edges in F ′′. This shows that |E(F )| ≤ τ |E(F ′′)| and
|V (F )| ≤ |V (F ′′)|+ (r − 2)|E(F ′′)|. This completes the induction and the lemma follows.

A proof closely following that of Lemma 3.4 immediately shows a further extremal result.

Corollary 3.5. For any t ≥ 1, up to isomorphism, Ft is the only minimal graph on vt vertices adding
e0 to the graph in exactly t time steps.

As usual, for any graph G and A,B ⊆ V (G), let E(A,B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B} and
e(A,B) = |E(A,B)|. We shall often take B = V (G) and, to simplify the notation, we shall write
e(A,G) to denote e(A, V (G)). Note that e(A,G) is the number of edges of G with at least one
endpoint in A.

In the proofs to come, results on edge-densities of subsets of the graphs {Ft : t ≥ 1} are proved by
induction on t. To make the notation clearer, let us use Et(A,B) to denote the edges between A and
B in the graph Ft and et(A,B) = |Et(A,B)|. As usual, δ(G) = min{degG(v) : v ∈ V (G)} is used for
the minimum degree of G. We shall find the following simple estimate useful in our examination of
Ft.

Lemma 3.6. For any t ≥ 2 and any set L ⊆ V (Ft)

et(L, Ft) ≥
r − 1

2
|L|.
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Proof. Note that for t ≥ 2, δ(Ft) = r − 1. Thus

(r − 1)|L| ≤
∑

v∈L

degFt
(v) = 2et(L,L) + et(L,L

c) ≤ 2et(L, Ft).

3.1. Overlapping copies of Ft

To prove Statement (i) of Theorem 1.1 we shall show that if p is large enough then with high probability
there is a copy of Ft anchored on every pair of vertices in Gn,p. Towards this aim, we shall show that
a measure of the variance of the number of such copies of Ft anchored on a fixed edge e0 is not too
large compared to their expected number. In Section 4, this fact together with Janson’s inequality
(see Theorem 4.1) is used to deduce the desired result. Hence, we need to prove that it is significantly
“harder” (in terms of the ratio of the number of edges to the number of vertices) to find two different
such copies of Ft that overlap in at least one vertex (other than 1, 2 ∈ e0) than it is to find two disjoint
such copies.

In particular, as the main result in this subsection, it is shown that for any L ⊆ V (Ft) \ {1, 2},

et(L, Ft)

|L|
≥

et
vt − 2

(19)

with equality only when L = V (Ft) \ {1, 2}. With this in mind, define εt to be such that

1 + εt =

(

vt − 2

et

)

min

{

et(L, Ft)

|L|
: L ( V (Ft) \ {1, 2}

}

. (20)

From the definition above, there is no guarantee that εt is non-negative. Using induction on t, we
shall prove that this is the case by first giving a weak upper bound on εt in Lemma 3.7 and then
using it to prove a relatively sharp lower bound on εt for all t ≥ 1.

Lemma 3.7. For all r ≥ 4 and t ≥ 1 we have εt ≤
1

r+1 .

Proof. First consider the case t = 1. For all L ( V (F1) \ {1, 2} the vertices in F1 \ L induce a clique
minus the edge joining 1 and 2. Hence, for 1 ≤ ℓ ≤ r − 3 and |L| = ℓ, the vertices in F1 \ L induce
(

r−ℓ
2

)

− 1 edges, which gives

e1(L, F1)

|L|
=

1

ℓ

((

r

2

)

− 1−

(

r − ℓ

2

)

+ 1

)

=
1

2ℓ

(

r2 − r − r2 + 2rℓ − ℓ2 + r − ℓ
)

=
2r − ℓ− 1

2

≥
r + 2

2
,

with equality for ℓ = r − 3. Hence, by (20)

ε1 =

(

r + 2

2

)(

v1 − 2

e1

)

− 1

=

(

r + 2

2

)

(

r − 2
(

r
2

)

− 1

)

− 1
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= (r + 2)

(

r − 2

r2 − r − 2

)

− 1

=
r + 2

r + 1
− 1 =

1

r + 1
,

which proves the lemma for t = 1.
Consider now the case when t ≥ 2. By the construction of the graph Ft, there are vertices in

V (Ft) \ {1, 2} connected to 1 and not to 2. Let v be such a vertex and choose L = V (Ft) \ {1, 2, v} so
that |L| = vt − 3 and et(L, Ft) = et − 1 (recall that et(L, Ft) counts all edges in Ft with at least one
end in L, thus here it only misses {1, v}). Hence, for t ≥ 2 and r ≥ 4, from the definition in (20) we
have

εt ≤

(

vt − 2

et

)(

et − 1

vt − 3

)

− 1

=
etvt − 2et − vt + 2− etvt + 3et

et(vt − 3)

=
et − vt + 2

et(vt − 3)

<
1

vt − 3
≤

1

v2 − 3

=
1

(r − 2)
(

r
2

)

− 1
(by (11) and (13))

≤
1

(r − 2)6− 1
≤

1

r + 1
.

This completes the proof of Lemma 3.7.

The following lemma gives us another result in a similar direction and is used in this section to
show that one need only consider certain choices for L ⊆ V (Ft) in order to determine εt.

Lemma 3.8. For all r ≥ 4 and t ≥ 2 we have

min

{

et(L, Ft)

|L|
: L ( V (Ft) \ {1, 2}

}

<
r + 1

2
.

Proof. We prove the lemma by giving an example of a simple set L ( V (Ft) \ {1, 2} that satisfies the
inequality. Let v ∈ V (Ft−1) \ V (Ft−2). Then, let

L = {v} ∪ {u ∈ V (Ft) \ V (Ft−1) : {v, u} ∈ E(Ft)} .

Since v ∈ V (Ft−1) \ V (Ft−2), we have degFt−1
(v) = r − 1. In Ft, every edge of Ft−1 is replaced with

a copy of Kr minus that edge. Hence for every edge adjacent to v in Ft−1 there are r − 2 neighbours
of v in Ft. This implies

|L| = 1 + degFt
(v) = 1 + (r − 2) degFt−1

(v) = 1 + (r − 1)(r − 2).

To find et(L, Ft), i.e., the number of edges adjacent to at least one vertex in L, we notice that all
these edges are contained in the degFt−1

(v) = r − 1 copies of Kr minus an edge, that are placed on
the edges adjacent to v in Ft−1 to construct the graph Ft. Therefore we have

et(L, Ft) = (r − 1)

((

r

2

)

− 1

)

=
(r − 1)(r + 1)(r − 2)

2
.

This implies that
et(L, Ft)

|L|
=

(r + 1)

2

(r − 1)(r − 2)

1 + (r − 1)(r − 2)
<

(r + 1)

2
.
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We observe that, in general, Lemma 3.8 yields a worse upper bound on εt than that given by
Lemma 3.7, but its form is useful in the proof of Lemma 3.11 to come.

The next theorem is the main tool in the proof of Statement (i) of Theorem 1.1 to come. Here we
give a lower bound on εt that holds for all t ≥ 1.

Theorem 3.9. For all r ≥ 4 and t ≥ 1,

εt ≥
1

r + 1

(

2

r2 − 2

)t−1

. (21)

Before proving Theorem 3.9, a few auxiliary lemmas are stated and proved below, along with an
outline of the proof. These are then used to establish Theorem 3.9 by induction on t.

Recall that the graph Ft+1 is constructed by placing an independent copy of Kr − e on every edge
e of Ft. Further recall that for each e ∈ E(Ft) we write V (e) to denote this new set of r − 2 vertices.

For the induction step from t to (t+1) we will fix a set Lt ⊆ V (Ft)\{1, 2} and look for the smallest

possible edge densities et+1(Lt∪M,Ft+1)
|Lt∪M| among sets of the form Lt ∪M where M ⊆ V (Ft+1) \ V (Ft)

(see Figure 3).

e0

Lt

M

V (Ft) V (Ft+1) \ V (Ft)

Fig 3. Sets Lt and M in Ft+1 together with the edges counted in et+1(Lt ∪M,Ft+1).

In the following lemma we first deal with the case Lt = ∅, showing that no set contained entirely
in V (Ft+1) \ V (Ft) can minimise the edge density.

Lemma 3.10. For all r ≥ 4 and t ≥ 2 we have

min

{

et(L, Ft)

|L|
: L ⊆ V (Ft) \ V (Ft−1)

}

≥
r + 1

2
.

Proof. Let L ⊆ V (Ft) \ V (Ft−1). Hence for every v ∈ L we have degFt
(v) = r − 1 and at most r − 3

neighbours of v are also in L. Thus et(L, Ft), the number of edges incident to at least one vertex in
L, satisfies

et(L, Ft) ≥ |L|

(

r − 3

2
+ 2

)

= |L|
r + 1

2

and the lemma follows.

Thus, by Lemma 3.8, the minimum in equation (20) is not attained for any L ⊆ V (Ft) \ V (Ft−1).
We now show that if for some e ∈ E(Ft) certain conditions are fulfilled, then moving all vertices from
V (e) into M does not increase the edge-density minimised in equation (20). The details of this are
given in the following lemma.
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Lemma 3.11. Let t ≥ 1, Lt ⊆ V (Ft) \ {1, 2} with Lt 6= ∅, and M ⊆ V (Ft+1) \V (Ft). For every edge
e = {x, y} ∈ E(Ft) such that at least one of x, y is in Lt we have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
.

Proof. Let us recall that, by the construction of Ft+1, all edges incident to vertices in V (e) are either
induced by V (e) or they connect the vertices of V (e) to either x or y.

Set m = |V (e) \M | and note that the conclusion is trivially true for m = 0. Thus, assume that
1 ≤ m ≤ r − 2.

We consider two different cases. Suppose first that both x, y ∈ Lt. Then et+1(Lt∪M,Ft+1) already
counts all edges incident to a vertex in V (e) \M , except those that are induced by this set (because
the remaining edges are either incident to x, y ∈ Lt or to some vertex in V (e)∩M). Since V (e) induces
a clique in Ft+1, we have et+1(Lt ∪M ∪ V (e), Ft+1)− et+1(Lt ∪M,Ft+1) =

(

m
2

)

. Therefore

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
=

et+1(Lt ∪M,Ft+1) +
(

m
2

)

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

(

m
2

)

m

m

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

m− 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

r − 3

2

m

|Lt ∪M |+m
.

The above expression is a convex combination of r−3
2 and et+1(Lt∪M,Ft+1)

|Lt∪M| . By Lemma 3.6, we have
et+1(Lt∪M,Ft+1)

|Lt∪M| ≥ r−1
2 > r−3

2 and so

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
≤

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
.

The case when x ∈ Lt and y /∈ Lt is similar. In this case, et+1(Lt ∪ M,Ft+1) counts every edge
incident to a vertex in V (e)\M that is neither induced by this set nor connects a vertex in this set to
y. Since {y}∪V (e) induces a clique in Ft+1, we have et+1(Lt∪M ∪V (e), Ft+1)−et+1(Lt∪M,Ft+1) =
(

m+1
2

)

, and thus

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
=

et+1(Lt ∪M,Ft+1) +
(

m+1
2

)

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

m+ 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

r − 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
. (again, by Lemma 3.6)

The case x /∈ Lt and y ∈ Lt is analogous and this completes the proof.

On the other hand, when the edge e does not satisfy the conditions in Lemma 3.11, the following
lemma holds.
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Lemma 3.12. Let t ≥ 1, Lt ⊆ V (Ft) \ {1, 2} with Lt 6= ∅, e = {x, y} ∈ E(Ft) such that x, y /∈ Lt,
and M ⊆ V (Ft+1) \ V (Ft). If |V (e) ∩M | > 0 then

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
> min

{

et+1(L, Ft+1)

|L|
: L ( V (Ft+1) \ {1, 2}

}

.

Proof. Set m = |V (e) ∩ M | > 0 and recall that we have m ≤ r − 2. Since Lt 6= ∅, we also have
Lt ∪M \ V (e) 6= ∅. The aim is, by considering the set Lt ∪M \ V (e), to show that the set Lt ∪M
does not attain the minimum in equation (20).

The edges incident to V (e)∩M in Ft+1 can be divided into three groups: those induced by V (e)∩M ,
those connecting a vertex in V (e) ∩ M to a vertex in V (e) \ M , and those connecting a vertex in
V (e) ∩M to either x or y. In total, we have

(

m

2

)

+m(r − 2−m) + 2m =

(

m

2

)

+m(r −m)

edges incident to V (e) ∩M in Ft+1. All these edges are clearly counted by et+1(Lt ∪M,Ft+1), but
not by et+1(Lt ∪M \ V (e), Ft+1) because x, y /∈ Lt and (Lt ∪M \ V (e)) ∩ (V (e) ∩M) = ∅. Thus,

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
=

et+1(Lt ∪M \ V (e), Ft+1) +
(

m
2

)

+m(r −m)

|Lt ∪M \ V (e)|+m

=
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+

(

m
2

)

+m(r −m)

m

m

|Lt ∪M \ V (e)|+m

=
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+

(

r −
m+ 1

2

)

m

|Lt ∪M \ V (e)|+m

≥
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+
r + 1

2

m

|Lt ∪M \ V (e)|+m
.

If et+1(Lt∪M,Ft+1)
|Lt∪M| ≥ r+1

2 then the claim holds immediately by Lemma 3.8. Otherwise we have that

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
>

et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
.

This completes the proof.

Recall that by Lemma 3.10, any set Lt ∪M that minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| has Lt 6= ∅.

Furthermore, Lemma 3.12 tells us that any set of the form Lt ∪M with Lt 6= ∅ that minimises the

ratio et+1(Lt∪M,Ft+1)
|Lt∪M| has |V (e) ∩M | = 0 for every edge e ∈ Et(L

c
t , L

c
t). Let us fix Lt ⊆ V (Ft) \ {1, 2}

and take M to be maximal such that Lt ∪M minimises the edge density.
Assume first that Lt ( V (Ft) \ {1, 2} with Lt 6= ∅. By Lemma 3.11 we see that we then have

|M | = (r− 2)et(Lt, Ft). Also, let e be an arbitrary edge incident to a vertex x ∈ Lt in Ft+1. Again by
Lemma 3.11 and by the maximality of M we see that e connects x to a vertex in M : since we have
x ∈ Lt, for every edge f adjacent to x in Ft we set V (f) ⊆ M , and then e connects x to a vertex in
some V (f). Consequently, all edges incident to Lt ∪M in Ft+1 are incident to M , and since M is a
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union of et(Lt, Ft) disjoint cliques on r− 2 vertices each, such that every vertex in M has exactly two
neighbours outside M , we have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
=

et(Lt, Ft)
((

r−2
2

)

+ 2(r − 2)
)

|Lt|+ (r − 2)et(Lt, Ft)
=

et(Lt, Ft)
((

r
2

)

− 1
)

|Lt|+ (r − 2)et(Lt, Ft)
. (22)

Note that when Lt = V (Ft)\{1, 2} this choice of M would result in having Lt∪M = V (Ft+1)\{1, 2},
i.e., the edge density with Lt = V (Ft) \ {1, 2} is minimised among all choices of M by taking the
whole graph. As we want to minimise among all possible proper subsets of V (Ft+1), the case Lt =
V (Ft) \ {1, 2} requires some further consideration.

We first consider edges e ∈ E(Ft) that are incident to a vertex in {1, 2}. For these edges, in the
following lemma we show that if, in Ft+1, at least one vertex of V (e) is in M , then the edge density
does not go up if we move all but one vertex of V (e) to M .

Lemma 3.13. Let t ≥ 1, Lt = V (Ft) \ {1, 2} and M ( V (Ft+1) \ V (Ft). Let e = {x, y} ∈ E(Ft) be
such that x ∈ Lt, y ∈ {1, 2}, and let 1 ≤ |V (e) ∩M | ≤ r − 3 with w ∈ V (e) \M . We have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
.

Proof. We prove this lemma analogously to the second part of the proof of Lemma 3.11. Set m =
|V (e) \M | ≤ r − 3.

We have x ∈ Lt and y /∈ Lt. In this case, et+1(Lt ∪ M,Ft+1) counts every edge adjacent to a
vertex in V (e) \ (M ∪ {w}) except for those that are induced by this set, and those that connect
a vertex in this set to either y or w. Since there are

(

m−1
2

)

+ 2(m − 1) such edges not counted by
et+1(Lt ∪M,Ft+1), we have

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
=

et+1(Lt ∪M,Ft+1) +
(

m−1
2

)

+ 2(m− 1)

|Lt ∪M |+m− 1

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
m+ 2

2

m− 1

|Lt ∪M |+m− 1
.

Since we have m ≤ r − 3, we further obtain

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
≤

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
r − 1

2

m− 1

|Lt ∪M |+m− 1

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
. (by Lemma 3.6)

We now turn our attention to edges e ∈ E(Ft) that are induced by vertices in Lt. Let us show that
for them, the edge density does not go up if we move all but one vertex of V (e) to M , even if we
initially have V (e) ∩M = ∅.

Lemma 3.14. Let t ≥ 1, Lt = V (Ft) \ {1, 2} with M ( V (Ft+1) \ V (Ft). Let e = {x, y} ∈ E(Ft) be
such that x, y ∈ Lt, and let |V (e) ∩M | ≤ r − 3 with w ∈ V (e) \M . We have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
.
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Proof. The proof of this lemma is analogous to the first part of the proof of Lemma 3.11. Set m =
|V (e) \M | ≤ r − 2.

We have x, y ∈ Lt. In this case, et+1(Lt ∪ M,Ft+1) counts every edge incident to a vertex in
V (e) \ (M ∪ {w}) except for those that are induced by this set or else connect a vertex in this set to
w. Since there are

(

m−1
2

)

+m− 1 such edges, we have

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
=

et+1(Lt ∪M,Ft+1) +
(

m−1
2

)

+m− 1

|Lt ∪M |+m− 1

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
m

2

m− 1

|Lt ∪M |+m− 1

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
r − 2

2

m− 1

|Lt ∪M |+m− 1

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
. (by Lemma 3.6)

Consider now the implications of Lemmas 3.13 and 3.14 for the case that Lt = V (Ft)\ {1, 2} (note
that in this case for all e ∈ E(Ft) we have e ∈ Et(Lt, Ft)). Let us again take M to be maximal such

that Lt ∪M minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| .

Since M is maximal, we use Lemma 3.11 to show that there is exactly one edge e ∈ E(Ft) such
that |V (e) ∩M | < r − 2. We then use Lemmas 3.13 and 3.14. If e is incident to the vertex 1 (or the
vertex 2), then we have either |V (e)∩M | = 0 or |V (e) ∩M | = r− 3. If it is not incident to neither 1
nor 2 then we have |V (e) ∩M | = r − 3.

In the former case, the vertices in V (e) ∪ {1} (or V (e) ∪ {2}, respectively) induce a clique on
r − 1 vertices. The edges of this clique are the only ones not counted by et+1(Lt ∪ M,Ft+1). Since
V (Ft+1) \ (Lt ∪M) = {1, 2} ∪ V (e), this implies that we have

et+1(Lt ∪M,Ft+1)

Lt ∪M
≥

et+1 −
(

r−1
2

)

vt+1 − r
. (23)

In the latter case, if |V (e)∩M | = r− 3, let {w} = V (e) \M . Since V (Ft+1) \ (Lt ∪M) = {1, 2, w},
w can have at most one neighbour, i.e., either vertex 1 or 2, not in Lt ∪M . This implies that we have

et+1(Lt ∪M,Ft+1)

Lt ∪M
≥

et+1 − 1

vt+1 − 3
. (24)

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. The proof proceeds by induction on t. Recall the definition of εt given in
equation (20). Our induction hypothesis is the inequality

εt ≥
1

r + 1

(

2

r2 − 2

)t−1

(see inequality (21)). We have already seen in the proof of Lemma 3.7 that ε1 = 1
r+1 so the claim

holds for t = 1. Thus assume the statement is true for some t ≥ 1. We now proceed with establishing
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a recursive lower bound on et+1(Lt+1, Ft+1)/|Lt+1|. As before, we consider sets of the form Lt+1 =
Lt∪M , where Lt ⊆ V (Ft)\{1, 2} and M ⊆ V (Ft+1)\V (Ft), and we write ℓ = |Lt|. Having established
a lower bound on et+1(Lt+1, Ft+1)/|Lt+1| we use (20) to bound εt from below. We analyse three cases,
depending on the structure of Lt and M , and we show that the first of these cases gives the weakest
bound on εt from which the theorem follows.

Thus, if there exists a set Lt ∪ M that minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| for which we have

Lt 6= V (Ft) \ {1, 2} then by (22), we have

et+1(Lt ∪M,Ft+1)

ℓ+ |M |
≥

((

r
2

)

− 1
)

et(Lt, Ft)

ℓ+ (r − 2)et(Lt, Ft)
=

(r−2)(r+1)
2 et(Lt, Ft)

ℓ+ (r − 2)et(Lt, Ft)
. (25)

The right-hand side of inequality (25) is a function of the type ax
b+cx with a, b, c > 0. Hence it is

increasing in x and therefore we can use relation (20) to bound it from below. Thus we have

et+1(Lt ∪M,Ft+1)

ℓ+ |M |
≥

(r−2)(r+1)
2 ℓ(1 + εt)

et
vt−2

ℓ+ (r − 2)ℓ(1 + εt)
et

vt−2

≥
(r−2)(r+1)

2 ℓλ(1 + ct)(1 + εt)

ℓ+ (r − 2)ℓλ(1 + ct)(1 + εt)
(by (17))

= λ(1 + ct+1)

(r−2)(r+1)
2

(1+ct)
(1+ct+1)

(1 + εt)

1 + (r − 2)λ(1 + ct)(1 + εt)
.

Hence, by (20) we see that εt+1 can be bounded from below by

εt+1 ≥

(r−2)(r+1)
2

(1+ct)
(1+ct+1)

(1 + εt)

1 + (r − 2)λ(1 + ct)(1 + εt)
− 1

=
(1 + ct)(1 + εt)

(

(r−2)(r+1)
2

1
1+ct+1

− (r − 2)λ
)

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)

=
(1 + ct)(1 + εt)

(

τ
1+ct+1

− τ + 1
)

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)
(by (13) and (14))

=
(1 + ct)(1 + εt)

(

1− 1
τ t

)

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)
(by (15))

=
(1 + ct)(1 + εt)

1
1+ct

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)
(by (15))

=
εt

1 + (r − 2)λ(1 + ct)(1 + εt)
. (26)

Using the bound εt ≤ 1/(r+1) in Lemma 3.7, we can bound the expression in (26) from below by

εt+1 ≥
εt

1 + (r − 2)λ(1 + ct)
r+2
r+1

=
εt

1 + (r − 2)λ τ t

τ t−1
r+2
r+1

(by (15))

=
εt

1 + (τ − 1) τ t

τ t−1
r+2
r+1

(by (14))

≥
εt

1 + τ r+2
r+1
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=
εt

1 + (r+2)(r−2)
2

(by (13))

=
2

r2 − 2
εt.

Thus in this case, by the induction hypothesis, we obtain a lower bound on εt+1 given by

εt+1 ≥
2

r2 − 2
εt ≥

1

r + 1

(

2

r2 − 2

)t

.

If on the other hand there exists a set Lt ∪ M with Lt = V (Ft) \ {1, 2} that gives the minimal
ratio in equation (20) then we shall consider two cases as outlined in the discussion before this proof.
If M = V (Ft+1) \ (V (Ft) ∪ V (e)) for some e ∈ E(Ft) then by (23) we have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1 −
(

r−1
2

)

vt+1 − r
(by (23))

=
τ t+1 −

(

r−1
2

)

(r − 2) (τ
t+1−1)
τ−1 − (r − 2)

(by (10) and (11))

=
et+1

vt+1 − 2





1− r2−3r+2
2τ t+1

1− (r−2)(τ−1)
(r−2)(τ t+1−1)



 .

As before, by (20) we see that in this case εt+1 is bounded from below by

εt+1 ≥
1− r2−3r+2

2τ t+1

1− τ−1
τ t+1−1

− 1

=
τ−1

τ t+1−1 − r2−3r+2
2τ t+1

1− τ−1
τ t+1−1

=
τ t+2 − τ t+1 − (τ t+1 − 1)(τ − r + 2)

τ t+1(τ t+1 − 1)
·

1

1− τ−1
τ t+1−1

(by (13))

>
(r − 3)τ t+1 + (r − 2)( r+1

2 − 1)

τ t+1(τ t+1 − 1)
(by (13))

>
(r − 3)(τ t+1 + 1)

τ t+1(τ t+1 − 1)

>
r − 3

τ t+1
.

The last inequality is clearly weaker than it could be and is given in this form to make further
calculations simpler.

If Lt = V (Ft) \ {1, 2} and M = V (Ft+1) \ (V (Ft) ∪ {w}) for some w ∈ V (Ft+1) \ V (Ft) then by
(24) we have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1 − 1

vt+1 − 3
(by (24))

=
τ t+1 − 1

(r − 2) (τ
t+1−1)
τ−1 − 1

(by (10) and (11))

=
et+1

vt+1 − 2

(

1− 1
τ t+1

1− τ−1
(r−2)(τ t+1−1)

)

. (by (16))
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Thus, we see that by (20) in this case εt+1 is at least

εt+1 ≥
1− 1

τ t+1

1− τ−1
(r−2)(τ t+1−1)

− 1

=

τ−1
(r−2)(τ t+1−1) −

1
τ t+1

1− τ−1
(r−2)(τ t+1−1)

=
τ t+2 − (r − 1)τ t+1 + (r − 2)

τ t+1(r − 2)(τ t+1 − 1)
·

1

1− (τ−1)
(r−2)(τ t+1−1)

>
τ t+2 − (r − 1)τ t+1

τ t+1(r − 2)(τ t+1 − 1)

>
τ − (r − 1)

(r − 2)τ t+1

=
1

τ t+1

(

r + 1

2
−

r − 1

r − 2

)

(by (13))

=
1

τ t+1

(

r + 1

2
−

1

r − 2
− 1

)

=
λ− 1

τ t+1
(by (12)).

It remains to show that for all t ≥ 0 we have

1

r + 1

(

2

r2 − 2

)t

≤ min

{

r − 3

τ t+1
,
λ− 1

τ t+1

}

. (27)

To see that the inequality in (27) holds, note that since r ≥ 4,

1

r + 1
=

r − 2

(r + 1)(r − 2)
≤

r+1
2 − 1

r−2 − 1
(r+1)(r−2)

2

=
λ− 1

τ
,

and
1

r + 1
≤

1

r + 1

2(r − 3)

r − 2
=

r − 3

τ
.

Moreover,
2

r2 − 2
<

2

r2 − r − 2
=

1

τ
.

Thus, for any t ≥ 0, the terms in equation (27) satisfy 1
r+1

(

2
r2−2

)t

≤ λ−1
τ · 1

τ t and 1
r+1

(

2
r2−2

)t

≤
r−3
τ · 1

τ t . This completes the induction on t and the proof of Theorem 3.9.

Let us conclude this section by commenting on the sharpness of the bound in (21). We know that
ε1 = 1/(r+1) is obtained by taking L = L1 of size r−3, i.e., by leaving just one vertex in V (F1)\{1, 2}
outside L1. If we then continue by, for 2 ≤ i ≤ t, taking Li to be the union of Li−1 and all vertices
in V (Fi) \ V (Fi−1) that are adjacent to at least one vertex in Li−1, then the resulting set Lt has

1 + 2(r − 2) τ
t−1−1
τ−1 vertices and τ t−1(τ − 2) edges adjacent to it. This shows that for some Cr > 0,

one can obtain a bound εt ≤ Cr/τ
t. Since τ = (r2 − r − 2)/2, this implies that our lower bound on

εt is relatively sharp.
We have thus shown that the edge density of all proper subsets of V (Ft) is strictly bounded from

below by et/(vt − 2). As we will see in Section 4, we are now equipped with the necessary means to
prove Statement (i) of Theorem 1.1.
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4. Upper bound on the critical probability

In this section we prove Statement (i) of Theorem 1.1. We shall use the following form of Janson’s
inequality.

Theorem 4.1. Let R be a set and let S ⊆ R be a random subset of R, where each r ∈ R is in S
independently with probability p. Let {B1, . . . , Bm} be a collection of finite subsets of R and let Ci be
the event that Bi ⊆ S. Let Z =

∑m
i=1 1{Ci} and let µ =

∑m
i=1 Pp(Ci) = E[Z]. For 1 ≤ i, j ≤ m, i 6= j,

let i ∼ j if Bi ∩ Bj 6= ∅, i.e., if the events Ci and Cj are dependent, and let ∆ =
∑

i∼j P(Ci ∩ Cj).
Then

Pp(Z = 0) ≤ e−µ+∆/2. (28)

Let e0 = {1, 2}. In this section we show that if p(n) ≥ n−
vt−2
et logn then we have Ppn

(e0 /∈ E(Gt)) ≤
n−3. By the union bound this implies Ppn

(T ≤ t) → 1.

Proof of Statement (i) of Theorem 1.1. Fix n, sufficiently large, and t = t(n) ≤ log logn
3 log τ .

As always, fix two vertices 1 and 2 and let e0 = {1, 2}. Given any of the
(

n−2
vt−2

)

subsets Xi ⊆
{3, 4, . . . , n} of size (vt − 2), let Ft(Xi) be an arbitrary fixed copy of the graph Ft on Xi ∪ {1, 2} that
adds the edge e0 to the graph G in t time steps. We shall apply Theorem 4.1 to bound the probability
of e0 not being added to the graph by time t from above.

Let p(n) = n−(vt−2)/et logn, as in Statement (i) and let G = Gn,p(n). In Theorem 4.1 we shall take

R = [n](2), S = E(G) and for i = 1, . . . ,
(

n−2
vt−2

)

let Bi = E(Ft(Xi)). We define Ci, as well as Z, as in

Theorem 4.1. We clearly have µ =
∑m

i=1 Pp(Ci) =
(

n−2
vt−2

)

pet .
An upper bound on ∆ in Theorem 4.1 can be obtained by considering the following form,

∆ =
∑

i∼j

P(Ci ∩ Cj) =
∑

1≤|Xi\Xj |≤vt−3

P(Bi ⊆ S and Bj ⊆ S).

There are
(

n−2
vt−2

)

ways to choose the set Xi and, having fixed Xi, for 1 ≤ k ≤ vt − 3 there are
(

vt−2
vt−2−k

)(

n−vt
k

)

ways to choose the set Xj such that |Xj \ Xi| = k. We also have |Bi| = et and, by
(20), |Bj \Bi| ≥ k(1 + εt)

et
vt−2 . Hence

∆ ≤

(

n− 2

vt − 2

) vt−3
∑

k=1

(

vt − 2

vt − 2− k

)(

n− vt
k

)

pet+k(1+εt)
et

vt−2

=

(

n− 2

vt − 2

)

pet
vt−3
∑

k=1

(

vt − 2

k

)(

n− vt
k

)

pk(1+εt)
et

vt−2

= µ

vt−3
∑

k=1

(

vt − 2

k

)(

n− vt
k

)

pk(1+εt)
et

vt−2

< µ

vt−3
∑

k=1

((vt − 2)n)kpk(1+εt)
et

vt−2 . (29)

Note that, by the definition of εt in (20), by Lemma 3.8 and (12),

et
vt − 2

(1 + εt) ≤
r + 1

2
= λ+

1

r − 2
< 2λ. (30)

By (14), for all r ≥ 4 we have τ − 1 > r − 2 hence, by (16), vt − 2 < τ t. For t ≤ log logn
3 log τ =

logτ (logn)
3 ,

by (14) we have
vt − 2 < τ t ≤ (logn)1/3. (31)
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Now, using the fact that p(n) = n−(vt−2)/et logn, we have

vt−3
∑

k=1

((vt − 2)n)kpk
et

vt−2 (1+εt) =

vt−3
∑

k=1

((vt − 2)n)kn−k(1+εt)(logn)k
et

vt−2 (1+εt)

≤
vt−3
∑

k=1

((vt − 2)n)k(log n)2λkn−k(1+εt) (by (30))

≤
vt−3
∑

k=1

(logn)k/3(log n)2λknk−k(1+εt) (by (31))

=

vt−3
∑

k=1

(logn)k(2λ+1/3)n−kεt . (32)

By inequality (21) in Theorem 3.9, we have εt ≥
1

r+1(2/(r
2− 2))t−1. This implies that for t ≤ log logn

3 log τ

we have εt > (log n)−1/2. Indeed,

εt ≥
1

r + 1

(

2

r2 − 2

)t−1

>
1

r + 1

(

1

τ

2τ

r2 − 2

)
log log n

3 log τ

=
1

r + 1
(logn)−1/3

(

r2 − r − 2

r2 − 2

)

log log n

3 log τ

.

Now, since the sequence ar = r2−r−2
r2−2 is increasing in r and for all r ≥ 4 we have τ ≥ 5,

(

r2 − r − 2

r2 − 2

)
1

3 log τ

≥

(

5

7

)
1

3 log 5

> 0.93 > e−1/10,

and the bound εt ≥ (logn)
−1/2

follows for n large enough. Consequently, for n large enough we
have that (log n)2λ+1/3n−εt ≤ (logn)2λ+1/3 exp(−(logn)1/2) < 1/2. Hence continuing the string of
inequalities from (29) and (32),

∆ ≤ µ

vt−3
∑

k=1

(

(logn)
2λ+1/3

n−εt
)k

≤ µ

∞
∑

k=1

(

1

2

)k

= µ. (33)

By (31), we see that the ratio (n−2
n )vt tends to 1 as n → ∞. Thus, for p ≥ n−

vt−2
et logn we have

µ =

(

n− 2

vt − 2

)

pet ≥

(

n

vt − 2

)vt−2

n−
vt−2
et

et(logn)et =
(logn)et

(vt − 2)vt−2
≥

(

logn

τ t

)τ t

, (34)

where the second inequality follows from (10) and the bound on vt in (31). Hence using Theorem 4.1
we obtain

P(Z = 0) ≤ exp (−µ+∆/2) (by (28))

≤ exp(−µ/2) (by (33))

≤ exp

(

−
1

2

(

logn

τ t

)τ t)

. (by (34))

Note that the function x 7→
(

log n
x

)x

is increasing for x ∈ (0, logn
e ]. When t = 1, for n sufficiently

large,
(

logn

τ

)τ

= logn
(logn)τ−1

ττ
≥ 6 logn.
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For t ≤ log log n
3 log τ we have τ ≤ τ t ≤ (logn)1/3 < log n

e and so,

(

logn

τ t

)τ t

≥

(

logn

τ

)τ

≥ 6 logn

when n is sufficiently large. Thus,

P(Z = 0) ≤ exp

(

−
1

2

(

logn

τ t

)τ t)

≤ exp(−3 logn) = n−3,

and applying the union bound yields

Ppn
(T ≤ t) ≥ 1−

1

n
.

This completes the proof of Statement (i) of Theorem 1.1.

5. Lower bound on the critical probability

In this section we prove Statement (ii) of Theorem 1.1. More precisely, we show that if p(n) =

o
(

n−
vt−2
et

)

then even a single fixed pair e0 = {1, 2} is not added to the graph by time t with high

probability.

Proof of Statement (ii) of Theorem 1.1. Recall that E(Gt) denotes the edges of the graph after t time
steps. We have

Ppn
(T ≤ t) ≤ Ppn

(e0 ∈ E(Gt)) ≤
t
∑

i=0

Ppn
(e0 is added at time i).

The probability that e0 is added to the graph at time 0 is clearly pn = o(1). For 1 ≤ i ≤ t − 1 we
can be very generous with our estimates. The number of vertices of any minimal graph that adds
e0 to the graph at time i ≥ 1 is at least r (including 1 and 2) and, by Lemma 3.4, at most vi. The

number of different graphs on a set of j vertices is 2(
j

2) < 2j
2

. Finally, by Corollary 3.3 any minimal
graph on j vertices that adds e0 to the graph contains at least λ(j − 2) + 1 edges. Since we take

p(n) = o
(

n−
vt−2
et

)

, we see that by the union bound the probability that e0 is added to the graph at

some time 1 ≤ i ≤ t− 1 is at most

t−1
∑

i=1

vi
∑

j=r

(

n

j − 2

)

2(
j

2)pλ(j−2)+1 ≤
t−1
∑

i=1

vi
∑

j=r

nj−22j
2

n−(λ(j−2)+1)
vt−2
et

=

t−1
∑

i=1

vi−2
∑

j=r−2

nj2(j+2)2n−(λj+1)
vt−2
et . (35)

For i = t we further divide into two cases. We deal with the graphs on at most vt − 1 vertices in the
same way as we did for i < t. By union bound, the probability that any one of them appears in the
graph is at most

vt−3
∑

j=r−2

nj2(j+2)2n−(λj+1)
vt−2
et . (36)
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The last case we need to consider are graphs on vt vertices that add e0 to the graph at time t. By
Corollary 3.5 there are at most nvt−2 such graphs and the probability that we obtain at least one of
them, for some ω(n) that tends to infinity as n → ∞, is at most

nvt−2n−et
vt−2
et /ω(n)et = ω(n)−et = o(1).

Consequently we have

Ppn
(T ≤ t) ≤

t−1
∑

i=1

vi−2
∑

j=r−2

nj2(j+2)2n−(λj+1)
vt−2
et +

vt−3
∑

j=r−2

nj2(j+2)2n−(λj+1)
vt−2
et + o(1). (37)

For all t ≥ 1, by (16) we have

vt−1 − 2 = (r − 2)
τ t−1 − 1

τ − 1
<

r − 2

τ

τ t − 1

τ − 1
=

vt − 2

τ
.

It follows that for i ≤ t− 1 we can bound the powers of n in (35) by

j − (λj + 1)
(vt − 2)

et
= j − j

λ(vt − 2)

et
−

vt − 2

et

= j

(

1−
1

1 + ct

)

−
1

λ(1 + ct)
(by (17))

=

(

jct −
1

λ

)

1

1 + ct

≤

(

(vt−1 − 2)ct −
1

λ

)

1

1 + ct

=

(

r − 2

τ − 1
(τ t−1 − 1)

1

τ t − 1
−

r − 2

τ − 1

)

1

1 + 1
τ t−1

(by (16), (15) and (14))

=
r − 2

τ − 1

τ t−1 − τ t

τ t − 1

τ t − 1

τ t

= −
r − 2

τ
.

Analogously, for i = t and j ≤ vt − 3, we can bound the powers of n in (36) by

j − (λj + 1)
(vt − 2)

et
=

(

jct −
1

λ

)

1

1 + ct

≤

(

(vt − 3)ct −
1

λ

)

1

1 + ct

=

(

τ t − 1

λ

1

τ t − 1
− ct −

1

λ

)

1

1 + ct
(by (16) and (15))

=
−ct
1 + ct

=
−1/(τ t − 1)

1 + 1/(τ t − 1)

=
−1

τ t
.

We can use these estimates and the fact that, by (16), for any i ≥ 1 we have vi − 2 = τ i−1
λ < τ i/λ,

to bound Ppn
(T ≤ t) from above. Indeed,

Ppn
(T ≤ t) ≤

t−1
∑

i=1

vi−2
∑

j=r−2

2(j+2)2n−(r−2)/τ +

vt−3
∑

j=r−2

2(j+2)2n−1/τ t

+ o(1)
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≤ (t− 1)(vt−1 − r + 1)2(vt−1)
2

n−(r−2)/τ + (vt − r)2(vt)
2

n−1/τ t

+ o(1)

< t
τ t−1

λ
2τ

2(t−1)/λ2

n−(r−2)/τ +
τ t

λ
2τ

2t/λ2

n−1/τ t

+ o(1). (38)

There is some constant C′
r > 0 such that for all t ≥ C′

r we have

2τ
2(t−1)/λ2

≥ t
τ t−1

λ
and 2τ

2t(λ2−1)/λ2

≥
τ t

λ
.

For t < C′
r all three terms in (38) tend to 0 as n → ∞ and we clearly have Ppn

(T ≤ t) = o(1). For
t ≥ C′

r we continue (38) to obtain

Ppn
(T ≤ t) ≤ 22τ

2(t−1)/λ2

n−(r−2)/τ + 2τ
2t

n−1/τ t

+ o(1)

≤ exp

(

2τ2t

λ2
log 2−

(r − 2)

τ
logn

)

+ exp

(

τ2t log 2−
1

τ t
logn

)

+ o(1).

Thus, for C′
r ≤ t ≤ log logn

3 log τ , with all logarithms having base e,

Ppn
(T ≤ t) ≤ exp

(

2(logn)2/3

λ2
log 2−

(r − 2)

τ
logn

)

+ exp
(

(logn)2/3 log 2− (logn)2/3
)

+ o(1)

= o(1).

This completes the proof of Theorem 1.1.

6. Open problems

In this paper we determine the critical probability for percolation by time t in Kr-bootstrap percola-
tion up to a logarithmic factor. The first obvious problem to consider is the following.

Problem 6.1. Close the gap between Statement (i) and Statement (ii) in Theorem 1.1.

We do not expect neither of our bounds to be sharp. However, we believe that for the range of t
discussed in this paper we have pc(n, r, t)/n

−(vt−2)/et → ∞.
The second open problem we pose here is of extremal nature. Lemma 3.4 tells us that minimal

graphs adding e0 to the graph at time t have at most (r − 2) τ
t−1
τ−1 + 2 vertices and τ t edges.

Problem 6.2. How small, both in terms of the size of the vertex set and the edge set, can minimal
graphs adding e0 at time t be?
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