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SPANNING STRUCTURES AND UNIVERSALITY IN SPARSE

HYPERGRAPHS

OLAF PARCZYK AND YURY PERSON

Abstract. In this paper the problem of finding various spanning structures in random hyper-
graphs is studied. We notice that a general result of Riordan [Spanning subgraphs of random
graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] can be adapted
from random graphs to random r-uniform hypergaphs and provide sufficient conditions when
a random r-uniform hypergraph H

(r)(n, p) contains a given spanning structure a.a.s. We also
discuss several spanning structures such as cube-hypergraphs, lattices, spheres and Hamilton
cycles in hypergraphs.

Moreover, we study universality, i.e. when does an r-uniform hypergraph contain any hyper-
graph on n vertices and with maximum vertex degree bounded by ∆? For H(r)(n, p) it is shown

that this holds for p = ω
(

(lnn/n)1/∆
)

a.a.s. by combining approaches taken by Dellamonica,

Kohayakawa, Rödl and Ruciński [An improved upper bound on the density of universal random
graphs, Random Structures Algorithms 46 (2015), no. 2, 274–299] and of Ferber, Nenadov and
Peter [Universality of random graphs and rainbow embedding, Random Structures Algorithms,
to appear]. Furthermore it is shown that the random graph G(n, p) for appropriate p and
explicit constructions due to Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi [7]
and Alon and Capalbo [4, 5] of universal graphs yield constructions of universal hypergraphs

that are sparser than the random hypergraph H
(r)(n, p) with p = ω

(

(lnn/n)1/∆
)

.

1. Introduction

Finding spanning subgraphs is a well studied problem in random graph theory, see e.g. the
following monographs on random graphs [9, 23]. In the case of hypergraphs less is known and
it is natural to study the corresponding spanning problems for random hypergraphs.

An r-uniform hypergraph H is a tuple (V,E), where V is its vertex set and E ⊆
(V
r

)

the

set of edges in H. The random r-uniform hypergraph H(r)(n, p) is the probability space of all

labelled r-uniform hypergraphs with the vertex set [n] := {1, 2, . . . , n} where each edge e ∈
([n]
r

)

is chosen independently of all the other edges with probability p. Thus, for r = 2 this is a
standard model of the random graph G(n, p). Let H = H(i) be a sequence of fixed r-uniform
hypergraphs with n vertices, where n = n(i) → ∞. Then we say that H(r)(n, p) contains the

hypergraph H asymptotically almost surely (a.a.s.) if the probability that H(i) ⊆ H(r)(n, p)

tends to 1 as n tends to infinity. We say that p̂ is a threshold function if P[H ⊆ H(r)(n, p)] → 0

for p≪ p̂ and P[H ⊆ H(r)(n, p)] → 1 for p≫ p̂ as n tends to infinity.
It was shown by Bollobás and Thomason [10] that all nontrivial monotone properties have a

threshold function. Since subgraph containment is a monotone property it is natural to study
the threshold functions for appearance of various structures in random graphs and hypergraphs.
The purpose of this paper is to obtain generalizations of several results about spanning struc-
tures in random graphs to random hypergraphs. In particular we extend a result of Riordan [37]
on containment of a given single spanning graph in G(n, p) and we generalize a result of Del-
lamonica, Kohayakawa, Rödl and Ruciński [13] on universality for the class of bounded degree

spanning subgraphs in G(n, p) to random hypergraph H(r)(n, p). Furthermore, we show that
the random graph G(n, p) for appropriate p and explicit constructions of universal graphs due to
Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi [7] and Alon and Capalbo [4, 5] yield
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constructions of universal hypergraphs that are sparser than the random hypergraph H(r)(n, p)

with p = ω
(

(lnn/n)1/∆
)

.

1.1. Single spanning structures. First spanning structures considered in graphs were perfect
matchings [18] and Hamilton cycles [30, 36] (see also [9, Chapter 8] and references therein). More
recently, the thresholds for the appearance of (bounded degree) spanning trees [3, 31, 22, 20,
24, 26, 27] were studied as well, for the currently best bounds see [33, 34].

Alon and Füredi [8] studied the question when the random graph G(n, p) contains a given

graph G of bounded maximum degree ∆ hereby proving the bound p ≥ C(lnn/n)1/∆ for some
absolute constant C > 0. In [37] Riordan proved quite a general theorem applicable to var-
ious graphs in particular determining the threshold functions for the appearance of spanning
hypercubes and lattices. Kühn and Osthus [32] determined an approximate threshold for the
appearance of a square of a Hamilton cycle. Finding thresholds for factors of graphs and hyper-
graphs was long an open problem where breakthrough was achieved by Johansson, Kahn and
Vu [25]. Kahn and Kalai [28] have a general conjecture about the thresholds for the appearance
of a given structure (which roughly states that the threshold p with P(G ⊆ G(n, p)) = 1/2 for
containment of G is within a factor of O(lnn) from pE at which the expected number of copies
of G in G(n, pE) is 1, where pE is the so-called expectation threshold).

When one turns to hypergraphs, so apart from perfect matchings and general factors [25],
the only other spanning structures that were studied more recently are Hamilton cycles. An
ℓ-overlapping Hamilton cycle is an r-uniform hypergraph such that for some cyclic ordering of
[n] and an ordering of the edges, every edge ei consists of r consecutive vertices and for any
two consecutive edges ei and ei+1 it holds |ei ∩ ei+1| = ℓ (this requires that r − ℓ divides n and
thus such ℓ-overlapping Hamilton cycle has n/(r − ℓ) edges). We say that a hypergraph is ℓ-
hamiltonian if it contains an ℓ-overlapping Hamilton cycle. Frieze [21] determined the threshold
for the appearance of 1-overlapping 3-uniform Hamilton cycles to be Θ(lnn/n2) (when 4|n) and
Dudek and Frieze [15] extended the result to higher uniformities (2(r − 1)|n). The divisibility
requirement was improved to the optimal one ((r−1)|n) by Dudek, Frieze, Loh and Speiss [14],
see also Ferber [19]. Subsequently, Dudek and Frieze [16] determined thresholds for general
ℓ-overlapping Hamilton cycles and a randomized algorithm to find (r−1)-overlapping Hamilton
cycles was given in [1]. For a table of the known thresholds we refer the reader to [16], but
generally ω(nℓ−r) is an asymptotically optimal threshold for ℓ-Hamiltonicity (for ℓ ≥ 2 and in
most situations even more precise results are known). Here and in the following ω(f) denotes
any function g such that g(n)/f(n) → ∞ as n → ∞. For another type of Hamilton cycles, the
so-called Berge Hamilton cycles, the threshold was determined recently by Poole [35].

In the first part of this paper we observe that Riordan’s result [37] can be extended to
r-uniform hypergaphs leading to a general theorem about spanning structures in random hy-
pergraphs. We will recover results of Dudek and Frieze [16] on ℓ-hamiltonicity (2 ≤ ℓ < r) and
also discuss thresholds for other spanning structures such as hypercubes, lattices, spheres and
powers of Hamilton cycles in hypergraphs.

Let H = (V,E) be an r-uniform hypergraph with n vertices. We write v(H) for |V | and
e(H) for |E|. We denote by deg(v) the degree of a vertex v in H: deg(v) := |{e : v ∈ e}|, and
∆(H) is defined to be the maximum vertex degree in H, i.e. ∆(H) := maxv∈V deg(v). Let
eH(v) = max{e(F ) : F ⊆ H, v(F ) = v}, then the following parameter introduced in [37] will be
responsible for the upper bound on the threshold

γ(H) = max
r+1≤v≤n

{

eH(v)

v − 2

}

.

Our first result is the following.

Theorem 1.1. Let r ≥ 2 be an integer and H = H(i) be a sequence of r-uniform hypergraphs
with n = n(i) vertices, ∆ = ∆(H) and e(H) = α

(

n
r

)

= α(n)
(

n
r

)

edges. Let p = p(n) : N → [0, 1).
2



If the following conditions are satisfied

α

(

n

r

)

>
n

r
and p

(

n

r

)

→ ∞, (1)

and

npγ(H)∆−4 → ∞, (2)

then a.a.s. the random r-uniform hypergraph H(r)(n, p) contains a copy of H.

We remark, that for r = 2 this was already shown by Riordan in [37, Theorem 2.1] using the
second moment argument. In fact, the proof for hypergraphs will follow allong the lines of his
original argument, but requires adaptations at various places. We provide the details below in
Section 2 and in Section 3 we discuss its applications to some particular spanning hypergraphs.

1.2. Universality. For a family F of r-uniform hypergaphs we say that an r-uniform hyper-
graph H is F-universal if every hypergraph F ∈ F occurs as a copy in H. Let F (r)(n,∆) denote
the family of all r-uniform hypergraphs F with maximum degree ∆(F ) ≤ ∆ on n vertices.

In the graph case, the first result concerned almost spanning universality due to Alon, Ca-
palbo, Kohayakawa, Rödl, Ruciński and Szemerédi [6] who showed that for p = C(lnn/n)1/∆ the

random graphG(n, p) is F (2)((1−ε)n,∆)-universal a.a.s. Then, Dellamonica, Kohayakawa, Rödl

and Ruciński [13] proved for any given ∆ ≥ 3 that G(n, p) is F (2)(n,∆)-universal a.a.s. provided

that p ≥ C (lnn/n)1/∆, where C > 0 is some absolute constant. Later, Kim and Lee [29] dealt
with the missing case ∆ = 2. Bringing the maximum density d(H) = maxH′⊆H {2e(H)/v(H)}
of a graph into the statement, Ferber, Nenadov and Peter [20] showed that for the uni-
versality for all graphs with maximum degree ∆ and maximum density d the probability
p = ω(∆12n−1/(2d) ln3 n) suffices. Thus, for sparser graphs with d < ∆/2 this improved [13]
and an additional advantage is that ∆ is allowed to be a function of n. Very recently, Conlon,
Ferber, Nenadov and Škorić [12], building on [20] proved that for every ε > 0, ∆ ≥ 3 and

p = ω(n−1/(∆−1) ln5 n) the random graph G(n, p) is F (2)((1− ε)n,∆)-universal a.a.s. improving
the almost spanning result from [6].

Our second result is on the universality of H(r)(n, p) for the family F (r)(n,∆), where we show
that a natural bound on p ≥ C(lnn/n)1/∆ suffices.

Theorem 1.2. For every r ≥ 2 and any integer ∆ ≥ 1, there exists a constant C > 0, such

that for p = C (lnn/n)1/∆ the random r-uniform hypergraph H(r)(n, p) is F (r)(n,∆)-universal
a.a.s.

In the proof of Theorem 1.2 (see Section 4) we employ a strategy of Dellamonica, Kohayakawa,
Rödl and Ruciński [13], but a shortcut will be obtained by using similar notions of good prop-
erties that were introduced by Ferber, Nenadov and Peter [20].

Another natural problem concerns the existence and explicit constructions of graphs that are
universal for some family of graphs. For an excellent survey on this problem see Alon [2] and the

references therein. First nearly optimal universal graphs for F (2)(n,∆) (∆ ≥ 3) with O(n) ver-

tices and O(n2−2/∆ ln1+8/∆ n) edges were given by Alon, Capalbo, Kohayakawa, Rödl, Ruciński
and Szemerédi [7]. It was also noted by the same authors in [6] that any such universal graph

has to contain Ω(n2−2/∆) edges. As mentioned in [4] in the case ∆ = 2 the square of a Hamilton

cycle is F (2)(n,∆)-universal (and thus 2n edges are enough in this case). Subsequently, Alon

and Capalbo gave better constructions of F (2)(n,∆)-universal graphs (∆ ≥ 3) with O(n) ver-

tices and O(n2−2/∆) edges [4] and another one with n vertices and O(n2−2/∆ ln4/∆ n) edges [5].
We exploit their constructions to obtain sparse F (r)(n,∆)-universal hypergraphs.

Proposition 1.3. For every r ≥ 3, any integer ∆ ≥ 2 and any F (2)(n,∆)-universal graph G
there is an r-uniform hypergraph H with V (H) = V (G) and |E(H)| ≤ |E(G)|nr−2, which is

F (r)(n,∆)-universal.
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It will follow from Proposition 1.3 that ifG is explicitly constructible then so is the hypergraph
H. This proposition together with the results of Alon and Capalbo [4, 5] yields for ∆ ≥ 2

constructions of F (r)(n,∆)-universal hypegraphs with O(n) vertices and O(nr−2/∆) edges and

with n vertices and O(nr−2/∆ ln4/∆ n) edges. Note that the case ∆ = 1 is trivial.

Our next proposition shows that, for r ≥ 4 there exist even sparser F (r)(n,∆)-universal
hypergraphs. These are obtained from appropriate universal random graphs from [12, 13].

Proposition 1.4. Let r ≥ 3 and ∆ ≥ 2 be integers. Then there exists an F (r)(n,∆)-universal

hypergraph H1 with n vertices and Θ
(

nr−
r

2∆ (ln n)
r
2∆

)

edges. Moreover, for every ε > 0 there ex-

ists an F (r)(n,∆)-universal hypergraph H2 with (1+ε)n vertices and ω

(

n
r− (r2)

(r−1)∆−1 (lnn)5(
r
2)

)

edges.

These hypergraphs are thus sparser than the random universal hypergraph from Theorem 1.2.
On the other hand, any F (r)(n,∆)-universal hypergraph has to contain Ω(nr−r/∆) edges and
thus the exponent in its density is off by at most the factor of 2. We discuss Propositions 1.3
and 1.4 in Section 5.

1.3. Notation. Let H = (V,E) be an r-uniform hypergraph. The hypergraph induced by a

subset of the vertices W ⊆ V in H is denoted by H[W ] :=
(

W,E(H) ∩
(W
r

)

)

. The shadow

graph H ′ is obtained from H by replacing every edge e ∈ E(H) by all possible
(r
2

)

subsets

of cardinality two (we ignore multiple edges). By K
(r)
n we denote the complete r-uniform

hypergraph
(

[n],
(n
r

))

.
An alternating sequence of vertices and edges v1, e1, v2, e2, . . . , vt, et, vt+1 is called a path of

length t from v1 to vt+1 if vi, vi+1 ∈ ei for all i ∈ [t]. If there is a path from u to v, then we say
that u and v are connected. This defines an equivalence relation on V . Similarly to the graph
case, we say that a hypergraph H is connected if there is a path between any two vertices of
H. A component in an r-uniform hypergraph is a maximally connected subhypergraph. The
distance between two vertices u and v in H ist the minimal length over all paths from u to v,
and if they are in different components then we set it to ∞.

The neighbourhood NH(v) of a vertex v is the set of vertices which are contained in an edge
together with v

NH(v) = {w ∈ V \ {v} : ∃ e ∈ E s.t. {w, v} ⊆ e}.
For a subset of the vertices W ⊆ V , the neighbourhood in H is NH(W ) =

⋃

w∈W NH(w). The
set W is called t-independent in a hypergraph H, if the distance between v ∈W and w ∈W in
H is at least t+ 1. A 1-independent set is independent in the usual sense.

To simplify readability, we will omit in the calculations floor and ceiling signs whenever they
are not crucial in the arguments.

2. Proof of Theorem 1.1

The overall proof strategy of Theorem 1.1 is the same as Riordan’s in [37], which is an elegant
second moment argument. In fact, a large part of the proof proceeds along the same lines and
we are thus going to use the same notation. We will also provide reference to the relevant
part of [37], especially for lemmas that hold verbatim or by a straightforward modification for
hypergraphs, but we also include some of these for the sake of readability. Still, some of the
steps require more effort to be generalized (in particular Lemma 2.3 below) and we provide full
details for them. We try to be brief anyway.

The proof deals instead of H(r)(n, p) with the related model H(n, p
(n
r

)

), which is the proba-

bility space of all labelled r-uniform hypergraphs with the vertex set [n] and exactly p
(n
r

)

edges
with a uniform measure. Thus, for r = 2 this is the standard model G(n,m). A corresponding

4



statement in the model H(r)(n, p) is then obtained from H(n, p
(

n
r

)

) by a standard argument,

i.e. conditioning on the number of edges in H(r)(n, p).
One considers the random variable X which counts copies of H in H(n, p

(n
r

)

) and analyzes

the quantity f := E(X2)/(EX)2. It is enough to show that f = 1 + o(1), since then one infers
by Chebyshev’s inequality:

P[X = 0] ≤ P[|X − EX| ≥ EX] ≤ Var(X)

E(X)2
= f − 1 = o(1). (3)

Before we give more details, let us briefly state the steps that are geared towards the estima-
tion of f as done in [37], since this is the path we are going to pursue as well:

(1) pondering f , it is shown that f ≤ (1 + o(1))e−
1−p
p

α2(nr)SH , where SH is a sum that
depends on all subhypergraphs of H, which will be introduced below;

(2) then it is shown that SH ≤ (1+o(1))e
1−p
p

α2(nr)S′
H , where S′

H runs only over certain good
subhypergraphs of H – this step requires most adaptation and we provide full details in
Lemma 2.3 below;

(3) one can further simplify S′
H and bound it above by another quantity T ′

H – this is done
in Lemma 2.4 and its proof is sketched in the Appendix;

(4) in the penultimate step, T ′
H is bounded by eT

′′

H , where T ′′
H is the sum over all good

connected hypergraphs;
(5) finally, it is shown T ′′

H = o(1) (we sketch a proof in Lemma 2.5 that can be found in the
Appendix) and combining the estimates, the desired bound on f follows:

f ≤ (1 + o(1))e
− 1−p

p
α2(nr)SH ≤ (1 + o(1))e

− 1−p
p

α2(nr)e
1−p
p

α2(nr)S′
H ≤

(1 + o(1))T ′
H ≤ (1 + o(1))eT

′′

H ≤ (1 + o(1))eo(1) = 1 + o(1).

Before we proceed, let us collect some useful estimates that involve α and p for future refer-
ence.

Lemma 2.1. Suppose that the conditions (1) and (2) hold. Then, we have

n
3−2r

2 p−1∆4r−6 → 0 and ∆ = o(n1/4),

α3

(

n

r

)

p−2 = o(1),

αp−1∆ = o(n−1/2), p−1∆2n2−r = o(n1/2) and p−1α2

(

n

r

)

= o(n1/2).

Proof. Observe first that α
(n
r

)

> n/r implies γ(H) ≥ 2
2r−3 . Since p ≤ 1, it follows from (2) that

∆ = o(n1/4), and rearranging yields with γ(H) ≥ 2
2r−3 that n

3−2r
2 p−1∆4r−6 → 0.

Now we notice immediately that p = ω
(

(∆4/n)
2r−3

2

)

. Since α
(n
r

)

≤ ∆n/r it follows α ≤
∆
(n−1
r−1

)−1
. The combination of the two estimates yields α3

(n
r

)

p−2 = o(1).

To obtain the remaining estimates, we combine the lower bound on p = ω
(

(∆4/n)
2r−3

2

)

with

α ≤ ∆
(n−1
r−1

)−1
, thus obtaining αp−1∆ ≤ p−1∆2

(n−1
r−1

)−1
= o(n−1/2) and p−1α2

(n
r

)

= o(n1/2). �

The proof starts by writing f as the sum over all 2e(H) subhypergraphs F of H that involve

XF (H) and XF (K
(r)
n ), which are the number of subhypergraphs of H (resp. of K

(r)
n ) that are

isomorphic to F . The following lemma is a consequence of Lemmas 3.1, 3.2 and 4.1 from [37]
(these involve only binomial coefficients and thus can be applied verbatim to hypergraphs).
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Lemma 2.2. Suppose that α
(

n
r

)

, p
(

n
r

)

→ ∞ and that α3
(

n
r

)

p−2 → 0 (as n tends to infinity).

Then with c = 1−p
p−2α we get

f ≤ (1 + o(1))e
− 1−p

p
α2(nr)

∑

F⊆H

ce(F ) XF (H)

XF (K
(r)
n )

. (4)

The third condition above (α3
(

n
r

)

p−2 → 0) holds by Lemma 2.1.
Notice that every component in an r-uniform hypergraph has either one vertex (isolated

vertex) or at least r vertices. We define the function r(F ) := n − k1(F ) − (r − 1)kr(F ) where
n is the number of vertices in F , k1(F ) is the number of isolated vertices in F and kr(F ) is the
number of components in F , which are not isolated vertices. As in [37] one introduces the sum

SH =
∑

F⊆H

(p−1 − 1)e(F )(1 + n−
1
2 )r(F ) XF (H)

XF (K
(r)
n )

. (5)

This allows us to get the bound of the form (this is Lemma 4.2 in [37])

f ≤ (1 + o(1))e
− 1−p

p
α2(nr)SH ,

which follows by estimating ln
(

p
p−2α

)

≤ 3α
p , e(F ) ≤ ∆r(F ) and the use of αp−1∆ = o(n−1/2)

(which follows from Lemma 2.1).
Next one would like to estimate SH by the following sum

S′
H =

′
∑

F⊆H

(p−1 − 1)e(F )2r(F ) XF (H)

XF (K
(r)
n )

, (6)

where
∑′ is the sum over subhypergraphs F ⊆ H such that none of the components of F

consists of a single (isolated) edge (such hypergraphs are referred to as good in [37]).
The following lemma has the same conclusion as Lemma 4.3 from [37]. In the case of r-

uniform hypergraphs (r ≥ 3) one needs to be more careful and the estimates are somewhat
different from those in [37]. Therefore we provide its full proof below.

Lemma 2.3. If H is any r-uniform hypergraph with maximum degree ∆ and the conditions (1)
and (2) hold, then

SH ≤ (1 + o(1))e
1−p
p

α2(nr)S′
H .

Proof. Let F be some hypergraph from the sum
∑′ in S′

H (such F we call good). Thus, F is
an r-uniform hypergraph with v isolated vertices and no isolated edges. We define S′[F ] to be
the contribution to S′

H that comes from the isomorphism class of a good hypergraph F ⊆ H,

i.e. S′[F ] = (p−1 − 1)e(F )2r(F ) XF (H)2

XF (K
(r)
n )

. We write Ft for a hypergraph obtained from a good F

with v isolated vertices by adding t ≤ v/r isolated edges to it. Let S[F ] be the contribution
of all subhypergraphs of H that are isomorphic to Fi for some i, where 0 ≤ i ≤ v/r. Thus,

S[F ] =
∑v/r

i=0(p
−1 − 1)e(Fi)(1 + n−

1
2 )r(Fi) XFi

(H)2

XFi
(K

(r)
n )

. Every hypergraph from the sum in SH can

be reduced to a good F by deleting all isolated edges. Therefore we have S′
H =

∑

S′[F ] and
SH =

∑

S[F ], where the sums are over all isomorphism classes of good subhypergraphs of
H. To prove the lemma it is thus sufficient to bound S[F ]/S′[F ] for every good F ⊆ H by

(1 + o(1))e
1−p
p

α2(nr).
Let F ⊆ H be a good hypergraph with v isolated vertices, then

XFt(K
(r)
n ) = XF (K

(r)
n ) · 1

t!

(

v

r

)(

v − r

r

)

· . . . ·
(

v − rt+ r

r

)

and

XFt(H) ≤ XF (H) · 1
t!
eH(v)eH(v − r) · . . . · eH(v − rt+ r).

6



Setting βw = eH(w)2/
(

w
r

)

we obtain

XFt(H)2

XFt(K
(r)
n )

≤ XF (H)2

XF (K
(r)
n )

βvβv−r . . . βv−rt+r

t!
.

Since e(Ft) = e(F ) + t and r(Ft) = r(F ) + t we have

S[F ]

S′[F ]
≤ 2−r(F )(1 + n−

1
2 )r(F )

v/r
∑

t=0

(p−1 − 1)t(1 + n−
1
2 )t

βvβv−r . . . βv−rt+r

t!
. (7)

Next we take a closer look at the βw terms. Since ∆(H) ≤ ∆ we can bound eH(w) ≤ w∆/r

and βw ≤
(

w∆
r

)2 (w
r

)−1 ≤ ∆2rr−2

wr−2 . Therefore we estimate the product of βws as follows

t−1
∏

i=0

βv−ir ≤
(

∆2rr−2
)t

(

t−1
∏

i=0

(v − ir)

)−(r−2)

≤ ∆2t

(

(⌊v/r⌋ − t)!

⌊v/r⌋!

)r−2

.

By approximating factorials with Stirling’s formula we obtain

t−1
∏

i=0

βv−ir ≤
(

er−2∆2

⌊v/r⌋r−2

)t

.

Thus, we further upper bound S[F ]/S′[F ] by

S[F ]

S′[F ]
≤ 2−r(F )(1 + n−

1
2 )r(F )

v/r
∑

t=0

(p−1 − 1)t(1 + n−
1
2 )t
(

er−2∆2

⌊v/r⌋r−2

)t
1

t!
. (8)

From Lemma 2.1 it follows that p−1∆2n2−r = o(
√
n) and therefore

p−1∆2v2−r = o((n/v)r−2√n) (9)

and in the following we will distinguish four cases.
Suppose 0 ≤ v ≤ n/(100r lnn). Then we use (9) to upper bound each term in the sum

from (8) by nv = exp(n/(100r)). On the other hand we have r(F ) ≥ n−v
r > n/(2r). It follows

that 2−r(F ) dominates each of the at most n/r terms in the sum and the factor (1 + n−
1
2 )r(F )

as well. This gives us S[F ]/S′[F ] = o(1). If v = 0 then we trivially have S[F ]/S′[F ] = o(1) as
well.

Next we assume that n/(100r lnn) < v ≤ n− (ln n)r−2√n. We can interpret the sum in (8)

as the first v/r + 1 terms in the expansion of exp
(

(p−1 − 1)(1 + n−1/2) er−2∆2

⌊v/r⌋r−2

)

, which leads

to
S[F ]

S′[F ]
≤ 2−r(F )(1 + n−

1
2 )r(F ) exp

(

2p−1 e
r−2∆2

⌊v/r⌋r−2

)

. (10)

Again we have r(F ) ≥ n−v
r ≥ (lnn)r−2√n

r , whereas exp
(

2p−1 er−2∆2

⌊v/r⌋r−2

)

= exp
(

o((lnn)r−2√n)
)

by (9). Thus, we have S[F ]/S′[F ] = o(1).
Assume now that n − (lnn)r−2√n < v ≤ n − √

n. Similarly as in the previous case one

gets r(F ) ≥ √
n/r and exp

(

2p−1 er−2∆2

⌊v/r⌋r−2

)

= exp (o(
√
n)). Again one gets S[F ]/S′[F ] = o(1) as

before.
Finally, let v > n−√

n and we are going to use the inequality (7) to estimate S[F ]/S′[F ]. We

bound βw with e(H)2
(w
r

)−1
= α2

(n
r

)2(w
r

)−1
which is α2

(n
r

)

(1+O(n−1/2)) for w ≥ n− (r+1)
√
n.

This gives us
√
n

∑

t=0

(p−1 − 1)t(1 + n−
1
2 )t
(

α2
(

n
r

)

(1 +O(n−1/2))
)t

t!
≤ exp

(

1− p

p
α2

(

n

r

)

(

1 +O(n−1/2)
)

)

.
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By Lemma 2.1 we have 1−p
p α2

(

n
r

)

n−1/2 = o(1). Thus,

exp

(

1− p

p
α2

(

n

r

)

(

1 +O(n−1/2)
)

)

≤ (1 + o(1)) exp

(

1− p

p
α2

(

n

r

))

.

As for t >
√
n, we estimate the rest by (8) and using (9) it follows:

v/r
∑

t=
√
n

(p−1 − 1)t(1 + n−
1
2 )t
(

er−2∆2

⌊v/r⌋r−2

)t
1

t!
≤

v/r
∑

t=
√
n

o(1)t = o(1).

Combining together we obtain: S[F ]
S′[F ] ≤ (1 + o(1))eα

2(nr)
1−p
p + o(1) = (1 + o(1))eα

2(nr)
1−p
p .

Therefore, for every good F , we get in any of the four possible cases that

S[F ]

S′[F ]
≤ (1 + o(1))eα

2(nr)
1−p
p .

This yields SH/S
′
H ≤ (1 + o(1))e

α2(nr)
1−p
p completing the proof. �

So far we have f ≤ (1 + o(1))e−
1−p
p

α2(nr)SH and SH ≤ (1 + o(1))e
1−p
p

α2(nr)S′
H , thus f ≤

(1 + o(1))S′
H . In the following one bounds S′

H by bounding first XF (H)/XF (K
(r)
n ).

Lemma 2.4 (an adaptation of Lemma 4.4 from [37]). Let H be any r-uniform hypergraph with
maximum degree ∆ and F ⊆ H, then

XF (H)

XF (K
(r)
n )

≤ (2(r − 1)!∆)r(F ) er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )

The lemma above bounds S′
H as follows:

S′
H ≤

′
∑

F⊆H

(p−1 − 1)e(F ) (4(r − 1)!∆)r(F ) er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )
=: T ′

H .

Proceeding exactly as in [37], one introduces ψ(F ) := (p−1 − 1)e(F ) (4(r−1)!∆)r(F )er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )

which is multiplicative: it holds ψ(F1 ∪ F2) = ψ(F1)ψ(F2) for any two vertex-disjoint hyper-
graphs F1 and F2 (i.e. for all e ∈ E(F1) and f ∈ E(F2) one has e ∩ f = ∅). Since every good
hypergraph consists of maximally connected edge-disjoint good hypergraphs we get

T ′
H =

′
∑

F⊆H

ψ(F ) ≤ 1 +

∞
∑

i=1

1

t!





′′
∑

F⊆H

ψ(F )





t

,

where
∑′′ is the sum over connected good hypergraphs. We set T ′′

H =
∑′′

F⊆H ψ(F ), thus the

above shows T ′
H ≤ eT

′′

H .

Lemma 2.5 (an adaptation of Lemma 4.5 [37]). For every r-uniform hypergraph H on [n] we
have

T ′′
H ≤ ne2r

n
∑

s=r+1

(

12r!2∆2

n

)s−1

p−eH(s), (11)

where ∆ is the maximum degree of H.

Now we are in a position to finish the argument. We further estimate T ′′
H using the above as

follows:

T ′′
H ≤ ne2r

n
∑

s=r+1

(

12r!2∆2

n

)s−1

p−eH(s) ≤ 12e2rr!2
n
∑

s=r+1

(

12r!2∆4p−eH(s)/(s−2)n−1
)s−2

.

Therefore we get T ′′
H ≤ 12e2rr!2

∑n
s=r+1

(

12r!2∆4p−γ(H)n−1
)s−2

, which by condition (2) tends

to zero as n goes to infinity. Thus, T ′′
H = o(1), and with T ′

H ≤ eT
′′

H and f ≤ (1 + o(1))S′
H ≤ T ′

H
8



we obtain f ≤ 1 + o(1) and then by Chebyshev’s inequality (3) the statement of Theorem 1.1
follows for H(n, p

(n
r

)

).

3. Applications of Theorem 1.1

First we obtain the following two corollaries.

Corollary 3.1. Let r, ∆ ≥ 2 be integers and H = H(i) a sequence of r-uniform hypergraphs with
n = n(i) vertices, ∆(H) ≤ ∆, e(H) > n/r and γ(H) = e(H)/(n−2). Then for p = ω

(

n−1/γ(H)
)

the random graph H(r)(n, p) contains a copy of H a.a.s., while for every ε > 0 we have for

p ≤ (1− ε)(e/n)1/γ that P(H ⊆ H(r)(n, p)) → 0.

Proof. Since ∆ is fixed and γ(H) ≤ (1 + o(1))∆, the conditions (1) and (2) are satisfied.
Theorem 1.1 yields the first part of the claim.

Let X be the number of copies of H in H(r)(n, p) and we estimate its expectation E(X) as
follows:

E(X) ≤ n!pe(H) ≤ 3
√
n(1− ε)e(H)(n/e)2 = o(1).

Now Markov’s inequality P(X ≥ 1) ≤ E(X) yields the second part of the corollary. �

We call a hypergraph H d-regular if every vertex of H has degree d.

Corollary 3.2. Let r ≥ 2 be an integer and H = H(i) be a sequence of ∆-regular r-uniform
hypergraphs where ∆ = ω(ln(n)1−1/r) but ∆ = o(n1/4). Then for every ε > 0 we have that

H(r)(n, p) contains a.a.s. H if p = (1 + ε)n−r/∆. Furthermore P(H ⊆ H(r)(n, p)) → 0 for
p ≤ n−r/∆, i.e. p = n−r/∆ is a sharp threshold for the appearance of copies of H in H(r)(n, p).

Proof. Let X count the copies of H in H(r)(n, p) and for p ≤ n−r/∆ we have

P(X ≥ 1) ≤ E(X) ≤ n!n−re(H)/∆ = n!n−n = o(1).

Next we bound γ(H) as follows: ∆/r ≤ γ(H) ≤ ∆
r

(∆1/(r−1)+1)

(∆1/(r−1)−1)
. This is obtained from the

estimate eH(v) ≤ min{∆v/r,
(v
r

)

} by considering two cases whether v ≤ ∆1/(r−1) + 1 or not.
Let ε ∈ (0, 1) and notice that (1) is satisfied. It also holds that

n
(

(1 + ε)n−r/∆
)γ(H)

∆−4 ≥
(

(1 + ε)n1/γ(H)−r/∆∆−4r(1+o(1))/∆
)γ(H)

≥
(

(1 + ε)n−2r/(∆1+1/(r−1))(1 + o(1))
)γ(H)

→ ∞,

and therefore Theorem 1.1 is applicable and the statement follows. �

Thus Theorem 1.1 (Corollaries 3.1 and 3.2) states that under some technical conditions the
threshold for the appearance of the spanning structure comes from the expectation threshold
defined in the introduction. Further it should be noted that the appearance of 1-overlapping
Hamilton cycles and also perfect matchings and of general F -factors the structure in question
appears as soon as some local obstruction (isolated vertices, no vertices in some copy of a fixed
graph F ) disappears. Thus, there seem to be two types of behaviour that are responsible for
the threshold for the appearance of a bounded degree spanning structure.

In the following we derive asymptotically optimal thresholds for the appearance of various
spanning structures in H(r)(n, p) which are consequences of the Corollaries 3.1 and 3.2.

3.1. Hamilton Cycles. The following is a slightly weaker version of Dudek and Frieze [16].

Corollary 3.3. For all integers r > ℓ ≥ 2, (r − ℓ)|n and p = ω(nℓ−r) the random hypergraph
H(r)(n, p) is ℓ-hamiltonian a.a.s.
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Proof. Denote by C(r,ℓ) an ℓ-overlapping Hamilton cycle on n vertices. It is not difficult to see
that γ(C(r,ℓ)) = n

(r−ℓ)(n−2) . Indeed, let V ⊆ [n] be a set of size v < n. Then C(r,ℓ)[V ] is a

union of vertex-disjoint ℓ-overlapping paths, where an ℓ-overlapping path of length s consists of
s(r− ℓ) + ℓ ordered vertices and edges are consecutive segments intersecting in ℓ vertices. This

gives: e(C(r,ℓ)[V ]) ≤ (v−ℓ)/(r−ℓ) and from v−ℓ
(r−ℓ)(v−2) ≤ n

(r−ℓ)(n−2) we get γ(C
(r,ℓ)) = n

(r−ℓ)(n−2) .

Since e(C(r,ℓ)) > n/r, ∆(C(r,ℓ)) = ⌈ r
r−ℓ⌉ and n2(r−ℓ)/n → 1, Corollary 3.1 implies the state-

ment. �

3.2. Cube-hypergraphs. The r-uniform d-dimensional cube-hypergraph Q(r)(d) was studied
in [11] and its vertex set is V := [r]d and its hyperedges are r-sets of the vertex set V that all

differ in one coordinate. Thus, Q(r)(d) has rd vertices, drd−1 edges and is d-regular. In the case
r = 2 this is the usual definition of the (graph) hypercube. The following corollary is a direct
consequence of Corollary 3.2.

Corollary 3.4. For all integers r ≥ 2, ε > 0 and p = r−r + ε it holds P(Q(r)(d) ⊆ H(r)(rd, p))
tends to 1 as d tends to infinity. On the other hand, P(Q(r)(d) ⊆ H(r)(rd, r−r)) → 0 as d→ ∞.

We remark that, in the case r = 2, Riordan [37] proved even better dependence of ε on d,
and similar dependence can be shown for r > 2.

3.3. Lattices. Another example considered in [37] was the graph of the lattice Lk, whose vertex
set is [k]2 and two vertices are adjacent if their Euclidean distance is one. There it is shown

that p = n−1/2 is asymptotically the threshold. One can view Lk as the cubes Q(2)(2) (these

are cycles C4) glued ‘along’ the edges. We define the ℓ-overlapping hyperlattice L(r)(ℓ, k) as
the r-uniform hypergraph where we glue together (k − 1)2 copies of Q(r)(2) that overlap on ℓ

hyperedges accordingly. Thus, L(2)(1, k) is just the usual graph lattice Lk.

Corollary 3.5. Let r ≥ 2 and k be an integer. For p = ω
(

n−1/2
)

(where n = (k − 2 + r)2) the

random r-uniform hypergraph H(r)(n, p) contains a copy of L(r)(r − 1, k) a.a.s. Moreover, for

p = n−1/2, P(L(r)(r − 1, k) ⊆ H(r)(n, p)) → 0 as k (and thus n) tends to infinity.

Proof. Observe that L := L(r)(r − 1, k) has (k − 2 + r)2 vertices (which can be associated with
[k − 2 + r]2) and 2(k − 1)(k − 2 + r) edges.

We aim to show that eL(v) ≤ 2(v − r) for all v ≥ r + 1. We argue similarly as in [37].
Observe that eL(v) ≤ 2 for v = r + 1. Let now L′ be an arbitrary subhypergraph of L on
v + 1 ≤ (k − 2 + r)2 vertices such that e(L′) = eL(v + 1). It is easy to see that there is a
vertex of degree 2 in L′ (take (i, j) such that (i+ 1, j), (i, j + 1) 6∈ V (L′)). It follows that then
eL(v + 1) ≤ eL(v) + 2 for v > r + 1 giving eL(v) ≤ 2(v − r) for all v ≥ r + 1.

It follows that γ(L) ≤ 2 and applying Theorem 1.1 with npγ = ω(1) yields the first part.
Markov’s inequality yields the second part. �

3.4. Spheres. Let r ≥ 3 and let G be a planar graph on n vertices with a drawing all of whose
faces are cycles of length r. We define a sphere Sr

n as an r-uniform hypergraph all of whose edges
correspond to the faces of that particular drawing (note that a sphere is not unique). Observe
that we get from Euler’s formula for planar graphs the condition 2v(Sr

n)− 4 = (r − 2)e(Sr
n).

Corollary 3.6. Let r ≥ 3 and S be some sphere Sr
n with ∆ = ∆(Sr

n). Then for p =

ω
(

∆2r−4n−(r−2)/2
)

the random r-uniform hypergraph H(r)(n, p) contains a copy of S a.a.s.

Proof. From Euler’s formula it follows that eS(v) ≤ 2v−4
r−2 and therefore γ(S) = 2/(r− 2). Since

this is an upper bound for the number of r-edges in this induced hypergraph we immediately
get γ = 2/(r − 2). The statement follows now directly from Theorem 1.1. �
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3.5. Powers of (r−1)-overlapping Hamilton cycles. Consider an (r−1)-overlapping Hamil-

ton cycle C(r,r−1) with n vertices which are ordered cyclically. Given an integer i, we define
an i-th power C(r)(i) of C(r,r−1) to consist of all r-tuples e such that the maximum distance in
this cyclic ordering between any two vertices in e is at most r + i − 2. In the graph case, the
threshold for the appearance of C(2)(i) follows from Riordan’s result [37] for i ≥ 3 (see [32])
and in the case i = 2 an approximate threshold due to Kühn and Osthus [32] is known. If we

count the edges of C(r)(i) by their leftmost vertex we get e(C(r)(i)) = n
(r+i−2

r−1

)

.

Theorem 3.7. Let r ≥ 3 and i ≥ 2 be integers. Suppose that p = ω(n−1/(r+i−2
r−1 )), then the

random hypergraph H(r)(n, p) contains a.a.s. a copy of C(r)(i). This threshold is asymptotically
optimal.

Proof. One can argue similarly to Proposition 8.2 in [32] to show γ(C(r)(i)) ≤
(r+i−2

r−1

)

+

Or,i(1/n). The statement follows from Theorem 1.1. We omit the details. �

4. Proof of Theorem 1.2

4.1. Outline. Our proof follows a similar strategy as the one of Dellamonica, Kohayakawa,
Rödl and Ruciński [13] for universality in random graphs, but to verify good properties of a
random hypergraph necessary for embeddings we combine it with the recent approach of Ferber,
Nenadov and Peter [20] who studied random graphs as well.

We will embed any bounded degree hypergraph F ∈ F (r)(n,∆) into the random hypergraph
H = H(r) (n, p) with p = C(lnn/n)1/∆ in stages. For this we will partition most of the vertices
of F into 3-independent sets X1,. . . , Xt (this is achieved by coloring greedily the third power
of the shadow graph of F ) and the remaining vertices will form the set of linear size NF (Xt),
where the hypergraphs F [NF (x)] and the link of x in F look the same for all x ∈ Xt. The
random hypergraph H is then prepared as follows: the vertex set of H is partitioned into sets
V0, V1,. . . , Vt where “most” of the vertices lie in V0. The property that we use first is that one
can embed into H[V0] the induced hypergraph F [NF (Xt)] for any F ∈ F (r)(n,∆) so that the
restrictions on future images for ∪i∈[t]Xi still offer many choices. In later rounds, we embed
each Xi into available vertices from V0 ∪

⋃

j≤i Vj by Hall’s condition (Xis are 3-independent).
In order to verify Hall’s condition for small subsets of Xi the sets Vi will assist us in this.

4.2. Proof of Theorem 1.2. Let H = (V,E) be an r-uniform hypergraph. The link of v in H

is a subset of
(

V
r−1

)

consisting of all (r − 1)-sets of vertices which form an edge together with v

linkH(v) =

{

e′ ∈
(

V

r − 1

)

: e′ ∪ {v} ∈ E

}

.

For a hypergraph H and a vertex v we define its profile PH(v) in H as follows

PH(v) = (NH(v), E(H[NH (v)]), linkH(v))

and say that two profiles PH(v1) and PH(v2) are equivalent (PH(v1) ∼= PH(v2)) if there is an iso-
morphism ϕ that takesH[NH(v1)] toH[NH(v2)] and (NH(v1), linkH(v1)) to (NH(v1), linkH(v2)).
We call NH(v) the vertices of the profile.

Let P (r)(∆) be the set of all possible profiles (Z,E1, E2) that we encounter for any F ∈
∪n∈NF (r)(n,∆) (up to equivalence). Then any |Z| ≤ (r − 1)∆, (Z,E1) is an r-uniform hy-
pergraph with maximum degree ∆ − 1 and (Z,E2) is an (r − 1)-uniform hypergraph with at

most ∆ edges and without isolated vertices. It is not difficult to bound |P (r)(∆)| by a function
exponential is some polynomial in ∆, but since ∆ is a constant, all we will care about is that
|P (r)(∆)| is a constant as well that depends on ∆ only.

The following lemma prepares any F ∈ F (r)(n,∆) for future embedding into H(r)(n, p).

Lemma 4.1. Let r ≥ 2 and ∆ ≥ 1 be integers. Then for t = r3∆3, any ε ≤ |P (r)(∆)|−1(t−1)−1

and any F ∈ F (r)(n,∆) there exists a partition of V (F ) in X0∪· · ·∪Xt (where some Xis might
be empty) with the following conditions:
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(1) |Xt| = εn, X0 = NH(Xt),
(2) every x ∈ Xt has the same profile PF (x) (up to equivalence),
(3) and Xi is 3-independent for i = 1, . . . , t.

Proof. Let F ∈ F (r)(n,∆) be given and G be its shadow graph. The third power G3 of G
is the graph which we obtain by connecting any pair of vertices of distance at most 3 by an
edge. We estimate the maximum degree of G3 as follows: ∆(G3) ≤ (r − 1)3∆3. Clearly, G3

is (t − 1)-colorable and let Y1,. . . , Yt−1 be the color sets in some coloring of V (G3) such that
|Y1| ≤ |Y2| ≤ . . . ≤ |Yt−1|. The sets Yi are 3-independent in F as well because the shadow of a
path of length 3 in F contains a path of length 3 in G, which gives an edge in G3 in contradiction
to the coloring above.

We can choose a subset Xt ⊆ Yt−1 of size εn ≤ n|P (r)(∆)|−1(t − 1)−1 of vertices with the
same profile in F (up to equivalence). We set X0 := NF (Xt) and define Xi = Yi \ X0 for
i = 1, . . . , t− 2 and Xt−1 = Yt−1 \ (X0 ∪Xt). The partition V (F ) = X0 ∪ · · · ∪Xt satisfies the
required conditions.

�

Given a partition of V (F ) from the above lemma, it follows from properties (1)–(3) that F [X0]
is the disjoint union of εn copies of the same r-uniform hypergraph isomorphic to F [NF (x)] for
all x ∈ Xt. Furthermore, the third condition implies that any edge e ∈ E(H) intersects each Xi

in at most one vertex for i = 1,. . . , t.
Let H = (V,E) be an r-uniform hypergraph. Let L be a family of pairwise disjoint k-subsets

of
( V
r−1

)

and we write V (L) for ∪e∈L:L∈Le. For a subset W ⊆ V \ V (L) we define the auxiliary

bipartite graph B(H,L,W ) with the vertex classes L and W , where L ∈ L and w ∈ W form
an edge if and only if L ⊆ linkH(w). Roughly speaking, for every unembedded x ∈ V (F ) the
set L = Lx ∈ L will consist of the images of the already fully embedded (r − 1)-sets from the
linkF (x) and the following definition which resembles the one of good graphs from [20] provides

essential properties that will assist us while embedding F into H(r)(n, p).

Definition 4.2. We say that an r-uniform hypergraph H is (n, r, p, t, ε,∆)-good if there exists a
partition V (H) = V0∪V1∪· · ·∪Vt, where |Vi| = εn/(10t) for i = 1, . . . , t, and |V0| = (1−ε/10)n
that satisfies the following conditions:

(1) For any profile (Z,E1, E2) ∈ P (r)(∆) there exists a family F of εn vertex-disjoint copies
of the profile (Z,E1, E2) with vertices in V0 and edges E1 present in H. This family

induces a family F2 of pairwise disjoint copies of E2 in
( V0

r−1

)

. Furthermore, for any

W ⊆ V (H) \ V (F2) with |W | ≤ (p/2)−∆/2

|NB(H,F2,W )(W )| ≥ (p/2)∆|W |εn/4
holds.

(2) Let 1 ≤ k ≤ ∆ and L be any collection of disjoint k-subsets of
(V (H)

r−1

)

. If |L| ≤
(p/2)−k/2, then for any i = 1, . . . , t with V (L) ∩ Vi = ∅ we have

|NB(H,L,Vi)(L)| ≥ (p/2)k|L| |Vi|/4.
(3) Let 1 ≤ k ≤ ∆ and L be any collection of disjoint k-subsets of

(V (H)
r−1

)

. If |L| ≥
C ′(p/2)−k lnn, then for any W ⊆ V (H) \ V (L) with |W | ≥ C ′(p/2)−k lnn the graph
B(H,L,W ) has at least one edge, where C ′ = k(r − 1) + 2.

The following two lemmas establish the connection between H(r)(n, p), good hypergraphs and

F (r)(n,∆)-universality.

Lemma 4.3. For integers r ≥ 2, ∆ ≥ 1, t ≥ 1 and ε ≤ 1/(r∆), there exists a C > 0 such that

for p ≥ C (lnn/n)1/∆ the random hypergraph H(r)(n, p) is (n, r, p, t, ε,∆)-good a.a.s.

Lemma 4.4. For integers r ≥ 2, ∆ ≥ 1 and ε ≤ |P (r)(∆)|−1r−3∆−3, there exists a C > 0 such

that for p ≥ C (lnn/n)1/∆, every
(

n, r, p, r3∆3, ε,∆
)

-good hypergraph is F (r)(n,∆)-universal.
12



The proof of Theorem 1.2 follows immediately from Lemmas 4.3 and 4.4. Thus, it remains
to prove both lemmas.

We will make use of the following version of Chernoff’s inequality, see e.g. [23, Theorem 2.8].

Theorem 4.5 (Chernoff’s inequality). Let X be the sum of independent binomial random
variables, then for any δ ≥ 0

P[X ≤ (1− δ)E(X)] ≤ exp(−δ2E(X)/2).

For an r-uniform hypergraph F with v(F ) ≥ r, we define d(1)(F ) := e(F )
v(F )−1 and we also set

d(1)(F ) = 0 if v(F ) ≤ r − 1. Now we set m(1)(F ) := max
{

d(1)(F ′) : F ′ ⊆ F
}

. We will use the
following theorem that deals with almost spanning factors in random (hyper-)graphs.

Theorem 4.6. [Theorem 4.9 in [23]] For every r-uniform hypergraph F and every ε < 1/v(F )

there is a C > 0 such that for p ≥ Cn−1/m(1)(F ), the random hypergraph H(r)(n, p) contains εn
vertex-disjoint copies of F a.a.s.

Proof of Lemma 4.3. Let r, ∆, t and ε ≤ 1/(r∆) be given, furthermore we assume that p ≥
C (lnn/n)1/∆, where C is a sufficiently large constant that depends only on ε, r, ∆ and t. We
will not specify C explicitly but it will be clear from the context how it should be chosen.

We expose H(r)(n, p) in two rounds and write H(r)(n, p) = H(r)(n, p1) ∪ H(r)(n, p2), where
p1 = p2 ≥ p/2 sucht that (1 − p) = (1 − p1)(1 − p2). In the first round we will find the
familes F and in the second round we show that properties (1)-(3) of Definition 4.2 all hold
with probability 1− o(1). In the beginning we arbitrarily partition V into V0∪V1∪ · · ·∪Vt such
that |V0| = n− εn/10 and Vi = εn/(10t) for i = 1, . . . , t.

1st round. For a given profile (Z,E1, E2) ∈ P (r)(∆) we have that the maximum degree of

G = (Z,E1) is at most ∆ − 1. We estimate m(1)(G) ≤ maxs≥r
(∆−1)s
r(s−1) ≤ ∆ − 1. Theorem 4.6

implies that there exist εn vertex-disjoint copies of G in H(r)(n, p1) all of whose vertices are

contained inside V0 a.a.s. Indeed, we apply Theorem 4.6 to H(r)(|V0|, p) where |V0| ≥ (1 −
ε/10)n > (r − 1)∆εn + εn/10. We denote this family by F(Z,E1).

Since there are constantly many (at most |P (r)(∆)|) r-uniform hypergraphs G on at most
(r − 1)∆ vertices with maximum degree ∆ − 1, we will find simultaneously εn vertex-disjoint
copies of any such G a.a.s. within V0. Therefore, with a given profile (Z,E1, E2) ∈ P (r)(∆), we
associate a family F of εn vertex-disjoint copies (Y,E′, E′′) with (Y,E′) ∈ F(Z,E1) and such that

(Y,E′, E′′) ∼= (Z,E1, E2). This gives us a family F2 of the E′′s for such a profile, thus showing
the first part of the property (1) of Definition 4.2.

2nd round. From now on we work in H = H(r)(n, p2).

Fix some profile (Z,E1, E2) ∈ P (r)(∆) and the corresponding family F found in the first

round. The family F induces a family F2 of disjoint copies of E2 in
(

V0
r−1

)

. Let W be a subset

of V (H) \ V (F2) with |W | ≤ (p/2)−∆/2. For every L ∈ F2 let XL be the random variable
with XL = 1 if and only if L ⊆ linkH(w) for some w ∈ W . This gives us |NB(H,F2,W )(W )| =
∑

L∈F2
XL. The XL are independent and since P[xL ∈ E(B(H,F2,W ))] ≥ (p/2)∆, we compute

P[XL = 0] ≤ (1− (p/2)∆)|W | ≤ 1− |W |(p/2)∆ + |W |2(p/2)2∆ ≤ 1− |W |(p/2)∆/2.
From this we obtain

E





∑

L∈F2

XL



 ≥ (p/2)∆|W ||F2|/2
|F2|=εn

≥ ε(C/2)∆|W |(lnn)/2

and using Chernoff’s inequality with δ = 1/2 we get

P





∑

L∈F2

XL < (p/2)∆|W | |F2|/4



 ≤ exp(−ε(C/2)∆|W |(lnn)/16) = n−ε(C/2)∆|W |/16. (12)

13



Since there are at most ns choices for a set W of size s we can bound, for C large enough, the
probability that there is a set W violating property (1) for F2 by o(1).

The number of different profiles in P (r)(∆) depends only on ∆ and thus also the number
of F2s. Thus taking the union bound over the probability that there is a set W violating our
condition for some family F2 is still o(1). This verifies property (1) of Definition 4.2.

To verify properties (2) and (3) of Definition 4.2, we use the edges of H(r)(n, p2). Let k ∈ [∆],

L be a collection of disjoint k-subsets of
( V
r−1

)

with |L| ≤ (p/2)−k/2 and i ∈ [t] such that

V (L) ∩ Vi = ∅. For v ∈ Vi, let Xv be the random variable with Xv = 1 if and only if
L ⊆ linkH(v) for some L ∈ L. Thus |NB(H,L,Vi))(L)| =

∑

v∈Vi
Xv. As above we obtain

P[Xv = 0] ≤
(

1− (p/2)k
)|L|

≤ 1− |L|(p/2)k + |L|2(p/2)2k ≤ 1− |L|(p/2)k/2.

We have

E





∑

v∈Vi

Xv



 ≥ (p/2)k|L||Vi|/2
|Vi|= εn

10t≥ ε(C/2)k |L|(ln n)/(20t)

and from Chernoff’s inequality with δ = 1/2 we get

P





∑

v∈Vi

Xv ≤ (p/2)k|L||Vi|/2



 ≤ exp(−(p/2)k|L||Vi|/16) ≤ n−ε(C/2)k |L|/(320t).

There are less than n(r−1)k|L| possibilities to choose L. Therefore, for C large enough, the
probability that there exists k ∈ [∆] and sets L and Vi that violate property (2) of Definition 4.2
is o(1).

Finally, we verify that property (3) holds a.a.s. in H. For this we set ℓ = C ′(p/2)−k lnn and
let k ∈ [∆]. It suffices to consider only sets L and W ⊆ V \ V (L) each of size ℓ. For two such
sets L and W the probability that an edge in B(H,L,W ) is present equals (p/2)k and therefore

the probability that there are no edges is (1− (p/2)k)ℓ
2 ≤ exp(−ℓ2(p/2)k).

There are less than n(r−1)kℓ choices for L and less than nℓ choices for W . Thus we can bound
the probability that there are sets L and W of size ℓ violating property (3) by

exp[((r − 1)kℓ+ ℓ) ln n− ℓ2(p/2)k] = exp[((r − 1)k + 1− C ′)ℓ lnn] = o(1).

�

Proof of Lemma 4.4. Let r, ∆, ε ≤ |P (r)(∆)|−1r−3∆−3 be given and let C4.3 be a constant
as asserted by Lemma 4.3 on input r, ∆, t := r3∆3 and ε. Furthermore we assume that

p ≥ C (lnn/n)1/∆, where C is a sufficiently large constant that depends only on ε, r, ∆ and
C4.3. We will not specify C explicitly but it will be clear from the context how it should be
chosen.

Let H be an (n, r, p, t, ε,∆)-good hypergraph and fix the partition V0∪V1∪· · ·∪Vt of V (G) as

specified by Definition 4.2. Fix any F ∈ F (r)(n,∆) and apply Lemma 4.1 with r, ∆, t = r3∆3

and ε to obtain a partition of V (F ) in X0∪· · ·∪Xt with the properties (1)–(3) from Lemma 4.1.
An embedding of F into G is an injective map φ : V (F ) → V (H), where edges are mapped

onto edges. We start with constructing an embedding φ0 that X0 maps into V0 ⊂ V (H). From
Lemma 4.1, property (2), we know that every x ∈ Xt has the same profile in F . Therefore,
let (Z,E1, E2) be the profile of any x ∈ Xt. By Definition 4.2, property (1), there is a family
F of copies of (Z,E1, E2) with vertices in V0. Since F [X0] is the disjoint union of εn copies of
(Z,E1) we can construct φ0 by mapping bijectively every copy (NF (x), F [NF (x)], linkF (x)) to
one member (Y,E′, E′′) of F . This is for sure a valid embedding of F [X0] into H.

Now we construct φi from φi−1 for i = 1, . . . , t by embedding Xi such that φi

(

F [∪i
j=0Xj ]

)

⊆
H. The available vertices for this step are V ∗

i = (V0∪ · · · ∪Vi) \ Im(φi−1). For x ∈ Xi we collect
14



the images of the already fully embedded (r − 1)-sets from the linkF (x) in

L(x) :=

{

φi−1(e) : e ∈ linkF (x) ∩
(⋃i−1

j=0Xj

r − 1

)

}

.

Since Xi is 3-independent we have L(x1) ∩ L(x2) = ∅ for x1, x2 ∈ Xi and we set Li = {L(x) :
x ∈ Xi} is a collection of vertex-disjoint sets in

(

V (H)
r−1

)

. A possible image for x ∈ Xi is any

v ∈ V ∗
i , for which L(x) ⊆ linkH(v). It remains to find an Li-matching in Bi = B(H,Li, V

∗
i )

since then we set φi(x) := v for every edge vL(x) in this matching and, since any edge e ∈ E(F )

intersects Xi in at most one vertex, we obtain φi

(

F [∪i
j=0Xj ]

)

⊆ H.

To guarantee an Li-matching in Bi we will verify Hall’s condition. Let U ⊆ Li and one needs
to show that |NBi(U)| ≥ |U | holds. We assume ∅ 6∈ U , because otherwise NBi(U) = V ∗

i and
|V ∗

i | ≥ |Li|.
First we verify Hall’s condition for all sets U with |U | ≤ |V ∗

i | − εn/10. Notice that there
exists a k ∈ [∆] and a subset U ′ of size at least |U |/∆ and |L| = k for every L ∈ U ′. If
|U ′| ≤ (p/2)−k/2, then by property (2) of Definition 4.2 we have for C large enough

|NBi(U)| ≥ |NBi(U
′)| ≥ (p/2)k|U ′||Vi|/4 ≥ ε(C/2)k|U |(ln n)/(40t∆) ≥ |U |.

If (p/2)−k/2 < |U ′| < C ′(p/2)−k lnn, then we take any subset U ′′ of size (p/2)−k/2 and use
again property (2) of Definition 4.2 to obtain for C large enough

|NBi(U)| ≥ |NBi(U
′′)| ≥ (p/2)k|U ′′||Vi|/4 ≥ ε(C/2)k |U |/(20C ′t∆) ≥ |U |.

If |U ′| > C ′(p/2)−k lnn, then |U | > C ′(p/2)−k lnn and there are no edges between U and
V ∗
i \NBi(U) in Bi. Therefore, property (3) of Definition 4.2 yields for C large enough

|V ∗
i \NBi(U)| < C ′(p/2)−k lnn ≤ C ′(C/2)−k(n/ ln n)k/∆ lnn ≤ εn/10,

and thus |NBi(U
′)| > |V ∗

i | − εn/10 which verifies Hall’s condition in Bi for |U | ≤ |V ∗
i | − εn.

For i = 1, . . . , t− 1 it follows from |⋃t
i=1 Vi| = εn/10 and |Xt| = εn, that

|V ∗
i | − |Xi| ≥ (n− | Imφi−1| − εn/10) − (n− | Imφi−1| − εn) ≥ 9/10εn

and therefore |Li| = |Xi| ≤ |V ∗
i | − εn/10.

Therefore we find Li-matchings in Bi for i ∈ [t − 1] one after each other extending at each
step our embedding.

In the last step, we have |V ∗
t | = |Xt| = εn and, by the partitioning of V (F ) withX0 = NF (Xt)

we have Lt = F2, where F2 is the family guaranteed by property (1) of Definition 4.2. Since we
already saw that |NBt(U)| ≥ |U | for all U ⊆ Lt with |U | ≤ |Lt|−εn/10 in Bt = B(H,Lt, V

∗
t ), it

suffices to verify |NBt(W )| ≥ |W | for all W ⊆ V ∗
i with |W | ≤ εn/10. If |W | > (p/2)−∆/2 then

we take an arbitrary subset W ′ ⊆W of size exactly (p/2)−∆/2 and otherwise we set W ′ :=W .
By property (1) of Definition 4.2, we have

|NBt(W
′)| ≥ (p/2)∆|W ′|εn/4,

which is at least εn/8 > εn/10 ≥ |W | if W ′ ( W and is at least ε(C/2)∆(lnn)|W ′|/4 > |W | if
W =W ′. Therefore, NBt(U) ≥ |U | for all |U | ≥ |Lt|−εn/10 as well and there exists a (perfect)
Lt-matching in Bt that allows us to finish embedding F into H. �

In the proof of Theorem 1.2 we only considered the case of constant ∆. Similarly to the
arguments in [20] this can be extended to the range when ∆ is some function of n but then this
would affect the lower bound on the probability p. Furthermore, the proof yields a randomized
polynomial time algorithm that on input H(r)(n, p) embeds a.a.s. any given F ∈ F (r)(n,∆) into
H(r)(n, p). All steps of the proof can be performed in polynomial time and the only place where

we need to use additional random bits is to split H(r)(n, p) into H(r)(n, p1) ∪ H(r)(n, p2) and
this can be done similarly as was done in [1].
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5. Sparse universal hypergraphs

First we observe that any F (r)(n,∆)-universal r-uniform hypergraph must possess Ω(nr−r/∆)
edges. Indeed, it follows e.g. from a result of Dudek, Frieze, Ruciński and Šileikis [17] that for
any ∆ ≥ 1 and r ≥ 3 the number of labelled r-uniform ∆-regular hypergraphs on n vertices

(whenever r|n∆) is Θ
(

(∆n)!

(∆n/r)!(r!)∆n/r(∆!)n

)

. Thus, the number of non-isomorphic r-uniform ∆-

regular hypergraphs on n vertices is Ω
(

(∆n)!

(∆n/r)!(r!)∆n/r(∆!)nn!

)

and a similar bound holds for the

cardinality of F (r)(n,∆). On the other hand an r-uniform hypergraph with m edges contains

exactly
( m
n∆/r

)

hypergraphs with n∆/r edges. Thus, it holds
( m
n∆/r

)

= Ω
(

(∆n)!

(∆n/r)!(r!)∆n/r(∆!)nn!

)

and solving for m yields m = Ω
(

nr−r/∆
)

.

The random hypergraph H(r)(n, p) with p = C(lnn/n)1/∆ is F (r)(n,∆)-universal (by Theo-

rem 1.2) and has Θ(nr−1/∆(ln n)1/∆) edges and thus the exponent in the density of H(r)(n, p) is

off by roughly a factor of r from the lower bound Ω
(

n−r/∆
)

on the density for any F (r)(n,∆)-

universal hypergraph. In the following we show how one can construct sparser F (r)(n,∆)-
universal r-uniform hypergraphs out of the universal graphs from [4, 5].

For a given graph G we define the r-uniform hypergraph Hr(G) on the vertex set V (G) and

E(Hr(G)) = {f ∈
(

V (G)
r

)

: ∃ e ∈ E(G) with e ⊆ f}. Given a hypergraph H and a graph G, we
say that G hits H if for all f ∈ E(H) there is an e ∈ E(G) with e ⊆ f . We define σ(H) to be
the smallest maximum degree ∆(G) over all graphs G that hit H.

Lemma 5.1. For F ∈ F (r)(n,∆) we have σ(F ) ≤ ∆.

Proof. Suppose there is an F ∈ F (r)(n,∆) with σ(F ) > ∆ and let G be an edge-minimal graph
that hits H and with ∆(G) = σ(H) > ∆. Take a vertex v of degree at least ∆ + 1 in G. If we
delete any edge e ∈ E(G) that is incident to v there will be a hyperedge f ∈ E(F ) with e ⊆ f
so that f does not contain any edge from E(G) \{e}, by the edge-minimality of G. Thus, every
edge e ∈ E(G) incident to v corresponds to a different hyperedge f in E(F ) with e ⊆ f . Since
deg(v) ≥ ∆+1 there must be at least ∆+1 hyperedges in F incident to v, a contradiction. �

Lemma 5.2. Let r ≥ 3 and ∆ ≥ 1 be integers and G be a F (2)(n,∆)-universal graph. Then
Hr(G) is universal for the family of r-uniform hypergraphs F with σ(F ) ≤ ∆.

Proof. Let F be an r-uniform hypergraph with σ(F ) ≤ ∆ and n vertices. By definition of σ(F )

there exists a graph G′ with n vertices that hits F and G′ ∈ F (2)(n,∆), and thus G′ can be
embedded into G. Since G′ hits H, the hypergraph Hr(G) is defined in such a way that any
embedding of G′ into G is an embedding of F into Hr(G). �

Lemmas 5.1 and 5.2 together imply Proposition 1.3 that yields constructions of sparse
F (r)(n,∆)-universal hypergraphs based on universal graphs from [4, 5].

Next we turn to yet another possibility to construct F (r)(n,∆)-universal hypergraphs out of
universal graphs. For a given graph G we define an r-uniform hypergraph Kr(G) on the vertex
set V (G) with hyperedges being the vertex sets of the copies of Kr in G.

Lemma 5.3. Let ∆ ≥ 1 and r ≥ 3 be integers. If G is a F (2)(n, (r− 1)∆)-universal graph then
Kr(G) is an F (r)(n,∆)-universal hypergraph. In particular, Kr(G) has at most e(G)∆(G)r−2

edges.

Proof. We notice first that the shadow graph F ′ of any F ∈ F (r)(n,∆) has n vertices and

maximum degree at most (r − 1)∆, thus F ′ ∈ F (2)(n, (r − 1)∆). Let ϕ be an embedding of F ′

into G. But then, by definition of Kr(G), ϕ is also an embedding of F into Kr(G).
Furthermore, we can extend any edge of G to a clique in at most ∆(G)r−2 many ways.

Therefore, e (Kr(G)) ≤ e(G)∆(G)r−2. �

The universal graphs constructed in [4, 5] have m edges and maximum degree O(m/n).

This yields by Proposition 1.4 constructions of F (r)(n,∆)-universal hypergraphs which are
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just some polylog factors away from the constructions obtained by applying Proposition 1.3.
However, if we take an appropriate random graph G = G(n, p) then we get a better bound than
e(G)∆(G)r−2 on the cliques Kr which leads to even sparser universal hypergraphs for r ≥ 4.

Proof of Proposition 1.4. To obtain the first part of the statement, we take G to be the random
graph G(n, p) with p = C(lnn/n)1/((r−1)∆). By the result of Dellamonica, Kohayakawa, Rödl

and Ruciński [13], G is F (2)(n, (r − 1)∆)-universal a.a.s. Moreover, it is well known that the

threshold for the appearance of Kr in the random graph is n−2/(r−1) and that the number

of cliques Kr in G(n, p) for p ≫ n−2/(r−1) is Θ(nrp(
r
2)) a.a.s. Thus, the number of edges in

H1 := Kr(G) is therefore Θ(nrp(
r
2)) = Θ

(

nr−
r

2∆ (lnn)
r

2∆

)

. Now Lemma 5.3 implies that H1 is

F (r)(n,∆)-universal.
As for the second part, so let ε > 0 and we take G to be the random graph G((1 + ε)n, p)

with p = ω(n−1/((r−1)∆−1) ln5 n). By the result of Conlon, Ferber, Nenadov and Škorić [12],

G is F (2)(n, (r − 1)∆)-universal a.a.s. We also get that G has Θ(nrp(
r
2)) many cliques Kr

a.a.s. This yields an F (r)(n,∆)-universal hypergraph H2 := Kr(G) with (1 + ε)n vertices and

ω

(

n
r− (r2)

(r−1)∆−1 (ln n)5(
r
2)

)

edges.

�

6. Concluding remarks

We believe that it is possible to further reduce the number of edges towards the lower bound
Ω(nr−r/∆) by adjusting the constructions in [4, 5, 7] to hypergraphs. In particular, in view
of Lemma 5.2 it would be interesting to know whether it is true that σ(F ) ≤ ⌈2∆/r⌉ for all

F ∈ F (r)(n,∆), which would lead to almost optimal universal r-uniform hypergraphs for all

r ≥ 3. For F ∈ F (r)(n,∆) it is easy to obtain a hitting graph G with at most n∆/r edges and
thus of average degree at most 2∆/r, but the maximum degree could be (r − 1)∆ and it is not
clear how to reduce this below ∆. One way it could be done is by applying Lovász local lemma
but it doesn’t seem to get us near ⌈2∆/r⌉. We leave it to future work.

The bound on p = Ω
(

(lnn/n)1/∆
)

in Theorem 1.2 is presumably not optimal and it comes

from the fact that any ∆-set of
( [n]
r−1

)

is expected to lie in roughly p∆n = Ω(lnn) many edges

(a.a.s. by Chernoff’s inequality) and thus, some reasonable natural embedding should always

succeed. As for the lower bound, so if
(t−1
r−1

)

≤ ∆ and t divides n, then by a theorem of Johansson,

Kahn and Vu [25], the factor of K
(r)
t (which is a collection of n/t vertex-disjoint copies of K

(r)
t )

is a member of F (r)(n,∆). Since the threshold probability [25] for the appearance of such factor

is Θ
(

(lnn)1/(
t
r)n−(t−1)/(tr)

)

and in view of n−(t−1)/(tr) < n−1/(t−1
r−1), the best lower bound on p

we are aware of is Ω
(

(ln n)1/(
t
r)n−(t−1)/(tr)

)

.

As already mentioned in the introduction, Ferber, Nenadov and Peter studied in [20] univer-
sality of G(n, p) for the class of graphs F on n vertices with maximum degree at most ∆ and the
maximal density d. They showed that the random graph G(n, p) with p = ω(∆12n−1/(2d) ln3 n)
is universal for this family. The recent almost spanning result of Conlon, Ferber, Nenadov and
Škorić [12] builds on [20]. We believe that similar improvements can be obtained for random
r-uniform hypergraphs (r ≥ 3).
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[12] D. Conlon, A. Ferber, R. Nenadov, and N. Škorić, Almost-spanning universality in random graphs, arXiv

preprint arXiv:1503.05612 (2015).
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[17] A. Dudek, A. Frieze, A. Ruciński, and M. Šileikis, Approximate counting of regular hypergraphs, Information

Processing Letters 113 (2013), no. 19, 785–788.
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Appendix

The only difference in the proofs of Lemmas below to their graph counterparts in [37] is that
we work with the shadow graph of a hypergraph.

Sketch of the proof of Lemma 2.4. This lemma is a straightforward adaptation of Lemma 4.4
from [37]. Let YF (H) be the number of labelled copies of F in H. One observes that then

YF (H)/YF (K
(r)
n ) = XF (H)/XF (K

(r)
n ) holds. Since YF (K

(r)
n ) = n!, one needs to estimate

YF (H). We will embed first exactly one vertex from each of the kr(F ) nontrivial components.
This can be done in (n)kr(F ) ways. Next we can embed (r − 1) vertices of each component
by embedding one particular edge. This can be done in at most ∆(r − 1)! ways into H. This

gives at most (∆(r − 1)!)kr(F ) possibilities in total. Finally, all the remaining r(F ) − kr(F )

vertices from the nontrivial components can be embedded in at most ((r − 1)∆)r(F )−kr(F )

ways. The isolated vertices can be embedded in at most k1(F )! ways. We estimate YF (H) ≤
(n)kr(F ) (∆(r − 1)!)kr(F ) ((r − 1)∆)r(F )−kr(F )k1(F )!. We obtain:

YF (H)

YF (K
(r)
n )

≤
(n)kr(F ) (∆(r − 1)!)kr(F ) ((r − 1)∆)r(F )−kr(F )k1(F )!

n!
≤

(2(r − 1)!∆)r(F ) er(F )+(r−2)kr(F )

nr(F )+(r−2)kr(F )
.

�

Sketch of the proof of Lemma 2.5. The proof is similar to the proof of Lemma 4.5 [37]. One
rewrites T ′′

H by going over all good connected hypergraphs F on s vertices (then r(F ) = s−(r−1)
and kr(F ) = 1) and upper bounds the sum as follows:

T ′′
H ≤

n
∑

s=r+1

(4(r − 1)!∆)s−r+1 es−1

ns−1

∑

V

eH(s)
∑

m=0

(

eH(s)

m

)

(p−1 − 1)m

≤ er−2
n
∑

s=r+1

(12r!∆)s−r+1

ns−1

∑

V

p−eH(s),

where the second sum is over all s-element sets V such that H[V ] is connected.
We consider the shadow graph H ′ of H[V ]. Now every V ⊆ [n] as above also induces a

subgraph in H ′ which is connected and therefore contains a spanning tree. We can estimate the
number of V s by estimating the number of labelled trees in H ′ on s vertices and then unlabelling
these.

Given a labelled tree G on s vertices there are at most n(∆(r − 1)!)(∆(r − 1))s−r ways of
mapping it into H ′: n accounts for the first vertex of G, then (in H) we can choose next (r− 1)
vertices at once in ∆(r− 1)! ways, and finally every remaining vertex in at most ∆(r− 1) ways
since ∆(H ′) ≤ ∆(r − 1). We get at most n(∆(r − 1)!)(∆(r − 1))s−rss−2 trees and unlabelling
gives us at most

n(∆(r − 1)!)(∆(r − 1))s−rss−2/s! ≤ n(∆r!)s−r+1es

sets V . This implies

T ′′
H ≤ ne2r

n
∑

s=r+1

(

12r!2∆2

n

)s−1

p−eH(s).

�
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