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HOW DOES THE CORE SIT INSIDE THE MANTLE?

AMIN COJA-OGHLAN∗, OLIVER COOLEY∗∗, MIHYUN KANG ∗∗ AND KATHRIN SKUBCH

ABSTRACT. Thek-core, defined as the largest subgraph of minimum degreek, of the random graphG(n, p) has been
studied extensively. In a landmark paper Pittel, Wormald and Spencer [Journal of Combinatorial Theory, Series B67 (1996)
111–151] determined the thresholddk for the appearance of an extensivek-core. Here we derive a multi-type branching
process that describes precisely how thek-core is “embedded” into the random graph for anyk ≥ 3 and any fixed average
degreed = np > dk . This generalises prior results on, e.g., the internal structure of thek-core.

Mathematics Subject Classification:05C80 (primary), 05C15 (secondary)

1. INTRODUCTION

Let G = G(n, d/n) denote the random graph on the vertex set[n] = {1, . . . , n} in which any two vertices are
connected with probabilityp = d

n
independently. Throughout the paper we letd > 0 be a number that remains fixed

asn → ∞. The random graphG enjoys a property with high probability (‘w.h.p.’) if its probability tends to1 as
n→ ∞.

1.1. Background and motivation. The“giant component” has remained a guiding theme in the theory of random
graphs ever since the seminal paper of Erdős and Rényi [9].By now, there exists an impressive body of work on
its birth, size, avoidance, central and local limits as wellas its large deviations (among other things), derived via
combinatorial, probabilistic and analytic methods [4, 14]. A key observation in this line of work is that the emergence
of the giant component is analogous to the survival of a Galton-Watson branching process [15]. This is important not
only because this observation leads to a beautiful proof of the original result of Erdős and Rényi, but also because
the branching process analogy crystallises the interplay of the local and the global structure of the random graph.
Indeed, the notion that the Galton-Watson tree is the limiting object of the “local structure” of the random graph can
be formalised neatly in the language of “local weak convergence” [2, 3, 5].

Because for anyk ≥ 3 thek-core, defined as the (unique) maximal subgraph of minimum degreek, is identical
to the largestk-connected subgraph of the random graph w.h.p. [17, 18], thek-core is perhaps the most natural
generalisation of the “giant component”. As a consequence,thek-core problem has attracted a great deal of attention.
Pittel, Wormald and Spencer [22] were the first to determine the precise thresholddk beyond which thek-core is
non-empty w.h.p. Indeed, they obtained a formula for its asymptotic size. Specifically, denote byCk(G) thek-core
of a graphG. Then for anyk ≥ 3 there is a functionψk : (0,∞) → [0, 1] such that for anyd ∈ (0,∞) \ {dk} the
sequence(n−1|Ck(G)|)n converges toψk(d) in probability. The functionψk is identical to0 for d < dk, continuous,
strictly increasing and strictly positive ford > dk but, remarkably, discontinuous at the pointdk: the moment the
k-core emerges, it is of linear size [17, 18]. The proof in [22]is based on a careful study of a “peeling process” that
repeatedly removes vertices of degree less thank from the random graph. However, Pittel, Wormald and Spencer
pointed out that a simple “branching process” heuristic predicts the correct threshold and the correct size of thek-core,
and this argument has subsequently been turned into an alternative proof of their result [20, 23].

The aim of the present paper is to enhance this branching process perspective of thek-core problem to characterise
how thek-core “embeds” into the random graph. More specifically, we are concerned with the following question.
Fix k ≥ 3, d > dk and lets > 0 be an integer. Generate a random graphG and colour each vertex that belongs to
thek-core black and all other vertices white. Now, pick a vertexv uniformly at random. What is the distribution of
thecolouredsubgraph induced on the set of all vertices at distance at most s from v? Of course,without the colours
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the standard branching process analogy yields convergenceto the “usual” Galton-Watson tree withPo(d) offspring.
The point of the present paper is to exhibit a multi-type branching process that yields the limiting distribution of the
colouredsubgraph. In particular, this process describes exactly how we walk into and out of thek-core while exploring
the random graph fromv.

This is challenging because the distribution of the interconnections between thek-core and the “mantle” (i.e., the
vertices outside the core) is intricate. For instance, suppose that for each vertexv we are given the numberd∗(v) of
neighbours thatv has inside the core ofG and the numberd∗(v) of neighbours thatv has in the mantle. Then the core
is simply equal to the setS of all verticesv such thatd∗(v) ≥ k. But if, conversely, we sample a graphG′ randomly
subject to the condition that every vertexv hasd∗(v) neighbours inS andd∗(v) neighbours outside ofS, then w.h.p.
the core ofG′ will notbe identical toS. In fact, thek-core ofG′ is a proper superset ofS w.h.p. One reason for this
is that w.h.p. there will beΩ(n) verticesv 6∈ S such thatd∗(v) = k − 1 andd∗(v) ≥ 1. Consequently, w.h.p. there
will be two such verticesv, v′ that are adjacent inG′ and that therefore belong to itsk-core.

1.2. Results. Recall that a (possibly infinite) graph islocally finiteif all vertices have finite degree. By arooted graph
we mean a connected locally finite graphG on a countable vertex set together with a distinguished vertexv0 ∈ V (G),
theroot. If X is a finite set, then arootedX -marked graphis a rooted graphG together with a mapσ : V (G) → X .
Two rootedX -marked graphs(G, v0, σ), (G′, v′0, σ

′) are isomorphicif there is an isomorphismπ : G → G′ of the
graphsG,G′ such thatπ(v0) = v′0 andσ = σ′ ◦ π. Let [G, v0, σ] denote the isomorphism class of(G, v0, σ) and let
GX be the set of all isomorphism classes of rootedX -marked graphs. Further, fors ≥ 0 let ∂s[G, v0, σ] signify the
isomorphism class of the (finite) rootedX -marked graph obtained by deleting all vertices at a distance greater thans
from v. We sometimes omit the argumentsv0 andσ when they are clear from the context.

If G is a graph andk ≥ 3 is an integer, thenσk,G : V (G) → {0, 1}, v 7→ 1 {v ∈ Ck(G)} indicates membership
of the k-core. Further, for a vertexv of G we letGv denote the component ofv. Then(Gv, v, σk,Gv

) is a rooted
{0, 1}-marked graph whose marks indicate membership of thek-core of the componentGv. Our aim is to determine
the distribution of{∂s[G, v, σk,Gv

] : v ∈ V (G)}.
To this end, we construct a multi-type branching process that generates a (possibly infinite) rooted{0, 1}-marked

tree. As we saw in Section 1, the connections between the mantle and thek-core are subject to non-trivial correlations.
Therefore, it might seem remarkable that there even exists abranching process that captures the local structure ofG

marked according toσk,G. The solution is that the branching process actually possesses more than two types. Indeed,
there are five different vertex types, denoted by(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1). To simplify the notation,
we will often write000 instead of(0, 0, 0), and similarly for all other types. The mark of every vertex will simply be
the first “bit” of its type. In other words, the{0, 1}-marked random tree that we create is actually the projection of an
enhanced tree that contains the necessary information to accommodate the relevant correlations.

Apart fromd, k, the5-type branching procesŝT(d, k, p) has a further parameterp ∈ [0, 1]. Setting

q = q(d, k, p) := P [Po(dp) = k − 1|Po(dp) ≥ k − 1] , (1.1)

we define

p000 := 1− p, p010 := pq, p110 := p(1− q).

The process starts with a single vertexv0, whose type is chosen from{000, 010, 110} according to the distribution
(p000, p010, p110). Subsequently, each vertex of typez1z2z3 ∈ {000, 001, 010, 110, 111} spawns a random number
of vertices of each type. The offspring distributions are defined by the generating functionsgz1z2z2(x) detailed in
Figure 1, wherex = (x000, x001, x010, x110, x111) and

q̄ = q̄(d, k, p) := P [Po(dp) = k − 2|Po(dp) ≤ k − 2] .

Thus, for an integer vectory = (y000, y001, y010, y110, y111) the probability that a vertex of typez1z2z3 generates
offspringy equals the coefficient of the monomialxy000

000 · · ·xy111

111 in gz1z2z3(x).
Finally, we turn the resulting5-type random tree into a{0, 1}-marked tree rooted atv0 by giving mark0 to all

vertices of type000, 001 or010, and mark1 to vertices of type110 or111. LetT(d, k, p) signify the resulting (possibly
infinite) random rooted{0, 1}-marked tree, i.e.T(d, k, p) is a2-type projection of the5-type procesŝT(d, k, p).

Theorem 1.1. Assume thatk ≥ 3 andd > dk. Let s ≥ 0 be an integer and letτ be a rooted{0, 1}-marked tree.
Moreover, letp∗ be the largest fixed point of

φd,k : [0, 1] → [0, 1], p 7→ P [Po(dp) ≥ k − 1] . (1.2)
2



g000(x) = exp(d(1− p)x000)

∑

k−2

h=0
(dp)h(qx010 + (1− q)x110)

h/h!
∑

k−2

h=0
(dp)h/h!

,

g001(x) = q̄
(

exp(d(1− p)x001) (qx010 + (1− q)x110)
k−2

)

+ (1− q̄)

(

exp(d(1− p)x000)

∑

k−3

h=0
(dp)h(qx010 + (1− q)x110)

h/h!
∑

k−3

h=0
(dp)h/h!

)

,

g010(x) = exp(d(1− p)x001) (qx010 + (1− q)x110)
k−1 ,

g110(x) = exp(d(1− p)x001)

∑

h≥k
(dpx111)

h/h!
∑

h≥k
(dp)h/h!

,

g111(x) = exp(d(1− p)x001)

∑

h≥k−1
(dpx111)

h/h!
∑

h≥k−1
(dp)h/h!

.

FIGURE 1. The generating functionsgz1z2z3(x).

Then
1

n

∑

v∈V (G)

1 {∂s[G, v, σk,Gv
] = ∂s[τ ]}

converges toP [∂s[T(d, k, p∗)] = ∂s[τ ]] in probability.

In words, Theorem 1.1 states that w.h.p. the fraction of verticesv whose depth-s neighbourhood inG marked accord-
ing to Ck(G) is isomorphic toτ is asymptotically equal to the probability that the random marked treeT(d, k, p∗)
truncated afters generations is isomorphic toτ . The proof of Theorem 1.1 will reveal the origin of the generating func-
tions from Figure 1. They derive from a systematic understanding of the correlations that determine the connections
between the mantle and the core.

Theorem 1.1 can be cast elegantly in the framework of local weak convergence; the concrete formulation that we
use resembles that employed in [5]. More specifically, we endow the spaceGX of isomorphism classes of rooted
X -marked graphs with the coarsest topology that makes all themaps

χΓ,s : GX → {0, 1} , Γ′ 7→ 1 {∂sΓ = ∂sΓ′} (Γ ∈ GX , s ≥ 0) (1.3)

continuous. LetP(GX ) denote the space of probability measures onGX equipped with the weak topology. ForΓ ∈ GX

let δΓ ∈ P(GX ) signify the Dirac measure onΓ. Further, letP2(GX ) be the space of probability measures onP(GX ),
also with the weak topology. Forλ ∈ P(GX ) let δλ ∈ P2(GX ) be the Dirac measure onλ. Then any graphG gives
rise to a measure

λk,G :=
1

|V (G)|

∑

v∈V (G)

δ[Gv,v,σk,Gv ]
∈ P(G{0,1}),

which is simply the empirical distribution of “marked neighbourhoods” of the verticesv ∈ V (G). Hence,

Λd,k,n := EG[δλk,G
] ∈ P2(G{0,1}) (1.4)

captures the distribution of the “marked neighbourhoods” of the random graphG. Additionally, letL[T(d, k, p)] ∈
P(G{0,1}) denote the distribution of the isomorphism class of the random treeT(d, k, p). Finally, let

ϑd,k,p = L[T(d, k, p)] ∈ P(G{0,1}).

Theorem 1.2. Assume thatk ≥ 3 andd > dk and letp∗ be the largest fixed point of the functionφd,k from (1.2).
Thenlimn→∞ Λd,k,n = δϑd,k,p∗

.

We shall derive Theorem 1.1 from Theorem 1.2. Conversely, itis not difficult to see that Theorem 1.1 implies Theo-
rem 1.2.
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1.3. Related work. The2-core exhibits qualitatively different behaviour to thek-core fork ≥ 3. For instance, the
2-core is non-empty with a non-vanishing probability for anyd > 0. Moreover, it is of sizeΩ(n) for anyd > 1 w.h.p.
Thus, the “giant2-core” emerges alongside (in fact mostly inside) the giant component. While we omit a detailed
discussion of the literature on the2-core (some of the references can be found in [4, 14]), we remark that several of
the arguments developed for the study of thek-core fork ≥ 3 encompass the casek = 2 as well. ¿From now on, we
will always assume thatk ≥ 3.

Since the work of Pittel, Wormald and Spencer [22] several different arguments for determining the location of the
k-core fork ≥ 3 have been suggested. Some of these approaches have advantages over [22], such as being simpler,
giving additional information, or applying to a broader class of models or combinatorial structures (e.g., hypergraphs
rather than just graphs, or random graphs/hypergraphs withgiven degree sequences). Roughly, there are two types
of proofs. First, approaches that rely on the analysis of a peeling process akin to the one of Pittel, Wormald and
Spencer [6, 7, 10, 11, 12, 13, 16]. Among these [6, 16] stand out as they characterise the distribution of thek-core
and thus make it amenable to an analysis by standard random graph techniques. Second, arguments that formalise
the “branching process” intuition [20, 23] put forward in [22]. In [8] this was achieved in a general non-uniform
hypergraph setting via a differential equations method, but conditioned on the degree sequence.

Some results on the local structure of the core and the mantlefollow directly from the aforementioned analyses.
For instance, the Poisson cloning model [16] immediately implies that theinternal local structure of thek-core can be
described by a simple (single-type) Galton-Watson process. Riordan also pointed out that this local description follows
from his analysis [23]. Furthermore, Cooper [7] derived theasymptotic distribution of the internal and the external
degree sequences of the vertices in the mantle, i.e., of the number of vertices with a given number of neighbours in the
core and a given number of neighbours outside. In addition, Sato [24] studied the robustness of thek-core (i.e., the
impact of deleting random edges).

The contribution of the present work is that we exhibit a branching process that describes the structure of the core
together with the mantle and hence, crucially, the connections between the two. This is reflected in the fact that
Theorems 1.1 and 1.2 deal with{0, 1}-marked graphs and trees, with marks indicating membershipof the k-core.
Neither the construction of the core via the “peeling process” nor the branching process analogy from [20, 22, 23]
reveal how the core interconnects with the mantle. In fact, even though [7] asymptotically determines the degree
distribution of the core along with the combined degrees of the vertices in the mantle, we saw in Section 1.1 that the
conditional random graph isnotuniformly random subject to these.

Structures that resemble cores of random (hyper)graphs have come to play an important role in the study of random
constraint satisfaction problems, particularly in the context of the study of the “solution space” [1, 21]. This was first
noticed in non-rigorous but analytic work based on ideas from statistical physics (see [19] and the references therein).
Indeed, in the physics literature it was suggested to characterise the core by means of a “message passing” algorithm
called Warning Propagation[19, Chapter 18]. A similar idea is actually implicit in Molloy’s paper [21, proof of
Lemma 6]. The Warning Propagation description of the core will play a key role in the present paper, as we shall
explain in the next subsection.

1.4. Techniques and outline. There is a very natural formulation of Warning Propagation to identify thek-core of
a given graphG. It is based on introducing “messages” on the edges ofG and marks on the vertices ofG, both with
values in{0, 1}. These will be updated iteratively in terms of a “time” parametert ≥ 0. At time t = 0 we start with
the configuration in which all messages are equal to1, i.e.,

µv→w(0|G) = 1 for all {v, w} ∈ E(G). (1.5)

Inductively, writing∂v for the neighbourhood of vertexv and abbreviating∂v \ w = ∂v \ {w}, we let

µv→w(t+ 1|G) = 1







∑

u∈∂v\w

µu→v(t|G) ≥ k − 1







. (1.6)

The messages are directed, i.e. at each time there aretwo messagesµv→w(t|G), µw→v(t|G) travelling along the edge
{v, w}. Additionally, the mark ofv ∈ [n] at timet is

µv(t|G) = 1

{

∑

u∈∂v

µu→v(t|G) ≥ k

}

. (1.7)
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The intuition is that ifµv(t|G) = 0, then by timet Warning Propagation has ruled out thatv belongs to thek-core of
G. Conversely, we shall see that the messages converge to a fixed point for anyG, and that the set of vertices marked
1 in the fixed point coincides with thek-core (see Lemma 3.1 below).

Indeed, in Section 3 we are going to see that in the case of the random graphG, a boundednumber of iterations
suffice to obtain an accurate approximation of thek-core w.h.p. More precisely, for any fixedε > 0 there exists an
integert > 0 such thatS = {v ∈ [n] : µv(t|G) = 1} is a superset of thek-coreCk(G) such that|S \ Ck(G)| ≤ εn
w.h.p. (see Lemma 3.5). While this is already implicit in Molloy’s proof [20], he does not phrase it in the language
of Warning Propagation and therefore we provide a (simple) self-contained derivation. Based on this observation we
will argue that the analysis of the Warning Propagation fixedpoint onG reduces to the study of Warning Propagation
on the (infinite) Galton-Watson tree withPo(d) offspring, which is the main result of Section 3.

In Section 4 we show that the multi-type branching process from Section 1.2 describes the distribution of the
Warning Propagation fixed point on the infinitePo(d) Galton-Watson tree. The somewhat delicate proof of this fact
requires several steps. The key one is to turn the problem of tracing how Warning Propagation passes messages from
the “bottom” of the Galton-Watson tree up toward the root into a process where messages are passed “top-down”,
i.e., in the fashion of a branching process. But before we come to this, we need to introduce some background and
notation.

2. PRELIMINARIES

2.1. Notation. Throughout the paper all graphs are assumed to be locally finite with a countable vertex set. For a
graphG and a vertexv ∈ V (G) we denote by∂s(G, v) the subgraph ofG induced on the set of vertices at distance at
mosts from v. We abbreviate∂(G, v) = ∂1(G, v) and∂v = V (∂(G, v)− v) wheneverG is clear from the context.

By a rooted graphwe mean a connected locally finite graphG together with a rootv0. A child of v ∈ V (G) is a
vertexw ∈ ∂v whose distance fromv0 is greater than that ofv. For a vertexv of a rooted graphG we denote by∂+v
the set of all children ofv.

Two rooted graphs(G, v0), (G′, v′0) are isomorphicif there is an isomorphismπ : G → G′ such thatπ(v0) =
π(v′0). Write [G, v0] for the isomorphism class of(G, v0) and letG be the set of all isomorphism classes of rooted
graphs. Further, let∂s[G, v0] be the isomorphism class of the rooted graph obtained from(G, v0) by removing all
vertices at distance greater thans from v0. We sometimes omit the argumentv0 when the root is clear from the
context.

For a random variableX : Ω → E with values in a spaceE we letL(X) denote the distribution ofX . Thus,L(X)
is a probability measure on the spaceE .

For real numbersy, z > 0 we letPo≥z(y) denote the Poisson distributionPo(y) conditioned on the event that the
outcome is at leastz. Thus,

P [Po≥z(y) = x] =
1 {x ≥ z} yx exp(−y)

x!P [Po(y) ≥ z]
for any integerx ≥ 0.

The distributionsPo>z(y), Po≤z(y), Po<z(y) are defined analogously.
We will need to define various random objects and distributions in the paper, with subtle differences between them.

Reference tables are provided in an appendix to help the reader maintain an overview of all the definitions.

2.2. Local weak convergence. In what follows it will be more convenient to work with randomtrees instead of
isomorphism classes. Therefore from now on we assume that all random isomorphism classes of graphs, such as
branching processes, are additionally equipped with almost surely distinct random labels on every vertex to obtain
a representative of the particular class. This distinctionwill be technically necessary in upcoming proofs. However
the actual label of a vertex in this sense will not be taken into account in any of them. Thus, letT(d) denote the
random tree which is obtained by labelling each vertex in thestandard (single-type) Galton-Watson tree with offspring
distributionPo(d) with a number in[0, 1] independently and uniformly at random.

It is well-known that the “local structure” of the random graphG converges to[T(d)]. We formalise this statement
via local weak convergence, closely following [5]. Thus, weendowG with the coarsest topology such that for any
Γ ∈ G, s ≥ 0 the mapχΓ,s : Γ

′ ∈ G 7→ 1 {∂sΓ′ = ∂sΓ} is continuous. LetP(G) be the set of all probability measures
onG and letP2(G) be the set of all probability measures onP(G). Both of these spaces carry the weak topology.

5



Any graphG gives rise to the empirical distribution

λG =
1

|V (G)|

∑

v∈V (G)

δ[Gv,v] ∈ P(G).

Further, let
Λd,n = EG[δλG

] ∈ P2(G). (2.1)

The following theorem expresses the well-known fact that[T(d)] mirrors the local structure ofG in this notation.

Theorem 2.1. For anyd > 0 we havelimn→∞ Λd,n = δL([T(d)]).

The spacesG,P(G),P2(G) are well-known to be Polish, i.e., complete, separable and metrizable. Analogously,
for any finite setX the spacesGX ,P(GX ),P2(GX ) are Polish.

2.3. The k-core threshold. We build upon the following result which determines thek-core threshold and the as-
ymptotic number of vertices in thek-core. Recall thatG = G(n, d/n).

Theorem 2.2 ([22]). Letk ≥ 3. The functionλ ∈ (0,∞) 7→ λ/P [Po(λ) ≥ k − 1] is continuous, tends to infinity as
λ→ 0 or λ→ ∞, and has a unique local minimum, where it attains the value

dk = inf {λ/P [Po(λ) ≥ k − 1] : λ > 0} .

Furthermore, for anyd > dk the equationd = λ/P [Po(λ) ≥ k − 1] has precisely two solutions. Letλk(d) denote
the larger one and define

ψk : (dk,∞) → (0,∞), d 7→ P [Po(λk(d)) ≥ k] .

Thenψk is a strictly increasing continuous function. Moreover, ifd < dk, thenCk(G) = ∅ w.h.p., while1
n
|Ck(G)|

converges toψk(d) in probability ford > dk.

We will use the following lemma to establish a connection between Warning Propagation and the formula for the
size of thek-core from Theorem 2.2. Although similar statements are implicit in [20, 23], we include the simple proof
for the sake of completeness.

Lemma 2.3. Supposed > dk and letp∗ be the largest fixed point of the functionφd,k from (1.2). Thenφd,k is
contracting on[p∗, 1]. Moreover,ψk(d) = P [Po(dp∗) ≥ k] = φd,k+1(p

∗).

Proof. Letϕk(x) = P [Po(x) ≥ k − 1] for x ≥ 0. Thenφd,k(p) = ϕk(dp). Moreover,d = λ/ϕk(λ) iff φd,k(λ/d) =
λ/d, i.e.λ is a solution to the equationd = λ/ϕk(λ) iff λ/d is a fixed point ofφd,k. Sincep∗ = p∗(d, k) is the largest
fixed point ofφd,k, it holds thatp∗ = λk(d)/d, whence Theorem 2.2 entails

ψk(d) = P (Po(λk(d)) ≥ k) = P (Po(dp∗) ≥ k) = φd,k+1(p
∗).

We next show thatp∗ > 0 for k ≥ 3 andd > dk, which is equivalent toλk(d) > 0. By Theorem 2.2,dk =
inf {λ/ϕk(λ)| λ > 0} . Note thatλk(d) is a strictly increasing function ind and so ford > dk we findλk(d) >
λk(dk) ≥ 0 as required.

We next aim to prove thatφd,k is a contraction on[p∗, 1]. We consider the derivatives ofϕk:

∂

∂x
ϕk(x) =

1

(k − 2)! exp(x)
xk−2 ≥ 0,

∂2

∂x2
ϕk(x) =

1

(k − 2)! exp(x)
(−x+ k − 2)xk−3.

Using ∂i

∂pi φd,k(p) = di ∂i

∂xi ϕk(x)|x=dp we obtain

∂

∂p
φd,k(p) ≥ 0 for all p ∈ [0, 1], sgn

(

∂2

∂p2
φd,k(p)

)

= sgn

(

k − 2

d
− p

)

.

Hence,∂2φd,k/∂p2 has only one root in[0, 1] andφd,k is convex on[0, (k − 2)/d] and concave on((k − 2)/d, 1].
Together withφd,k(1) < 1 and the fact thatp∗ > 0, this implies that one of two possible cases can occur:φd,k either
has (apart from the trivial fixed point at0) one additional fixed pointp∗ > 0, whereφd,k is tangent to the identity,
or two p∗ > p1 > 0, whereφd,k crosses the identity. For the purposes of this proof, the latter case is essentially
equivalent to a third possible case, namely thatφd,k has derivative greater than (or equal to) one at the pointp = 0,
and so is initially greater than the identity function, but crosses it at pointp∗(d, k).
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We claim that the first case does not occur ford > dk. Suppose it does and letd′ be such thatdk < d′ < d.
Thenφd′,k(p) < φd,k(p) ≤ p for all p > 0. However, this means thatp∗(d′, k) = 0, contradicting what we have
already proved. Thus we may assume that the second case holds. Then it follows fromφd,k(1) < 1 and the fact that
∂2φd,k/∂p

2 changes its sign only once in[0, 1], thatφd,k is concave on[p∗, 1].Sinceφd,k is concave and monotonically
increasing on[p∗, 1] its derivative is less than one andφd,k is contracting on this interval. �

From now on we assume thatk ≥ 3 and thatd > dk. Further, p∗ signifies the largest fixed point of (1.2).

3. WARNING PROPAGATION AND THEk-CORE

3.1. Convergence to the k-core. The aim in this section is to reduce the study of thek-core on the random graphG =
G(n, d/n) to the investigation of Warning Propagation on the Galton Watson treeT(d). We start with the following
simple observation that strongly resembles the application of Warning Propagation to thek-XORSAT problem (cf. [19,
Chapter 19]).

Lemma 3.1. LetG be a locally finite graph.

(1) If v, w are adjacent andt ≥ 0, thenµv→w(t + 1|G) ≤ µv→w(t|G). Moreover,µv(t + 1|G) ≤ µv(t|G) for
all verticesv.

(2) For anyt ≥ 0 we have that thek-coreCk(G) ⊂ {v ∈ V (G) : µv(t|G) = 1}.
(3) For any vertexv the limit limt→∞ µv(t|G) exists andv ∈ Ck(G) iff limt→∞ µv(t|G) = 1.

Proof. The first claim follows from a simple induction ont: If µv→w(t|G) ≤ µv→w(t− 1|G) for all {v, w} ∈ E(G)
and for a fixedt ≥ 0, we obtainµv→w(t+ 1|G) ≤ µv→w(t|G) by (1.6). In particular this implies thatµv(t+ 1|G) ≤
µv(t|G) for all v ∈ [n] by (1.7).

To obtain (2), we show by induction that, in fact, any vertexv in the core satisfies

A(t) : µv→w(t|G) = 1 for all w ∈ ∂(G, v)

B(t) : µv(t|G) = 1

for all t ≥ 0. PropertyA(0) is certainly true because of our starting conditions. We will show that for allt ≥ 0, A(t)
impliesB(t) ∧ A(t + 1). This follows becausev has at leastk neighboursu in the core, all withµu→v(t|G) = 1 if
A(t) holds, and so (1.7) implies thatB(t) holds while (1.6) implies thatA(t+ 1) holds.

The first assertion of (3) holds because(µv(t))t is decreasing by (1) and bounded by definition. For the second
assertion, letG′ be the subgraph induced by the vertices withlimt→∞ µv(t|G) = 1. We need to show thatG′ ⊂ Ck(G).
SinceG is locally finite, a vertexv has a finite number of neighbours and so there is a timet0 such that for all
neighboursu of v and for all timest ≥ t0, the messages fromu to v and fromv to u and the marks onu andv remain
constant. Sinceµv(t0|G) = 1, by (1.7) we have

∑

u∈∂v µu→v(t0|G) ≥ k and therefore by (1.6),µv→u(t0+1|G) = 1
for all u ∈ ∂v. This means that for all neighboursu with µu→v(t0 + 1|G) = 1, by (1.7) we haveµu(t0 + 1|G) = 1.
Therefore such vertices are inG′ and there are at leastk of them. This shows thatv has degree at leastk in G′. Since
v was arbitrary, this shows thatG′ has minimum degree at leastk and thereforeG′ ⊂ Ck(G) as required. �

3.2. Warning Propagation on trees. We proceed by relating Warning Propagation on the random treeT(d) to the
fixed point problem from Lemma 2.3 and thus to Theorem 2.2. Assume that(T, v0) is a rooted locally finite tree. Then
a vertexv 6= v0 has a parentu (namely, the neighbour ofv on the path tov0). We use the shorthand

µv↑(t|T ) = µv→u(t|T ).

Furthermore, fort ≥ 0 we set

µv0↑(0|T ) = 1 and µv0↑(t+ 1|T ) = 1

{

∑

w∈∂v0

µw↑(t|T ) ≥ k − 1

}

,

i.e.µv0↑(t|T ) is the message thatv0 would send to its parent if it had one.
We observe that on the random treeT(d) the limit µv0↑(t|T(d)) ast→ ∞ exists almost surely.

Lemma 3.2. The sequence(µv0↑(t|T(d)))t≥1 converges almost surely and thus inL1 to a random variableµ∗(T(d)) ∈
{0, 1} whose expectation is equal top∗.
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Proof. Let p(t) = ET(d)[µv0↑(t|T(d))] for t ≥ 0 (so in particularp(0) = 1). The random treeT(d) is recursive in
the following sense: the trees pending on the children of theroot are distributed as independent copies of the random
treeT(d) itself. Therefore, given the degreed0 of v0, the messages(µv↑(t|T(d)))v∈∂v0 are mutually independent
Bernoulli variables with meanp(t). Since the degree ofv0 is a Poisson variable with meand, we conclude that

p(t+1) = P

(

Po
(

dp(t)
)

≥ k − 1
)

= φd,k

(

p(t)
)

for anyt ≥ 0.

Hence, Lemma 2.3 implies thatlimt→∞ p(t) = p∗. Since the sequence(µv0↑(t|T(d)))t≥1 is monotonically decreasing
by Lemma 3.1, the assertion follows from the monotone convergence theorem. �

3.3. From random graphs to trees. Given t ≥ 0 let Tt(d, k) be the random{0, 1}-marked tree obtained from
T(d) by marking each vertexv with µv(t|T(d)) ∈ {0, 1} as defined in (1.5)-(1.7). We recall the definition ofΛd,k,n

from (1.4). The aim in this section is to prove

Proposition 3.3. The limits

θd,k := lim
t→∞

L([Tt(d, k)]), Λd,k := lim
n→∞

Λd,k,n

exist andΛd,k = δθd,k .

For a finite graphG andv ∈ V (G) let µ · (t|Gv) denote the mapw ∈ V (Gv) 7→ µw(t|Gv). Define

λk,G,t :=
1

|V (G)|

∑

v∈V (G)

δ[Gv,v,µ · (t|Gv)] ∈ P(G{0,1}), Λd,k,n,t := EG[δλk,G,t
] ∈ P2(G{0,1}) (3.1)

(c.f. (1.4) and (2.1)). Thus,Λd,k,n,t is the distribution of the neighbourhoods of the random graphG marked according
to µ · (t|G). The following lemma shows that the distribution of these marked neighbourhoods inG is described by
the distribution resulting from running Warning Propagation for t rounds on the random treeT(d).

Lemma 3.4. We havelimn→∞ Λd,k,n,t = δL([Tt(d,k)]) for anyt ≥ 0.

Proof. Let τ be a rooted locally finite tree rooted atv0. LetG be a graph and letv ∈ V (G). The construction of the
Warning Propagation messages ensures that if∂s+t[τ, v0] = ∂s+t[G, v], then∂s[τ, v0, µ · (t|τ)] = ∂s[G, v, µ · (t|G)].
Therefore, the assertion is immediate from Theorem 2.1. �

As a next step, we show that running Warning Propagation for abounded numbert of rounds onG yields a very
good approximation to thek-core. Indeed, Lemma 3.1 shows that thek-core ofG is contained in the set of all vertices
v such thatµv(t|G) = 1. The following lemma, which is implicit in [20, 23], complements this statement.

Lemma 3.5. For anyε > 0 there ist > 0 such that|{v ∈ [n] : µv(t|G) = 1} \ Ck(G)| ≤ εn w.h.p.

Proof. Let Yn = 1
n
|Ck(G)| be the fraction of vertices in the core. We need to compareYn with X(t)

n = 1
n
|{v ∈ [n] :

µv(t|G) = 1}|, i.e., the fraction of vertices marked with1 aftert iterations of Warning Propagation. Let

x(t) = ET(d) [µv0(t|T(d))]

denote the probability that the rootv0 is marked with1 aftert iterations of Warning Propagation onT(d). Finally, set
p(0) = 1 and letp(t+1) = φd,k

(

p(t)
)

(with φd,k from (1.2)).
We will establish the following relations:

Xn(t) ∼p x(t)
t → ∞
−→ φd,k+1(p

∗) ∼p Yn(t). (3.2)

The leftmost approximation (thatXn(t) converges tox(t) in probability) is immediate from Lemma 3.4. With respect
to the second relation, we obtain from Lemma 3.2 that

ET(d) [µv0↑(t|T(d))]
t → ∞
−→ p∗. (3.3)

Since each child ofv0 can be considered a root of an independent instance ofT(d) to which we can apply (3.3), we
obtain

x(t+1) = P

(

∑

u∈∂v

µu↑(t|T(d)) ≥ k

)

t → ∞
−→ P (Po (dp∗) ≥ k) = φd,k+1(p

∗). (3.4)

Finally, Theorem 2.2 implies the rightmost convergence in (3.2), whence the assertion is immediate. �
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Proof of Proposition 3.3.We begin by proving that the sequence(L([Tt(d, k)]))t of probability measures onG{0,1}

converges. SinceP(G{0,1}) is a Polish space, it suffices to show that for any bounded continuous functionf : G{0,1} →
R the sequence(ET(d)[f([Tt(d, k)])])t converges. In fact, because the toplogy onG{0,1} is generated by the functions
from (1.3), we may assume thatf = χΓ,s for someΓ ∈ G{0,1}, s ≥ 0. Hence,

ET(d)[f([Tt(d, k)])] = P [∂s[Tt(d, k)] = ∂sΓ] .

To show that(P [∂s[Tt(d, k)] = ∂sΓ])t converges, letε > 0 and letTs+1 be theσ-algebra generated by the unmarked
tree structure∂s+1T(d) up to distances + 1 from the root. LetB(s + 1) be the set of vertices at distance precisely
s + 1 from the root. The structure of the random treeT(d) is recursive, i.e., givenTs+1 the tree pending on each
vertexv ∈ B(s+1) is just an independent copy ofT(d) itself. Therefore, Lemma 3.2 and the union bound imply that
conditioned onTs+1 the limits

µv↑(T(d)) = lim
t→∞

µv↑(t|T(d)) (v ∈ B(s+ 1))

exist almost surely. In addition, conditioned on the vector(µv↑(T(d)))v∈B(s+1) , all limits limt→∞ µx(t|T(d)) for
verticesx at distance at mosts from v0 are determined. Consequently, the sequence(P [∂s[Tt(d, k)] = ∂sΓ|Ts+1])t
of random variables converges almost surely. Hence, so doesthe sequence(P [∂s[Tt(d, k)] = ∂sΓ])t. As this holds
for anyΓ, s, the limit θd,k = limt→∞ L([Tt(d, k)]) exists.

As a next step we show that(Λd,k,n)n converges. BecauseΛd,k,n ∈ P2(G{0,1}), which is a Polish space as well, it
suffices to prove that(

∫

fdΛd,k,n)n converges for any continuous functionf : P(G{0,1}) → R with compact support.
Lemma 3.4 already shows that(Λd,k,n,t)n converges for anyt. Hence, so does(

∫

fdΛd,k,n,t)n. Therefore we will
compare

∫

fdΛd,k,n and
∫

fdΛd,k,n,t. Plugging in the definitions ofΛd,k,n andΛd,k,n,t ((1.4) and (3.1)), we find that

∫

fdΛd,k,n = EG [f(λk,G)] ,

∫

fdΛd,k,n,t = EG [f(λk,G,t)] .

Hence,
∣

∣

∣

∣

∫

fdΛd,k,n −

∫

fdΛd,k,n,t

∣

∣

∣

∣

≤ EG |f(λk,G)− f(λk,G,t)| . (3.5)

To bound the last term we will show that
∣

∣

∣

∣

∫

χΓ,sdλk,G −

∫

χΓ,sdλk,G,t

∣

∣

∣

∣

t,n→∞
−→ 0 (3.6)

in probability for allΓ ∈ P(G{0,1}) ands ≥ 0. Plugging in the definitions ofλk,G andλk,G,t we obtain

EG

∣

∣

∣

∣

∫

χΓ,sdλk,G −

∫

χΓ,sdλk,G,t

∣

∣

∣

∣

≤ EG





1

n

∑

v∈[n]

∣

∣

∣

∣

∫

χΓ,sdδ[Gv,v,σk,Gv ]
−

∫

χΓ,sdδ[Gv,v,µ · (t|Gv)]

∣

∣

∣

∣





= EG,v [|χΓ,s([Gv,v, σk,Gv
])− χΓ,s([Gv,v, µ · (t,Gv)])|] .

By the definition ofχΓ,s we have

EG,v [|χΓ,s([Gv,v, σk,Gv
])− χΓ,s([Gv,v, µ · (t,Gv)])|] ≤ P [∂s[Gv,v, σk,Gv

] 6= ∂s[Gv,v, µ · (t,Gv)]] . (3.7)

To bound the last term, letδ > 0 and assume thatn > n0(δ), t > t0(δ) are sufficiently large. LetI(ℓ,G) be the set
of all verticesv ∈ [n] such that the number of verticesu at distance at mosts exceedsℓ. Theorem 2.1 implies that
there existsℓ0 = ℓ0(δ, d) such thatP [|I(ℓ0,G)| > δn] ≤ δ. Further, letJ (G) be the set of allv ∈ [n] \ I(ℓ0,G)
such thatµu(t|G) = 1 butu 6∈ Ck(G) for some vertexu at distance at mosts from v. Then Lemma 3.5 implies that
P [|J (G)| > δn] ≤ δ, provided thatn0, t0 are sufficiently large. Hence,

P [∂s[Gv,v, σk,Gv
] 6= ∂s[Gv,v, µ · (t,Gv)]] ≤ P [|I(ℓ0,G)| > δn] + P [|J (G)| > δn] +

P [v ∈ I(ℓ0,G) ∪ J (G)||I(ℓ0,G)| ≤ δn, |J (G)| ≤ δn] ≤ 4δ
(3.8)

and we obtain (3.6). Now, letε > 0. SinceP(G{0,1}) is a Polish space, it holds thatP(G{0,1}) is metrizable. Using
this and the fact that the functionsχΓ,s generate the topology onG{0,1}, (3.6) implies that for givenδ = δ(ε) > 0
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there existn > n0(δ), t > t0(δ) such that the distance ofλG,k andλG,k,t is less thanδ with probability larger than
1− ε. Sincef is uniformly continuous this implies

EG |f(λk,G)− f(λk,G,t)| < ε. (3.9)

for suitableδ > 0.
Combining (3.5) and (3.9) and the first part of the proof, i.e.thatθd,k = limt→∞ L([Tt(d, k)]) exists, and invoking

Lemma 3.4, we conclude that
lim
n→∞

Λd,k,n = lim
t→∞

lim
n→∞

Λd,k,n,t = δθd,k ,

as desired. �

4. THE BRANCHING PROCESS

In this section we prove that in the limitt → ∞ the random{0, 1}-marked treeTt(d, k) converges to the{0, 1}-
marked treeT(d, k, p∗) produced by the5-type branching procesŝT(d, k, p∗) from Section 1.2. Together with Lem-
mas 3.4 and 3.5 this will imply Theorems 1.1 and 1.2.

4.1. Truncating the tree. We begin by characterising the limiting distribution of thefirst few generations ofTt(d, k)
as t → ∞. More precisely, in the treeTt(d, k) the vertices are marked byµv(t|T(d)). By construction, these
marks can be deduced from the messagesµw↑(t|T(d)), w ∈ V (T(d)) (cf. (1.7)). The key feature of the messages
µw↑(t|T(d)) is that they are solely determined by the tree pending onw. That is, in contrast to the marksµv(t|T(d)),
the messagesµw↑(t|T(d)) are independent of the part ofT(d) “above”w and are therefore much more convenient
to work with. On the other hand they also contain all the necessary information to compute the Warning Propagation
marksµv(t|T(d)) onT(d). We shall therefore begin by determining the limit ast→ ∞ of the distributions

θsd,k,t := L(∂s[T(d), v0, µ · ↑(t|T(d))]).

In words, this is the distribution resulting from the following experiment: create a random treeT(d) and mark each
vertex with the messageµv↑(t|T(d)). Then, truncate the tree by deleting all vertices at distance greater thans from
the root.

What mightθsd,k,t converge to ast → ∞? If we assume that the point-wise limit of the messagesµv↑(t|T(d))
ast → ∞ exists, then the limit ofθsd,k,t should admit the following simple description: Once we condition on the
isomorphism class[∂sT(d)] of the tree up to levels, the messageslimt→∞ µu↑(t|T(d)) for verticesu at distance
less thans from the rootv0 are determined by theboundary messageslimt→∞ µv↑(t|T(d)) sent out by the vertices
at distance preciselys from v0. Furthermore, each of these is governed by the tree pending on v only. These trees
are mutually independent copies ofT(d). Thus, Lemma 3.2 suggests that the “boundary messages” converge to a
sequence of mutually independentBe(p∗) variables. Consequently, the heuristically conjectured limiting distribution
is the one obtained by creating the firsts levels of a random treeT(d), marking each vertex at distance preciselys by
an independentBe(p∗) “message”, and passing the messages up to the root.

To define this distribution formally, letT be a locally finite tree rooted atv0 and lets > 0 be an integer. Moreover,
let β = (βw)w∈V (T ) be a family of independentBe(p∗) random variables. If eithert = 0 or v has distance greater
thans from v0, we define

µ∗
v↑(t|T, s) = βv. (4.1)

Moreover, ift ≥ 0 and ifv has distance less than or equal tos from v0, let

µ∗
v↑(t+ 1|T, s) = 1







∑

w∈∂+v

µ∗
w↑(t|T, s) ≥ k − 1







. (4.2)

Let us denote the mapv 7→ µ∗
v↑(t|T, s) by µ∗

· ↑(t|T, s). Finally, define

θs,∗d,k := L
(

∂s[T(d), v0, µ
∗
· ↑(s|T(d), s)]

)

.

We begin with the following simple observation.

Lemma 4.1. Assume that0 < s < r. We haveL(∂s[T(d), v0, µ
∗
· ↑(s|T(d), s)]) = L(∂s[T(d), v0, µ

∗
· ↑(r|T(d), s)]).

Proof. The assertion is immediate from the construction of the messages. �

The main result of this subsection is
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Lemma 4.2. We havelimt→∞ θsd,k,t = θs,∗d,k for all s ≥ 0.

Proof. Let 0 < ε < 1/10. We couple∂s[T(d), v0, µ · ↑(t|T(d))] and∂s[T(d), v0, µ
∗
· ↑(s|T(d), s)] such that both

operate on the same treeT(d). LetB be the set of all vertices of the random treeT(d) that have distance preciselys
from v0. BecauseET(d)[|B|] is bounded, there existsC = C(d, k, ε) > 0 such that

P [|B| ≤ C] > 1− ε/2. (4.3)

To prove the assertion, we are going to show that conditionedon |B| ≤ C there existst0 = t0(ε) such that for all
t > t0 there is a coupling of∂s[T(d), v0, µ · ↑(t|T(d))] and∂s[T(d), v0, µ

∗
· ↑(s|T(d), s)] such that both coincide with

probability at least1− ε/2.
Let β = (βv)v∈B be a family of mutually independentBe(p∗) random variables. Given the sub-tree∂s[T(d), v0],

the treesTv pending on the verticesv ∈ B are mutually independent and have the same distribution as the treeT(d)
itself. Therefore, Lemma 3.2 implies that given|B| ≤ C there existt1 = t1(d, k, ε) and a coupling ofβ with the trees
(Tv)v∈B such that

P
[

µv↑(t|T(d)) = βv∀t > t1, v ∈ B
∣

∣ |B| ≤ C
]

> 1− ε/2. (4.4)

Consider the eventE = {µv↑(t|T(d)) = βv∀t > t1, v ∈ B}.
If the eventE occurs, then the initialisationµ∗

v↑(t|T(d), s) = βv for v ∈ B (cf. (4.1)), and (4.2) ensure that

µ∗
u↑(s|T(d), s) = µ∗

u↑(t|T(d), s) = µu↑(t|T(d)) for all t > t1 + s.

Hence, (4.3) and (4.4) yield

P
[

∂s[T(d), v0, µ · ↑(t|T(d))] = ∂s[T(d), v0, µ
∗
· ↑(s|T(d), s)]

]

> 1− ε,

as desired. �

4.2. Turning the tables. The distributionθs,∗d,k describes thebottom-upprocess of creating a random tree∂sT(d) to
generations, generating a random boundary condition, and passing the messages up from the boundary to the root. By
contrast, the branching process from Section 1.2 proceeds in atop-downfashion: the marks are created simultaneously
with the tree. We now construct a top-down process that produces the distributionθs,∗d,k.

More precisely, define a random{0, 1}-marked treeT∗(d, k) by means of the following two-type branching process
(the type of a vertexv will correspond to the message thatv passes to its parent). Initially, there is a root vertexv0
that has type1 with probability p∗ and type0 with probability 1 − p∗. The offspring of a type0 vertex consist
of Po(d(1 − p∗)) type0 vertices and independentlyPo<k−1(dp

∗) type1 vertices. Further, a type1 vertex spawns
Po(d(1− p∗)) type0 offspring and independentlyPo≥k−1(dp

∗) type1 offspring. The mark of each vertexv, denoted
by µ∗

v↑, is identical to its type.

Lemma 4.3. For anys ≥ 0 we haveL (∂s[T∗(d, k)]) = θs,∗d,k.

Proof. Let us introduce the shorthands

T (s, r) = ∂s[T(d), v0, µ
∗
· ↑(r|T(d), s)], T (s) = ∂s[T∗(d, k)],

so our aim is to prove thatL(T (s, s)) = L(T (s)) for all s. The proof is by induction ons. In the cases = 0 both
T (s) andT (s, s) consist of the rootv0 only, which is marked1 with probabilityp∗ and0 otherwise.

Now, assume thatL(T (s)) = L(T (s, s)). To proceed tos+1, recall that the distributionL(T (s+1, s+1)) can be
described as follows. Create the random treeT(d) and letB(r) be the set of vertices at distance preciselyr from the
root forr ≥ 0. Further, letβv = µ∗

v↑(0|T(d), s+ 1) for v ∈ B(s+ 1). Then(βv)v∈B(s+1) is a family of independent
Be(p∗) variables. In addition, letXu(z) be the number of childrenv of u ∈ B(s) such thatβv = z. Clearly, in the
random treeT(d) the total number of children ofu ∈ B(s) has distributionPo(d), and these numbers are mutually
independent conditioned on∂sT(d). Since for each childv we haveβv = 1 with probabilityp∗ independently, we see
that conditioned on∂sT(d) the random variables(Xu(z))u∈B(s),z∈{0,1} are mutually independent. Moreover,Xu(z)
has distributionPo(dp∗) if z = 1 and distributionPo(d(1 − p∗)) if z = 0. Further,µ∗

u↑(s + 1|T(d), s + 1) = 1 iff
Xu(1) ≥ k − 1.

Hence, the distribution ofT (s + 1, s + 1) conditioned onT (s, s + 1) can be described as follows. Conditioned
onT (s, s + 1), the random variables(Xu(z))u∈B(s),z∈{0,1} are mutually independent. Furthermore, conditioned on
µ∗
u↑(s + 1|T(d), s + 1) = 1, Xu(1) has distributionPo≥k−1(dp

∗). By contrast, givenµ∗
u↑(s + 1|T(d), s + 1) = 0,

Xu(1) has distributionPo<k−1(dp
∗). In addition,Xu(0) has distributionPo(d(1 − p∗)) for anyu. Therefore, the
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distribution of the random variables(Xu(z))u∈B(s),z∈{0,1} conditioned onT (s, s + 1) coincides with the offspring
distribution of the treeT∗(d, k). SinceL(T (s, s + 1)) = L(T (s, s)) = L(T (s)) by Lemma 4.1 and induction, the
assertion follows. �

4.3. Exchanging messages both ways. Lemmas 4.2 and 4.3 show that the labelsµ∗
v↑ of T∗(d, k) correspond to the

“upward messages” that are sent toward the root in the treeT(d). Of course, in the treeT(d) the marksµv(t|T(d))
can be computed from the messagesµv↑(t|T(d)). Indeed, for the rootv0 we simply have

µv0(t|T(d)) = 1

{

∑

w∈∂v0

µw→v0(t|T(d))

}

.

However, for verticesv 6= v0 there is a twist. Namely,µv(t|T(d)) depends not only on the messages thatv receives
from its children, but also on the message that its parentu sends tov. This message, in turn, depends on the message
thatu receives from its parent, etc. up to the root. Thus, we need toget a handle on the “top-down” message thatv
receives from its parent. These can be described recursively by letting

µ↓v0(t|T(d)) = 0 for all t ≥ 0, (4.5)

and for a vertexv 6= v0 with parentu we define

µ↓v(0|T(d)) = µu→v(0|T(d)) = 1

µ↓v(t+ 1|T(d)) = µu→v(t+ 1|T(d)) = 1







µ↓u(t|T(d)) +
∑

w∈∂+u\v

µw↑(t|T(d)) ≥ k − 1







, (4.6)

where, as we recall,∂+u is the set of children ofu. Then

µv(t|T(d)) = 1







µ↓v(t|T(d)) +
∑

w∈∂+v

µw↑(t|T(d)) ≥ k







.

Let T̂t(d, k) signify the random{000, 001, 010, 110, 111}-marked rooted tree obtained by marking each vertex of
T(d) with the triple(µv(t|T(d)), µv↑(t|T(d)), µ↓v(t|T(d))).

Our ultimate interest is in the marksµv(t|T(d)). To get a handle on these, we are going to mimic the construction
of the “top-down” messages on the random treeT∗(d, k). Of course, we setµ∗

↓v0
= 0 and

µ∗
v0

= 1

{

∑

w∈∂v0

µ∗
w↑ ≥ k

}

.

Further, assume thatµ∗
↓u has been defined already and thatu is the parent of some vertexv 6= v0. Then we let

µ∗
↓v = 1







µ∗
↓u +

∑

w∈∂+u\v

µ∗
w↑ ≥ k − 1







, (4.7)

µ∗
v = 1







µ∗
↓v +

∑

w∈∂+v

µ∗
w↑ ≥ k







. (4.8)

Let T̂∗(d, k) signify the resulting tree in which each vertex is marked by the triple(µ∗
v, µ

∗
v↑, µ

∗
↓v). It is immediate

from the construction that

(µ∗
v, µ

∗
v↑, µ

∗
↓v) ∈ {000, 001, 010, 110, 111}

for all v.

Lemma 4.4. For anys > 0 we havelimt→∞ L(∂s[T̂t(d, k)]) = L(∂s[T̂∗(d, k)]).

Proof. This is immediate from Lemma 4.2, Lemma 4.3 and the fact that the definitions (4.5)–(4.6) and (4.7) of the
“top-down” messages for̂Tt(d, k) andT̂∗(d, k) match. �
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4.4. Assembling the pieces. Finally, we make the connection to the branching process from Section 1.2. Recall that
T̂(d, k, p∗) is the random{0, 1}3-marked tree produced by the5-type branching process with offspring distributions
as in Figure 1.

Lemma 4.5. We haveL([T̂∗(d, k)]) = L([T̂(d, k, p∗)]).

Proof. It suffices to show thatL(∂s[T̂∗(d, k)]) = L(∂s[T̂(d, k, p∗)]) for anys ≥ 0. The proof of this is by induction
on s. Let Fs be theσ-algebra generated by the{0, 1}-marked tree∂sT∗(d, k). That is,Fs mirrors the information
contained in the firsts generations ofT∗(d, k), including the marks. In addition, let̂Fs be theσ-algebra generated by
∂sT̂∗(d, k). Then the construction of̂T∗(d, k) ensures that

Fs ⊂ F̂s ⊂ Fs+1 for anys ≥ 0. (4.9)

With respect tos = 0, we see thatµ∗
↓v0

= 0 with certainty. Moreover,µ∗
v0↑

has distributionBe(p∗) andµ∗
v0

= 0 if
µ∗
v0↑

= 0. On the other hand, conditioned on thatµ∗
v0↑

= 1, the number
∑

w∈∂v0
µ∗
w↑ of childrenw of v0 in T∗(d, k)

with µ∗
w↑ = 1 has distributionPo≥k−1(dp

∗), andµ∗
v0

= 1 iff
∑

w∈∂v0
µ∗
w↑ ≥ k. Hence, using the fixed point property

p∗ = P (Po(dp∗) ≥ k − 1) and (1.1) withq = q(d, k, p∗), we obtain

P
(

(µ∗
v0
, µ∗

v0↑, µ
∗
↓v0) = 000

)

= P (Po(dp∗) < k − 1) = 1− p∗ = p000,

P
(

(µ∗
v0
, µ∗

v0↑, µ
∗
↓v0) = 010

)

= P (Po(dp∗) = k − 1) = p∗q = p010,

P
(

(µ∗
v0
, µ∗

v0↑, µ
∗
↓v0) = 110

)

= P (Po(dp∗) ≥ k) = p∗(1− q) = p110.

To proceed froms to s + 1, we condition onF̂s and the aim is to derive the distribution ofT̂∗(d, k) givenF̂s+1.
By (4.9) it is sufficient to study the random treeT∗(d, k) up to levels + 2 conditioned onF̂s. Thus, letBs be
the set of all verticesv of T∗(d, k) at distance preciselys from the root. Moreover, for eachv ∈ Bs let τv =
(τv(z1, z2, z3))z1,z2,z3∈{0,1} be the number of children ofv markedz1z2z3. In addition, set

τv(z2) =
∑

z1,z3∈{0,1}

τv(z1, z2, z3).

Thusτv(z2) is the number of messages of typez2 thatv receives from its children.
By (4.9) conditioned on̂Fs the random variables(τv)v∈Bs

are mutually independent and the distribution of each
individualτv is governed by the mark(µ∗

v, µ
∗
v↑, µ

∗
↓v) only. More precisely, we are going to verify that the distribution

of τv is given by the generating functiongµ∗
v ,µ

∗
v↑

,µ∗
↓v

from Figure 1 by investigating the possible cases one by one.
We first observe that in all cases, theτv(0) has distributionPo(d(1− p∗)) independently of the number of children

of v of all other types.

Case 1: (µ∗
v, µ

∗
v↑, µ

∗
↓v) = 000: By (4.7) we haveµ∗

↓w = 0 for all childrenw of v. Further, sinceµ∗
v↑ = 0, we

know thatτv(1) < k−1. Thus,τv(1) has distributionPo<k−1(dp
∗). Further, for a childw of v, conditioned on

µ∗
w↑ = 1, we haveµ∗

w = 1 iff w has at leastk childreny such thatµ∗
y↑ = 1. This event occurs with probability

P [Po(dp∗) ≥ k] independently for eachw. Hence, conditioned onτv(1) we haveτ(0, 1, 0) = Bin(τv(1), q)
andτv(1, 1, 0) = τv(1)− τ(0, 1, 0). In summary, we obtain the generating functiong000.

Case 2: (µ∗
v, µ

∗
v↑, µ

∗
↓v) = 001: There are two sub-cases.

Case 2a: τv(1) = k − 2: then for any childw of v we haveµ∗
↓w = 1− µ∗

w↑. Hence, for each of thek − 2
childrenw such thatµ∗

w↑ = 1 we haveµ∗
w = 1 iff w has at leastk childreny such thatµ∗

y↑ = 1. Thus,
µ∗
w = Be(1− q) independently for each suchw. Moreover, for each childw of v with µ∗

w↑ = 0 we have
µ∗
w = 0.

Case 2b: τv(1) < k − 2: We haveµ∗
↓w = 0 for all childrenw of v. Hence,τv(0) has distributionPo(d(1−

p∗)) and for every childw with µ∗
w↑ = 0 we haveµ∗

w = 0. Thus,τv(0) = τv(0, 0, 0). Further,τv(1)
has distributionPo<k−2(dp

∗). Finally, sinceµ∗
↓w = 0 for all w, any childw such thatµ∗

w↑ = 1 satisfies
µ∗
w = 1 iff w has at leastk childreny such thatµ∗

y↑ = 1. This event occurs with probability1 − q
independently for all suchw.

Since the first sub-case occurs with probabilityq̄ and the second one accordingly with probability1 − q̄, we
obtain the generating functiong001.

Case 3: (µ∗
v, µ

∗
v↑, µ

∗
↓v) = 010: Becauseµ∗

v = µ∗
↑v = 0, we haveτv(1) = k − 1 with certainty. Further, because

µ∗
↓v = 0 andτv(1) = k−1, (4.7) entails thatµ∗

↓w = 1−µw↑ for all childrenw of v. Hence, ifw is a child such
13



thatµ∗
w↑ = 1, thenµ∗

w = 1 iff w has at leastk childreny such thatµ∗
y↑ = 1. This event occurs with probability

1 − q for eachw independently. Consequently,τ(0) = τ(0, 0, 1) andτv(1) = τv(1, 1, 0) + τv(0, 1, 0) and
τv(1, 1, 0) = Bin(τv(1), 1− q). Thus, the offspring distribution ofv is given byg010.

Case 4: (µ∗
v, µ

∗
v↑, µ

∗
↓v) = 110: Sinceµ∗

v = 1, (4.7) entails thatµ∗
↓w = 1 for all childrenw of v. Henceτv(0) =

τv(0, 0, 1). Moreover, sinceµ∗
↓v = 0 andµ∗

v = 1, (4.8) implies thatτv(1) = τv(1, 1, 1) ≥ k. Consequently,
τv(1) = Po≥k(dp

∗) independently ofτ0(v). Thus, we obtaing110.
Case 5: (µ∗

v, µ
∗
v↑, µ

∗
↓v) = 111: As in the previous case,µ∗

v = 1, (4.7) ensures thatµ∗
↓w = 1 for all children

w of v. Thus,τv(0) = τv(0, 0, 1). Furthermore, asµ∗
v = µ∗

↓v = 1, τv(1) = τv(1, 1, 1) has distribution
Po≥k−1(dp

∗). In summary, the distribution of the offspring ofv is given byg111.

Thus, in each case we obtain the desired offspring distribution. �

Proof of Theorem 1.2.By Proposition 3.3 we have

lim
n→∞

Λd,k,n = δθd,k and θd,k = lim
t→∞

L([Tt(d, k)]).

Moreover, combining Lemmas 4.2, 4.3, 4.4 and 4.5, we see thatθd,k = ϑd,k,p∗ . �

Proof of Theorem 1.1.We deduce Theorem 1.1 from Theorem 1.2. Lets ≥ 0 and letτ be a{0, 1}-marked rooted
tree. The functionf : G{0,1} → R, γ 7→ χτ,s(γ) is continuous, whereχΓ,s is as defined in (1.3), and we let

z = ET(d,k,p∗)[f([T(d, k, p∗)])] = P [∂s[T(d, k, p∗)] = ∂s[τ ]] .

The function

F : P2(G{0,1}) → R, ξ 7→

∫
∣

∣

∣

∣

∫

fdν − z

∣

∣

∣

∣

dξ(ν),

where, of course,ν ranges overP(G{0,1}), is continuous as well. Consequently, Theorem 1.2 implies that

lim
n→∞

∫

FdΛd,k,n =

∣

∣

∣

∣

∫

fdϑd,k,p∗ − z

∣

∣

∣

∣

= |ET(d,k,p∗)[f([T(d, k, p∗)])]− z| = 0. (4.10)

LetXτ (G) = n−1 |{v ∈ [n] : ∂s[Gv, v, σk,Gv
] = ∂s[τ ]}| . Plugging in the definition ofΛd,k,n, we obtain

∫

FdΛd,k,n = EG |Xτ (G)− z| . (4.11)

Finally, combining (4.10) and (4.11) completes the proof. �
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5. APPENDIX: TABLES OF DEFINITIONS

We provide reference tables of various definitions which we have made throughout the paper. We sometimes give
only informal descriptions here – the precise definitions appear in the main body of the paper.

5.1. Random Trees. T(d) is the standard (unmarked single-type) Galton-Watson treein which each vertex hasPo(d)
children independently. FromT(d) we may construct labelsbottom-upusing a variant of Warning Propagation.

Bottom-up Trees:

Tree name Types Further description
Tt(d, k) {0, 1} Obtained fromT(d) aftert rounds of Warning Propagation.
T̂t(d, k) {000,001,010,110,111} Obtained fromT(d) aftert rounds of 5-type Warning Propagation.

Alternatively, we may construct labelstop-down, so the labels are constructed simultaneously with the tree.

Top-down Trees

Tree name Types Further description
T̂(d, k, p) {000, 001, 010, 110, 111} Constructed according to the generating functions of Figure 1.
T(d, k, p) {0, 1} 2-type projection of̂T(d, k, p).

Note that there are certain consistent notational conventions: T̂ indicates a5-type tree, whileTt indicates a tree
whose labels were created bottom-up using some variant of Warning Propagation. Finally, we have two more trees
which allow us in a sense to transition between the top-down and the bottom-up trees.

Transition Trees

Tree name Types Further description
T∗(d, k) {0, 1} Labels created top-down, mimic the upwards messagesµv↑.
T̂∗(d, k) {000,001,010,110,111} Obtained fromT∗(d, k) according to the rules (4.7) and (4.8).

Lemma 4.5 says that̂T∗(d, k) has the same distribution aŝT(d, k, p∗).

5.2. Distributions. We define various probability distributions and their corresponding laws in the paper which we
list here, including some equivalences which are not part ofthe definitions, but which we prove during the course of
the paper.
Distributions in P(G), resp. P(G{0,1}):

Distribution Definition Description
λG

1
|V (G)|

∑

v∈V (G) δ[Gv,v] distribution of neighbourhoods of vertices inG.
λk,G

1
|V (G)|

∑

v∈V (G) δ[Gv,v,σk,Gv ]
vertices labelled according to membership of the core.

λk,G,t
1

|V (G)|

∑

v∈V (G) δ[Gv,v,µ · (t|Gv)] vertices labelled aftert rounds of Warning Propagation.
15



Distributions in P2(G), resp. P2(G{0,1}):

Distribution Definition Description
Λd,n EG[δλG

] distribution of neighbourhoods of the random graph (2.1).
Λd,k,n EG[δλk,G

] vertices labelled according to membership of the core (1.4).
Λd,k,n,t EG[λk,G,t] vertices labelled aftert rounds of Warning Propagation (3.1).
Λd,k limn→∞ Λd,k,n limiting labelled neighbourhood distribution of the random graph (Prop. 3.3).

Distribution laws:

Distribution Law Definition Remarks
ϑd,k,p L[T(d, k, p)]
θd,k limt→∞ L[Tt(d, k)] = ϑd,k,p∗ (Prop. 3.3, Thm. 1.2).
θsd,k,t L(∂s[T(d), v0, µ · ↑(t|T(d))])

θs,∗d,k L(∂s[T(d), v0, µ
∗
· ↑(s|T(d), s)]) = limt→∞ θsd,k,t = L(∂s[T∗(d, k)]) (Lemmas 4.2 and 4.3).
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