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Abstract

We investigate properties of node centrality in random growing tree models. We focus on
a measure of centrality that computes the maximum subtree size of the tree rooted at each
node, with the most central node being the tree centroid. For random trees grown according
to a preferential attachment model, a uniform attachment model, or a diffusion processes over
a regular tree, we prove that a single node persists as the tree centroid after a finite number of
steps, with probability 1. Furthermore, this persistence property generalizes to the top K ≥ 1
nodes with respect to the same centrality measure. We also establish necessary and sufficient
conditions for the size of an initial seed graph required to ensure persistence of a particular node
with probability 1 − ǫ, as a function of ǫ: In the case of preferential and uniform attachment
models, we derive bounds for the size of an initial hub constructed around the special node. In
the case of a diffusion process over a regular tree, we derive bounds for the radius of an initial
ball centered around the special node. Our necessary and sufficient conditions match up to
constant factors for preferential attachment and diffusion tree models.

1 Introduction

Heterogeneity is a common phenomenon arising naturally in many network datasets. Although
some networks exist in which connections form at random between approximately exchangeable
individuals, it is usually more realistic to assume that certain nodes occupy a more favorable
position in the network than others. This could arise because particular nodes possess attributes
that increase their likelihood of connectivity in relation to other nodes in the network. It could
also be due to strategic network formation, which—even when nodes are indistinguishable—may
settle on an equilibrium position where one node is in a more powerful position than the others,
due to tradeoffs between the cost and utility of maintaining pairwise connections [9]. A third
possibility is that the network is formed over a period of time, and older nodes are more likely
to possess a higher degree of connectivity than newer nodes in the network. In order to quantify
the amount of heterogeneity present in a network, various summary statistics have been proposed,
including degree distributions, average path lengths, clustering coefficients, and different measures
of centrality [8].

The Barábasi-Albert model, also known as the preferential attachment model, is one popular
probabilistic framework for modeling the dynamics of a random growing graph [2]. In this model,
each new node connects to existing nodes with probability proportional to the degrees of the nodes
in the previous time step. Galashin [6] recently showed that with probability 1, a single node
emerges as a persistent hub in a preferential attachment network, meaning it remains the highest-
degree node in the graph after a finite number of time steps. In contrast, such a phenomenon does

1

http://arxiv.org/abs/1511.01975v1


not occur for the uniform attachment model, in which each new node connects to existing nodes
uniformly at random. Intuitively, this is due to the fact that newly created nodes have a relatively
high probability of replacing the current node of highest degree after the graph evolves further.
Although older nodes in a uniform attachment model may not have a substantial lead in terms
of degree, it is nonetheless reasonable to expect older nodes in the network to exhibit a higher
level of connectivity according to some suitable measure. We confirm this intuition by tracking the
dynamics of a different summary statistic, the centrality of a node in a random growing network,
and prove that a single persistent node of highest centrality emerges almost surely in the case of
uniform attachment trees, preferential attachment trees, and another related random growing tree
arising from a diffusion process over a d-regular tree.

Numerous notions of centrality have been introduced in the literature on social networks, in-
cluding degree centrality (also known as the maximum degree), distance centrality, betweenness
centrality, and eigenvalue centrality (see, e.g., [3, 8]). In the case of trees, many popular notions of
centrality conveniently coincide in terms of the most central node, which we will refer to as the tree
centroid. The notion of a tree centroid was first introduced by Jordan [10], where it was originally
called the branch weight centroid, and was subsequently studied by various authors using equivalent
characterizations such as the distance center [8], rumor center [18], median vertex of a graph [21],
security center, [19], accretion center [20], and telephone center [16]. In a random growing tree, we
will call a vertex a “persistent centroid” if it is the tree centroid for all but finite moments in time.
Our first main contribution therefore establishes the existence of a persistent centroid in each of
the random growth models described above.

Centrality measures in random graphs have also been analyzed recently in the probability theory
literature for devising root-finding algorithms in growing networks [4, 12]. In such settings, selecting
the top K nodes with respect to an appropriate centrality measure yields a confidence set for the
initial node in the random graph, where K is only required to be a function of the error probability,
and not the total number of nodes. Motivated by these findings, our next contribution is to
generalize the result on the persistence of a single centroid to the case of the top K central nodes.
Consequently, the confidence set generated by a root-finding algorithm based on this measure of
centrality is guaranteed to stabilize after a finite amount of time, which is a desirable property from
the point of view of robustness.

As a final contribution, we address the following natural question: Suppose an individual wants
to ensure that he or she is the persistent centroid of the network. The individual may boost his
or her probability of becoming the persistent centroid by creating a large number of initial links to
other nodes (i.e., forming a large “seed hub,” for which it is the center node). How large should the
initial hub be in order to ensure that the individual becomes the unique persistent centroid, with
probability 1 − ǫ? We answer this question for each of the random growing tree models. In the
case of preferential and uniform attachment, we establish necessary and sufficient conditions for the
initial hub size k. In a d-regular tree, we instead surround the first individual with a seed graph
consisting of all nodes within radius r of that node, and derive necessary and sufficient conditions
for the size of r. Our results are summarized in the following table:

model necessary condition sufficient condition

preferential attachment k ≥ c log(1/ǫ) k = C log(1/ǫ)

uniform attachment k ≥ c′ log(1/ǫ)
log log(1/ǫ) k = C ′ log(1/ǫ)

d-regular diffusion r ≥ c′′ log log(1/ǫ) r = C ′′ log log(1/ǫ)

Note that the necessary and sufficient conditions match up to constant factors for preferential
attachment and d-regular diffusion trees, implying the existence of a threshold at k = Θ(log(1/ǫ))
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and r = Θ(log log(1/ǫ)), respectively. In the case of uniform attachment, our bounds differ by a
factor of log log(1/ǫ).

The remainder of the paper is organized as follows: We begin in Section 2 by defining tree
centrality and establishing basic properties of centroids. We also define the random growth models
that we will discuss in the paper. In Section 3, we establish persistence of a unique centroid for
each of the random growing tree models, with probability 1, and then extend the result to the set
of top K central nodes in Section 4. In Section 5, we explore the problem of ensuring persistent
centrality of the root node by initializing the random growth model by an appropriate seed tree. We
establish upper and lower bounds on the size of the initial seed as a function of the error probability
of persistence. We conclude in Section 6 by discussing several interesting open problems.

2 Preliminaries

We begin by introducing the notion of centrality in trees, as well as the probabilistic models of
random growing trees that we will study in this paper.

2.1 Centrality

Let the set of vertices of a tree T be denoted by V (T ). A rooted tree is denoted by (T, u), with
u ∈ V (T ). The subtree starting from v in a rooted tree T is denoted by Tv↓. Define the function
ψT : V (T ) → N by

ψT (u) = max
v∈V (T )\{u}

|(T, u)v↓|. (1)

Thus, ψT (u) is size of the largest subtree of the rooted tree (T, u).

Definition 2.1. Given a tree T , a vertex u ∈ V (T ) is called a centroid if

ψT (u) ≤ ψT (v), for all v ∈ V (T ).

For any two nodes u and v, if ψT (u) ≤ ψT (v), we say that u is at least as central as v.

The first lemma provides a characterization of tree centroids. Similar results have been dis-
covered and rediscovered in a number of papers [13, 11, 18, 21]. We include a proof here for
completeness.

Lemma 2.1. For a tree T on n vertices, the following statements hold:

(i) If v∗ is a centroid, then

ψT (v
∗) ≤ n

2
.

(ii) T can have at most two centroids.

(iii) If u∗ and v∗ are two centroids, then u∗ and v∗ are adjacent vertices. Furthermore,

ψT (u
∗) = |(T, u∗)v∗↓|, and ψT (v

∗) = |(T, v∗)u∗↓|.

Proof. It is easy to check that the results hold for n = 2, so we assume that n ≥ 3 for the rest of
the proof. Let v∗ be a centroid of T . Let the neighbors of v∗ be the vertices {a1, . . . , ak}. Note
that if k = 1, then ψT (v

∗) = n − 1, and one can check that ψT (a1) < n − 1. This contradicts the
assumption that v∗ is a centroid. Hence, we must have k ≥ 2. Denote

|(T, v∗)ai↓| = ri, for 1 ≤ i ≤ k.
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Without loss of generality, assume r1 ≥ r2 ≥ · · · ≥ rk. Thus, we have ψT (v
∗) = r1. The key step

is to look at the subtrees of (T, a1). If b 6= v∗ is any neighbor of a1, we have (T, a1)b↓ ⊂ (T, v∗)a1↓.
Thus, |(T, a1)b↓| < r1. Therefore, to ensure that ψT (v

∗) ≤ ψT (a1), we must have

|(T, a1)v∗↓| ≥ r1,

which simplifies to

1 +
k
∑

i=2

ri ≥ r1. (2)

Adding r1 to both sides, and noting that
∑k

i=1 ri+1 = n, we conclude that r1 ≤ n/2, which is part
(i).

To show part (ii), note that none the vertices in the set ∪ki=2(T, v
∗)ai↓ can be centroids, since

for any u ∈ ∪ki=2(T, v
∗)ai↓, we have

ψT (u) > |(T, u)a1↓| = |(T, v∗)a1↓| = ψT (v
∗).

Thus, any centroids apart from v∗ must lie in (T, v∗)a1↓. For any node u ∈ (T, v∗)a1↓ such that
u 6= a1, we have

ψT (u) > |(T, u)v∗↓| = 1 +

k
∑

i=2

ri ≥ r1,

where the second inequality follows from inequality (2). Thus, the only potential centroid apart
from v∗ is the node a1, which proves part (ii). Note that a1 can be a centroid if and only if

ψT (a1) = |(T, a1)v∗↓| = 1 +

k
∑

i=2

ri = r1 = |(T, v∗)a1↓| = ψT (v
∗).

This proves part (iii) and concludes the proof.

We now turn our attention to growing trees. We have the following definition:

Definition 2.2. A collection of trees {Tn}n≥1 is called a sequence of growing trees if Tn has n
nodes, and Tn+1 is obtained from Tn by adding a single vertex that is attached to a vertex of Tn
by a single new edge.

The next lemma concerns the evolution of centroids in sequences of growing trees.

Lemma 2.2. Consider a sequence of growing trees {Tn}n≥1, with vertices labeled in order of ap-
pearance, so V (Tn) = {v1, v2, . . . , vn}. Let v∗(n) be a centroid of Tn, and let n > 2. If at some time
N > n, the node vn+1 becomes at least as central as v∗(n); i.e., if

ψTN (vn+1) ≤ ψTN (v
∗(n)),

then for some n+ 1 ≤M ≤ N , we must have

ψTM (v∗(n)) = ψTM (vn+1), (3)

and
|(TM , v∗(n))vn+1↓| = |(TM , vn+1)v∗(n)↓|. (4)
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Proof. Note that for any fixed vertex v, the size of the largest subtree of (Tn, v) either increases by
1 or remains constant when the new vertex vn+1 joins Tn. Thus, ψTn(v) increases by at most 1 at
for each time step. At time n+ 1, we have ψTn+1

(vn+1) = n > ψTn+1
(v∗(n)), where the inequality

follows from Lemma 2.1. Note that the difference ψT (vn+1) − ψT (v
∗(n)) changes by at most 1 as

the tree T evolves at each time step. Hence, if the difference becomes nonpositive at some time
n = N , there must exist a time M ≤ N when the difference is exactly zero. This implies that there
exists an M such that k + 1 ≤M ≤ N , so equation (3) holds.

Now consider the subtrees of (TM , v
∗(n)) and (TM , vn+1). Let (v

∗(n), u1, u2, . . . , uℓ, vn+1) denote
the path from v∗(n) to vn+1, where ℓ ≥ 0. Suppose the largest subtree of (TM , vn+1) is (TM , vn+1)w↓,
for some w 6= uℓ. It is easy to see that

ψTM (v∗(n)) ≥ |(TM , v∗(n))u1↓|
≥ ℓ+ 1 + |(TM , v∗(n))w↓|
= ℓ+ 1 + |(TM , vn+1)w↓|
= ℓ+ 1 + ψTM (vn+1),

which contradicts equation (3). Thus, the largest subtree of (TM , vn+1) must be (TM , vn+1)uℓ↓.
Using the same argument for v∗, we conclude that the largest subtree of (TM , v

∗(n)) must be
(TM , v

∗(n))u1↓. By equation (3), we then have |(TM , vn+1)uℓ↓| = |(TM , v∗(n))u1↓|. It is then easy
to see that equation (4) holds, as well.

We also have the following useful result:

Lemma 2.3. Let {Tn}n≥1 be a sequence of growing trees, with V (Tn) = {v1, . . . , vn}. At time
n+ 1, we have the inequality

|(Tn+1, vn+1)v∗(n)↓| ≥
n

2
.

Proof. As before, let (v∗(n), u1, u2, . . . , uℓ, vn+1) denote the path from v∗(n) to vn+1. We have the
equality

|(Tn+1, vn+1)v∗(n)↓| = (n+ 1)− |(Tn+1, v
∗(n))u1↓|.

From Lemma 2.1, we have

|(Tn+1, v
∗(n))u1↓| ≤ 1 + ψTn(v

∗(n)) ≤ 1 +
n

2
.

Substituting, we arrive at

|(Tn+1, vn+1)v∗(n)↓| = (n+ 1)− |(Tn+1, v
∗(n))u1↓| ≥ (n+ 1)− n

2
− 1 =

n

2
.

2.2 Random growing trees

We now describe the probabilistic models generating the sequences of growing trees to be considered
in this paper. Accordingly, we have the following definitions:

Definition 2.3 (Uniform attachment). A sequence of growing trees {Tn}n≥1 is generated by a
uniform attachment process if

(a) T1 consists of a single vertex v1, and

5



(b) Tn+1 is created from Tn by introducing a new vertex vn+1 and attaching it to a vertex in Tn
uniformly at random; i.e., with probability 1/n to each existing node.

Definition 2.4 (Preferential attachment). A sequence of growing trees {Tn}n≥1 is generated by a
preferential attachment process if

(a) T1 consists of a single vertex v1, and

(b) Tn+1 is created from Tn by introducing a new vertex vn+1 and attaching it to a random vertex

in Tn, with probability deg(vi)∑n
j=1 deg(vj)

for vertex vi ∈ V (Tn).

Definition 2.5 (d-regular tree diffusion). For d ≥ 2, let G be an infinite d-regular tree; i.e., a tree
where each vertex has degree d. A sequence of growing trees {Tn}n≥1 is generated by a d-regular
diffusion process if

(a) T1 consists of a single vertex v1 ∈ G, and

(b) if N (Tn) denotes the set of neighbors of vertices in Tn not contained in V (Tn), the tree Tn+1 is
created from Tn by picking vn+1 ∈ N (Tn) uniformly at random, and adding it to Tn together
with its connecting edge.

The models described above are well-studied [1, 2, 8] and are also examples of plane-oriented
recursive trees [5].

3 Existence of a persistent centroid

In this section, we show that with probability 1, a single centroid emerges for each sequence of
random growing trees described in the previous section. We have the following definition:

Definition 3.1. A vertex v∗ ∈ ∪∞
n=1V (Tn) is a persistent centroid for the sequence of growing trees

{Tn}n≥1 if there exists N such that for all n ≥ N , the vertex v∗ is a centroid of Tn.

For a tree Tn on n vertices, let C(Tn) denote the set of centroids of Tn. Note that by Lemma
2.1, we have |C(Tn)| ∈ {1, 2}. Define

Ctot = ∪∞
n=1C(Tn),

so Ctot is the set of all vertices that are centroids at any point in time.

Remark 3.1. Throughout this section, we will assume that d ≥ 3 in the case of d-regular trees.
Indeed, for d = 2, the set Ctot is infinite with probability 1. This is because diffusion on a 2-regular
tree produces a sequence of line graphs, so the midpoint is the unique centroid if the number of
vertices is odd, and the middle two nodes constitute the centroid set if the number of vertices is
even. Since the number of vertices alternates between odd and even, a unique centroid cannot exist.
Moreover, it is impossible for any node v to be a centroid for all but finitely many time steps: If v
becomes the centroid at some time N , it will be a centroid at time n ≥ N if and only if the number
of additional nodes added to the left of v differs from the number of additional nodes added to the
right of v by at most 1. Since nodes are added to the left or to the right with equal probability, it
follows from properties of a simple random walk that with probability 1, centrality cannot persist.

We first show that the total number of vertices that have ever been centroids is finite with
probability 1.
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Lemma 3.1. For the preferential and uniform attachment models, and for the d-regular diffusion
tree with d ≥ 3, we have |Ctot| <∞, with probability 1.

Proof. We aim to show that any node joining the tree “sufficiently late” has a very small chance
of becoming a centroid at some future time. We first explain how Lemma 2.2 may be leveraged to
substantially simplify the proof of this fact.

Let v∗(k) be a centroid of Tk. Suppose the node vk+1, which joins Tk at time k + 1, becomes a
centroid of TN for some large enough N . Then vk+1 must be at least as central as v∗(k) at time
N . Consider the evolution of the vector (ψTn(vk+1), ψTn(v

∗(k))) with n. At time n = k + 1, this
vector is equal to (k, ψTk+1

(v∗(k))), which is a point below the diagonal in N × N. At each time
step, this vector may perform one of four moves: move one step to the right, move one step above,
move one step diagonally, or remain stationary. At time N , this walk is either on or above the
diagonal, since vk+1 is at least as central as v∗(k). To bound the probability of that event, we
must keep track of the largest subtrees of (Tn, v

∗(k)) and (Tn, vk+1), as well as the location of the
new node vn+1. However, Lemma 2.2 makes it possible to ignore complicated tree dynamics: First,
the lemma indicates that we may bound the probability of the random walk crossing the diagonal
by the probability of it reaching the diagonal at some time M . Second, the random walk reaches
the diagonal at time M if and only if |(TM , v∗(k))vk+1↓| = |(TM , vk+1)v∗(k)↓|. Thus, we may simply

keep track of the random vector
(

|(Tn, v∗(k))vk+1↓|, |(Tn, vk+1)v∗(k)↓|
)

, for n ≥ k + 1, and bound

the probability of it reaching the diagonal. The evolution of the latter vector is significantly easier
to track, since the dynamics of the tree are largely ignored. This random walk may either move
one step to the right or one step up (it can also stay in the same place, but we may simply ignore
those time steps).

For a point (i, j), let the probability of moving up be U(i, j) and of moving right be R(i, j).
For the growing random trees we consider, these probabilities are given by:

1. Preferential attachment: The probability of a new node joining either (Tn, v
∗(k))vk+1↓ or

(Tn, vk+1)v∗(k)↓ is proportional to the total number of edges incident upon the vertices in the
corresponding subtrees. Thus, the probabilities governing the random walk are given by

R(i, j) =
2i− 1

2(i + j − 1)
, and U(i, j) =

2j − 1

2(i+ j − 1)
.

2. Uniform attachment: Here, the probability of a new node joining either (Tn, v
∗(k))vk+1↓

or (Tn, vk+1)v∗(k)↓ is proportional to the sizes of these subtrees. Thus, the probabilities are
given by

R(i, j) =
i

i+ j
, and U(i, j) =

j

i+ j
.

3. Diffusion on a d-regular tree: In this model, the probability of a new node joining ei-
ther (Tn, v

∗(k))vk+1↓ or (Tn, vk+1)v∗(k)↓ is proportional to the respective neighborhood sizes

N
(

(Tn, v
∗(k))vk+1↓

)

and N
(

(Tn, vk+1)v∗(k)↓
)

. These numbers depend only on the size of the

corresponding subtrees, and we can write the probabilities as

R(i, j) =
(d− 2)i + 1

(d− 2)(i + j) + 2
, and U(i, j) =

(d− 2)j + 1

(d− 2)(i+ j) + 1
.

Note that in all the examples above, the probability of joining a subtree is proportional to an
affine function of the size the subtree. These are precisely the types of random walks discussed in
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Lemma A.1 in Appendix A. Consider the events

Hk = {vk+1 becomes at least as central as v∗(k) at some future time}.

It is enough to show that only finitely many events Hk occur, since this ensures that new vertices
are added to Ctot only finitely many times.

As described in Lemma 2.2, the probability of event Hk is the probability that the random walk
(

|(Tn, vk+1)v∗(k)↓|, |(Tn, v∗(k))vk+1↓|
)

reaches the diagonal at some point. Note that at n = k + 1,

Lemma 2.3 gives

|(Tk+1, vk+1)v∗(k)↓| ≥ k/2,

whereas |(Tk+1, v
∗(k))vk+1↓| = 1. By Lemma A.1 in Appendix A we then have

P(Hk) ≤ max
A≥k/2

P (A)

2A
(a)
=
P (k/2)

2k/2
,

where P (A) is a fixed polynomial, and equality (a) holds for all large enough k ≥ K0. We then
have

∞
∑

k=1

P(Hk) =

K0−1
∑

k=1

P(Hk) +

∞
∑

k=K0

P(Hk)

≤
K0−1
∑

k=1

P(Hk) +

∞
∑

k=K0

P (k/2)

2k/2

<∞.

Using the Borel-Cantelli lemma, we conclude that with probability 1, only finitely many events Hk

occur, completing the proof.

To establish the existence of a persistent centroid, we still need to show that the elements in
Ctot do not keep replacing each another as centroids. Our next lemma establishes this fact. The
result of the lemma may clearly be extended to any finite collection of vertices, showing that the
centrality of all the vertices in the set will eventually separate. For any two vertices u and v, we
define

Dψ(u, v) := {n | ψTn(v) = ψTn(u)}.
Lemma 3.2. For each of the models described in Lemma 3.1, and for any two distinct vertices u
and v, we have |Dψ(u, v)| <∞, with probability 1.

Proof. By Lemma 2.2, it suffices to show that with probability 1, the random walk defined by

(Xn, Yn) :=
(

|(Tn, v)u↓|, |(Tn, u)v↓|
)

touches the diagonal only finitely many times. Without loss of

generality, we assume that vertex v is born after vertex u. Thus, the random walk starts when vertex

v is born, and the starting point is
(

|(Tn, v)u↓|, 1
)

:= (A, 1). As in Lemma A.1 in Appendix A,

let the probability that a vertex is added to a subtree of size i be proportional to i + β/α, where
1 + β/α > 0. The evolution of the vector (Xn, Yn) then follows a standard Pólya urn model,
and by almost sure convergence of martingale sequences, combined with standard distributional
convergence results [17], we have

Xn

Xn + Yn

a.s.→ ξ ∼ Beta(A+ β/α, 1 + β/α).
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By absolute continuity of the Beta distribution, we have P(ξ = 1/2) = 0. Since the fraction
converges to ξ 6= 1/2, with probability 1 it can equal 1/2 only finitely many times. This proves the
lemma.

Lemmas 3.1 and 3.2 together imply the existence of a single persistent centroid. This is sum-
marized in the following theorem:

Theorem 1. For the preferential and uniform attachment models, and for the d-regular diffusion
tree with d ≥ 3, there exists a time N and a node v∗ ∈ TN such that v∗ is the unique centroid of
Tn for all n ≥ N , with probability 1.

Proof. By Lemma 3.1, the set of vertices that are ever centroids is finite. Clearly, if a single centroid
does not persist, there exist at least two vertices that surpass each other infinitely often in terms
of centrality. However, Lemma 3.2 rules out such a scenario, implying the persistence of a single
centroid.

4 Persistence of the top K central nodes

We now extend the result of the previous section to establish persistence of the top K central nodes.
The main theorem of this section has an important consequence concerning root-finding algorithms
that generate a confidence set for the initial vertex of the random growing tree [4, 12]. As discussed
in more detail following the statement of Theorem 2, the theorem implies the eventual stability of
the confidence set selected according to the function ψ.

For n ≥ K, let Kn = {ν1(n), . . . , νK(n)} denote the set of vertices of Tn that are most central
in the following sense: For every vertex v /∈ Kn, we have the inequality

ψTn(v) ≥ max
νi∈Kn

ψTn(νi(n)).

The set Kn contains the K vertices of Tn having the smallest largest subtrees, with ties being
broken arbitrarily. We assume without loss of generality that

ψTn(ν1(n)) ≤ ψTn(νi(n)) ≤ · · · ≤ ψTn(νK(n)).

The main result of this section is to show that with probability 1, the set Kn also has the persistence
property. In other words, there exist vertices {v∗1 , . . . , v∗K} and some N such that for all n ≥ N ,
the v∗i ’s are the unique top K central nodes in Tn.

Our first lemma establishes that even the least central vertex in Kn has its largest subtree size
“not too large”—i.e., of size bounded by a linear function not identically equal to n. The proof
requires a Pólya urn analysis that tracks the number of vertices in the subtrees connected to the
first K nodes in each of the random growth models. We will again restrict our attention in the
d-regular diffusion case to d ≥ 3, since as discussed in Remark 3.1, persistence cannot occur in the
case d = 2.

Lemma 4.1. For the preferential and uniform attachment models, and for the d-regular diffusion
tree with d ≥ 3, there exists a continuous random variable ξ satisfying P(ξ < 1) = 1 and

ψTn(νK(n)) ≤ ξn,

almost surely, for all n ≥ K.
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Proof. Let {v1, . . . , vK} denote the first K vertices, i.e., the vertices of TK . For any n ≥ K, we
have

max
1≤i≤K

ψTn(vi) ≥ max
1≤i≤K

ψTn(νi(n)) = ψTn(νK(n)).

Thus, it suffices to derive an upper bound for max1≤i≤K ψTn(vi).
For 1 ≤ i ≤ n, let Ti,n be the tree in the forest formed by removing all the edges between

{v1, . . . , vK} in Tn. Clearly,

ψTn(vi) ≤ max(|Ti,n|, n− |Ti,n|), for 1 ≤ i ≤ K.

Thus,

max
1≤i≤K

ψTn(vi) ≤ max(|T1,n|, n− |T1,n|, . . . , |TK,n|, n− |TK,n|)

= max( max
1≤i≤K

|Ti,n|, n− min
1≤i≤K

|Ti,n|)

≤ n− min
1≤i≤K

|Ti,n|. (5)

Thus, an appropriate lower bound on min1≤i≤K |Ti,n| will provide the desired upper bound. We
establish a random linear lower bound for each of the growing graphs separately, beginning with
uniform attachment. Apart from being easier to analyze, it will illustrate the idea that we will use
in the other two cases.

1. Uniform attachment: The vector (|T1,n|, . . . , |TK,n|) evolves according to a standard Pólya
urn process with replacement matrix IK and starting state (1, 1, . . . , 1). Thus,

( |T1,n|
n

, . . . ,
|TK,n|
n

)

a.s.→ (C1, . . . , CK) ∼ Dirichlet(1, 1, . . . , 1).

By the continuous mapping theorem, we conclude that

1

n
min

1≤i≤K
|Ti,n| a.s.→ C = min(C1, . . . , CK),

where C is a continuous random variable taking values in [0, 1]. Taking inverses, we then
have

n

min1≤i≤K |Ti,n|
a.s.→ 1

C
.

Note that 1/C does not have a point mass at infinity, since C is a continuous random vari-
able. This almost sure convergence implies the existence of a random variable ξ̂ such that
P(ξ̂ <∞) = 1, and which bounds n

min1≤i≤K |Ti,n| almost surely, for all n. Hence,

min
1≤i≤K

|Ti,n| ≥
n

ξ̂
,

for all n ≥ K. Substituting into inequality (5), we then obtain

max
1≤i≤K

ψTn(vi) = n− min
1≤i≤K

|Ti,n| ≤ n(1− 1/ξ̂) := nξ.

Since ξ̂ <∞ with probability 1, we have ξ < 1 with probability 1. This concludes the proof.
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2. Preferential attachment: At time K, the number of possible structures of TK is finite. We
denote the set of all possible trees at time K by TreesK = {t1, t2, . . . , tκ}, where κ = |TreesK |.
Let P(TK = ti) = pi. Also let Sℓ,n denote the degree sum of the vertices in Tℓ,n. Conditioned
on TK = ti, the vector (S1,n, . . . , SK,n) evolves according to a Pólya urn process with re-
placement matrix 2IK and initial configuration (deg(v1), . . . ,deg(vK)), corresponding to the
degrees of the vertices (v1, . . . , vK) in ti. Hence, conditioned on TK = ti, we have

(

S1,n
2(n − 1)

, . . . ,
SK,n

2(n − 1)

)

a.s.→ Dirichlet

(

deg(v1)

2
, . . . ,

deg(vK)

2

)

.

Furthermore,
Sℓ,n = 2(|Tℓ,n| − 1) + deg(vℓ), ∀1 ≤ ℓ ≤ K,

so it is easy to see that
( |T1,n|

n
, . . . ,

|TK,n|
n

)

a.s.→ (Ci1, . . . , C
i
K) ∼ Dirichlet

(

deg(v1)

2
, . . . ,

deg(vK)

2

)

, (6)

as well. By the continuous mapping theorem, equation (6) implies the almost sure convergence

1

n
min

1≤i≤K
|Ti,n| a.s.→ min(Ci1, . . . , C

i
K),

so
n

min1≤i≤K |Ti,n|
a.s.→ 1

min(Ci1, . . . , C
i
K)
.

Thus, there exists a continuous random variable ξ̂i that bounds n
min1≤i≤K |Ti,n| , almost surely,

for all n, so

min
1≤i≤K

|Ti,n| ≥
n

ξ̂i
,

for all n ≥ K. Substituting into inequality (5), we then obtain

max
1≤i≤K

ψTn(vi) = n− min
1≤i≤K

|Ti,n| ≤ n(1− 1/ξ̂i).

Define the random variable ξ to equal (1 − 1/ξ̂i) on the event {TK = ti}. Using a similar
argument as in the case of uniform attachment, we have ξ̂i < ∞ for each i with probability
1, so ξ < 1 with probability 1.

3. d-regular diffusion: As in the case of the preferential attachment model, we define the
set of all possible trees at time K by TreesK = {t1, t2, . . . , tκ}, where κ = |TreesK | and
P(TK = ti) = pi. Let Uℓ,n denote the number of uninfected neighbors of vertices in Tℓ,n.
Conditioned on TK = ti, the vector (U1,n, . . . , UK,n) evolves according to a Pólya urn process
with replacement matrix (d − 2)IK and initial configuration (d − deg(v1), . . . , d − deg(vK)),
where (deg(v1), . . . ,deg(vK)) again denotes the degrees of (v1, . . . , vK) in ti. Then

(

U1,n

(d− 2)n
, . . . ,

UK,n
(d− 2)n

)

a.s.→ Dirichlet

(

d− deg(v1)

d− 2
, . . . ,

d− deg(vK)

d− 2

)

,

implying that
( |T1,n|

n
, . . . ,

|TK,n|
n

)

a.s.→ (Ci1, . . . , C
i
K) ∼ Dirichlet

(

d− deg(v1)

d− 2
, . . . ,

d− deg(vK)

d− 2

)

.

The remainder of the analysis proceeds exactly as in the case of the preferential attachment
model.
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This completes the proof of the lemma.

We now define the collection of vertices that ever enter the set of top K most central nodes.
Let K′

n denote the set Kn augmented with any additional vertices that are at least as central as
νK(n) in Tn, and let

Ktot := ∪∞
n=1K′

n.

We have the following lemma, the analog of Lemma 3.1:

Lemma 4.2. In the same setting as Lemma 4.1, we have |Ktot| <∞, with probability 1.

Proof. Consider the set of events

BM =
⋂

n≥K
{ψTn(νK(n)) ≤ nM},

for any real M ∈ (0, 1). Thus, BM is the event that the least central node in Kn, i.e., νK(n), has
its largest subtree upper-bounded by nM at every time n. Now consider the event

Hn = {∃ℓ : vn+1 ∈ K′
ℓ}.

Thus, Hn is the event that vn+1 becomes at least as central as one of the top K central nodes at
some point in the future. On the event Hn, we must have

ψTℓ(vn+1) ≤ max
1≤i≤K

ψTℓ(νi(n)).

Now define the event

Ei = {vn+1 becomes at least as central as νi(n) at some future point}.

We have the bound

P(BM ∩Hn) ≤ P

(

BM ∩
(

K
⋃

i=1

Ei

))

≤
K
∑

i=1

P(BM ∩Ei).

By Lemma 2.2, we may control the probability P(BM ∩ Ei) by bounding the probability that the

random walk
(

|(Tℓ, vn+1)νi(n)↓|, |(Tℓ, νi(n))vn+1↓|
)

reaches the diagonal. Note that this walk starts

from the point
(

|(Tn+1, vn+1)νi(n)↓|, 1
)

at time ℓ = n + 1. If (νi(n), u1, . . . , vn+1) is the path from

νi(n) to vn+1, then on the event BM , we have

|(Tn+1, vn+1)νi(n)↓| = n− |(Tn, νi(n))u1↓|
≥ n− ψTn(νi(n))

≥ n− ψTn(νK(n)

≥ n−Mn

= n(1−M).

Thus, the starting point lies below the diagonal and to the right of the point
(

(1 − M)n, 1
)

.
Lemma A.1 in Appendix A then implies that

P(BM ∩Hn) ≤ K · max
A≥(1−M)n

P (A)

2A
(a)
= K · P

(

(1−M)n
)

2(1−M)n
,
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where (a) holds for all large enough n. The expression on the right-hand side form a convergent
series in n. Applying Borel-Cantelli lemma, we conclude that for all M , the event Hn ∩BM occurs
finitely often, with probability 1. Furthermore, Lemma 4.1 implies that P(BM ) → 1 as M → 1,
since the random variable ξ appearing in the lemma does not have a point mass at 1. Therefore,
with probability 1, the events Hn can can occur only finitely often, which implies the desired
statement.

The stability of the set of top K central nodes then follows by combining Lemmas 4.2 and 3.2,
as in the proof of Theorem 1:

Theorem 2. For the preferential and uniform attachment models, and for the d-regular diffusion
tree with d ≥ 3, with probability 1, there exists a time N and a collection {ν∗1 , . . . , ν∗K} ⊆ TN such
that {ν∗1 , . . . , ν∗K} are the K most central nodes of Tn, for all n ≥ N .

As mentioned at the beginning of the section, Theorem 2 has important implications for root-
finding algorithms in random growing trees: One may obtain confidence sets for the root node in
uniform and preferential attachment models [4] and d-regular diffusion trees [12] by selecting the
nodes that minimize the maximum subtree estimator ψ. Furthermore, the size of the confidence
set may be taken as a fixed function K(ǫ) of the error probability ǫ, and does not need to grow
with n. Theorem 2 implies that the confidence sets constructed in this manner will almost surely
stabilize after a finite time, showing that the confidence set construction is in some sense robust.

5 Ensuring centrality of the root node

The results from the earlier sections indicate that any fixed node has some finite probability of
eventually becoming the persistent centroid of a random growing tree. We consider the special case
of the root node, i.e., the first vertex v1, and ask the question: Can we ensure that v1 is the persistent
centroid of the random growing tree? Note that the probability of the complementary event is at
least 1/2, since there is no way to distinguish nodes v1 and v2. However, in the preferential and
uniform attachment graphs, we may boost the probability of v1 being the persistent centroid by
initializing the tree with a “hub” centered at v1 of size k. In other words, the graph begins with
a star configuration in which the nodes {v2, . . . , vk+1} are all attached to v1. In the case of a
d-regular tree diffusion, the bounded degree makes it impossible to create a large hub at v1. Hence,
we instead begin with the subtree consisting of all nodes at a distance at most r from v1. As a
function of ǫ, we derive bounds on the necessary and sufficient size hub size k (for preferential and
uniform attachment) and the radius r (for a d-regular diffusion) to ensure the persistent centrality
of v1 with probability 1− ǫ.

We begin by deriving necessary conditions.

Theorem 3. The following conditions are necessary to ensure that v1 is the persistent central node,
where C,C ′, and C ′′ are appropriate constants.

(i) Preferential attachment: The hub size k is at least C log(1/ǫ).

(ii) Uniform attachment: The hub size k is at least C ′ log(1/ǫ)
log log(1/ǫ) .

(iii) d-regular tree diffusion: Suppose d ≥ 3. The radius r is at least C ′′ log log(1/ǫ).

Proof. We begin by analyzing the preferential and uniform attachment models. Let Pk denote the
probability that the next k− 1 vertices {vk+2, . . . , v2k} all join vertex v2. Since the graph will then
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be symmetric with respect to v1 and v2, the probability of v1 not being the persistent centroid is
at least Pk/2, which must in turn be less that ǫ. This implies a bound on the required size of k.
The value of Pk and the corresponding bound on k are developed in the following calculations.

1. Preferential attachment: We have

Pk =
1

2k
· 2

2k + 2
· · · · · k − 1

4k − 4
=

(k − 1)!(k − 1)!

2k−1(2k − 2)!
=

1

2k−1
(

2k−2
k−1

) .

Hence,

2ǫ ≥ Pk =
1

2k−1
(

2k−2
k−1

) ≥ 1

2k−14k−1
=

1

23k−3
,

using the fact that
(2k−2
k−1

)

≤ 4k−1. Thus, a hub size of k ≥ C log(1/ǫ) is necessary.

2. Uniform attachment: We have

Pk =
1

k + 1
· 1

k + 2
· · · · · 1

2k − 1
=

k!

(2k − 1)!
.

Hence,

2ǫ ≥ k!

(2k − 1)!
≥ k!

(2k)!
≥ c

√
k(k/e)k√

2k(2k/e)2k
=

c̃ek

22kkk
,

where c and c̃ are suitable constants. Taking logarithms and simplifying, we obtain

log(1/ǫ) ≤ k log k + o(k log k).

Thus, a hub size of k ≥ C ′ log(1/ǫ)
log log(1/ǫ) is necessary.

3. d-regular tree diffusion: In a d-regular tree, we create an r-ball around vertex v1 and derive
bounds on the radius r of the ball. Starting from the r-ball centered at v1, we calculate
the probability that vertices added in such a manner will make v1 and v2 symmetric and
indistinguishable. To ensure this, the next (d − 1)r vertices must be added to fill in the rth

level in the subtree (T, v1)v2↓. This probability is equal to

P =
(d− 1)r!

∏(d−1)r−1
i=0

(

d(d − 1)r + i(d − 2)
) .

Taking τ = d(d−1)r

d−2 ≤ dr+1, we simplify this as

2ǫ > P =
((d− 1)r)!

(d− 2)(d−1)r
∏(d−1)r−1
i=0

(

τ + i
)

≥ ((d− 1)r)!

(d− 2)(d−1)r
∏(d−1)r−1
i=0

(

dr+1 + i
)

=
((d− 1)r)!(dr+1)!

(d− 2)(d−1)r
(

dr+1 + (d− 1)r − 1
)

!
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≥ 1

(d− 2)(d−1)r
(dr+1+(d−1)r

(d−1)r

)

≥ 1

(d− 2)(d−1)r2d
r+1+(d−1)r

.

Taking logarithms and simplifying, we then have

(d− 1)r log(d− 2) +
(

dr+1 + (d− 1)r
)

log 2 ≥ log(1/2ǫ).

Since the left-hand side is Θ(dr+1), we obtain that a radius of size r ≥ C ′′ log log(1/ǫ) is
necessary.

The next result provides sufficient conditions on the size of the initial hub ensuring persistence
of the root node.

Theorem 4. The following conditions are sufficient to ensure that v1 is the persistent central node,
where C̃ and C̃ ′ are appropriate constants:

(i) For preferential and uniform attachment, the hub size k satisfies k ≥ C̃ log(1/ǫ).

(ii) For diffusion over a d-regular tree, with d ≥ 3, the radius r satisfies r ≥ C̃ ′ log log(1/ǫ).

Proof. In the case of preferential or uniform attachment, suppose we start with a hub of size K, so
{v2, . . . , vK+1} are all connected to vertex v1. Let F be the event that v1 becomes the persistent
centroid, and let F∗ be the event that v1 is a tree centroid at all time points. Clearly, P(F) ≥ P(F∗).
We will select the hub size to ensure that the latter probability is at least 1− ǫ. Define the events

Ĥi = {vi becomes a centroid at some time step}.

Then
(

F∗)c = ∪∞
i=2Ĥi.

Note that
Ĥi ⊆ Hi := {vi becomes at least as central as v1 at some time step},

and

Ĥi ⊆ Gi := {vi becomes at least as central as the centroid of Ti−1 at some time step}.

Thus,

P

(

(

F∗)c
)

≤ P

(

(

∪K+1
i=2 Hi

)

⋃

(

∪∞
i=K+2 Gi

)

)

.

Using the bound from Lemma A.1 in Appendix A, and for K greater than an appropriate constant,
we then have

P
(

(

F∗)c
)

≤ K · P (K)

2K
+

∞
∑

i=K+2

P (i/2)

2i/2

(a)

≤ 2K/2

2K
+

∞
∑

i=K+2

2i/4

2i/2
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= 2−K/2 +
2−(K+2)/4

1− 2−1/4

≤ 5 · 2−K/4, (7)

where in (a), we have used the fact that for large enough K,

P (K) < KP (K) < 2K/2.

We can make 5 · 2−K/4 < ǫ by choosing K ≥ C̃ log(1/ǫ) for a large enough constant C̃.
For diffusion over a d-regular tree, the same calculation (7) holds, except now

K =
(d− 1)r+1 − 1

d− 2
= Θ(dr)

for the initial seed graph. Thus, r ≥ C̃ ′ log log(1/ǫ) is a sufficient condition for the size of the
radius.

Remark 5.1. Comparing the necessary and sufficient conditions in Theorems 3 and 4, we see that
a threshold occurs at hub size k = Θ(log(1/ǫ)) in the case of the preferential attachment model,
and at radius r = Θ(log log(1/ǫ)) in the case of a d-regular diffusion. However, the bounds on the
hub size in the case of uniform attachment disagree by a factor of log log(1/ǫ). It is a topic of

future work to determine the exact threshold in this case, which must lie between Ω
(

log(1/ǫ)
log log(1/ǫ)

)

and

O (log(1/ǫ)) by our results.

6 Discussion

We have established the persistence of a unique centroid (or set of top K central nodes) in three
types of random growing trees: Uniform attachment, preferential attachment, and diffusion pro-
cesses over d-regular trees. Furthermore, we have derived necessary and sufficient conditions for
the size of the initial seed graph required to ensure that the first node is the persistent centroid in
the network with probability 1− ǫ. A number of related open questions remain:

(i) We believe that the results in this paper regarding persistence of the centroid should hold in
more general preferential attachment models, where the probability of attaching to a node
is proportional to a function f of the vertex degree. In Galashin [6], it was shown that the
degree-central node persists when f is a convex function. Results concerning nonlinear Pólya
urns indicate that for concave f , degree-centrality cannot persist [14]. However, the centroid
persists when f is either a linear or a constant function, and we conjecture that the persistence
of the centroid holds for a larger class of functions, if not for all functions.

(ii) Our results and those from Galashin [6] show that the top central node “stabilizes” after a
finite time, but we are unable to provide estimates on the expected time or the distribution of
the time when stabilization occurs. This is particularly relevant for practical purposes, when
one may wish to guarantee that the current centroid is the persistent centroid.

(iii) As mentioned in the remark after Theorem 4, the problem of determining the hub-size thresh-
old for the case of uniform attachment trees is still an open question. A related topic concern-
ing degree centrality would be to provide necessary and sufficient conditions on the hub size in
order to ensure degree centrality of v1 (as in Section 5) in the convex preferential attachment
model. It would be interesting to compare these conditions to the bounds required for the
form of centrality studied in this paper.
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(iv) In general, the degree-central node in a tree need not be the same as the centroid. For the
preferential attachment model, one might ask whether the persistent degree-central node is
the same as the persistent centroid with probability 1. It is tempting to think that such
a result should hold; however, it probably does not. A heuristic argument is as follows:
Consider a tree T rooted at v1 with neighbors {v2, v3, v4, v5}. Assume v2 has a large number
of children (say, 106) and no grandchildren, and assume (T, v1)vi↓, for i ∈ {2, 3, 4}, is simply a
line graph with, say, 1010 nodes. A preferential attachment process starting from such a tree
would likely have v1 as the persistent centroid, and v2 as the persistent degree-central node.
Since one can obtain T with a finite probability starting from v1, the persistent degree-central
node cannot agree with the persistent centroid with probability 1. It would be interesting to
study what additional constraints could ensure the agreement of both persistent nodes.

(v) Our results show that the top K central nodes obtained according to the centrality measure
ψ stabilizes after a finite number of steps. However, a confidence set constructed according
to ψ may be sub-optimal in terms of the size of the set required as a function of the error
probability ǫ [4, 12]. It would be interesting to see whether other centrality measures such as
those corresponding to the maximum likelihood estimator are also “robust” in the sense that
they produce a stable output after some finite time.

(vi) The problem of establishing persistence of centrality in non-trees (for example, in preferential
or uniform attachment models where more than one node is added at each step) appears to be
very challenging. It is not clear what notion of centrality, if any, would persist in such cases.
Even for trees, the problems of establishing persistent centrality in alternative models such as
preferential or uniform attachment with choice [15, 7], or random tree branching processes,
are worth considering.
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A Weighted 2-dimensional random walks

In this section, we consider a class of random walks on N × N. From position (i, j), at each time
step the random walk can move either one step up with probability U(i, j), or one step to the right
with probability R(i, j). The probabilities of these movements depend on (i, j) according to

R(i, j) ∝ αi+ β, and U(i, j) ∝ αj + β,

for some α > 0 and α+ β ≥ 0. Our next lemma pertains to such random walks:

Lemma A.1. Consider a 2-dimensional random walk on the N × N lattice, where the location of
the walk at time n is denoted by Wn, and the probabilities of movement are given by

P
(

Wn+1 = (i+ 1, j)|Wn = (i, j)
)

= R(i, j) ∝ αi+ β, and

P
(

Wn+1 = (i, j + 1)|Wn = (i, j)
)

= U(i, j) ∝ αj + β.
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For A > 2, let f(A) be the probability that the random walk reaches the diagonal at some future
time when it starts at W0 = (A, 1). Then there exists a fixed polynomial P such that

f(A) ≤ P (A)

2A
,

and P (A)
2A

is monotonically decreasing for sufficiently large A.

Proof. Let f(A,m) be the probability that the random walk lies entirely below the diagonal before
reaching (m,m) on the diagonal. Clearly,

f(A) =
∞
∑

m=A

f(A,m).

We will now bound f(A,m) for m ≥ A. Let Θ((A,B) → (m,m)) be the number of paths from
(A,B) to (m,m), such that every point on the path lies strictly below the diagonal, except for
the endpoint (m,m). Using the reflection principle, Lemma 2 of Galashin [6] shows that the total
number of such paths from (A,B) to (m,m) is given by the expression

Θ((A,B) → (m,m)) =
(2m− 1−A−B)!(A−B)

(m−A)!(m−B)!
.

Substituting B = 1, we have

Θ((A, 1) → (m,m)) =
(2m− 2−A)!(A− 1)

(m−A)!(m− 1)!
=

Γ(2m−A− 1)(A− 1)

Γ(m+ 1−A)Γ(m)
.

Furthermore, every path from (A,B) to (m,m) has the same probability p((A,B) → (m,m)), and

p((A,B) → (m,m)) =

∏m−1
i=A (αi+ β)

∏m−1
j=B (αj + β)

∏2m−1
k=A+B(αk + 2β)

=
αm−A∏m−1

i=A (i+ β/α)× αm−B∏m−1
j=B (j + β/α)

α2m−A−B∏2m−1
k=A+B(k + 2β/α)

=

∏m−1
i=A (i+ β/α)

∏m−1
j=B (j + β/α)

∏2m−1
k=A+B(k + 2β/α)

.

Substituting B = 1 gives

p((A, 1) → (m,m)) =

∏m−1
i=A (i+ β/α)

∏m−1
j=1 (j + β/α)

∏2m−1
k=A+1(k + 2β/α)

=

Γ(m+β/α)
Γ(A+β/α)

Γ(m+β/α)
Γ(1+β/α)

Γ(2m+2β/α)
Γ(A+1+2β/α)

=
Γ(A+ 1 + 2β/α)

Γ(A+ β/α)Γ(1 + β/α)
· Γ(m+ β/α)Γ(m + β/α)

Γ(2m+ 2β/α)

≤ Γ(A+ 1 + 2⌈β/α⌉)
Γ(A+ ⌈β/α⌉ − 1)Γ(1 + β/α)

· Γ(m+ β/α)Γ(m + β/α)

Γ(2m+ 2β/α)

≤ P (A) · Γ2(m+ β/α)

Γ(2m+ 2β/α)
,
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where P (A) is a fixed polynomial with degree at most ⌈β/α⌉ + 2. In the rest of this proof, we
continue using P (A) to denote a fixed polynomial, although its exact expression may change from
line to line. Since

f(A,m) = Θ((A, 1) → (m,m)) · p((A, 1) → (m,m)),

we have the bound

f(A,m) ≤ P (A)
Γ(2m−A− 1)

Γ(m+ 1−A)Γ(m)

Γ2(m+ β/α)

Γ(2m+ 2β/α)
,

for some polynomial P (A). We now use Stirling’s bound, which says that for all z > 0, the value
of Γ(z) lies with a constant factor of 1√

z

(

z
e

)z
:

Γ(z) ∼ 1√
z

(z

e

)z
.

Substituting and modifying P (A) as convenient, we then have

f(A,m) ≤ P (A)
(2m−A− 1)2m−A−1−1/2(m+ β/α)2(m+β/α−1/2)

(m+ 1−A)m+1−A−1/2mm−1/2(2m+ 2β/α)2m+2β/α−1/2

= P (A)
(2m)2m−A−3/2m2m+2β/α−1

mm−A+1/2mm−1/2(2m)2m+2β/α−1/2
× (1− A+1

2m )2m−A−3/2(1 + β/mα)2m+2β/α−1

(1 − A−1
m )m−A+1/2(1 + β/mα)2m+2β/α−1/2

=
P (A)

2Am2
× (1− A+1

2m )2m−A−3/2

(1− A−1
m )m−A+1/2(1 + β/mα)1/2

≤ P (A)

2Am2
× (1− A+1

2m )2m−A−3/2

(1− A−1
m )m−A+1/2

=
P (A)

2Am2
×
(

(1− A+1
2m )

(1− A−1
m )

)m−A+1/2
(

1− A+ 1

2m

)m−2

=
P (A)

2Am2
×
(

1 +
A− 3

2m− 2A+ 2

)m−A+1/2(

1− A+ 1

2m

)m−2

(a)

≤ P (A)

2Am2
× exp

(

A− 3

(2m− 2A+ 2)
(m−A+ 1/2) − (A+ 1)

2m
(m− 2)

)

≤ P (A)

2Am2
× exp

(

A− 3

2
− A+ 1

2
+
A+ 1

m

)

≤ P (A)

2Am2
× exp (−2 + 2)

=
P (A)

2Am2
,

where in (a), we have used the fact that for all x ∈ R, we have 1 + x ≤ ex. Finally, noting that
∑∞

m=1
1
m2 <∞, we conclude that

f(A) =
∞
∑

m=A

f(A,m) ≤ P (A)

2A
,

for a fixed polynomial P . Without loss of generality, we may choose P (A) to be a monomial with

a positive coefficient, so P (A)
2A

is clearly monotonically decreasing for large enough A.
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