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Decomposing a Graph Into Expanding Subgraphs

Guy Moshkovitz∗ Asaf Shapira†

Abstract

A paradigm that was successfully applied in the study of both pure and algorithmic problems

in graph theory can be colloquially summarized as stating that any graph is close to being the

disjoint union of expanders. Our goal in this paper is to show that in several of the instantiations

of the above approach, the quantitative bounds that were obtained are essentially best possible.

Three examples of our results are the following:

• A classical result of Lipton, Rose and Tarjan from 1979 states that if F is a hereditary

family of graphs and every graph in F has a vertex separator of size n/(logn)1+o(1), then

every graph in F has O(n) edges. We construct a hereditary family of graphs with vertex

separators of size n/(logn)1−o(1) such that not all graphs in the family have O(n) edges.

• Motivated by the Unique Games Conjecture, Trevisan and Arora-Barak-Steurer showed

that given a graph G, one can remove only 1% of G’s edges and thus obtain a graph in

which each connected component has good expansion properties. We show that in both

of these decomposition results, the expansion properties they guarantee are (essentially)

best possible even when one is allowed to remove 99% of G’s edges. In particular, our

results imply that the eigenspace enumeration approach of Arora-Barak-Steurer cannot

give (even quasi-) polynomial time algorithms for unique games.

• Sudakov and the second author have recently shown that every graph with average degree

d contains an n-vertex subgraph with average degree at least (1 − o(1))d and vertex ex-

pansion 1/ log1+o(1) n. We show that one cannot guarantee a better vertex-expansion even

if allowing the average degree to be O(1).

The above results are obtained as corollaries of a new family of graphs, which we construct

by picking random subgraphs of the hypercube, and analyze using (simple) arguments from the

theory of metric embedding.

1 Introduction

In recent years a certain paradigm has emerged which roughly says that any graph is close to

being a vertex-disjoint union of expanders. Unlike the ǫ-regular partitions of Szemerédi [30] and

the cut decompositions of Frieze-Kannan [9] which are relevant only for dense graphs (i.e., with

Θ(n2) edges), this paradigm is applicable for graphs of arbitrary density. Generally speaking, its
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usefulness stems from the fact that it allows for a divide-and-conquer approach, in essence reducing

a problem on general graphs to the special case of expander graphs.

For algorithmic problems, this paradigm has been useful, for example, in designing approxima-

tion algorithms related to the Unique Games Conjecture [14], as in the seminal work of Arora-Barak-

Steurer [3] and of Trevisan [31]. It has also seen applications in property-testing algorithms [7, 10],

as well as in data structure design [25]. In graph theory, instantiations of this paradigm include

the theorem of Lipton-Tarjan-Rose [22] on vertex separators in hereditary families, the results of

Linial-Saks [21] and Leighton-Rao [19] on low-diameter decompositions, as well as results in the

field of graph minors [17, 27] and cycle packing [6]. See Section 2 for some further discussion.

We note that in all applications of the regularity lemmas [9, 30] one uses the same notion of

expansion1. On the other hand, when dealing with sparse graphs and applying the above-mentioned

paradigm, each application calls for a different notion of expansion. Our main goal in this paper

is to show that in several of the above-mentioned applications, the different notions of expansion

that were used are quantitatively best possible.

As it turns out, all our results can be deduced from a construction of a new family of graphs

(stated in Theorem 1), whose main property is that every subgraph of it has a small edge separator,

which in particular implies small vertex/edge expansion. We next recall some basic definitions.

Definition 1.1 (Edge/Vertex Separator). An edge separator in a graph G = (V,E) is a set of

edges whose removal disconnects G into two (not necessarily connected) subgraphs, each on at most
2
3 |V | vertices. We write sepE(G) for the minimum cardinality of an edge separator in G.

A vertex separator is defined in the same way, only now vertices are removed rather than edges.

We write sepV(G) for the minimum cardinality of a vertex separator in G

Note that sepV(G) ≤ sepE(G), simply by taking an arbitrary endpoint of each separator edge.

The girth of a graph is the minimum length of a cycle in it. We henceforth write log(·) for log2(·).
Our main technical result in this paper, stated next, implies that there exist graphs with a super-

linear number of edges, whose girth is (log n)1−o(1) and whose t-vertex subgraphs all have expansion

at most (log t)−1+o(1).

Theorem 1. For any n, k with 2 ≤ k ≤ 1
648 log log n there is an n-vertex graph G = Gn,k satisfying:

i. G has average degree at least k and maximum degree at most 6k.

ii. G has girth at least log n/(6k)2.

iii. Every t-vertex subgraph H of G with t ≥ log n/(6k)2 satisfies

sepV(H) ≤ sepE(H) ≤ t

log t
· (log log t)2 . (1)

Let us briefly explain why the quantitative estimates in Theorem 1 are (essentially) best possible.

First, observe that for subgraphs H of Gn,k in Theorem 1 on fewer than log n/(6k)2 vertices, we of

course have a much stronger bound on sepV(H) and sepE(H) than the one stated in (1) for larger

subgraphs. To see this, one just has to recall the following well-known fact.

1In the setting of the regularity lemma, expansion is referred to as being ǫ-regular.
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Fact 1.2. Every tree T satisfies sepV(T ) ≤ 1.

So item (ii) in Theorem 1 implies that subgraphs H of Gn,k on fewer than log n/(6k)2 vertices

satisfy sepV(H) ≤ 1 and thus also sepE(H) ≤ ∆(H) ≤ ∆(G) (≤ log log n).2 Note that the bound

on sepE(H) cannot be improved by much beyond ∆(G) since G contains K1,∆(G) (the star with

∆(G) leaves) as a subgraph, and it is not hard to see that sepE(K1,∆) ≥ ∆/3. Second, as we

discuss in Section 6, any family of graphs satisfying item (iii) (or variants of it) contains at most

n(log log n)O(1) edges, so one cannot construct graphs as above with average degree much larger

than log log n. Finally, it follows from Theorem 6 below that any graph of average degree at least

3 has a subgraph that is not a tree and does not contain a separator of size much smaller than the

one in (1), so our estimate on the size of the separator in item (iii) cannot be reduced by more

than some log log t terms. Actually, the proof of Theorem 1 shows that in (1) we can replace the

(log log t)2 term by (log log t)1+o(1), but we chose to use the simpler/cleaner expression.

1.1 Small set expansion

Next we describe a strengthening of Theorem 1 which will be important for some of our applications.

Notice that Theorem 1 gives a graph whose every subgraph has a large subset (i.e., consisting of at

least 1/3 of its vertices) that does not expand. One may thus further ask for a graph that does not

contain even small set expanders; that is, a graph whose every subgraph has a small non-expanding

set (i.e., consisting of o(1)-fraction of the vertices). The notion of small set expanders has recently

received much attention in theoretical computer science (see, e.g., [3, 28, 29]). For example, it

is believed that solving unique games is intimately connected with the problem of finding small

non-expanding sets.

For a graph H and a subset ∅ 6= A ⊆ V (H) we write ∂H(A) for the set of edges of H with

precisely one endpoint in A, and φH(A) for the edge expansion of A in H, that is,

φH(A) =
|∂H(A)|

|A| .

We have the following “small set” counterpart of Theorem 1. Note that here we in fact prove the

stronger property that one can essentially partition the subgraph into small non-expanding subsets.

Theorem 2. Let G = Gn,k be a graph from Theorem 1 with 2 ≤ k ≤ 1
648 log log log n. For every

t-vertex subgraph H of G with t ≥ log n/(6k)2, and every 1/t ≤ µ ≤ 2/3, there are ⌈1/4µ⌉ mutually

disjoint subsets Ai ⊆ V (H) of size µt/3 ≤ |Ai| ≤ µt satisfying

φH(Ai) ≤
log(1/µ)

log t
· (14 log log t)2 . (2)

Note that in Theorem 2 we can find, in any large subgraph H, subsets that simultaneously

have “measure” o(1) and edge expansion o(1). For example, by setting µ = 1/ log t in (2),

each of the subsets A ⊆ V (H) produced by the theorem satisfies |A| /t = 1/ log t and φH(A) ≤
(1/ log t)(14 log log t)3 = 1/(log t)1−o(1).

2∆(·) denotes the maximum degree of a graph.
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Similarly to Theorem 1, the quantitative estimates in Theorem 2 are (essentially) best possible.

It follows from Theorem 6 below that any graph of average degree at least 3 has a t-vertex subgraph

whose every subset of measure µ has edge expansion at least log(1/µ)
log t (log log t)−2. Thus, our estimate

of the edge expansion cannot be reduced by more than some log log t terms. Finally, note that while

Theorem 2 only deals with subgraphs H on at least log n/(6k)2 vertices, any smaller subgraph is

a tree (due to item (ii) in Theorem 1), implying that it trivially has small subsets with weak

expansion.

1.2 Paper overview

In Section 2 we describe the main results of this paper, which are the applications of Theorems 1

and 2, showing that many decomposition-type results that were used in different areas of research

are essentially best possible. These include applications in approximation algorithms, property

testing, extremal problems in graph theory as well as the nested dissection method. The proof of

Theorem 1 is given in Section 3 (with some technical proofs differed to Section 5) and the proof of

Theorem 2 is given in Section 4. Section 6 contains some concluding remarks and open problems.

Let us thus give an overview of the proofs of the our theorems.

The main idea of the proof of Theorem 1 is to start with the Boolean hypercube Qd and choose

an appropriate random subgraphG of it. Using (simple) probabilistic and combinatorial arguments,

we show that this random subgraph G satisfies items (i) and (ii) of Theorem 1. To prove the third

item, we first prove that all bounded degree subgraphs of Qd have small edge expansion. To this

end, we use an argument similar to the one used by Linial, London and Rabinovich [20] in the

setting of metric embedding. Then, we proceed to “boost” this fact in order to show that every

sufficiently large subgraph of G actually has a small edge separator, thus establishing item (iii) of

Theorem 1.

In order to prove Theorem 2, we first show that the hereditary nature of item (iii) of Theorem 1

can be used to iteratively find smaller and smaller subsets while controlling their expansion. This

enables us to find a single small subset having small expansion. Next, we remove this subset and

look for another small subset, this time having small expansion in the remaining subgraph. We

continue in this manner until we get almost a partition of the vertex set. Finally, we show that

many of the subsets we obtained have small expansion also in the original subgraph.

2 Applications of Main Results

2.1 Edge density of hereditary families with small separators

A family of graphs is said to be hereditary if it is closed under taking induced subgraphs. The

well-known Planar Separator theorem of Lipton-Tarjan [23] asserts that any n-vertex planar graph

has a vertex separator of cardinality at most O(
√
n). This influential result lead to many extensions

for other hereditary families of graph (such as minor-free families, see [2]). The notion of vertex

separator in graphs has since found numerous applications in studying both pure and algorithmic

problems in graph theory (see [26] and its references). One of the first applications of separators was

given by Lipton, Rose, and Tarjan [22] in their work on the nested dissection method. Intuitively,
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their result states that the reason planar graphs (and more generally minor-free graphs) have

linearly many edges is that they have small separators.

Theorem 3 ([22], Theorem 10). For every ǫ > 0 there is C > 0 for which the following holds.

Let F be a hereditary family of graphs such that every n-vertex graph G ∈ F satisfies sepV(G) ≤
n/(log n)1+ǫ. Then every n-vertex graph in F has at most Cn edges.

We mention that Fox and Pach [8] strengthened Theorem 3 by proving that even separators of

size n/ log n(log log n)1+ǫ guarantee3 that every graph in F has O(n) edges.

Using Theorem 1 we next show that the separation requirement in Theorem 3 cannot be im-

proved much beyond n/ log n.

Corollary 2.1. There is a hereditary family of graphs F such that every n-vertex graph G ∈ F
satisfies sepV(G) ≤ (n/ log n)(log log n)2, yet there is no C > 0 such that every n-vertex graph in

F has at most Cn edges.

Proof. Let F be the family of graphs defined as follows:

F = {G : G is an induced subgraph of Gn,log logn/648 for some n} ,

where Gn,log logn/648 are the graphs from Theorem 1. Note that F is, by definition, a hereditary

family of graphs. By items (ii) and (iii) of Theorem 1 (and Fact 1.2), every n-vertex graph G ∈ F
satisfies sepV(G) ≤ (n/ log n)(log log n)2, as required. On the other hand, by item (i) of Theorem 1,

the family F contains, for every large enough n, an n-vertex graph with Ω(n log log n) edges. This

completes the proof.

2.2 Decomposing a graph into edge expanders

Trevisan [31], in his work on approximating constraints satisfaction problems related to the Unique

Games Conjecture, gave a combinatorial algorithm for approximating unique games. The main

component of the algorithm is a decomposition of any graph into disjoint expanders. Given the

graph underlying the unique game input, the algorithm proceeds to solve the problem on each

expander separately, which, as Trevisan shows, can be done in polynomial time. We note that we

will revisit this paradigm for solving unique games in Section 2.3, where we discuss the well-known

Arora-Barak-Steurer [3] algorithm. We begin with the formal definitions.

A (linear) unique game is a system of linear equations of the form xi − xj = ci,j (mod q). Let

UGq(δ) denote the computational problem of deciding, given a unique game with equations modulo

q, whether there is an assignment satisfying at least a (1 − δ)-fraction of the equations or rather

every assignment satisfies at most a δ-fraction of the equations (we are guaranteed that one of the

two cases holds). The influential Unique Games Conjecture4 of Khot [14] postulates that UGq(δ)

is NP-hard for every 0 < δ < 1/2 and sufficiently large q. Trevisan’s algorithm efficiently solves a

weaker version of UGq(δ) (and therefore does not refute the Unique Games Conjecture).

A graph G = (V,E) is said to have edge expansion α if every subset S ⊆ V with |S| ≤ |V | /2
satisfies |∂(S)| ≥ α |S| (recall that the edge boundary ∂(S) of S is the set of edges with precisely

3The result of [8] actually shows that having separators of size n/ log n log log n(log log log n)2 suffices.
4The version stated here was shown in [15] to be equivalent to Khot’s original formulation in [14].
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one endpoint in S). Trevisan proved the following decompositions theorem for arbitrary graphs.

Roughly speaking, it asserts5 that, given any graph, one can remove few of the edges in order to

disconnect it into disjoint graphs of high expansion6.

Theorem 4 ([31], Lemma 10). Let 0 < ǫ ≤ 1/2. From any n-vertex graph one can remove at most

an ǫ-fraction of the edges to obtain a graph whose every connected component has edge expansion

at least ǫ/12 log n.

Using Theorem 1 we show in Corollary 2.3 below that, already for ǫ = 1/2, the expansion

guarantee in Theorem 4 cannot be improved much beyond 1/ log n. In fact, we show that the

same conclusion holds even when ǫ = 1 − o(1), that is, even if one is allowed to remove all but a

o(1)-fraction of the edges of the graph! To this end, we will first need the following observation

regarding the graphs Gn,k from Theorem 1.

Claim 2.2. Any subgraph of Gn,k with average degree at least 4 has at least n1/72k2 vertices.

Proof. Let H be a t-vertex subgraph of G with average degree at least 4. Recall the well-known fact

that the girth of a t-vertex graph of average degree at least 4 is at most 2 log t (in fact, average degree

at least 3 suffices, see [1]). Item (ii) in Theorem 1 thus implies log n/(6k)2 ≤ 2 log t, completing

the proof.

Corollary 2.3. Let G = Gn,k be a graph from Theorem 1. Any subgraph of G with average degree

at least 4 has a connected component with edge expansion at most (1/ log n)(15k log log n)2.

Proof. Consider a subgraph of G with average degree at least 4, and note that it has a connected

component H with average degree at least 4. Writing t for the number of vertices of H, Claim 2.2

implies that log t ≥ log n/72k2. It follows from item (iii) in Theorem 1 that the edge expansion of

H is at most (t/ log t)(log log t)2 · (3/t) ≤ (1/ log n)(15k log log n)2.

By Corollary 2.3, even after removing a fraction of 1− 4/k of the edges of Gn,k, the remaining

graph has a connected component with edge expansion at most O((1/ log n)(k log log n)2). So

for example, taking k = 8 gives a bounded-degree graph such that even after removing up to

half of its edges, the remaining graph has a connected component with edge expansion at most

O((1/ log n)(log log n)2). At the other extreme, if k = log log n/648 then even after removing

a (1 − o(1))-fraction of the edges, the remaining graph has a connected component with edge

expansion at most (1/ log n)(log log n)4.

2.3 Threshold-rank decomposition

Recall that in Section 2.2 we discussed a paradigm for solving unique games by decomposing any

graph into expanding subgraphs. The same paradigm was used in the breakthrough paper of Arora,

Barak and Steurer [3] which gave the first algorithm to come close to refuting the Unique Games

Conjecture, solving UGq(δ) in subexponential time exp(q · nδ1/3) (here n is the number of vari-

ables). The algorithm in [3] employed the eigenspace enumeration method where, unlike Trevisan’s

5We note that prior to [31], Goldreich and Ron [10] have implicitly proved a result of the same spirit, whose exact

quantitative properties are somewhat more complicated to state. See also [13]
6Trevisan originally used the notion of conductance; our lower bound applies even for edge expansion.
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decomposition, the pseudorandom property which the connected components must satisfy depends

on the entire spectrum of their adjacency matrix. As in Section 2.2, we prove that one cannot

substantially improve the obtained decomposition. Formal definitions follow.

For a d-regular graph G, denote by rankτ (G) the number (with multiplicities) of eigenvalues λ

of the adjacency matrix of G satisfying |λ| > τd. Let Rn(η, ǫ) denote the minimum integer such

that for any n-vertex graph G, one can remove at most an ǫ-fraction of its edges so that each

connected component H of the new graph satisfies rank1−η(H
∗) ≤ Rn(η, ǫ), where H∗ is obtained

from H by adding self-loops to make it ∆(G)-regular. The main result of [3] can be summarized

as follows.

Theorem 5 ([28], Theorem 5.6). There are absolute constants c, c′ > 0 such that:

i. For every 0 < η, ǫ ≤ 1,

Rn(η, ǫ) ≤ nc(η/ǫ2)1/3 .

Moreover, a decomposition achieving this bound can be found in polynomial time.7

ii. UGq(δ) can be solved in time exp( q · Rn(O(δ), c′) ).

The first step in the algorithm of [3] (item (i) in Theorem 5 which, as the authors themselves

write, is the main component of the algorithm) is the efficient decomposition of any graph, by

removing few of its edges, into vertex-disjoint subgraphs of small threshold rank. This decomposi-

tion is applied on the graph underlying the input unique game, and then the problem is solved on

each connected component. The second step (item (ii) in Theorem 5) follows by applying, for each

connected component, a brute force enumeration over the eigensapces corresponding to its large

eigenvalues. The second step is inspired by works of Kolla and Tulsiani [4] and Kolla [16], who

previously used eigenspace enumeration to solve unique games on Cayley graphs. Combining the

two items of Theorem 5 shows that the algorithm of [3] runs in time exp(q · nO(δ1/3)).

Note that in order to obtain a faster algorithm using the eigenspace enumeration method, one

must improve the bound on Rn(η, ǫ) in Theorem 5. Up to the present work it was conceivable8

that for example Rn(η, ǫ) ≤ (log n)poly(η), say for ǫ ≥ ǫ0. Such a decomposition would have implied

a quasipolynomial time algorithm for UGq(δ), practically refuting9 the Unique Games Conjecture.

As we prove below, the bound on Rn(η, ǫ) in Theorem 5 is essentially tight. Namely, we show

that one can derive from Theorem 2 a nearly polynomial lower bound on Rn(η, ǫ). This essentially

eliminates the possibility of disproving the Unique Games Conjecture using the eigenspace enu-

meration approach of [3]. See Section 6 for more details on this. We note that our lower bound

applies even when ǫ = 1−o(1), that is, even when one is allowed to remove all but a o(1)-fraction of

the graph’s edges. Naturally, the bound holds regardless of the running time of the decomposition

algorithm.

7So for example, for every d-regular n-vertex graph G, one can efficiently remove at most (say) 1% of the edges

of G so that for each connected component in the resulting graph, its “regularized” adjacency matrix has at most

nO(η1/3) eigenvalues larger than (1− η)d.
8The main tool used in [3] in order to prove Theorem 5 is a higher-order Cheeger-type inequality. It was recently

shown in [5] that this inequality is essentially best possible, but to the best of our knowledge, this does not rule out

the possibility of improving Theorem 5 by other means.
9Say, under the so-called Exponential Time Hypothesis.
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Corollary 2.4. For every n ≥ n0, 0 < η ≤ 1, and ǫ ≤ 1− 3000/ log log log n, we have

Rn(η, ǫ) ≥ nη/(log logn)3 .

For the proof of Corollary 2.4 we will need the “easy” direction of the higher-order Cheeger

inequality that first appeared in [18]. For completeness, we give a short and simple proof in

Section 5.

Lemma 2.5. Let G = (V,E) be a d-regular (multi-)10graph, and let λ1 ≥ λ2 ≥ · · · ≥ λ|V | be the

eigenvalues of the adjacency matrix of G. Then for every k,

d− λk

2
≤ min

S1,...,Sk

max
1≤i≤k

φG(Si) ,

where the minimum is over all collections of k mutually disjoint, non-empty subsets of V .

Proof of Corollary 2.4. Let G = Gn,k be a graph from Theorem 1. We will show that any subgraph

of G with average degree at least 4 has a connected component H satisfying

rank1−η(H
∗) ≥ 1

4
nη/k(200 log logn)2 . (3)

Setting k = log log log n/648, this would mean that removing an ǫ-fraction of the edges of G, even

with ǫ as large as 1 − 4/k ≥ 1 − 3000/ log log log n, leaves a connected component H that, for

every n ≥ n0, satisfies rank1−η(H
∗) ≥ nη/(log logn)3 . This would imply the desired lower bound on

Rn(η, ǫ).

Consider a subgraph of G with average degree at least 4 and note that it has a connected

component H with average degree at least 4. Writing t for the number of vertices of H, Claim 2.2

implies that t ≥ n1/72k2 (≥ log n/(6k)2). Apply Theorem 2 on H with µ = 1/tηk/(20 log log t)
2
. Note

that, as required by Theorem 2, we may assume µ ≥ 1/t (as one may verify, recalling η ≤ 1) and

µ ≤ 2/3 (as otherwise nη/k(200 log logn)2 ≤ 1/µ ≤ 3/2, so (3) trivially holds). We thus obtain

b :=
1

4µ
=

1

4
tηk/(20 log log t)

2 ≥ 1

4
nη/k(200 log logn)2

mutually disjoint and non-empty subsets of H that each have edge expansion in H at most

(log(1/µ)/ log t)(14 log log t)2 < ηk/2. Let λ1 ≥ λ2 ≥ · · · ≥ λt be the eigenvalues of the adja-

cency matrix of H∗ (recall that H∗ is obtained by adding to H sufficiently many self-loops so as

to make it ∆(G)-regular). Note that adding self-loops does not alter the expansion of any subset.

Therefore, Lemma 2.5 implies that ∆(G) − λb < ηk. It follows that for every 1 ≤ i ≤ b we have

λi ≥ λb > ∆(G) − ηk ≥ (1 − η)∆(G). This shows that rank1−η(H
∗) ≥ b, as required in (3), and

therefore completes the proof.

2.4 Finding a single vertex-expanding subgraph

For a graph G, a subset S ⊆ V (G) is said to have vertex expansion α if |N(S)| = α |S|, where N(S)

denotes the set of vertices outside of S that have a neighbor in S. Motivated by certain extremal

problems related to graph minors, it was shown in [27] that every graph G contains a subgraph H,

such that H has good vertex expansion properties and almost the same average degree as G.

10By this we mean that we allow self-loops.
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Theorem 6 ([27], Lemma 1.2). Let 0 < ǫ ≤ 2−8. Every graph G of average degree k contains a

t-vertex subgraph H with average degree at least (1− ǫ)k such that every subset of V (H) of size µt

with 1/t ≤ µ ≤ 1/2 has vertex expansion in H at least ǫ · log(1/µ)/ log t(2 log log t)2.

Theorem 2, together with item (ii) of Theorem 1 and Fact 1.2, yields the following corollary,

which shows that the expansion guarantee in Theorem 6 above is essentially best possible.

Corollary 2.6. Let G be a graph from Theorem 2, and let H be a t-vertex subgraph of G. Then

for every 1/t ≤ µ ≤ 2/3, there is a subset of V (H) of size in [µt/3, µt] whose vertex expansion in

H is at most (log(1/µ)/ log t) · (14 log log t)2.

2.5 Hyperfinite families of graphs

A graph is said to be (ǫ, q)-hyperfinite if one can remove an ǫ-fraction of its edges and thus decompose

it into connected components of size at most q each. A family of graphs is said to be hyperfinite

if there is a function q such that for every ǫ > 0, every graph in the family is (ǫ, q(ǫ))-hyperfinite.

Hyperfinite families of graphs have been extensively studied in recent years, mainly because of their

role in the theory of graph limits of sparse graphs (see [24]). Motivated by certain questions related

to the design of property-testing algorithms, it was shown in [7] that a hereditary family of graphs

in which every graph has a small edge separator must be hyperfinite. More precisely, the following

holds.

Theorem 7 ([7], Corollary 3.2). Let F be a hereditary family of graphs such that every n-vertex

graph G ∈ F satisfies sepE(G) ≤ n/ log n(log log n)2. Then, F is hyperfinite.

Using Theorem 1 we show that the edge-separation requirement in Theorem 7 cannot be im-

proved much beyond n/ log n.

Corollary 2.7. The graphs Gn,8 from Theorem 1 are not (12 , n
1/4608)-hyperfinite. In particular,

setting

F8 = {G : G is an induced subgraph of Gn,8 for some n}
we get a hereditary family of graphs that is not hyperfinite, despite the fact that every n-vertex

graph G ∈ F8 satisfies sepE(G) ≤ (n/ log n)(log log n)2 + 48.

Proof. To see that the first assertion holds, note that after removing at most half of the edges of

Gn,8, we obtain a graph with average degree at least 4. This graph has a connected component

H of average degree at least 4. By Claim 2.2, the number of vertices in H is least n1/4608. As

to the second assertion of the corollary, note that the first assertion clearly means that F8 is not

hyperfinite. Also, note that the fact that sepE(G) ≤ (n/ log n)(log log n)2 + 48 holds for every

G ∈ F8 follows from items (i),(ii) and (iii) of Theorem 1 together with Fact 1.2.

3 Proof of Theorem 1

As mentioned earlier, in order to construct the graphs Gn,k of Theorem 1 we pick a suitable random

subgraph of the hypercube. The d-cube, denoted Qd, is the graph with vertex set {0, 1}d where two

vertices are adjacent if their corresponding vectors differ in exactly one coordinate. Note that Qd is
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a d-regular graph on 2d vertices. The proof will have three main steps, appearing in the following

three subsections. In the first subsection we define the graphs Gn,k and prove that they satisfy the

first two properties of Theorem 1. In the second step we prove that large subgraphs of the cube do

not have good expansion properties. Finally, in the last subsection we combine the results from the

first two subsections to prove that the graphs Gn,k also satisfy the third property in Theorem 1,

thus completing its proof.

3.1 Construction

Our goal in this subsection is to prove the following lemma.

Lemma 3.1. For any d ∈ N and 2 ≤ k ≤ d there is a subgraph Q = Qd,k of the d-cube, on all 2d

vertices, such that:

i. The average degree of Q is at least k.

ii. The maximum degree of Q is at most 3k.

iii. The girth of Q is at least d/(3k)2.

For the proof of the above lemma we will need the following upper bound on the number of

cycles of a given length in the cube.

Claim 3.2. The number of cycles of length 2ℓ in the d-cube is at most 2d(dℓ)ℓ.

Proof. We will show that the number of closed walks of length 2ℓ, starting and ending at a given ver-

tex, is at most (dℓ)ℓ; this would immediately imply the stated bound. We claim that each such closed

walk corresponds to a sequence (x1, . . . , x2ℓ) ∈ [d]2ℓ with the property that |{i ∈ [2ℓ] : xi = t}| is
even for every t ∈ [d]. To see this, recall that each vertex in the graph corresponds to an element of

{0, 1}d. The claim follows by considering, for each edge along a closed walk beginning (and ending)

with a given vertex, the unique index in which the bit “flips”. So all that is left is to bound from

above the number of sequences as above. Now, observe that all these sequences can be generated

by first partitioning the set of indices {1, . . . , 2ℓ} into ℓ pairs and then assigning to each pair a

value from {1, . . . , d} (of course, this process will generate some sequences several times). Since the

number of ways one can pair the elements of {1, . . . , 2ℓ} is given by

(2ℓ− 1)!! = (2ℓ− 1)(2ℓ− 3) · · · 3 · 1 ≤ 2ℓℓ!/2 ≤ 2ℓ(ℓ/2)ℓ = ℓℓ ,

we get that the number of sequences is bounded from above by dℓ · ℓℓ.

To prove the existence of a graph as in Lemma 3.1 we use the so-called probabilistic “deletion

method”.

Proof of Lemma 3.1. Denote by G′ the random subgraph of the d-cube where each edge is inde-

pendently retained with probability p = 3k/d. Let the random variable X count the number of

edges of G′. Then

E[X] = p · d2d−1 = 3k · 2d−1 . (4)

10



Set L = d/9k2 and let the random variable Y count the number of cycles of length at most L in

G′. By Claim 3.2,

E[Y ] ≤
L/2
∑

ℓ=2

p2ℓ2d(dℓ)ℓ = 2d
L/2
∑

ℓ=2

(p2dℓ)ℓ = 2d
L/2
∑

ℓ=2

(ℓ/L)ℓ ≤ 2d
L/2
∑

ℓ=2

(1/2)ℓ ≤ 2d−1 . (5)

Let the random variable Z count the total number of “excess” edges in G′, that is,

Z =
∑

v : deg(v)>3k

(deg(v)− 3k) .

For each vertex v, the random variable deg(v) follows the binomial distribution B(d, 3k/d), so

E[deg(v)] = 3k. Note that
∑

v |deg(v) − 3k| =
∑

v(3k − deg(v)) + 2Z, which means E[Z] =
1
2

∑

v E |deg(v)− 3k|. By Jénsen’s inequality,

(E |deg(v)− 3k|)2 ≤ E[(deg(v)− 3k)2] = Var[deg(v)] ≤ 3k ,

implying that

E[Z] =
1

2

∑

v

E |deg(v)− 3k| ≤
√
3k · 2d−1 . (6)

Combining (4),(5), and (6) we get

E[X − Y − Z] ≥ (3k − 1−
√
3k) · 2d−1 ≥ k · 2d−1 , (7)

where the last inequality can be easily checked to hold for any k ≥ 2. Let Q be obtained from G′

by removing an arbitrary edge from each cycle of length at most d/9k2, as well as removing, for

each vertex v with deg(v) > 3k, arbitrary deg(v) − 3k adjacent edges. Clearly, Q satisfies the last

two requirements in the statement. Moreover, we have from (7) that the expected average degree

of Q is at least k. The existence of a subgraph of the d-cube as required immediately follows.

3.2 Expansion in the hypercube

In this subsection we prove that large subgraphs of the d-cube are not good edge expanders. Recall

that a graph G = (V,E) is said to have edge expansion α if every subset S ⊆ V with |S| ≤ |V | /2
satisfies |∂(S)| ≥ α |S| (the edge boundary ∂(S) is the set of edges with exactly one vertex in S).

Our goal in this subsection is to prove the following lemma.

Lemma 3.3. Any (not necessarily induced) subgraph of the d-cube with t vertices and average

degree r has edge expansion at most 2r log d/ log(t/2).

We first need the following easy claim, in which the distance between two vertices u, v in a

graph G, denoted δG(u, v), is the length of a shortest path connecting u and v.

Claim 3.4. For every graph G of maximum degree ∆ > 1, and every t-vertex subset S ⊆ V (G),

the average distance
∑

{u,v}∈(S2)
δG(u, v)/

(t
2

)

is at least log(t/2)/(2 log ∆).

11



Proof. Let v ∈ S. We claim that there are at least t/2 vertices in S of distance at least ℓ =

log(t/2)/ log ∆ from v. Indeed, the number of vertices of distance at most ℓ− 1 from v is at most
∑⌊ℓ−1⌋

i=0 ∆i < ∆ℓ ≤ t/2. It follows that the average distance is at least ℓ/2.

We are now ready to prove the main result of this subsection.

Proof of Lemma 3.3. Let H = (S,E) be a t-vertex subgraph of the d-cube Qd of average degree

r, and let α denote the edge expansion of H. We need to show that α ≤ 2r log d/ log(t/2). Note

that we may assume α > 0 (i.e., that H is connected), as otherwise there is nothing to prove.

For each vertex v ∈ S, write (v1, . . . , vd) ∈ {0, 1}d for the corresponding binary vector. Notice

δQd
(u, v) =

∑d
i=1 |ui − vi|. Observe that

∑

{u,v}∈E δQd
(u, v)

∑

{u,v}∈(S2)
δQd

(u, v)
=

∑d
i=1

∑

{u,v}∈E |ui − vi|
∑d

i=1

∑

{u,v}∈(S2)
|ui − vi|

=:

∑d
i=1 xi

∑d
i=1 yi

≥ min
i: yi 6=0

xi
yi

, (8)

where the inequality holds11 for all non-negative reals x1, y1, . . . , xd, yd. Let i ∈ [d] achieve the

minimum in (8) (which is well defined since yi 6= 0 for some i), and set T = {v ∈ S : vi = 1}.
Note that since yi > 0 we have 0 < |T | < |S| and that we can in fact assume that 0 < |T | ≤ |S| /2
(otherwise we replace T with S \ T ). Noting that in (8) we have xi = |∂T | and yi = |T | |S \ T |, we
deduce that

∑

{u,v}∈E δQd
(u, v)

∑

{u,v}∈(S2)
δQd

(u, v)
≥ |∂T |

|T | |S \ T | ≥ min
S′⊆S :

0<|S′|≤|S|/2

|∂S′|
|S′| |S \ S′| ≥

α

|S| − 1
.

Therefore,
1

(|S|
2

)

∑

{u,v}∈(S2)

δQd
(u, v) ≤ 2

α |S|
∑

{u,v}∈E

δQd
(u, v) =

2 |E|
α |S| =

r

α
. (9)

Applying Claim 3.4 with G = Qd and the set S, the left hand side of (9) is at least log(t/2)/2 log d.

The desired bound on α follows.

3.3 Putting it all together

To prove Theorem 1 we will show that the graphs constructed in Lemma 3.1 have the property that

every subgraph H has a small edge separator. To this end, we start by proving that every subgraph

H has a small edge expansion. In the proof we will consider two cases, depending on the number of

vertices of H. If H has at most 2d
1/3

vertices, then having high expansion implies (see Lemma 3.5

below) the existence of a cycle of length O(d/k2); however, such a short cycle does not exist in the

graph. Otherwise, since the maximum degree of the graph is bounded, Lemma 3.3 implies that H

has small edge expansion. Finally, we boost this “hereditary” non-expansion property to construct

a small separator in H (see Lemma 3.6 below).

To execute the above proof strategy we will need the following two lemmas, whose proofs appear

in Section 5. Recall that we use sepE(G) to denote the size of the smallest edge separator in G.

11Indeed, denoting the minimum by m, we have xi ≥ myi for every i (even if yi = 0), so (
∑d

i=1 xi) ≥ m(
∑d

i=1 yi).
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Lemma 3.5. Every connected n-vertex graph with edge expansion α (> 0) that is not a tree has

girth at most 2(2/α+ 1)(ln(n) + 1) + 1. In particular, if α ≤ 1 then the girth is at most 12 ln n/α.

Lemma 3.6. Let G be an n-vertex graph whose every t-vertex subgraph has expansion at most f(t),

for every t ≥ n/3 and where f : [n/3, n] → R is decreasing. Then sepE(G) ≤ (2/3)nf(n/3).

We can finally give a proof for the main theorem.

Proof of Theorem 1. First, suppose that n is a power of 2, and write n = 2d. Let G = Qd,2k be a

subgraph of the d-cube as guaranteed by Lemma 3.1. For the rest of the proof set t0 = d/(6k)2.

The assertion of Lemma 3.1 implies that G has average degree at least 2k, maximum degree at

most 6k, and girth at least t0. So to complete the proof (for n = 2d) we only need to establish

item (iii) of Theorem 1. We will start by proving that every t-vertex subgraph of G on at least

t0 vertices has edge expansion at most 1
3(1/ log t)(log log t)

2. We will then “boost” this fact using

Lemma 3.6 and get that every t-vertex subgraph as above in fact has an edge separator of size

at most (t/ log t)(log log t)2, as required. Note that the statement of the theorem implies that

d ≥ 22·648. One consequence of this fact is that d ≥ (log d)6. We will also use the fact that

the theorem’s assumption that k ≤ log d/648 together with the previous observation implies that

d1/3/(6k)2 ≥ 12 and that 18k ≤ t0/(3 log t0). Finally, suppose H ′ is a subgraph of G and that H ′

is a forest. As G has maximum degree at most 6k, we have by Fact 1.2 and the above relation

between k and t0 that sepE(H
′) ≤ ∆(G) ≤ 6k ≤ 1

9t0/ log t0. Hence, if H ′ has t ≥ t0 vertices then

its edge expansion is at most (19 t/ log t)/(
1
3 t) =

1
3 (1/ log t).

Let then H be a t-vertex subgraph of G with t ≥ t0 vertices, and let us prove that the edge

expansion of H is at most 1
3(1/ log t)(log log t)

2. Since we have already established this fact when

H is a forest at the end of the previous paragraph, we assume for the rest of this paragraph that H

is not a forest. Suppose first that t < 2d
1/3

. By Lemma 3.5, if the edge expansion of H is at least

1/ log t then its girth is at most 12(log t)2 < 12d2/3 ≤ d/(6k)2. However, G does not contain a cycle

this short. Therefore, the edge expansion of H is indeed at most 1
3(1/ log t)(log log t)

2. Suppose

now that t ≥ 2d
1/3

. By Lemma 3.3 and the fact that the average degree of H is at most 6k, the

edge expansion of H is at most 24k log d/ log t. Thus, to prove our claim it suffices to show that√
72k log d ≤ log log t. This indeed follows from the theorem’s assumption that k ≤ log d/648, since

it implies that
√

72k log d ≤ (log d)/3 = log(d1/3) ≤ log log t .

Having established that every subgraph of G on at least t0 vertices has small edge expansion,

we now wish to show that every such graph has a small separator. So let H be an arbitrary

t-vertex subgraph of G with t ≥ t0. We apply Lemma 3.6 on the graph H with the function

f(x) = 1
3(1/ log x)(log log x)

2, noting that, as required by the lemma, every t′-vertex subgraph of

H with t′ ≥ n/3 (≥ t0) has expansion at most f(t′), and f : [n/3, n] → R is decreasing (here we

use the fact that, as can be easily checked, f(t) is decreasing for t ≥ 256, and that n/3 ≥ 256). We

deduce that sepE(H) ≤ (2/3)tf(t/3) ≤ (t/ log t)(log log t)2, as required by item (iii) in Theorem 1.

This completes the proof of the theorem for the case n = 2d.

Finally, let us consider the case of an arbitrary n, that is, not necessarily a power of 2. In this

case we set d = ⌈log n⌉. Since n > 2d/2, a random n-vertex subgraph of Qd,2k will have, with

positive probability, average degree at least k. Let G be such a graph. Then the maximum degree
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of G is still at most 6k, its girth is at least log n/(6k)2, and it is easy to see that every t-vertex

subgraph H of G with t ≥ log n/(6k)2 satisfies sepE(H) ≤ (t/ log t)(log log t)2. This completes the

proof.

4 Proof of Theorem 2

In the first part of the proof we will show that for every t-vertex subgraph H of G with t ≥
1
2 log n/(6k)

2, and every 1/t ≤ µ ≤ 2/3, there is a subset A ⊆ V (H) of size µt/3 ≤ |A| ≤ µt

satisfying

φH(A) ≤ log(1/µ)

log t
· (4 log log t)2 . (10)

In the second part of the proof we will show that if t ≥ log n/(6k)2 (as guaranteed by the statement)

and 1/t ≤ µ ≤ 2/3 then there are in fact 1/4µ mutually disjoint subsets of the same size and edge

expansion only slightly larger than in (10).

Before we begin, we collect some useful facts. One can easily verify that the theorem’s assump-

tion on k implies that t ≥ √
log n (≥ 216),12 and therefore ∆(H) ≤ 1

2 log log log n ≤ log log t. Notice

we may assume µ ≥ 1/
√
t, as otherwise (10) trivially holds by taking A to be any single vertex, in

which case φ(A) ≤ ∆(H) ≤ log log t ≤ (log(1/µ)/ log t)(4 log log t)2, as needed. For the rest of the

proof we set

f(x) = (1/ log x) · (log log x)2 .
One can check that f(x) is decreasing for x ≥ 256. Throughout the proof, unless otherwise

mentioned, we write φ(·) = φH(·) for the edge expansion in H, and ∂(·) = ∂H(·) for the edge

boundary in H.

In order to obtain a subset A ⊆ V (H) satisfying (10) we will iteratively find smaller and smaller

subsets, such that in each step the edge expansion (in H) of our subset does not increase by much.

Formally, we claim that for any set S ⊆ V (H) with |S| ≥
√
t (≥ 256) there is a subset S1 ⊆ S of

size 1
3 |S| ≤ |S1| ≤ 2

3 |S| such that φ(S1) ≤ φ(S) + 2f(|S|). To see this, consider an edge separator

in the induced subgraph H[S]. Namely, let S = S′ ∪ S′′ be a partition of S with |S′| , |S′′| ≤ 2
3 |S|

such that the number of edges between S′ and S′′ in H[S], and thus in H, is sepE(H[S]). Consider

now the edge boundary of S′ and S′′ in H. We have

∣

∣∂(S′)
∣

∣+
∣

∣∂(S′′)
∣

∣ = |∂(S)|+ 2 sepE(H[S]) .

Moving to edge expansion, observe that this means that

min{φ(S′), φ(S′′)} ≤ |∂(S′)|+ |∂(S′′)|
|S′|+ |S′′| =

|∂(S)| + 2 sepE(H[S])

|S| ≤ φ(S) + 2f(|S|) ,

where in the left inequality we used the elementary inequality (a+ b)/(c+ d) ≥ min{a/c, b/d}, and
in the right inequality we used the fact that sepE(H[S]) ≤ |S| f(|S|). This last inequality follows

from item (iii) of Theorem 1 when |S| ≥ log n/(6k)2, while when |S| < log n/(6k)2 it follows from

item (ii) of Theorem 1, Fact 1.2 and the fact that f is decreasing, as these facts together mean

1272k2 ≤ (log log log n)2 ≤
√
log n; for the last inequality, note the statement of the theorem implies log n ≥ 22

2·648

.
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that sepE(H[S]) ≤ ∆(H) ≤ log log t ≤
√
tf(t) ≤ |S| f(|S|). Altogether we see that we can take

either S′ or S′′ as the set S1. Applying this claim with S = S0 = V (H) yields a subset S1 ⊆ S0

of size 1
3 |S0| ≤ |S1| ≤ 2

3 |S0| satisfying φ(S1) ≤ φ(S0) + 2f(|S0|) = 2f(|S0|), where here we use the

fact that S0 = V (H) so φ(S0) = 0. Having picked Si, for some i ≥ 1, we can then pick a new set

Si+1 ⊆ Si satisfying
1
3 |Si| ≤ |Si+1| ≤ 2

3 |Si| and φ(Si+1) ≤ φ(Si) + 2f(|Si|). We stop the process

once we obtain a subset A ⊆ V (H) of size |A| ≤ µt. Note that this means that |A| ≥ µt/3. Let

V (H) = S0 ⊇ S1 ⊇ · · · ⊇ Ss = A denote the subsets we thus obtain. We get from the above

observations that

φ(A) ≤
s−1
∑

i=0

2f(|Si|) ≤ s · 2f(µt) ,

where in the second inequality we used the fact that f(x) is decreasing. Since the number s of

iterations is at most ⌈log3/2(1/µ)⌉ ≤ 2 log3/2(1/µ), we get

φ(A) ≤ 2 log3/2(1/µ) · 2f(
√
t) ≤ log(1/µ)

log t
· 16(log log t)2 ,

where in the first inequality we used the assumption that µt ≥
√
t. This completes the first part of

the proof.

Having found a single non-expanding subset A satisfying (10), we proceed to find at least 1/4µ

disjoint subsets of size in [µt/3, µt] having small expansion, as required by the theorem’s statement.

So let H = (V,E) be a t-vertex subgraph with t ≥ log n/(6k)2 and suppose 1/t ≤ µ ≤ 2/3. Since

|V | ≥ 1
2 log n/(6k)

2, we can find a subset A1 ⊆ V satisfying φH(A1) ≤ ϕ(µ, t) where ϕ(µ, t) is the

right hand side of (10). Now apply the same argument on the induced subgraph H[V \A1] in order

to find a subset A2 ⊆ V \ A1 of size in [µt/3, µt] that satisfies13 φH[V \A1](A2) ≤ ϕ(µ, t). Note that

we can pick sets Ai ⊆ V \⋃i−1
j=1Aj at least 1/2µ times (assume henceforth that 1/2µ is an integer),

since as long as we pick fewer sets we are left with at least t/2 ≥ 1
2 log n/(6k)

2 vertices, so we can

still pick another set. We therefore obtain at least 1/2µ mutually disjoint subsets A1, . . . , A1/2µ ⊆ V

of size in [µt/3, µt] each, satisfying

φH[V \
⋃i−1

j=1 Aj ]
(Ai) ≤ ϕ(µ, t) (11)

for every 1 ≤ i ≤ 1/2µ. To finish the proof, we claim that at least half of the 1/2µ subsets Ai have

small expansion in H itself. To see this, note that

1/2µ
∑

i=1

|∂H(Ai)| ≤ 2

1/2µ
∑

i=1

∣

∣∂H[V \
⋃i−1

j=1 Aj ]
(Ai)

∣

∣ = 2

1/2µ
∑

i=1

|Ai| · φH[V \
⋃i−1

j=1 Aj ]
(Ai) ≤ tϕ(µ, t) , (12)

where in the first inequality we use the fact that each edge is counted (at most) twice, and in the

second inequality we use (11) and the fact that each Ai is of size at most µt. Dividing both sides

of (12) by µt/3 (which is an upper bound on the size of the sets Ai) we get that
∑1/2µ

i=1 φH(Ai) ≤
3ϕ(µ, t)/µ. Hence, by averaging, at least 1/4µ of the sets Ai satisfy

φH(Ai) ≤ 12ϕ(µ, t) ≤ (log(1/µ)/ log t)(14 log log t)2 ,

thus completing the proof.

13A subset A2 ⊆ V \A1 of size at most µt is therefore of size at most µ′ |V \A1| with µ′ ≥ µ. Thus, we can find a

subset A2 satisfying φH[V \A1](A2) ≤ ϕ(µ′, t) ≤ ϕ(µ, t) where we use the monotonicity of ϕ(µ, t) with respect to µ.

15



5 Missing Proofs

5.1 Proof of Lemma 3.5

Proof of Lemma 3.5. Let k denote the average degree of our graphG = (V,E). SinceG is connected

and not a tree we have k ≥ 2. As is well known, G must have a subgraph of minimum degree at

least ⌊k/2⌋+ 1 ≥ 2. In particular, this subgraph contains a cycle. Let e = uv be any edge in such

a cycle, and let G′ be obtained from G by removing e. Note that our choice of e guarantees that

degG′(u),degG′(v) ≥ ⌊k/2⌋. We claim that the edge expansion of G′ is at least α/2. Indeed, let

S ⊆ V with e ∈ ∂G(S). Then |∂G(S)| ≥ 2, as otherwise S forms a connected component of G′,

contradicting the fact that e is not a cut edge in G. Therefore, removing a single edge can decrease

the edge expansion of G by at most a factor of 2.

For a vertex x ∈ V and a non-negative integer r, write Bx(r) = {y : δG′(x, y) ≤ r}. Let mx(r)

denote the number of edges spanned by Bx(r). Since G′ has edge expansion at least α/2, we have

mx(r+1) ≥ (1+α/2)mx(r) provided |Bx(r)| ≤ n/2. Put R = (2/α+1)(ln(n)+ 1). We claim that

|Bv(R)| > n/2. Indeed, recalling mv(1) = degG′(v) ≥ ⌊k/2⌋, we get that if |Bv(R)| ≤ n/2 then

mv(R+ 1) ≥ (1 + α/2)R · ⌊k/2⌋ ≥ eln(n)+1 · ⌊k/2⌋ ≥ nk/2 ,

which is strictly greater than the number of edges of G′ – a contradiction. Since we also have

degG′(u) ≥ ⌊k/2⌋ we deduce that Bu(R) ∩ Bv(R) 6= ∅. This means that δG′(u, v) ≤ 2R. Since

u and v are adjacent in G but not in G′, we conclude that G has a cycle of length at most

2R+ 1 = 2(2/α + 1)(ln(n) + 1) + 1.

5.2 Proof of Lemma 3.6

Proof of Lemma 3.6. We iteratively remove subsets S1, . . . , Sk ⊆ V (G) as follows. For the i-th

step, consider the graph Gi := G − ⋃i−1
j=1 Sj and let Si ⊆ V (Gi) have size |Si| ≤ |V (Gi)| /2 and

expansion in Gi at most f(|V (Gi)|). We stop removing subsets once the set S :=
⋃k

j=1 Sj is of size

at least n/3, and thus |S| ≤ ∑k−1
j=1 |Sj | + |V (Gk)| /2 = (n +

∑k−1
j=1 |Sj |)/2 ≤ 2n/3 . Now, observe

that every edge in the edge boundary ∂G(S) is a member of some edge boundary ∂Gj (Sj). Hence,

the expansion of S in G is

|∂G(S)|
|S| ≤

∑k
j=1

∣

∣∂Gj (Sj)
∣

∣

∑k
j=1 |Sj |

≤ max
1≤j≤k

∣

∣∂Gj (Sj)
∣

∣

|Sj|
≤ max

1≤j≤k
f(|V (Gj)|) ≤ f(n/3) ,

where in the second inequality we used the inequality (
∑k

j=1 xj)/(
∑k

j=1 yj) ≤ max1≤j≤k(xj/yj) for

non-negative reals xj, yj ,
14 and in the last inequality we used the fact that |V (Gj)| ≥ |V (Gk)| ≥

n− |S| ≥ n/3 together with the fact that f(t) is decreasing for t ≥ n/3. It follows that |∂G(S)| ≤
|S| f(n/3) ≤ (2/3)nf(n/3), completing the proof.

14We note that while the simple argument here suffices to bound the expansion of
⋃

Si, bounding the expansion

of each individual Si – which is done in the second part of the proof of Theorem 2 – is trickier.
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5.3 Proof of Lemma 2.5

Proof of Lemma 2.5. Put L = dI − A where A is the adjacency matrix of G = (V,E). Note that

the k-th eigenvalue of L is d− λk. By the Courant-Fischer well-known min-max theorem, we have

d− λk = min
w1,...,wk

max
06=x∈span{w1,...,wk}

RL(x) , (13)

where the minimum is over all collections of k mutually orthogonal, nonzero vectors in R
|V |, and

RL(x) = xtLx/xtx is the Rayleigh quotient. Let S1, . . . , Sk ⊆ V be mutually disjoint, non-empty

subsets, and denote by 1Si the characteristic {0, 1}-vector of Si. As it is easy to see that xtLy =
∑

{u,v}∈E(xu−xv)(yu−yv), we deduce that 1
t
Si
L1Si = |∂(Si)|, and that for i 6= j we have 1tSi

L1Sj =

−e(Si, Sj) where e(Si, Sj) is the number of edges between Si and Sj. Consider now any vector

x ∈ span{1S1 , . . . ,1Sk
} and write x =

∑k
i=1 ci1Si . Then

xtLx =

k
∑

i,j=1

cicj · 1tSi
L1Sj =

k
∑

i=1

c2i |∂(Si)| −
∑

i 6=j

cicje(Si, Sj) ≤
k

∑

i=1

c2i |∂(Si)|+
∑

i 6=j

c2i + c2j
2

e(Si, Sj)

=
k

∑

i=1

c2i |∂(Si)|+
k

∑

i=1

c2i
∑

j 6=i

e(Si, Sj) ≤ 2
k

∑

i=1

c2i |∂(Si)| .

The proof now follows since (13) implies

d− λk ≤ max
06=x∈span{1S1

,...,1Sk
}
RL(x) ≤

2
∑k

i=1 c
2
i |∂(Si)|

∑k
i=1 c

2
i |Si|

≤ 2 max
1≤i≤k

φG(Si) .

6 Concluding Remarks and Open Problems

• As we mentioned in Section 1, we can replace the (log log t)2 term in (1) with (log log t)1+o(1).

It would be interesting to know whether the log log t factors in (1) (and thus also in (2))

can be removed. One way to obtain this is to improve Lemma 3.3. In this regard, we

conjecture the following “higher-order” isoperimetric property of the hypercube: Among all

subgraphs of the d-cube on 2i vertices, for every i ∈ N at least d1/3 say, the subcubes have the

largest normalized15 edge expansion. (One can also come up with an analogous isoperimetric

conjecture for vertex expanders in the hypercube.) Since a subcube on t = 2i vertices has

normalized edge expansion 1/i = 1/ log t, proving the above conjecture would mean that the

additional log d factor in Lemma 3.3 is unnecessary for t ≥ 2d
1/3

(note that without the lower

bound on t, Lemma 3.3 is tight as witnessed by K1,d). By the proof of Theorem 1, this would

mean that the graphs Gn,k are such that the log log t terms in (1) and (2) can in fact be

replaced by O(k). Note that this is best possible, as witnessed by the subgraph Gn,k itself.

We note that this would essentially close the gaps in the applications mentioned in Section 2,

as k is chosen there to be either constant or grow arbitrarily small with n. For example,

15I.e., edge expansion divided by the subgraph’s average degree.
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this would imply a truly polynomial lower bound on the threshold rank in Corollary 2.4,

thus proving that the eigenspace enumeration approach of [3] cannot solve UGq(δ) in time

exp(no(1)) for constant δ, q.

• It is not hard to see that if every t-vertex subgraph H of a graph G satisfies sepE(H) ≤
(t/ log t)(log log t)c then G must have at most O(n(log log n)c

′
) edges. (Heuristically speaking,

the upper bound on the number of edges admits a recursion of the form f(n) ≤ 2f(n/2) +

(n/ log n)(log log n)c). We note that one can construct a graph G satisfying this requirement

using arguments similar to those we used to prove Theorem 1, and in this case, the resulting

graph would have Ω(n(log log n)c
′′
) edges. (To be more precise, c′ = c + 1 and c′′ = c − 1.)

This means that the graph we construct in Theorem 1 has the maximum possible number of

edges, up to log log n factors.

The situation for vertex separators, as in Theorem 3, is not so clear, so it would be interesting

to understand the maximum number of edges of n-vertex graphs in a hereditary family with

vertex separators of size at most (n/ log n)(log log n)c. Although we construct such a family F
that contains n-vertex graphs with Ω(n(log log n)c

′′
) edges, we cannot rule out the possibility

of improving this to (say) n log n.

• Let us mention two problems that seem to be related to the types of problems studied here

but that (unfortunately) we cannot resolve. The first is a nice problem of G. Kalai. Suppose

F is a hereditary family of graphs and that every graph in the family has a vertex separator of

size n/f(n). Then, how fast should f(n) grow so that F has only 2O(n) non-isomorphic graphs

on n vertices? It was shown in [11, 12] that f(n) ≥ log2+ǫ n suffices while f(n) ≤ log1−ǫ n

does not. Closing the gap between these bounds is still open.

The second problem is related to a graph decomposition result from a work of Pǎtraşcu

and Thorup [25]. They proved that the edge set of every graph can be decomposed into

b = O(log n) subsets E1, . . . , Eb so that for every 1 ≤ i ≤ b the graph spanned by E1, . . . , Ei

has “edge expansion” 1/ log n, where the notion of edge expansion used here is slightly different

from the (standard) one we used throughout this paper. It would be interesting to decide

whether the parameters in the construction of [25] are optimal.

Acknowledgment: We are grateful to Alex Samorodnitsky for very helpful discussions related to

this work.
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