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Abstract. We develop a rounding method based on random walks in polytopes, which leads to
improved approximation algorithms and integrality gaps for several assignment problems that arise in
resource allocation and scheduling. In particular, it generalizes the work of Shmoys & Tardos on the
generalized assignment problem to the setting where some jobs can be dropped. New concentration
bounds for random bipartite matching are developed as well.
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1. Introduction. The “relax-and-round” paradigm is a well-known approach
in combinatorial optimization. Given an instance of an optimization problem, we
enlarge the set of feasible solutions I to some set I ′ ⊃ I – often a linear-programming
(LP) relaxation of the problem; we then map an (efficiently computed, optimal or
near-optimal) solution x∗ ∈ I ′ to some “nearby” x ∈ I and prove that x is near-
optimal in I. This second “rounding” step is often a crucial ingredient, and many
general techniques have been developed for it. In this work, we present a new rounding
methodology which leads to several improved approximation algorithms in scheduling,
as well as new concentration-of-measure results.

We start with background on (randomized) rounding and a fundamental schedul-
ing problem, before describing our contribution.

1.1. Dependent rounding, iterative rounding, and scheduling. Recall
that in randomized rounding, we use randomization to map x∗ = (x∗1, x

∗
2, . . . , x

∗
n) ∈

[0, 1]n back to some x = (x1, x2, . . . , xn) ∈ {0, 1}n [37]. Typically, we choose a value
α that is problem-specific, and – independently for each i – define xi to be 1 with
probability αx∗i , and to be 0 with the complementary probability of 1−αx∗i . Indepen-
dence can, however, lead to noticeable deviations from the mean for random variables
that are required to be very close to (or even be equal to) their mean. A fruitful idea
developed in [41, 25, 30] is to carefully introduce dependencies into the rounding pro-
cess: in particular, some sums of random variables are held fixed with probability one,
while still retaining randomness in the individual variables and guaranteeing certain
types of negative-correlation properties among them. See [2] for a related determin-
istic approach that precedes these works. These dependent-rounding approaches lead
to numerous improved approximation algorithms in scheduling, packet-routing and in
several other problems in combinatorial optimization [2, 41, 25, 30, 14, 15].

Iterative-relaxation methods based on Jain’s seminal work on iterative rounding
[28] have been another key area of active research. In this framework, the round-
ing starts by computing a basic feasible solution of an LP relaxation; once the con-
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straint matrix has a unique solution, some constraints are dropped to relax the poly-
tope and the LP is re-solved. (Jain’s work was in the realm of iterative approxima-
tion algorithms; such rank-based arguments have been used in other combinatorial-
optimization contexts earlier; see, e.g., [29].) This method has been successfully used
in network design, leading to fundamental works on minimum bounded degree steiner
survivable network design [23, 1, 31] and other combinatorial optimization problems
[8, 46]. See [32] for a comprehensive coverage of this general approach.

We generalize the methods of dependent rounding and iterative relaxation, via a
type of random walk toward a vertex of the underlying polytope that we outline next.
We then present several applications in scheduling and bipartite matching through
problem-specific specializations of this approach, as well as new concentration bounds.

The rounding approaches of [29, 2, 41, 25] are generalized to linear systems as
follows in [30]. Suppose we have an n-dimensional constraint system Ax ≤ b with
the additional constraints that x ∈ [0, 1]n. This will often be an LP-relaxation, which
we aim to round to some y ∈ {0, 1}n such that certain constraints in “Ay ≤ b” hold
with probability one, while the rest are violated “a little” (with high probability).
Given some feasible x ∈ [0, 1]n, the rounding approach of [30] is as follows. First, we
assume without loss of generality that x ∈ (0, 1)n: those xj that get rounded to 0 or
1 at some point, are held fixed from then on. Next, we “judiciously” drop some of
the constraints in “Ax ≤ b” until the number of constraints becomes smaller than n,
thus making the system linearly-dependent – leading to the efficient computation of
an r ∈ <n that is in the nullspace of this reduced system. We then compute positive
scalars α and β such that x1 := x+ αr and x2 := x− βr both lie in [0, 1]n, and both
have at least one component lying in {0, 1}; we then update x to a random Y as:
Y := x1 with probability β/(α+β), and Y := x2 with the complementary probability
α/(α + β). Thus we have rounded at least one further component of x, and also
have the useful property that for all j, E[Yj ] = xj . Different ways of conducting the
“judicious” reduction lead to a variety of improved scheduling algorithms in [30]. The
setting of [41, 25] on bipartite b-matchings can be interpreted in this framework.

1.2. Our contributions. We further generalize the above-sketched approach of
[30]. Suppose we are given a polytope P in n dimensions, and a non-vertex point
x belonging to P. An appropriate basic-feasible solution will of course lead us to a
vertex of P, but we approach (not necessarily reach) a vertex of P by a random walk
as follows. Let C denote the set of constraints defining P which are satisfied tightly
(i.e., with equality) by x. Then, note that there is a non-empty linear subspace S
of <n such that for any nonzero r ∈ S, we can travel up to some strictly-positive
distance f(r) along r starting from x, while staying in P and continuing to satisfy all
constraints in C tightly. Our broad approach to conduct a random move Y := x+R
by choosing an appropriately random R from S, such that the property “E[Yj ] = xj”
of the previous paragraph still holds. In particular, let RandMove(x,P) – or simply
RandMove(x) if P is understood – be as follows. Choose a nonzero r ∈ S arbitrarily,

and set Y := x + f(r)r with probability f(−r)
f(r)+f(−r) , and Y := x − f(−r)r with the

complementary probability of f(r)
f(r)+f(−r) . Note that if we repeat RandMove, we

obtain a random walk that finally leads us to a vertex of P; the high-level idea is to
intersperse this walk with the idea of “judiciously dropping some constraints” from
the previous paragraph, as well as combining certain constraints together into one.
Three major differences from [30] are:

(a) the care given to the tight constraints C ([30] counts the total number of con-
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straints, and does not exploit tightness);
(b) the choice of which constraint to drop being based on C (in [30], it is solely based

on P); and
(c) modifying some constraints on the fly (as in steps (D2) and (Modified D2)) in

Section 2) and combining some constraints into one (as in steps 2 and 3 of
Algorithm Sched-Outlier in Section 3).

The process can also be thought of as a randomized iterative relaxation method where
randomized steps are taken on an iteratively relaxed polytope. Randomization also
enables concentration bounds to be employed for further analysis.

As discussed starting with Section 1.2.1, this recipe appears fruitful in a number
of directions in scheduling, and as a new rounding technique in general.

To motivate many of our applications, we now recall a fundamental scheduling
model that has spurred many advances and applications in combinatorial optimiza-
tion, including linear-, quadratic- & convex-programming relaxations and new round-
ing approaches [33, 39, 40, 7, 19, 30, 27, 9, 10, 12]. This model, scheduling with
unrelated parallel machines (UPM) – and its relatives – play a key role in this work.
Herein, we are given a set J of n jobs, a set M of m machines, and non-negative
values pi,j (i ∈ M, j ∈ J): each job j has to be assigned to some machine, and
assigning it to machine i will impose a processing time of pi,j on machine i. (The
word “unrelated” arises from the fact that there may be no pattern among the given
numbers pi,j .) Variants such as the type of objective function(s) to be optimized in
such an assignment, whether there is an additional “cost-function”, whether a few
jobs can be dropped, and situations where there are release dates for, and precedence
constraints among, the jobs, lead to a rich spectrum of problems and techniques. We
now briefly discuss two such highly-impactful results [33, 39]. The primary UPM
objective in these works is to minimize the makespan – the maximum total load on
any machine. It is shown in [33] that this problem can be approximated to within a
factor of 2; furthermore, even the natural “restricted assignment” special case cannot
be approximated better than 1.5 unless P = NP [33]. Despite much effort, these
bounds have not been improved; it has been shown that the value of the objective
function for the special case of restricted assignment can be approximated to within
33/17 + ε [42]. The work of [39] builds on the upper-bound of [33] to consider the
generalized assignment problem (GAP) where we incur a cost ci,j if we schedule job j
on machine i; a simultaneous (2, 1)–approximation for the (makespan, total cost)-pair
is developed in [39], leading to numerous applications (see, e.g., [3, 13]).

1.2.1. Capacity constraints on machines. Handling “hard capacities” – those
that cannot be violated – is generally tricky in various settings, including facility-
location and other covering problems [18, 24, 34]. Motivated by problems in crew-
scheduling [20, 38] and by the fact that servers have a limit on how many jobs
can be assigned to them, the natural question of scheduling with a hard capacity-
constraint of “at most bi jobs to be scheduled on each machine i” has been studied
in [43, 47, 45, 44, 16]. The work of [16] has shown that this problem can be approx-
imated to within a factor of 3 in the special case where the machines are identical
(job j has processing time pj on any machine). In § 2, we use our random-walk
approach to generalize this to the setting of GAP and obtain the GAP bounds of
[39] – i.e., approximation ratios of 2 and 1 for the makespan and cost respectively,
while satisfying the capacity constraints: the improvements are in the more-general
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scheduling model, handling the cost constraint, and in the approximation ratio.1 We
anticipate that such a capacity-sensitive generalization of [39] would lead to improved
approximation algorithms for several applications of GAP, and present one such in
Section 5. However, as pointed out next in Section 1.2.2, the referee has pointed out
that Theorem 2.3 – this capacity-sensitive generalization – follows from the work of
[39].

1.2.2. Random matchings with sharp tail bounds. We obtain two types
of concentration results for random matchings, as follows.

First, Theorem 2.2 generalizes capacitated problems (as described in the previous
application) to random bipartite b-matchings with target degree bounds and sharp
tail bounds for given linear functions; see [21] for applications to models for complex
networks. (Recall that given a vector b, a b-matching is a subgraph in which every
vertex v has degree at most b(v).) Given a fractional b-matching x in a bipartite
graph G = (J,M,E) of N vertices, Theorem 2.2 shows that if there is one linear
objective function fi with bounded coefficients associated with each i ∈ M , then we
can construct (random) b-matchings X with all the |fi(X)− fi(x)| bounded indepen-
dent of N . There has been much related work on such problems. For instance, given
a collection of k linear functions {fi} of x, many works have considered the prob-
lem of constructing b-matchings X such that fi(X) is “close” to fi(x) simultaneously
for each i [4, 26, 36, 25]. The works [26, 36] focus on the case of constant k; those
of [4, 25] consider general k, and require the usual additive “discrepancy” term of
Ω(logN+

√
fi(x) logN) in |fi(X)−fi(x)| for most/all i; in a few cases, o(N) vertices

will have to remain unmatched also. The work of [15] considers such problems in the
more-general context of matroid intersection, and achieves the additive discrepancy
term of O(logN +

√
fi(x) logN) in |fi(X)− fi(x)| for all i.

Shorter proofs derivable from earlier work. It has been pointed out to us by
the referee mentioned above that Theorem 2.2 is actually derivable from the work
of [39]. This is the case when all the rj equal 1: the only modification to be made
to the algorithm underlying Theorem 2.1 of [39] is to write the fractional solution x
(actually, the related vector x′ in the terminology of [39]) as a convex combination
of b-matchings, and choose a random b-matching by setting the probability of each
matching to be its coefficient in this convex combination. For the general case where
the rj ’s are arbitrary positive integers, a little more work, as pointed out by the referee,
yields Theorem 2.2 in its full generality. We have included the referee’s elegant proof
in § 2. The referee has also pointed out that two of our consequences of Theorem 2.2 –
Theorem 2.3 and Theorem 4.2 – follow from the work of [39]. We have kept these three
theorems in this paper since they give a unified approach to our applications; we thank
the referee for their shorter proofs and connections to [39]. It has also been pointed
out to us by Mohit Singh that our upper bounds on all the values fi(X)− fi(x) (note
that we have these quantities without the absolute value here), can also be obtained
by the iterative-rounding methodology as developed in [32]; we obtain upper-bounds
on the values |fi(X)− fi(x)|. We thank Mohit Singh for his input as well.

Our second contribution to random matchings is a new concentration-of-measure
result; we start with informal background first and then give some of the technical
background. The main construction of [25], which is a probabilistic analog of that

1As described in § 2, a referee has presented a much simpler proof of this result. We present this
as well as our original proof, in the hope that perhaps the original proof has aspects that could be
useful elsewhere.
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of [2], is as follows. Suppose we have a bipartite graph G = (U, V,E) with a non-
negative weight xe on each edge e; let si denote the sum of the weights of the edges
incident on vertex i. Then, an efficient randomized algorithm to round each xe to a
random variable Xe ∈ {bxec, dxee} is developed in [25]. Letting Si be the random
variable denoting the sum of the Xe over all the edges e incident on i, this rounding
algorithm has the following three properties: (P1) E

[
Xe

]
= xe for all e; (P2) With

probability one, Si ∈ {bsic, dsie} for all i, and (P3) for each vertex i, the random
variables ((Xe − bxec) : e incident on i) are “negatively correlated” in a natural
sense, formalized by Definition 1.1. These properties lead to a variety of applications
in approximation algorithms [2, 25]. Section 4 extends these to new concentration-
of-measure bounds. To get a feel for these, suppose si ≤ 1 for all i; then, we are
constructing a random matching. Our bound in Section 4 shows that for any subset
of vertices W such that W ⊆ U or W ⊆ V , the number of vertices in W that get
matched, is sharply concentrated around its mean

∑
i∈W si. We anticipate that such

bounds will be useful elsewhere as well. More formally, our contribution relies on
negative correlation:

Definition 1.1 (Negative Correlation for Indicator Random Variables). A col-
lection of indicator random variables {Zi}, i ∈ [1, N ] is said to be negatively cor-
related if for any t, any 1 ≤ i1 < i2 < · · · < it ≤ N , and any b ∈ {0, 1},
Pr
[∧t

j=1(Zij = b)
]
≤
∏t
j=1 Pr

[
Zij = b

]
.

One of the key benefits of negative correlation is that such a “self-correcting”
property leads to strong concentration:

Theorem 1.2. (The Chernoff-Hoeffding bound under negative correla-
tion [35]): Suppose X =

∑
iXi where Xi are negatively correlated random variables

taking values in {0, 1}. Then:

(i) if E
[
X
]
≥ µ and δ ∈ [0, 1], then Pr

[
X ≤ µ(1− δ)

]
≤ e−µδ2/2;

(ii) if E
[
X
]
≤ µ and δ ≥ 0, then Pr

[
X ≥ µ(1 + δ)

]
≤ e−µ[(δ+1) ln (δ+1)−δ].

A natural question one can ask is whether the negative-correlation property (P3)
of [25] does not just hold “locally” (at a vertex i), but across the graph as well.
Unfortunately, it is easy to show that such a property fails to hold: in fact, by a large
margin.2 However, we are able to show in Theorem 4.4 that such negative correlation
holds if we only consider any collection of vertices on the “same side” of G: all in U
or all in V . (Theorem 4.4 is stated in the context of matchings, wherein si ≤ 1 for
all i, but its proof directly generalizes to arbitrary si.) The resultant concentration
inequalities that follow from Theorem 1.2 are crucially needed in Section 4.

1.2.3. Scheduling with outliers: makespan and fairness. Note that the
(2, 1) bicriteria approximation that we obtain for GAP as described in Section 1.2.1,
generalizes the results of [39]. We now present such a generalization in another di-
rection: that of “outliers” in scheduling [27]. For instance, suppose that in the “pro-
cessing times pi,j and costs ci,j” setting of GAP, we also have a profit πj for choosing
to schedule each job j. Given a “hard” target profit Π, target makespan T and total
cost C, the LP-rounding method of [27] either proves that these targets are not simul-
taneously achievable, or constructs a schedule with values (Π, 3T,C(1 + ε)) for any
constant ε > 0. Using our rounding approach, we improve this to (Π, (2+ε)T,C(1+ε))
in § 3. (The factors of ε in the cost are required due to the hardness of knapsack [27].)

2Suppose, e.g., that U = {u1, u2} and V = {v1, v2} and that we have the complete bipartite
graph on (U, V ), with xe = 1/2 for each of the four edges e. Then, the only solution here is to select
{(u1, v1), (u2, v2)} with probability 1/2, and {(u1, v2), (u2, v1)} with the remaining probability of
1/2. Thus, the edges (u1, v1) and (u2, v2) are perfectly positively correlated.
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Also, fairness is a fundamental issue in dealing with outliers: e.g., in repeated runs
of such algorithms, we may not desire some jobs j being excluded as an outlier in
almost all of the repetitions just so that the global objective function remains high.
Theorem 3.3 accommodates fairness in the form of scheduling-probabilities for the
jobs that can be part of the input.

1.2.4. Max-Min Fair Allocation. This problem is the max-min version of
UPM, where we aim to maximize the minimum “load” (viewed as utility) on the
machines; it has received a good deal of attention [9, 6, 22, 5, 10, 12]. We obtain a
new algorithm for max-min fair allocation to near-optimally determine the integrality
gap of a well-studied “configuration LP” relaxation via bipartite dependent rounding
and its generalization [25]. (Also, the results of [39] imply a generalization of a result
of [11] on max-min fairness to the setting of equitable partitioning of the jobs; see
Theorem 4.2.) Improved approximation factors are now known due to Chakrabarty,
Chuzhoy and Khanna [17] and Bateni, Charikar and Guruswamy [10], via an approach
that avoids the configuration LP.

1.2.5. Overlay Networks for Streaming. As an additional application, Sec-
tion 5 improves upon some of the rounding techniques of [3] in the design of overlay
networks for streaming.

2. Random Matchings with Linear Constraints, and GAP with Capac-
ity Constraints. We develop an efficient scheme to generate random subgraphs of
bipartite graphs that satisfy hard degree-constraints and near-optimally satisfy a col-
lection of linear constraints; this is captured by Theorem 2.2. As mentioned in the
introduction, a referee has pointed out that there is a much-shorter proof for Theo-
rem 2.2 that is motivated by an approach of [39]. We give this short proof due to
the referee below, and also keep our original argument for completeness. We start by
defining the input for the algorithm that is guaranteed by Theorem 2.2:

Definition 2.1. (Matchings with Structured Linear Constraints (MSLC)) The
input to the MSLC problem consists of the following:

• a bipartite graph G = (J,M,E) with “jobs” J and “machines” M ; let F
be the collection of edge-indexed vectors y (with yi,j denoting ye where e =
(i, j) ∈ E).

• an integer requirement rj for each j ∈ J and an integer capacity bi for each
i ∈M .

• for each i ∈ M , a linear objective function fi : F → < given by fi(y) =∑
j: (i,j)∈E pi,jyi,j such that 0 ≤ pi,j ≤ `i for each j, where `i is some given

positive value associated with i.
• a global cost constraint

∑
i,j ci,jyi,j ≤ C, and

• a vector x ∈ F with xe ∈ [0, 1] for each e which satisfies the given constraints;
i.e., we have (i)

∑
i xi,j ≥ rj for each j, (ii)

∑
j xi,j ≤ bi for each i, and (iii)∑

i,j ci,jxi,j ≤ C.
Theorem 2.2. (Rounding MSLC instances) Suppose we are given an instance

of MSLC with parameters as in Definition 2.1. Then, we can efficiently construct a
random subgraph of G given by a binary vector X ∈ F , such that: (a) with probability
one, each j ∈ J has degree at least rj, each i ∈ M has degree at most bi, and
|fi(X) − fi(x)| < `i ∀i; as well as (b) for all e ∈ E, E

[
Xe

]
= xe which implies

E
[∑

i,j ceXe

]
=
∑
e cexe = C.

An elegant and short proof of Theorem 2.2 due to a referee. The referee’s
short proof is as follows. Given a vector x as in MSLC and for each machine i, define
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a permutation πi(1), πi(2), . . . , πi(n) of the jobs (where n = |J |) such that

pi,πi(1) ≥ pi,πi(2) ≥ · · · ≥ pi,πi(n).

We write an alternative system of inequalities for which x is clearly a feasible solution:∑
i

xi,j ≥ rj ∀j; (2.1)

∑̀
k=1

xi,πi(k) ≤

⌈∑̀
k=1

xi,πi(k)

⌉
∀i ∀` ≤ n; (2.2)

∑̀
k=1

xi,πi(k) ≥

⌊∑̀
k=1

xi,πi(k)

⌋
∀i ∀` ≤ n; (2.3)

xi,j ∈ [0, 1] ∀(i, j). (2.4)

The claim is that the polytope induced by (2.1), (2.2), (2.3), and (2.4) is integral; the
proof follows the usual method for showing the integrality of the matroid-intersection
polytope, and is as follows. Consider the tight constraints at any extreme point z,
and view the constraints as only on those those zi,j that are yet-unrounded (i.e., lie
in (0, 1)); in other words, we view the zi,j ∈ {0, 1} as fixed, and not as variables any
more. Suppose there are v yet-unrounded zi,j ’s, where v 6= 0 for a contradiction. The
tight constraints corresponding to (2.4) constitute a partition matroid and are easily-
seen to be at most v/2 in number; similarly, the tight constraints corresponding to
(2.2) and (2.3) yield a laminar system and are also at most v/2 in number. Further,
if both of these “v/2” bounds are tight, then these two systems of tight constraints
span the constraint “

∑
i

∑
j zi,j =

∑
i

∑
j xi,j”. Thus, the tight constraints do not

span all of a v-dimensional space, a contradiction. Hence our polytope is integral.
Now, as usual, all we need is to decompose x as a convex combination of vertices of
this integral polytope, and pick a random vertex of the polytope: for each vertex, its
probability equals its coefficient in the convex combination. The fact that (2.2) easily
helps show that for the obtained random binary vector X, fi(X)− fi(x) < `i for any
i; similarly, (2.3) implies that fi(X)− fi(x) > −`i.

This completes the description of the referee’s elegant and short proof; we now
return to our approach.

We first prove an important special case of Theorem 2.2: GAP with individual
capacity constraints on each machine. This special case – handled by Theorem 2.3 –
captures much of the essence of Theorem 2.2; the full proof of Theorem 2.2 follows
after Theorem 2.3. This is a special case in the following senses:

• rj = 1 for each j;
• we only require that the rounding X is such that for each i, fi(X) is not “much

more” than fi(x): i.e., the fi(X) values are allowed to be much smaller than
the corresponding fi(x) values; and

• for some T , all the `i and fi(x) are upper-bounded by T .
In words, this is the UPM problem with hard capacities bi on the machines as dis-
cussed in Section 1.2.1. (As mentioned at the beginning of our description of Al-
gorithm Sched-Cap, we guess the optimum makespan T by binary search – and if
the processing time pi,j is strictly larger than T , we set the corresponding decision
variable xi,j to 0.) Note, as pointed out in Section 1.2.2, that Theorem 2.3 can also
be derived from the work of [39].
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Our main contribution here is an efficient algorithm Sched-Cap that has the
following guarantee, generalizing the GAP bounds of [39]:

Theorem 2.3. There is an efficient algorithm Sched-Cap that returns a sched-
ule maintaining all the capacity constraints, of cost at most C and makespan at most
2T , where T is the optimal makespan with cost C that satisfies the capacity con-
straints.

Algorithm Sched-Cap. Algorithm Sched-Cap proceeds as follows. First we
guess the optimum makespan T by binary search as in [33]. If pi,j > T , xi,j is set to
0. The solution to the following integer program gives the optimum schedule:∑

i,j

ci,jxi,j ≤ C (Cost)

∑
i,j

xi,j = 1 ∀j (Assign)

∑
j

pi,jxi,j ≤ T ∀i (Load)

∑
j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j (Binary)

xi,j = 0 if pi,j > T (Filtering)

We relax the constraint “xi,j ∈ {0, 1} ∀(i, j)” to “xi,j ∈ [0, 1] ∀(i, j)” to obtain
an LP relaxation LP-Cap. We solve the LP to obtain an optimal LP solution x∗; we
next show how Sched-Cap rounds x∗ using algorithm RandMove of Section 1.2 to
obtain a good integral solution.

Remark: dropping the cost constraint. Although we mention the constraint
(Cost) above for completeness, we will drop this constraint from now on. This is
because – as shown in the next paragraph – our final rounded vector X will satisfy
E
[
Xi,j

]
= x∗i,j , and hence (Cost) will be satisfied in expectation; all our other guar-

antees are with probability one. The entire process as we demonstrate at the end can
be derandomized and hence the cost upper bound of C is obeyed.

Note that x∗i,j ∈ [0, 1] denotes the “fraction” of job j assigned to machine i.
Initialize X = x∗. The algorithm is composed of several iterations. The random
value of the assignment-vector X at the end of iteration h of the overall algorithm
is denoted by Xh. Each iteration h conducts a randomized update using algorithm
RandMove on the polytope of a linear system constructed from a subset of the
constraints of LP-Cap. Therefore, by induction on h, we will have for all (i, j, h)
that E

[
Xh
i,j

]
= x∗i,j .

Let J and M denote the set of jobs and machines, respectively. Suppose we are
at the beginning of some iteration (h + 1) of the overall algorithm: we are currently
looking at the values Xh

i,j . We will maintain four invariants.

Invariants across iterations:

(I1) Once a variable xi,j gets assigned to 0 or 1, it is never changed;
(I2) The constraints (Assign) always hold; and
(I3) Once a constraint in (Capacity) becomes tight, it remains tight, and
(I4) Once a constraint is dropped in some iteration, it is never reinstated.

Iteration (h+ 1) of Sched-Cap consists of three main steps:
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1. We first hard-wire all Xh
i,j ∈ {0, 1}; thus, the variables Xh

i,j ∈ (0, 1) yield the
current vector Y of “floating” (to-be-rounded) variables; let S ≡ (AhY = uh) denote
the current linear system that represents LP-Cap. (Ah is some matrix and uh is
a vector; we avoid using “Sh” to simplify notation.) In particular, the “capacity”
of machine i in S is its residual capacity b′i, i.e., bi minus the number of jobs that
have been permanently assigned to i thus far. Recall that the cost constraint is not
included in the constraint matrix AhY = uh; we continue to maintain AhY = uh
exactly.

2. Let Y ∈ <v for some v; note that Y ∈ (0, 1)v. Let Mk denote the set of all machines
i for which exactly k of the values Yi,j are positive. We will now drop some of the
constraints in S:
(D1) for each i ∈M1, we drop its load and capacity constraints from S;
(D2) for each i ∈M2, we drop its load constraint and rewrite its capacity constraint

as xi,j1 + xi,j2 ≤ dXh
i,j1

+ Xh
i,j2
e, where j1, j2 are the two jobs fractionally

assigned to i.
(D3) for each i ∈M3 for which both its load and capacity constraints are tight in S,

we drop its load constraint from S.

3. Let P denote the polytope defined by this reduced system of constraints. A key
claim that is proven in Lemma 2.4 below is that Y is not a vertex of P. We now
invoke RandMove(Y,P); this is allowable if Y is indeed not a vertex of P.

The above three steps complete iteration (h+ 1).

Analysis. It is not hard to verify that the invariants (I1)-(I4) hold true (though
the fact that we drop the all-important capacity constraint for machines i ∈M1 may
look bothersome, a moment’s reflection shows that such a machine cannot have a
tight capacity-constraint since its sole relevant job j has value Yi,j ∈ (0, 1)). Since we
make at least one further constraint tight via RandMove in each iteration, invariant
(I4) shows that we terminate, and that the number of iterations is at most the initial
number of constraints. Let us next present Lemma 2.4, a key lemma:

Lemma 2.4. In no iteration is Y a vertex of the current polytope P.
Proof. Suppose that in a particular iteration, Y is a vertex of P. Fix the notation

v, Mk etc. w.r.t. this iteration; let mk = |Mk|, and let n′ denote the remaining number
of jobs that are yet to be assigned permanently to a machine. Let us lower- and upper-
bound the number of variables v. On the one hand, we have

v =
∑
k≥1

k ·mk, (2.5)

by definition of the sets Mk; since each remaining job j contributes at least two
variables (coordinates for Y ), we also have

v ≥ 2n′. (2.6)

On the other hand, since Y has been assumed to be a vertex of P, the number t of
constraints in P that are satisfied tightly by Y , must be at least v. How large can t
be? Each current job contributes one (Assign) constraint to t; by our “dropping con-
straints” steps (D1), (D2) and (D3) above, the number of tight constraints (“load”
and/or “capacity”) contributed by the machines is at most m2 + m3 +

∑
k≥4 2mk.

Thus we have

v ≤ t ≤ n′ +m2 +m3 +
∑
k≥4

2mk,
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i.e.,

2n′ ≥ 2v − 2m2 − 2m3 −
∑
k≥4

4mk. (2.7)

Eliminating the term 2n′ between (2.6) and (2.7) and then using the definition of
v from (2.5), we get

m1 + 2m2 + 3m3 + 4m4 + · · · ≤ 2m2 + 2m3 +
∑
k≥4

4mk.

This is possible only if: (i) m1 = m3 = 0 and m5 = m6 = · · · = 0; (ii) the capacity
constraints are tight for all machines in M2 ∪M4 – i.e., for all machines; and (iii)
t = v. However, in such a situation, the t constraints in P constitute the tight
assignment constraints for the jobs and the tight capacity constraints for the machines,
and are hence linearly dependent (since the total assignment “emanating from” the
jobs must equal the total assignment “arriving into” the machines). Thus we reach a
contradiction, and hence Y is not a vertex of P.

We next show that the final makespan is at most 2T with probability one:
Lemma 2.5. Let X denote the final rounded vector. Algorithm Sched-Cap

returns a schedule, where with probability one: (i) all capacity-constraints on the ma-
chines are satisfied, and (ii) for all i,

∑
j∈J Xi.jpi,j <

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈(0,1)pi,j.

Proof. For part (i), the only care to be taken is for machines i that end up in
M1 and hence have their capacity-constraint dropped. However, as argued soon after
the description of the three steps of an iteration, note that such a machine cannot
have a tight capacity-constraint when this constraint was dropped; hence, even if the
remaining job j got assigned finally to i, its capacity constraint cannot be violated.

Let us now prove (ii). Fix a machine i. If at all its load-constraint was dropped,
it must be when i ended up in M1,M2 or M3. The case of M1 is argued as in the
previous paragraph. So suppose i ∈ Mλ for some λ ∈ {2, 3} when its load constraint
got dropped. Let us first consider the case λ = 2. Let the two jobs fractionally
assigned on i at that point have processing times (p1, p2) and fractional assignments
(y1, y2) on i, where 0 ≤ p1, p2 ≤ T , max{p1, p2} > 0, and 0 < y1, y2 < 1. If y1+y2 ≤ 1,
we know that at the end, the assignment vector X will have at most one of X1 and
X2 being one. Then, p1X1 + p2X2 ≤ max{p1, p2} < p1y1 + p2y2 + max{p1, p2} as
required. If 1 < y1 + y2 ≤ 2, then both X1 and X2 can be assigned and again,
p1X1 +p2X2 < p1y1 +p2y2 +max{p1, p2}. For the case λ = 3, we know from (I3) and
(D3) that its capacity-constraint must be tight at some integral value u at that point,
and that this capacity-constraint was preserved until the end. We must have u = 1 or
2 here. Let us just consider the case u = 2; the case of u = 1 is similar to the case of
λ = 2 with y1+y2 ≤ 1. Here again, simple algebra yields that if 0 ≤ p1, p2, p3 ≤ T and
0 < y1, y2, y3 < 1 with y1 +y2 +y3 = u = 2, then for any binary vector (X1, X2, X3) of
Hamming weight u = 2, p1X1 + p2X2 + p3X3 < p1y1 + p2y2 + p3y3 + max{p1, p2, p3}.

Finally we have the following lemma.
Lemma 2.6. Algorithm Sched-Cap can be derandomized to create a schedule of

cost at most C.
Proof. (Sketch) Let Xh

i,j denote the value of xi,j at iteration h. We know for all

i, j, h, E[Xh
i,j ] = x∗i,j , where x∗i,j is solution of LP-Cap. Therefore, at the end, we
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have that the total expected cost incurred is C. The procedure can be derandomized
directly by the method of conditional expectations, giving an 1-approximation to the
cost.

Lemmas 2.5 and 2.6 yield Theorem 2.3.

We next turn to the proof of Theorem 2.2. The key difference from Theorem 2.3
is that constraint (Load’) must now be approximated well both from above and below
by our rounding, as opposed to just bounding the deviation above. A less-critical
difference is in (Assign’), where the rj ’s can be an arbitrary positive integers intead
of 1.

Proof of Theorem 2.2. We now consider the full proof of Theorem 2.2. The
following integer program gives an optimal matching:

∑
i,j

ci,jxi,j ≤ C (Cost’)

∑
i,j

xi,j ≥ rj ∀j (Assign’)

∑
j

pi,jxi,j = fi ∀i (Load’)

∑
j

xi,j ≤ bi ∀i (Capacity’)

xi,j ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > `i

The proof of Theorem 2.2 is quite similar to Theorem 2.3. We elaborate upon the
necessary modifications. First, while hard-wiring those Xh

i,j ∈ {0, 1} and viewing the

current linear system as having only those Xh
i,j ∈ (0, 1) as variables, we update the

assignment requirements of the jobs as well as the capacity constraints of the machines
accordingly. (That is, we subtract the contributions of the variables Xh

i,j ∈ {0, 1} to
obtain the residual demands rj and the residual capacities bi.) The dropping rules
(D1) and (D3) remain the same. However, (D2) is modified as follows:

(Modified D2) For each i ∈ M2, we drop its load constraint and rewrite its
capacity constraint. Let j1, j2 be the two jobs assigned to machine i with fractional
assignment xi,j1 and xi,j2 . Then if xi,j1 + xi,j2 ≤ 1, set the capacity constraint to
xi,j1 +xi,j2 ≤ 1. Else if 1 < xi,j1 +xi,j2 < 2, set the capacity constraint to xi,j1 +xi,j2 ≥
1.

Lemma 2.4, Lemma 2.6 remain unchanged. We have a new Lemma 2.7 corre-
sponding to Lemma 2.5, which we prove next.

Lemma 2.7. Let X denote the final rounded vector. Then X satisfies with prob-
ability one: (i) all capacity-constraints on the machines are satisfied, and (ii) for all i,∑
j x
∗
i,jpi,j−maxj∈J: x∗i,j∈(0,1)pi,j <

∑
j∈J Xi,jpi,j <

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈(0,1)pi,j.

Proof. Part (i) is similar to Part (i) of Lemma 2.6 and follows from the facts that
the capacity constraints are never violated and machines in M1 cannot have tight
capacity constraints.

Let us now prove (ii). Note that in (Modified D2) the upper bound on capacity
constraint is maintained as in (D2). Hence from Lemma 2.5, we get

∑
j∈J Xi,jpi,j <∑

j x
∗
i,jpi,j + maxj∈J: x∗i,j∈(0,1)pi,j . So we only need to show the lower bound on
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the load. Fix a machine i. If at all its load-constraint was dropped, it must be
when i ended up in M1 ∪M2 ∪M3. In the case of M1, at most one job fractionally
assigned to it may not be assigned in the final rounded vector. So suppose i ∈ Mλ

for some λ ∈ {2, 3} when i has its load constraint dropped. Let us first consider
the case of λ = 2. Let the two jobs fractionally assigned to i at that point have
processing times (p1, p2) and fractional assignments (y1, y2) on i, where 0 ≤ p1, p2 ≤ T ,
and 0 < y1, y2 < 1. If y1 + y2 ≤ 1, then at the end, none of the jobs may get
assigned. Simple algebra now shows that 0 > p1y1 +p2y2−max{p1, p2} as required. If
1 < y1+y2 ≤ 2, then at least one of the two jobs X1 and X2 get assigned to i and again,
p1X1 +p2X2 > p1y1 +p2y2−max{p1, p2}. For the case λ = 3, we know from (I3) and
(D3) that i’s capacity-constraint must be tight at some integral value u at that point,
and that this capacity-constraint was preserved until the end. We must have u = 1 or 2
in this case. Let us just consider the case u = 2; the case of u = 1 is similar to the case
of λ = 2 with y1 + y2 ≤ 1. Here again, simple algebra yields that if 0 ≤ p1, p2, p3 ≤ T
and 0 < y1, y2, y3 < 1 with y1+y2+y3 = u = 2, then for any binary vector (X1, X2, X3)
of Hamming weight u = 2, p1X1 +p2X2 +p3X3 > p1y1 +p2y2 +p3y3−max{p1, p2, p3}.

Lemmas 2.7 and 2.6 yield Theorem 2.2.
This completes the present section. We have shown how a random subgraph of

a bipartite graph with hard degree-constraints can be obtained while near-optimally
satisfying a collection of linear constraints as well as a given cost-budget. As a special
case of this, we obtained a 2-approximation algorithm for the generalized assignment
problem with hard capacity-constraints on the machines.

3. Scheduling with Outliers. In this section, we consider GAP with outliers
and with a hard profit constraint [27]. Formally, the problem is as follows.

Suppose we are given m machines and n jobs, where job j requires processing
time of pi,j in machine i, incurs a cost of ci,j if assigned to i, and provides a profit
of πj if scheduled. Let xi,j be the indicator variable for job j to be scheduled on
machine i. The goal is to minimize the makespan T = maxi

∑
j xi,jpi,j , subject to the

constraints that the total cost
∑
i,j xi,jci,j is at most C and total profit

∑
j πj

∑
i xi,j

is at least Π. Dropping a few outliers with high processing requirement can often
improve the scheduling performance substantially; however, we would like to drop as
few outliers as possible. The problem formulation captures this by assigning a profit
to each scheduled job, in addition to maintaining the total cost of assignment and the
makespan constraints.

Our main contribution here is the following:
Theorem 3.1. For any given constant ε > 0, there is an efficient algorithm

Sched-Outlier that returns a schedule of profit at least Π, cost at most C(1 + ε) and
makespan at most (2+ε)T , where T is the optimal makespan among all schedules that
simultaneously have cost C and profit Π.

This is an improvement over the work of Gupta, Krishnaswamy, Kumar and Segev
[27], where they constructed a schedule with makespan 3T , profit Π and cost C(1+ε).
In addition, our approach also accommodates fairness – a basic requirement in dealing
with outliers – especially when problems have to be run repeatedly. It ensures that
each job gets a fair chance of being scheduled. We formulate fairness via a stochastic
program that specifies for each job j, a lower-bound rj on the probability that it gets
scheduled:

Definition 3.2 (Fairness). Given a set of jobs J and a real rj ∈ [0, 1] for all
j ∈ J , a schedule is said to be fair if for every job j, it is assigned to a machine with
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probability at least rj.
We adapt our approach to honor such requirements:
Theorem 3.3. Suppose we are given a vector r = (rj : j ∈ J) ∈ [0, 1]n

of fairness requirements. There is an efficient randomized algorithm that returns a
schedule of expected profit at least Π, expected cost at most 2C, makespan at most 3T
with probabiity 1, and guarantees that for each job j, it is scheduled with the specified
probability rj, where T is the optimal expected makespan with expected cost C, expected
profit Π, and under the fairness requirements r.

We start with Theorem 3.1 and describe the algorithm Sched-Outlier first.
Next, we prove Theorem 3.3. While the main ideas behind Sched-Outlier are similar
to those of Section 2, the choice of constraints to drop becomes more complex. It is
now possible that there exist singleton jobs each with only one fractional assignment
to a machine, which was not possible if all jobs need to be assigned as in Section 2.
Hence, we may not be able to maintain the (Assign) constraints always. For jobs whose
(Assign) constraints are dropped, we carefully maintain the total profit obtained from
these jobs. This leads to a few possible configurations at a vertex of the polytope.
We provide a rounding scheme for each of these configurations, leading to the desired
approximation factors. We now describe the algorithm in more detail.

Algorithm Sched-Outlier. The algorithm starts by guessing the optimal makespan
T by binary search as in [33]. If pi,j > T , then xi,j is set to 0. Next let ε > 0 be the

given constant. The running time of the algorithm depends on ε and is O(n(1/ε)O(1)

).
We “guess” all assignments (i, j) where ci,j > ε′C, with ε′ = ε2. Any valid schedule
can have at most 1/ε′ pairs with assignment costs higher than ε′C; hence, this guess-

ing (i.e., enumeration) can be done in time O((mn)
1
ε′ ) = O((mn)1/ε2). For all (i, j)

with ci,j > ε′C, let Gi,j ∈ {0, 1} be a correct guessed assignment: by our polynomial-
time enumeration, we may thus assume we know the optimal Gi,j . For all (i, j) with
ci,j > ε′C we hard-wire xi,j = Gi,j .

The problem is naturally formulated as the following integer linear program:

∑
i,j

ci,jxi,j ≤ C (Cost)

∑
i

xi,j = yj ∀j (Assign)∑
j

pi,jxi,j ≤ T ∀i (Load)

∑
j

πjyj ≥ Π (Profit)

xi,j ∈ {0, 1}, yj ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > T

xi,j = Gi,j if ci,j > ε′C

We relax the constraint “xi,j ∈ {0, 1} and yj ∈ {0, 1}” to “xi,j ∈ [0, 1] and
yj ∈ [0, 1]” to obtain the LP relaxation LP-Out. We solve the LP to obtain an
optimal LP solution x∗, y∗; we next show how Sched-Outlier rounds x∗, y∗ to obtain
the claimed approximation.

The rounding proceeds in stages as in Section 2. Each variable maintains its initial
assignment in x∗, y∗ in expectation over the course of rounding. Thus, as we did in
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Section 2, we drop the cost constraint and finally derandomize the algorithm to restore
this constraint to within a (1 + ε) multiplicative factor as claimed by Theorem 3.1.
Also note that if we maintain all the assignment constraints, then the profit constraint
can be dropped and is not violated. Therefore, we consider the profit constraint if and
only if one or more assignment constraints have been dropped. In addition, we only
need to maintain the total profit obtained from the jobs for which the assignment
constraints have been dropped. We now proceed to describe the rounding in each
stage formally.

Rounding Algorithm. Note that x∗i,j ∈ [0, 1] denotes the fraction of job j assigned
to machine i in x∗. Initially,

∑
i x
∗
i,j = y∗j . Initialize X = x∗. The algorithm

is composed of several iterations; the random values at the end of iteration h of
the overall algorithm are denoted by Xh. (Since yj =

∑
i xi,j , X

h is effectively
the set of variables.) Each iteration h (except perhaps the last one) conducts a
randomized update using RandMove on a suitable polytope constructed from a
subset of the constraints of LP-Out. Therefore, for all h except perhaps the last, we
have E

[
Xh
i,j

]
= x∗i,j . A variable Xh

i,j is said to be floating if it lies in (0, 1), and a job
is floating if it is not yet finally assigned.

Key Notation: the current graph (J,M,E). We will throughout take G =
(J,M,E) to be the subgraph of the original bipartite graph that is composed of only
the currently-floating edges (i, j). We always remove degree-0 nodes from G. The
following notation always holds: the machines of “degree” k in an iteration are those
with exactly k floating jobs assigned fractionally (i.e., those that have degree exactly
k in the current G) and similarly, jobs of “degree” k are those assigned fractionally
to exactly k machines currently. Note that since we allow yj < 1, there can exist
singleton (i.e., degree-1) jobs that are floating.

Suppose we are at the beginning of some iteration (h + 1) of the overall algo-
rithm; so we are currently looking at the values Xh

i,j . We will maintain the following
invariants:

Invariants across iterations:

(I1’) Once a variable xi,j gets assigned to 0 or 1, it is never changed;
(I2’) If j is not a singleton, then

∑
i xi,j remains at its initial value;

(I3’) The constraint (Profit) always holds;
(I4’) Once a constraint is dropped, it is never reinstated. (Recall that even if a

constraint is dropped, the variables associated with it remain.)

Algorithm Sched-Outlier starts by initializing with X
(0)
i,j = x∗i,j . Iteration (h+1)

for h ≥ 0 consists of four major steps:

1. We remove (hard-wire) all Xh
i,j ∈ {0, 1} as in Section 2 , i.e., we project Xh

to those coordinates (i, j) for which Xh
i,j ∈ (0, 1), to obtain the current vector Z

of “floating” variables; let S ≡ (AhZ = uh) denote the current linear system that
represents LP-Out. (Ah is some matrix and uh is a vector.)

2. Let Z ∈ <v for some v; note that Z ∈ (0, 1)v. Let Mk and Nk denote the set of
degree-k machines and degree-k jobs respectively, with mk = |Mk| and nk = |Nk|.
We will now drop/replace some of the constraints in S:

(D1’) for each i ∈M1, we drop its load constraint from S;
(D2’) for each j ∈ N1, we drop its assignment constraint from S. Define a job j to

be tight if
∑
i∈M Zi,j = 1. By definition j ∈ N1 are non-tight. Let JN denote
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all the non-tight jobs. Hence N1 ⊆ JN . Maintain a single profit constraint:∑
j∈JN

Zi,jπj =
∑
j∈JN

Xh
i,jπj .

(Note that at this point, the Xh
i,j are some known values.)

Thus while the assignment constraints of the singleton jobs are not maintained,
their contribution to profit is maintained by having one profit constraint for non-tight
jobs. As we noted earlier, it is not required to maintain the contribution to profit by
the non-singleton jobs for which the assignment constraints are maintained explicitly.

3. If Z is not a vertex of S, we skip this step and go to Step 4; else if Z is a
vertex of S, we do the following. Define the fractional assignment of a machine i by
hi =

∑
j∈J Zi,j . Drop all the assignment constraints of the non-tight jobs (that is

jobs in JN ) and maintain a single profit constraint:∑
j∈N1∪JN

Zi,jπj =
∑

j∈N1∪JN

Xh
i,jπj .

While there exists a machine i′ whose degree d satisfies hi′ ≥ (d − 1 − ε), drop the
load constraint on machine i′.

4. Let P denote the polytope defined by the current system of constraints. If Z is not a
vertex of P, invoke RandMove(Z,P). (Comment: As usual, invoking RandMove
leads to progress for us, since it reduces the number of floating variables by at least
1, or increases the number of tight constraints by at least 1.) Else (in this case the
current iteration will be the last iteration) we proceed as follows depending on the
configuration of machines and jobs in the system and halt. If none of the following
configurations is achieved (which we will show never happens at a vertex), then we
report error and exit. There are five possible configurations, which we describe next
along with the steps we take for each.

Config-1: The Machine-job bipartite graph (J,M,E) consists only of vertex-disjoint
cycles. In this configuration, we orient the edges in the bipartite graph to assign the
jobs in (J,M,E) in such a way that each machine gets at most one job. Note that
such an orientation is easy with disjoint cycles since they have even lengths.

Config-2: The Machine-job bipartite graph (J,M,E) consists of vertex-disjoint cycles
and exactly one path – that is vertex-disjoint from the cycles – that has both end-points
being job nodes. Thus there are two singleton jobs. In this case, we discard one among
the two singleton jobs that has less profit; we again orient the edges in the remaining
bipartite graph to assign the remaining jobs such that each machine gets at most one
job.

Config-3: There is exactly one job of degree 3 and one singleton job; the rest of the
jobs have degree 2 and all of the machines have degree 2. Here we assign the singleton
job to the degree-2 machine it is fractionally attached to and remove the other edge
(but not the job) associated with that machine. We are left with disjoint cycles.
Orient the edges in the cycles of the bipartite graph to assign the remaining jobs in
such a way that each machine gets at most one job.

Config-4: There is only one degree-3 machine with one singleton job attached to it;
the rest of the machines have exactly two non-singleton jobs attached to each of them
fractionally. Each non-singleton job is attached fractionally to exactly two machines.
In this configuration, we assign the singleton job and the cheaper (less processing
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Config-1 Config-2 Config-3

Config-4 Config-5

JOB NODE

MACHINE NODE

Fig. 3.1. Different configurations of the machine-job bipartite graph in step 4 of Sched-Outlier

time) of the two non-singleton jobs to the degree-3 machine. The rest of the jobs and
the machines form disjoint cycles in the machine-job bipartite graph or form disjoint
paths, each with the number of machines in it and the number of jobs in it being
the same. Orient the edges in this remaining bipartite graph in such a way that each
machine gets one among the two jobs fractionally attached to it.

Config-5: The machine-job bipartite graph (J,M,E) consists of vertex-disjoint cycles
and exactly one extra edge with one singleton job and one singleton machine. Here,
we assign the singleton job to the singleton machine. Orient the edges in the cycles
of the bipartite graph to assign the remaining jobs in such a way that each machine
gets at most one job.

The different configurations are shown pictorially in the figure. This ends the
description of the algorithm.

Analysis. Our analysis follows the following structure. First, we prove two key
lemmas – Lemma 3.4 and Lemma 3.5 – which show that if Z is a vertex and the
algorithm reaches step 4, then one of the five configurations as described above hap-
pens and also that the number of machines in G is lesser than 1

ε . Lemmas 3.4 and
3.5 are followed by Lemma 3.6. Lemma 3.6 establishes that the dropping and the
modification of constraints in step 2 and 3, along with the assignment of jobs in step
4 do not violate the load constraint by more than a factor of (2 + ε) and maintain the
profit constraint. Lemma 3.7 bounds the cost.

Recall that in the bipartite graph G = (J,M,E), we have in iteration (h+1) that
(i, j) ∈ E iff Xh

i,j ∈ (0, 1); also, any job or machine having degree 0 is not part of G.

Lemma 3.4. If Z is a vertex of the polytope at the beginning of step 3, then the
following must be true at the beginning of step 3: (i) one of the five configurations
described in step 4 must occur then, and (ii) the number of floating variables must
equal the number of constraints in our system then.

Proof. Let us consider the different possible configurations of G when Z becomes
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a vertex of the polytope P at the beginning of step 3. There are several cases to
consider depending on the number of singleton floating jobs in G in that iteration.
For each case, we will prove (i) and (ii).

Case 1: There is no singleton job. We have n1 = 0. Then, the number of constraints
in S is

EQ =
∑
k≥2

mk +
∑
k≥2

nk.

Recall that since there is no singleton job, we do not consider the profit constraint
explicitly. The number of floating variables is v =

∑
k≥2 knk; alternatively, v =∑

k≥1 kmk. Therefore,

v =
∑
k≥2

k

2
(mk + nk) +

m1

2
.

Z being a vertex of P, v ≤ EQ. Thus, we must have nk = mk = 0 for all k ≥ 3 and
m1 = 0. Hence, every floating machine has exactly two floating jobs assigned to it
and every floating job is assigned exactly to two floating machines. This is handled
by Config-1, which also satisfies v = EQ as required by part (ii) of the lemma.

Case 2: There are at least three singleton jobs. We have n1 ≥ 3. Then the number
of linear constraints is EQ =

∑
k≥2mk +

∑
k≥2 nk + 1, where the last “1” comes from

the single profit constraint. The number of floating variables v again by the averaging
argument as above is

v =
n1

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
≥ 3

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
.

Hence, the system is always underdetermined and Z cannot be a vertex of P.

Case 3: There are exactly two singleton jobs. We have n1 = 2. Then the number of
linear constraints is

EQ =
∑
k≥2

mk +
∑
k≥2

nk + 1;

again the last “1” comes from the single profit constraint. The number of floating
variables v by the averaging argument is

v =
n1

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
≥ 1 +

∑
k≥2

k

2
(mk + nk) +

m1

2
.

Thus we must have nk = mk = 0 for all k ≥ 3, and m1 = 0 – and thus also that
v = EQ. Also, every floating machine has exactly two floating jobs assigned to it
and each job – except for the two singleton jobs – is assigned to exactly two machines
fractionally: this is handled by Config-2.

Case 4: There is exactly one singleton job. We have n1 = 1 here. Then the number
of linear constraints is

EQ =
∑
k≥2

mk +
∑
k≥2

nk + 1. (3.1)
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The number of floating variables is

v ≥ 1

2
+ n2 +

3

2
n3 +

m1

2
+m2 +

3

2
m3 +

∑
k≥4

k

2
(mk + nk). (3.2)

If Z is a vertex of P, then v ≤ EQ. There are only three possible sub-cases that
might arise in this case:

(i) n3 = 3 (and n1 = 1). It is easy to check here that for the r.h.s. of (3.2) to be
upper-bounded by the r.h.s. of (3.1), all the other jobs must have degree 2 and all the
machines must have degree 2. This is handled by Config-3, and we have v = EQ.

(ii) m3 = 1 (and n1 = 1). Just as in sub-case (i), the rest of the jobs and machines
must have degree 2. This is handled by Config-4; we again have v = EQ here.

(iii) m1 = n1 = 1. The rest of the jobs and machines have degree 2. This is handled
by Config-5 and again satisfies v = EQ.

Lemma 3.5. (a) Let m denote the number of machine-nodes in G = (J,M,E)
at the beginning of step 4. If m ≥ 1

ε , then Z is not a vertex of the polytope at the
beginning of step 4. (b) If Z was a vertex of the polytope at the beginning of step 4
and if Config-2 held during this step, then the total fractional assignment of the two
singleton jobs is less than 1.

Proof. Most of this proof is centered on (a); we handle (b) when we address
Config-2 below.

Suppose Z is a vertex of the polytope at the beginning of step 4. Then by
Lemma 3.4(i), one of the five configurations described in step 4 must occur. Our
strategy now is to show that if m ≥ 1

ε , then it cannot be that one of the following two
happened in step 3: (a) we were not able to drop any constraint in step 3, or (b) we
dropped exactly one constraint – which was an assignment constraint for a non-tight
job – in step 3 but also added one profit constraint in step 3. Given Lemma 3.4(ii),
the impossibility of (a) and (b) would then show that our system is underdetermined
at the beginning of step 4 if m ≥ 1

ε as required.
In any configuration, if there is a cycle with all tight jobs, then there always exists

a machine with total fractional assignment at least 1 and hence its load constraint is
dropped in step 3 – as its degree is 2. So we assume there is no such cycle in any
configuration, since the proof is complete otherwise.

Now suppose the algorithm reaches Config-1. If there are two non-tight jobs,
then we drop two assignment constraints and only add one profit constraint. Thus
the system becomes underdetermined. Therefore, there can be at most one non-tight
job and only one cycle overall (say C), since we have assumed above that there is
no cycle with all jobs tight. Let C have m machines and thus m jobs. Therefore,∑
i,j∈C xi,j ≥ m − 1. Thus there exists a machine such that the total fractional

assignment of jobs on that machine is at least m−1
m = 1 − 1/m. If m ≥ 1

ε , then
there exists a machine with degree 2 and with total fractional assignment at least
(1 − ε): thus the load-constraint on that machine gets dropped, making the system
underdetermined.

Suppose the algorithm reaches Config-2: we also handle part (b) of the Lemma
here. In this case, all the non-singleton jobs must be tight for Z to be a vertex.
If there are m machines, then the number of non-singleton jobs is m − 1. Let the
two singleton jobs be j1 and j2, and the two machines to which jobs j1 and j2 are
fractionally attached with be i1 and i2 respectively. If xi1,j1 + xi2,j2 ≥ 1, then the
total fractional assignment from all the jobs in the system is at least m; thus the
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machine with maximum fractional assignment must have an assignment at least 1.
Since this machine has degree 2, its load constraint would have been dropped – a
contradiction, thus also proving (b). Thus, the only case to consider (for part (a)) is
that xi1,j1 + xi2,j2 < 1, where the total fractional assignment of all the jobs in the
system is at least m − 1. Thus there exists a machine such that the total fractional
assignment of jobs on that machine is ≥ m−1

m = 1−1/m. If m ≥ 1
ε , then there exists a

machine with degree 2 and with total fractional assignment at least (1−ε). Hence the
load constraint on that machine gets dropped, making the system underdetermined.

For Config-3 and Config-5, if Z is a vertex of P, then all the non-singleton jobs
must be tight and using essentially the same argument as above, there exists a machine
with fractional assignment at least (1− ε) if the algorithm reaches Config-3 and there
exists a machine with fractional assignment 1 > 2 − 1 − ε if the algorithm reaches
Config-5.

If the algorithm reaches Config-4, then again all the non-singleton jobs must be
tight. If the degree-3 machine has fractional assignment at least 2 − ε, then its load
constraint can be dropped to make the system underdetermined. Otherwise, the total
assignment to the degree-2 machines from all the jobs in the cycle is at least m−2+ε.
Therefore, there exists at least one degree-2 machine with fractional assignment at
least m−2+ε

m−1 = 1− 1−ε
m−1 ≥ 1− ε, if m ≥ 1

ε . The load-constraint on that machine will
be dropped in step 3.

Hence, it is not possible that Z is a vertex of the polytope in step 4 if the number
of machines m is at least 1

ε . This completes the proof of Lemma 3.5.

We next show that with probability 1, the final profit is at least Π and the final
makespan is at most (2 + ε)T :

Lemma 3.6. Let X denote the final rounded vector. Algorithm Sched-Outlier
returns a schedule, where with probability one, (i) the profit is at least Π, (ii) for all
i,
∑
j∈J Xi,jpi,j <

∑
j x
∗
i,jpi,j + (1 + ε)maxj∈J: x∗i,j∈(0,1]pi,j.

Proof. (i) This essentially follows from the fact that whenever the assignment
constraint for any job is dropped, its profit constraint is included in the global profit
constraint of the system. In step 4, with the exception of one configuration (Config-
2), all the jobs are always assigned; thus the profit cannot decrease in these other
configurations. In Config-2, since we are at a vertex in step 4, Lemma 3.5(b) shows
that the total fractional assignment of the two singleton jobs is less than 1. Thus a
singleton job (say j1) is dropped only when G has two singleton jobs j1, j2 fractionally
assigned to i1 and i2 respectively, with total assignment xi1,j1 + xi2,j2 < 1. Since the
job with the higher profit is retained, πj1xi1,j1 + πj2xi2,j2 ≤ max{πj1 , πj2}.

(ii) A machine’s fractional load is preserved until its load constraint is dropped (if
at all). When can such a load constraint be dropped in an iteration? Note from (D1’)
that load constraints are dropped from machines i ∈M1; Lemma 3.4 implies that the
load constraint also might be dropped from some machine(s) i ∈ M2 ∪M3 in step 3.
For i ∈ M1, only the remaining job j with Xh

i,j > 0 can get fully assigned to it any
further. Hence for i ∈M1, its total load is less than

∑
j x
∗
i,jpi,j + maxj∈J:x∗i,j∈(0,1]pi,j .

For any machine i ∈ M2 ∪ M3, if its degree d (2 or 3) is such that its fractional
assignment is at least d − 1 − ε, then by simple algebra, it can be shown that for
any such machine i, its total load is at most

∑
j x
∗
i,jpi,j + (1 + ε)maxj∈J:x∗i,j∈(0,1]pi,j

at the end of the algorithm. For the remaining machines consider what happens in
step 4. Since this is the last iteration, it suffices to show that the load does not
increase by too much in this last iteration. Except when Config-4 is reached, any
remaining machine i gets at most one extra job, and thus its total load is less than
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∑
j x
∗
i,jpi,j + maxj∈J: x∗i,j∈(0,1]pi,j . When Config-4 is reached in step 4, if the degree-3

machine (say i) has a fractional assignment some f ≤ 1 from the two jobs in the cycle,
then the total fractional load on the remaining m − 1 machines is m − f ≥ m − 1,
which means that one of these (degree-2) machines had a load of at least 1: this in
turn means that such a machine would have had its load constraint dropped in step
3, which is a contradiction. Hence, let j1, j2, j3 be the three jobs assigned fractionally
to machine i and let j3 be the singleton job; as argued in the previous sentence,
xi,j1 + xi,j2 > 1. If pi,j1 ≤ pi,j2 , then machine i gets jobs j1 and j3 assigned to it; else
i gets j2, j3. Since the fractional assignment on i from j1 and j2 is more than 1 and
since the job with less processing time among j1 and j2 is assigned to i, i’s final load
is less than

∑
j x
∗
i,jpi,j + maxj∈J: x∗i,j∈(0,1]pi,j . This completes the proof of Lemma

3.6.
Finally we have the following lemma.
Lemma 3.7. Algorithm Sched-Outlier can be derandomized to output a schedule

of cost at most C(1 + ε).
Proof. In all iterations h except possibly the last one, we have for all i, j that

E[Xh
i,j ] = x∗i,j , where x∗i,j is solution of LP-Out. Therefore, before the last iteration,

we have that the total expected cost incurred is C. As in Section 2, the procedure
can be derandomized directly by the method of conditional expectations, giving an
1-approximation to cost, just before the last iteration. Now in the last iteration, since
at most 1

ε jobs are assigned and each assignment requires at most ε′C = ε2C in cost,
the total increase in cost is at most εC, giving the required approximation.

Lemmas 3.6 and 3.7 yield Theorem 3.1.

We next consider Theorem 3.3 that maintains fairness in the allocation of jobs
while handling outliers.

Proof of Theorem 3.3:
Proof. We consider the LP-relaxation LP-Out except that: (i) we add the con-

straints yj = rj , and (ii) drop the constraint xi,j = Gi,j if ci,j > ε′C (i.e., in order to
maintain the scheduling probabilities of the jobs, we do not guess the assignment of
jobs with high cost).

For part (i), we consider the first two steps of Algorithm Sched-Outlier. If P
denotes the polytope defined by the reduced system of constraints and the current
vector Z is not a vertex of P, then we invoke RandMove(Z,P ) and proceed. Else
from Lemma 3.4, Z is a vertex of P only if one of the configurations, Config-1 to
Config-5, as described in step 4 of Algorithm Sched-Outlier is achieved and m < 1

ε .
For any singleton job, we assign the singleton job to the corresponding machine with
probability equal to its fractional assignment. Thus Theorem 3.3 remains valid for
these singleton jobs. For each non-singleton job, we consider the machines to which it
is fractionally assigned and allocate it to the machine which has cheaper assignment
cost for it. If the algorithm reached Config-1, 2, 3 or 5, each machine can get at most
two extra jobs and the expected cost is maintained. However if the algorithm reached
Config-4 and the three jobs associated with the degree-3 machine were all assigned
to it, then we remove one non-singleton job from the degree-3 machine. This job
is assigned to the degree-2 machine in the cycle on which it had non-zero fractional
assignment. This may increase the expected cost by a factor of 2 but ensures that
each machine gets at most 2 additional jobs.

4. Max-Min Fair Allocation. In this section we consider another application
that has received significant attention in the recent past: the max-min fair allocation
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problem [11, 12, 6, 5, 9]. We provide a new algorithm for max-min fair allocation
based on bipartite dependent rounding [25] and its generalization to weighted graphs.
Bipartite dependent rounding has found many applications in combinatorial optimiza-
tion [41, 25, 30], and can be seen as a special case of RandMove on bipartite graphs.
We also consider an “equitable allocations” version of such problems, in Theorem 4.2:
this theorem follows from [39] as pointed out by the referee.

In the max-min fair allocation problem, there are m goods that need to be dis-
tributed indivisibly among k persons. Each person i has a non-negative integer val-
uation ui,j for good j. The valuation functions are linear, i.e., ui,C =

∑
j∈C ui,j

for any set of C goods. The goal is to allocate each good to a person such that
the “least happy person is as happy as possible”: i.e., mini ui,C is maximized. Our
main contribution in this regard is to near-optimally pin-point the integrality gap of
a configuration LP previously proposed and analyzed in [9, 6].

The Configuration LP for Max-Min Fair Allocation. The configuration
LP formulation for the max-min fair allocation problem was first considered in [9]. A
configuration is a subset of items, and the LP has a variable for each valid configura-
tion. Using binary search, first the optimum solution value T is guessed and then we
define valid configurations based on the approximation factor λ sought; we will set

λ = 26
√
k ln k. (4.1)

We call a configuration C valid for person i if either of the following two conditions
hold:

• ui,C ≥ T and each item in C has value less than T
λ . These are called small

items.
• C contains only one item j and ui,j ≥ T

λ . We call such an item j to be a big
item for person i.

We define a variable xi,C for assigning a valid configuration C to person i. Let
C(i, T ) denote the set of all valid configurations corresponding to person i with respect
to T . The configuration LP relaxation of the problem is as follows:

∀j :
∑
C3j

∑
i

xi,C ≤ 1 (4.2)

∀i :
∑

C∈C(i,T )

xi,C = 1

∀i, C : xi,C ≥ 0

The above LP formulation may have an exponential number of variables, However,
if the LP is feasible, then a fractional allocation where each person receives either
a big item or at least a utility of T (1 − ε) can be computed in polynomial time
for any constant ε > 0 [9]. In the subsequent discussion and analysis, we ignore
the multiplicative (1 − ε)−1 factor; it is hidden in the Θ notation of the ultimate
approximation ratio.

The worst-case integrality gap of the above configuration LP is lower-bounded by
Ω( 1√

k
) [9]. In [6], Asadpour and Saberi gave a rounding procedure for the configu-

ration LP that achieved an approximation factor of O
(

1√
k(ln k)3

)
. Here we further

lower the gap and prove the following theorem; our proof is also significantly simpler
than that of [6].

Theorem 4.1. Given any feasible solution to the configuration LP, it can be
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rounded to a feasible integer solution such that every person gets at least Θ
(

1√
k ln k

)
fraction of the optimal utility with probability at least 1−Θ( 1

k ), in polynomial time.

Note that the work of Chakrabarty, Chuzhoy and Khanna [17] yields an improved
approximation factor of mε for any positive constant ε, but it does not use the con-
figuration LP (also note that m ≥ k).

In the context of fair allocation, an additional important criterion can be an
equitable partitioning of goods: we may impose an upper bound on the number of
items a person might receive. For example, we may want each person to receive at
most dmk e goods. Theorem 2.2 then directly leads to the following.

Theorem 4.2. Suppose, in max-min allocation, we are given upper bounds ci on
the number of items that each person i can receive, in addition to the utility values
ui,j. Let T be the optimal max-min allocation value that satisfies ci for all i. Then,
we can efficiently construct an allocation in which for each person i the bound ci holds
and she receives a total utility of at least T −maxj ui,j.

This generalizes the result of [11], which yields the “T − maxj ui,j” value when
no bounds such as the ci are given. To our knowledge, the results of [12, 6, 5, 9] do
not carry over to the setting of such “fairness bounds” ci.

4.1. Algorithm for Max-Min Fair Allocation. We now describe the algo-
rithm and proof for Theorem 4.1.

4.1.1. Algorithm. We define a weighted bipartite graph G with the vertex set
A
⋃
B corresponding to the persons and the items respectively. There is an edge

between a vertex corresponding to person i ∈ A and item j ∈ B, if a configuration C
containing j is fractionally assigned to i. Define

wi,j =
∑
C3j

xi,C ,

i.e., wi,j is the fraction of item j that is allocated to person i by the fractional solution
of the LP. An edge (i, j) is called a matching edge, if the item j is big for person i.
Otherwise it is called a flow edge.

Let M and F represent the set of matching and flow edges respectively. For each
vertex v ∈ A

⋃
B, let mv denote the total fractional weight of the matching edges

incident to it. That is if v is a person then

mv =
∑

j is a big item for v

wv,j =
∑

j∈C,C contains the big item j for v

x(v, C).

And if v is a job then

mv =
∑

i: v is a big item for i

wi,v =
∑

i,C contains v as a big item for i

x(i, C).

Also define fv = 1−mv. The main steps of the algorithm are as follows.

1. Guess the value of the optimal solution T by doing a binary search. Solve LP
(4.2). Obtain the set M and mv, fv for each vertex v in G constructed from
the LP solution.
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2 Allocating Big Items: Select a random matching from edges in M using
bipartite dependent rounding (see Section 4.1.2) such that for every v ∈ A

⋃
B,

the probability that v is matched by the matching is mv = 1− fv.

3 Allocating Small Items: Let ε1 =
√

ln k
k .

(a) Discard any item j with mj ≥ (1− ε1), and also discard all the persons
and the items matched by the matching.

(b) (Scaling) In the remaining graph containing only flow edges for un-
matched persons and items, set for each person i, w′i,j =

wi,j
fi
, ∀j.

(c) Further discard any item j with
∑
i w
′
i,j ≥ ψ(k), where ψ(k) is defined

below.
(d) Scale down the weights on all the remaining edges by a factor of ψ(k)

and run the algorithm of [11] to assign the small items.
matched

Choice of ψ(k).

Let us consider the functions Φ(k) = 100 ln ln ln k/ ln ln k (note that Φ is asymp-
totically zero.) and

ψ = ψ(k) =
3 ln k

ln ln k
· (1 + Φ(k)); (4.3)

For large enough k, say k ≥ 10, the following holds.

(1 + ψ) ln(1 + ψ)− ψ ≥ 3 ln k (4.4)

This is easily verified by plugging the fact ln(1 + ψ) ≥ ln ln k − ln ln ln k into (4.4).

We now analyze each step. The main proof idea is in showing that there remains
enough left-over utility in the flow graph for each person not matched by the matching.
This is obtained through proving a negative correlation property among the random
variables defined on a collection of vertices. Previously, the negative correlation prop-
erty due to bipartite dependent rounding was known for variables defined on edges
incident on any particular vertex. We adapt the proof according to our need.

4.1.2. Allocating Big Items. Consider the edges in M in the person-item
bipartite graph. Remove all the edges (i, j) that have already been rounded to 0 or
1. Additionally, if an edge is rounded to 1, remove both its endpoints i and j. We
initialize for each (i, j) ∈ M , yi,j = wi,j , and modify the yi,j values probabilistically
in rounds using bipartite dependent rounding.

Bipartite Dependent Rounding[25]. We give a brief sketch of bipartite de-
pendent rounding introduced in [25] for the sake of completeness.

The bipartite dependent rounding selects an even cycle C or a maximal path P
in G, and partitions the edges in C or P into two matchingsM1 andM2. Then, two
positive scalars α and β are chosen as follows:

α = min{η > 0 : ((∃(i, j) ∈M1 : yi,j + η = 1)
⋃

(∃(i, j) ∈M2 : yi,j − η = 0))};

β = min{η > 0 : ((∃(i, j) ∈M1 : yi,j − η = 0)
⋃

(∃(i, j) ∈M2 : yi,j + η = 1))};
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Now with probability β
α+β , set

y′i,j = yi,j + α for all (i, j) ∈M1

and y′i,j = yi,j − α for all (i, j) ∈M2;

with complementary probability of α
α+β , set

y′i,j = yi,j − β for all (i, j) ∈M1

and y′i,j = yi,j + β for all (i, j) ∈M2;

The above rounding scheme satisfies the following two properties, which are easy
to verify:

∀ i, j, E
[
y′i,j
]

= yi,j (4.5)

∃ i, j, y′i,j ∈ {0, 1} (4.6)

Thus, if Yi,j denotes the final rounded values then Property (4.5) guarantees for
every edge (i, j), E

[
Yi,j
]

= wi,j . This gives the following corollary.
Corollary 4.3. The probability that a vertex v ∈ A

⋃
B is matched in the

matching generated by the algorithm is mv.
Proof. Let there be l ≥ 0 edges e1, e2, ..el ∈M that are incident on v. Then,

Pr
[
v is matched

]
= Pr

[
∃ ei, i ∈ [1, l] s.t v is matched with ei

]
=

l∑
i=1

Pr
[
v is matched with ei

]
=

l∑
i=1

wi = mv

Here the second equality follows by replacing the union bound by sum since the
events are mutually exclusive.

Negative Correlation over Multiple Vertices. Now we show additional properties
of this rounding to be used crucially for the analysis of the next step. Recall the notion
of negative correlation from Definition 1.1. We show a useful negative-correlation
property for dependent rounding on bipartite graphs over multiple vertices. The
proof is syntactically similar to Lemma 2.2 of [25]. However, [25] only shows negative
correlation property for random variables defined on edges incident to a single vertex;
here a stronger negative correlation property is proven for random variables defined
on multiple vertices. We state the theorem here, and prove it in the appendix.

Theorem 4.4. Define an indicator random variable zj for each item j ∈ B with
mj < 1, such that zj = 1 if item j is matched by the matching. Then, the indicator
random variables {zj} are negatively correlated.

As a corollary of Theorem 4.4, we get the following:
Corollary 4.5. Define an indicator random variable zi for each person i ∈ A,

such that zi = 1 if person i is matched by the matching. Then, the indicator random
variables {zi} are negatively correlated.

Proof. Do the same analysis as in Theorem 4.4 with items replaced by persons.

4.1.3. Allocating small items. We start by proving in Lemma 4.6 that after
the matching phase, we have with high probability that each unmatched person has

available items with utility at least
√

ln k
k

T
5 in the flow graph. Additionally we prove
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in Lemma 4.7 that given any particular item j, we have with probability at least
1 − O(1/k) that j is claimed at most ψ(k) times. Note that this probability is not
large enough to afford a union bound over all the m possible values of j, since m is
not bounded as a function of k; Lemma 4.8 shows how to get around this issue. Both
of these probabilistic results use Theorem 1.2.

Lemma 4.6. After Step 2 of allocation of big items by bipartite dependent round-
ing, we have the probability for all unmatched person to have a total utility of at least√

ln k
k

T
5 from the unmatched items is at least 1− 1

k .

Proof. Consider a person v who is unsatisfied by the matching. Define w′v,j =
wv,j
fv

.

Then according to LP (4.2) solution∑
j

w′v,juv,j = T (4.7)

In step (a) of Allocation of Small Items, all items j with mj at least (1− ε1)

are discarded; recall that ε1 =
√

ln k
k . Since the total sum of mj can be at most k

(the number of persons), there can be at most k
1−ε1 items with mj at least 1 − ε1.

Therefore, for the remaining items, we have fj ≥ ε1. Each person is connected only
to small items in the flow graph. After removing the items with mj at least 1 − ε1,
the remaining utility in the flow graph for person v is at least

∑
j:fj≥ε1

w′v,juv,j =

T − ∑
j:fj≤ε1

uv,jfj

 ≥ (T − ε1k

1− ε1
T

λ

)
. (4.8)

Now consider random variables Yv,j for each of these unmatched items:

Yv,j =

{
w′v,juv,j
T/λ : if item j is not matched

0 : otherwise
(4.9)

Since uv,j ≤ T/λ and wv,j ≤ fv, the Yv,j are random variables bounded in [0, 1].
Person v is unmatched by the matching with probability 1 − mv = fv. Each such
person v gets a fractional utility of w′v,juv,j from the small (with respect to the person)
item j in the flow graph, if item j is not matched by the matching. The latter happens
with probability fj .

Define Gv =
∑
j Yv,j . Then T

λGv is the total fractional utility after step (b). It
follows from (4.8) that

E
[
Gv
]

=
∑
j

w′v,juv,jfj

T/λ
≥ ε1λ

(
1− ε1k

(1− ε1)λ

)

Thus, since λ = 26
√
k ln k, we have for sufficiently large k that

E
[
Gv
]
≥ ε1λ

(
1− ε1k

(1− ε1)λ

)
≥ 24 ln k.

That the Yv,j ’s are negatively correlated follows from Theorem 4.4. Therefore,
applying Theorem 1.2(i) with δ = 1/2,

Pr
[
Gv ≤

1

2
E
[
Gv
]]
≤ e−24 ln k/12 =

1

k2
;
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i.e.,

Pr
[T
λ
Gv ≤

1

2

T

λ
E
[
Gv
]]
≤ 1

k2

Hence,

Pr
[
∃v :

T

λ
Gv ≤

1

2

T

λ
E
[
Gv
]]
≤ 1

k
.

Therefore the net fractional utility that remains for each person in the flow graph

after scaling is at least 1
2
T
λE
[
Gv
]

= 1
2

T
26
√
k ln k

12 ln k ≥ T
5

√
ln k
k , with probability at

least 1− 1
k .

Lemma 4.7. Fix any item j that is unmatched after Step 2. After the match-
ing and the scaling (step (b)), j has a total fractional incident edge-weight from the
unmatched persons to be at most ψ(k), with probability at least 1− 1

k3 .
Proof. Note that for any person v for which j is small for v, wv,j ≤ fv; hence,

w′v,j =
wv,j
fv
≤ 1. Define a random variable Zv,j for each person v as:

Zv,j =

{
w′v,j : if person v is not matched

0 : otherwise
(4.10)

Let Xj =
∑
v Zv,j . Then Xj is the total weight of all the edges incident on

item j in the flow graph after scaling and removal of all matched persons. We have
E
[
Xj

]
=
∑
v w
′
v,jfv =

∑
v wv,j ≤ 1. The fact that the variables Zv,j are negatively

correlated follows from Corollary 4.5. Thus, applying Theorem 1.2(ii) with µ = 1 and
δ = ψ(k) along with (4.4), we obtain

Pr
[
Xj ≥ ψ(k)

]
≤ 1

k3
.

This completes the proof.
Recall the third step, step (c), of Allocating Small Items. Any job in the

remaining flow graph with total weight of incident edges more than ψ(k) is discarded
in this step. We now calculate the utility that remains for each person in the flow
graph after step (c).

Lemma 4.8. After removing all the items that have total degree more than ψ(k) in
the flow graph, that is after step (c) of Allocating Small Items, the probability that

all unmatched persons have remaining utility in the flow graph at least
√

ln k
k

T
2∗(3+o(1))

is at least 1− 2
k .

Proof. Fix a person v and consider the utility that v obtains from the fractional

assignments in the flow graph before step (c). It is at least
√

ln k
k

T
5 from Lemma 4.6.

Define a random variable for each item that v claims with nonzero value in the flow
graph at step (b):

Z ′v,j =

{
uv,j : if item j has total weighted degree at least ψ(k)

0 : otherwise
(4.11)

We have Pr
[
Z ′v,j = uv,j

]
≤ 1

k3 from Lemma 4.7. Therefore, the expected utility
for v from all the items in the flow graph that have total incident weight more than
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ψ(k) is at most T
k3 . By Markov’s inequality, the probability that the utility for v

from the discarded items is more than T
k , is at most 1

k2 . Applying the union bound,

the probability of the utility from the discarded items being more than T
k for some

person, is at most 1
k . The initial utility before step (c) was at least

√
ln k
k

T
5 with

probability 1 − 1
k . Thus after step (c), the remaining utility is at least

√
ln k
k

T
5 −

T
k

with probability at least 1− 2
k .

The next and the final step (d) of allocations is to run [11] on a scaled-down
flow graph. The weight on the remaining edges is scaled down by a factor of ψ(k)
and hence for every item node that has not been matched after step (c), the total
edge-weight incident on it is at most one. Hence after scaling down the utility of any

person v in the flow graph is
∑
j uv,jWv,j ≥ ln ln k

ln k

√
ln k
k

T
18(1+o(1)) = ln ln k√

k ln k
T

18(1+o(1)) ,

where Wv,j denote the scaled down weight on the edge (v, j). Also, note that the
maximum utility of any item in the flow graph is at most T

λ = T
26
√
k ln k

. Hence, by

running the algorithm of [11], which is a simpler version of Theorem 2.2, we get the
following lemma.

Lemma 4.9. For all persons unmatched by the matching, the total utility received
is at least Ω( ln ln k√

k ln k
T ) after step (d) with probability at least 1− 2

k .

Proof. Let Wv,j denote the fractional weight on the scaled down flow graph. Then
for every item j in the flow graph,

∑
vWv,j ≤ 1. And for every person v considering

the items in the flow graph,
∑
jWv,juv,j ≥ ln ln k√

k ln k
T

18(1+o(1)) with probability at least

1− 2
k . We can now employ the rounding algorithm of [11] which is a simplification of

Theorem 2.2 without any capacity constraint. We get an integer solution where each
person receives a utility of at least ln ln k√

k ln k
T

18(1+o(1)) −
T
λ , and every item is assigned to

at most one person. Since λ = 26
√
k ln k, we get the desired result.

Theorem 4.1 Given any feasible solution to the configuration LP, it can be rounded to

a feasible integer solution such that every person gets at least Θ
(

1√
k ln k

)
fraction of

the optimal utility with probability at least 1−Θ( 1
k ), in polynomial time.

Proof. Any person that is matched by step 2 of the algorithm Allocating Big
Items receives a utility of T

λ . From Lemma 4.9, each person unmatched by the

matching receives a utility of Ω( ln ln k√
k ln k

T ) with probability at least 1− 2
k . Noting that

λ = 26
√
k ln k, we therefore, get the theorem.

Thus, our approximation ratio is Θ( 1√
k ln k

). This provides an upper bound of

O(
√
k ln k) on the integrality gap of the configuration LP for max-min fair allocation,

nearly matching the lower bound of Ω(
√
k) due to [9].

5. Designing Overlay Multicast Networks For Streaming. The work of
[3] studies approximation algorithms for designing a multicast overlay network. We
first describe the problem and state the results in [3] (Lemma 5.1 and Lemma 5.2).
Next, we show our main improvement in Lemma 5.3.

5.1. Background. The background text here is largely borrowed from [3]. An
overlay network can be represented as a tripartite digraph N = (V,E). The nodes V
are partitioned into sets of entry points called sources (S), reflectors (R), and edge-
servers or sinks (D). There are multiple commodities or streams, that must be routed
from sources, via reflectors, to the sinks that are designated to serve that stream to
end-users. Without loss of generality, we can assume that each source holds a single
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min
∑
i∈R

rizi +
∑
i∈R

∑
k∈S

ck,i,kyi,k +
∑
i∈R

∑
k∈S

∑
j∈D

ci,j,kxi,j,k

s.t. (5.1)

yi,k ≤ zi ∀i ∈ R, ∀k ∈ S (5.2)

xi,j,k ≤ yi,k ∀i ∈ R, ∀j ∈ D, ∀k ∈ S (5.3)∑
k∈S

∑
j∈D

xi,j,k ≤ Fizi ∀i ∈ R (5.4)

∑
i∈R

xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (5.5)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, zi ∈ {0, 1} (5.6)

Table 5.1
Integer Program for Overlay Multicast Network Design

stream. There is a cost associated with usage of every link and reflector. There
are capacity constraints, especially on the reflectors, that dictate the maximum total
bandwidth (in bits/sec) that the reflector is allowed to send. To ensure reliability,
multiple copies of each stream may be sent to the designated edge-servers.

All these requirements can be captured by an integer program. Let us use indi-
cator variable zi for building reflector i, yi,k for delivery of k-th stream to the i-th
reflector and xi,j,k for delivering k-th stream to the j-th sink through the i-th re-
flector. Fi denotes the fanout constraint for each reflector i ∈ R. Let px,y denote
the failure probability on any edge (source-reflector or reflector-sink). We transform
the probabilities into weights: wi,j,k = − log (pk,i + pi,j − pk,ipi,j). Therefore, wi,j,k
is the negative log of the probability of a commodity k failing to reach sink j via
reflector i. On the other hand, if φj,k is the minimum required success probability
for commodity k to reach sink j, we instead use Wj,k = − log (1− φj,k). Thus Wj,k

denotes the negative log of maximum allowed failure. ri is the cost for opening the
reflector i and cx,y,k is the cost for using the link (x, y) to send commodity k. Thus
we have the IP (see Table 5.1).

Constraints (5.2) and (5.3) are natural consistency requirements; constraint (5.4)
encodes the fanout restriction. Constraint (5.5), the weight constraint, ensures quality
and reliability. Constraint (5.6) is the standard integrality-constraint that will be
relaxed to construct the LP relaxation.

There is an important stability requirement that is referred as color constraint in
[3]. Reflectors are grouped into m color classes, R = R1 ∪ R2 ∪ . . . ∪ Rm. We want
each group of reflectors to deliver not more than one copy of a stream into a sink.
This constraint translates to∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (5.7)

Each group of reflectors can be thought to belong to the same ISP. Thus we
want to make sure that a client is served only with one – the best – stream possible
from a certain ISP. This diversifies the stream distribution over different ISPs and
provides stability. If an ISP goes down, still most of the sinks will be served. We
refer the LP-relaxation of integer program (Table 5.1) with the color constraint (5.7)
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as LP-Color.
All of the above is from [3]. The work of [3] uses a two-step rounding procedure

and obtains the following guarantee.
First stage rounding: Rounds zi and yi,k for all i and k to decide which reflector

should be open and which streams should be sent to a reflector. The results here can
be summarized in the following lemma:

Lemma 5.1. ([3]) The first-stage rounding algorithm incurs a cost at most a
factor of 64 log |D| higher than the optimum cost, and with high probability violates
the weight constraints by at most a factor of 1

4 and the fanout constraints by at most
a factor of 2. Color constraints are all satisfied.

Second stage rounding: Rounds xi,j,k’s using the open reflectors and streams
that are sent to different reflectors in the first stage. The results in this stage can be
summarized as follows:

Lemma 5.2. ([3]) The second-stage rounding incurs a cost at most a factor of 14
higher than the optimum cost and violates each of fanout, color and weight constraint
by at most a factor of 7.

5.2. Main Contribution. Our main contribution is an improvement of the
second-stage rounding through the use of repeated RandMove and by judicious
choices of constraints to drop. Let us call the linear program that remains just at the
end of first stage LP-Color2:

min
∑
i∈R

∑
k∈S

∑
j∈D

ci,j,kxi,j,k

s.t.∑
k∈S

∑
j∈D

xi,j,k ≤ Fi ∀i ∈ R (Fanout)

∑
i∈R

xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (Weight)∑
i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (Color)

xi,j,k ∈ {0, 1} ∀i ∈ R,∀j ∈ D,∀k ∈ S

We show:
Lemma 5.3. LP-Color2 can be efficiently rounded such that the cost and weight

constraints are satisfied exactly, fanout constraints are violated at most by additive 1,
and the color constraints are violated at most by additive 3.

The proof is very similar to Theorem 2.2. Note that, here instead of having
capacity constraints, we have fanout constraints. Weight constraints correspond to
load constraints in Theorem 2.2, but now they provide lower bounds. Moreover, the
color constraints can be thought of as additional capacity constraints imposed on a set
of reflectors. This constitutes the main change from Theorem 2.2, and we need new
conditions to drop color constraints (D2′′). The color constraints being all disjoint
help us in the rounding.

Proof. Let x∗i,j,k ∈ [0, 1] denote the fraction of stream generated from source
k ∈ S reaching destination j ∈ D routed through reflector i ∈ R after the first stage
of rounding. Initialize X = x∗. The algorithm consists of several iterations. the
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random value at the end of iteration h is denoted by Xh. Each iteration h conducts a
randomized update using RandMove on the polytope of a linear system constructed
from a subset of constraints of LP-Color2. Therefore by induction on h, we will have
for all (i, j, h) that E

[
Xh
i,j

]
= x∗i,j . Thus the cost constraint is maintained exactly on

expectation. The entire procedure can be derandomized by the method of conditional
probabilities, yielding the required bounds on the cost.

Let R and SD denote the set of reflectors and (source, destination) pairs re-
spectively. Suppose we are at the beginning of some iteration (h + 1) of the overall
algorithm and currently looking at the values Xh

i,j,k. We will maintain two invariants:
(I1”) Once a variable xi,j,k gets assigned to 0 or 1, it is never changed;
(I2”) Once a constraint is dropped in some iteration, it is never reinstated.
Iteration (h+ 1) of rounding consists of three main steps:

1. Since we aim to maintain (I1”), let us remove all Xh
i,j,k ∈ {0, 1}; i.e., we

project Xh to those coordinates (i, j, k) for which Xh
i,j,k ∈ (0, 1), to obtain the

current vector Y of floating (yet to be rounded) variables; let S ≡ (AhY = uh)
denote the current linear system that represents LP-Color2. In particular,
the fanout constraint for a reflector in S is its residual fanout F ′i ; i.e., Fi
minus the number of streams that are routed through it.

2. Let v denote the number of floating variables, i.e., Y ∈ (0, 1)v. We now drop
the following constraint:
(D1”) Drop fanout constraint for degree 1 reflector denoted R1, i.e, reflec-

tors with only one floating variable associated with it. For any degree
2 reflectors denoted R2, if it has a tight fanout of 1 drop its fanout
constraint.

(D2”) Drop color constraint for a group of reflectors Rl, if they have at most
four floating variables associated with them.

Let P denote the polytope defined by this reduced system of constraints. A key claim
is that Y is not a vertex of P and thus we can apply RandMove and make progress
either by rounding a new variable or by dropping a new constraint. We count the
number of variables v and the number of tight constraints t separately. We have

t =
∑

i∈R\R1

1 +
∑
k∈S

∑
j∈D

(lk,j + 1),

where lj,k is the number of tight color constraints for the stream generated at source
k and to be delivered to the destination j. We further have v ≥

∑
i∈R(Fi + 1), and

that v ≥
∑
k∈S,∈D,lk,j>0 4lk,j +

∑
k∈S,∈D,lk,j=0 2. Thus by averaging,

v ≥
∑
i∈R(Fi + 1)

2
+

∑
k∈S,∈D,lk,j>0

2lk,j +
∑

k∈S,∈D,lk,j=0

1.

A moment’s reflection shows that the system can become underdetermined only if
there is no color constraint associated with a stream (j, k), each reflector i has two
floating variables associated with it with total contribution 1 towards fanout and each
stream (j, k) is routed fractionally through two reflectors. But in this situation all
the fanout constraints are dropped violating fanout at most by an additive one and
making the system underdetermined once again. The color constraints are dropped
only when there are less than four floating variables associated with that group of
reflectors; hence, the color constraints can get violated at most by an additive 3. The
fanout constraint is dropped only for singleton reflectors or degree-2 reflectors with
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fanout equaling 1. Hence the fanout is violated only by an additive excess of 1. The
weight constraint is never dropped, and is hence maintained exactly.

6. Appendix. Here we give a proof of Theorem 4.4. This establishes the nega-
tive correlation property of bipartite dependent rounding on random variables defined
on multiple vertices and used in Section 4.

Theorem 4.4. Define an indicator random variable zj for each item j ∈ B with
mj < 1, such that zj = 1 if item j is matched by the matching. Then, the indicator
random variables {zj} are negatively correlated.

Proof. Consider any collection of items j1, j2, . . . , jt. Let b = 1 (the proof for the
case b = 0 is identical). Let yi,j,k denote the value of yi,j at the beginning of the k-th
iteration of bipartite dependent rounding. Define, zj,k =

∑
i,(i,j)∈M yi,j,k. Clearly,

zj =
∑
i,(i,j)∈M yi,j,|M |+1. We will show that

∀k,E
[ t∏
i=1

zji,k
]
≤ E

[ t∏
i=1

zji,k−1

]
(6.1)

Thus, we will have

Pr
[ t∧
i=1

zji = 1
]

= E
[ t∏
i=1

zji,|M |+1

]
≤ E

[ t∏
i=1

zji,1
]

=

t∏
i=1

∑
v

yv,ji,1 =

t∏
i=1

mji =

t∏
i=1

Pr
[
zji = 1

]
We now prove (6.1) for a fixed k. Note that any vertex that is not the end point of

the maximal path or the cycle on which dependent rounding is applied in the k− 1-st
round, retains its previous z value. There are three cases to consider:

Case 1: Two vertices among j1, j2, . . . , jt have their values modified. Let these
vertices be say j1 and j2. Therefore, these two vertices must be the end points of the
maximal path on which dependent rounding is applied on the k − 1-st round. The
path length must be even. Let B(j1, j2, α, β) denote the event that the jobs {j1, j2}
have their values modified in the following probabilistic way:

(zj1,k, zj2,k) =

{
(zj1,k−1 + α, zj2,k−1 − α) with probability β

α+β

(zj1,k−1 − β, zj2,k−1 + β) with probability α
α+β

Thus

E
[ t∏
i=1

zji,k|∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)
]

= E
[
zj1,kzj2,k|∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)

] t∏
i=3

aji

The above expectation can be written as (η + γ)Πt
i=3aji , where

η = (β/(α+ β))(aj1 + α)(aj2 − α), and
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γ = (α/(α+ β))(aj1 − β)(aj2 + β).

Now, it can be easily seen that η + γ ≤ aj1aj2 . Thus for any fixed j1, j2 and for
any fixed (α, β), and for fixed values af the following holds:

E
[ t∏
i=1

zji,k|∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, j2, α, β)
]
≤

t∏
i=1

aj .

Hence, E
[∏t

i=1 zji,k
]
≤ E

[∏t
i=1 zji,k−1

]
here.

Case 2: One vertex among j1, j2, . . . , jt has its value modified. Let the vertex be
j1 say. Therefore, this vertex must be the end point of the maximal path on which
dependent rounding is applied on the (k−1)-st round. The path length must be odd.
Let B(j1, α, β) denote the event that the job j1 has its value modified in the following
probabilistic way:

zj1,k =

{
zj1,k−1 + α with probability β

α+β

zj1,k−1 − β with probability α
α+β

Thus,

E
[
zj1,k|∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, α, β)

]
= aj1 .

Since the values of zji , i ∈ [2, t] remains unchanged and the above equation holds for

any j1, α, β, we have E
[∏t

i=1 zji,k
]
≤ E

[∏t
i=1 zji,k−1

]
.

Case 3: None among j1, j2, . . . , jt has its value modified.
In this case, the value of zji,k’s, i ∈ [1, t], do not change. Hence, E

[∏t
i=1 zji,k

]
≤

E
[∏t

i=1 zji,k−1)

]
.
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