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The stripping process can be slow: part I
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Abstract

Given an integer k, we consider the parallel k-stripping process applied to a hyper-
graph H: removing all vertices with degree less than k in each iteration until reaching
the k-core of H. Take H as Hr(n,m): a random r-uniform hypergraph on n vertices
and m hyperedges with the uniform distribution. Fixing k, r ≥ 2 with (k, r) 6= (2, 2),
it has previously been proved that there is a constant cr,k such that for all m = cn

with constant c 6= cr,k, with high probability, the parallel k-stripping process takes
O(log n) iterations. In this paper we investigate the critical case when c = cr,k + o(1).
We show that the number of iterations that the process takes can go up to some power
of n, as long as c approaches cr,k sufficiently fast. A second result we show involves
the depth of a non-k-core vertex v: the minimum number of steps required to delete v

from Hr(n,m) where in each step one vertex with degree less than k is removed. We
will prove lower and upper bounds on the maximum depth over all non-k-core vertices.

1 Introduction

Given a nonnegative integer k and a (hyper)graph H , the k-core of H , denoted by Ck(H), is
the maximum subgraph of H with minimum degree at least k. The k-core was first studied
by Bollobás[5] and has since become a major focus in random graph theory. Its many appli-
cations include erasure codes[25, 26], colouring[31], hashing[19], and graph orientability[18,
7, 13, 12]. We define Hr(n,m) to be a random r-uniform hypergraph on vertex set [n] :=
{1, 2, . . . , n} and exactly m hyperedges, with the uniform distribution. We focus on sparse
random hypergraphs with bounded average degree; thus the typical range of focus is m =
Θ(n). The threshold for the appearance of a non-empty k-core in Hr(n, cn) was first de-
termined by Pittel, Spencer and Wormald [34] for r = 2 and k ≥ 3, whereas for general
(r, k) 6= (2, 2), the threshold is determined[30, 24] to be:

cr,k = inf
µ>0

µ

r
[
e−µ

∑∞
i=k−1 µ

i/i!
]r−1 . (1)
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The k-core of a (hyper)graph H can be obtained by repeatedly removing all vertices with
degree less than k. In the parallel k-stripping process, all vertices with degree less than k
are removed at once in each iteration until the k-core is reached. The number of rounds
this process takes is called the k-stripping number, denoted by sk(H). This number is an
important parameter associated with a (hyper)graph and its k-core. Jiang, Mitzenmacher
and Thaler [23] discussed several applications of the parallel stripping process in computer
science and the importance of analysing the k-stripping number. An upper bound O(logn)
is given in [1] for sk(Hr(n, cn)) when c > cr,k + ǫ and this bound is proved to be tight in [23].
Independently, [21] proved an upper bound of poly(log n). On the other hand, it was proved
in [23, 15] that sk(Hr(n, cn)) = O(log log n) if c < cr,k − ǫ (in fact, results in [1, 23, 15] are
presented for Hr(n, p), p = c/nr−1, but they easily translate to Hr(n,m) as well). However,
as we will prove in this paper, the stripping process can take a long time as c → cr,k: the
number of rounds needed can go up to some power of n, depending on the rate at which c
approaches cr,k.

We give some intuitive explanation of this phenomenon. Note that cr,k is the emergence
threshold of the k-core. When c → cr,k, the parallel k-stripping process undergoes a bottle-
neck. At a certain point, the number of vertices removed in each iteration (i.e. of degree less
than k) becomes sublinear in n. If there is no k-core, then the process continues for a long
enough time to eventually pass through the bottleneck: the number of vertices removed in
each iteration becomes and stays linear in n again and eventually all vertices of the hyper-
graph will be removed, producing an empty k-core. If there is a k-core, then the process
terminates after only o(n) total vertices are removed during the bottleneck; what remains
is the giant k-core. In both cases, the number of remaining vertices with degree less than k
mimics a random walk whose expected change with each vertex deletion is very close to zero
during the bottleneck. Hence a large number of vertices must be removed for it to either
decrease to 0 or increase to linear in n. Since few vertices are removed in each iteration, it
takes many iterations to remove this large number of vertices.

The analysis for the stripping number when c → cr,k becomes subtle. For c inside the
critical window |c−cr,k| = O(1/

√
n), it is not certain that Hr(n, cn) has a non-empty k-core;

i.e. the probability that Hr(n, cn) contains a non-empty k-core is bounded away from 0 and 1
as n→ ∞ [22]. This brings in certain complications in our analysis of the stripping number,
especially for the upper bound. We will prove a lower bound for the stripping number when
c ≤ cr,k + n−1/2+ǫ (note this range contains the critical window), whereas the upper bound
for c in this range will be studied in a subsequent paper. For c above cr,k + n−1/2+ǫ, we will
prove both upper and lower bounds that are tight in the asymptotic order. It is interesting
to note that several graph parameters/properties related to the k-core have a radical change
when c approaches to this threshold, including the robustness of the k-core [36].

Rather than removing all vertices with degree less than k at once in each iteration, we
may remove one vertex at a time. This produces a stripping sequence: a sequence of vertices
removed from the initial hypergraph H . Vertices in a stripping sequence can appear in an
arbitrary order, as long as each vertex has degree less than k at the moment of its removal.
Note that a stripping sequence does not necessarily need to terminate with the k-core: for a
stripping sequence Ψ, a subsequence of Ψ composed of the first arbitrary number of vertices in
Ψ is also a stripping sequence. Given a non-k-core vertex v, we are interested in the length of
a shortest stripping sequence ending with v: roughly speaking, this is the minimum number
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of vertices required to be deleted before deleting v. This number is called the depth of v. A
formal definition is given in Section 2. The maximum depth of Hr(n,m) (over all non-k-core
vertices) is bounded in [1] by O(logn) when c differs from cr,k by some absolute constant. In
this paper, our goal is to bound (both from above and below) this parameter when c→ cr,k.

The aforementioned bounds on the depth and stripping number from [1, 21] were moti-
vated by applications to solution clustering in random XORSAT. We will provide analogous
applications for our present results in a subsequent paper (a preliminary version containing
partial results on their applications to clustering in random XORSAT is available in [17]).

2 Main results

We first give a formal definition of the parallel k-stripping process and the k-stripping
number.

Definition 1. The parallel k-stripping process, applied to a hypergraph H , consists of itera-
tively removing all vertices of degree less than k at once along with any hyperedges containing
any of those vertices, until no vertices of degree less than k remain; i.e. until we are left with
the k-core of H . We use Si to denote the vertices that are removed during iteration i. We use
Ĥi to denote the hypergraph remaining after i− 1 iterations, i.e. after removing S1, ..., Si−1.

We will analyze the number of rounds that this process takes:

Definition 2. The k-stripping number of H , denoted sk(H), is the number of iterations
in the parallel k-stripping process applied to H . We often drop the “k” and speak of the
stripping number and s(H).

We use the following standard notation. Given a sequence of probability spaces Ωn, we
say a sequence of events An occurs asymptotically almost surely (a.a.s.) if the probability
that An occurs in Ωn tends to 1 as n→ ∞. With two sequences of real numbers an and bn,
we use an = O(bn) to denote that there is an absolute constant C such that |an| ≤ C|bn|.
We write an = o(bn) if limn→∞ an/bn = 0. We write an = Ω(bn) if bn = O(an) and an, bn ≥ 0
eventually; an = Θ(bn) if an = O(bn) and bn = O(an) and an, bn ≥ 0 eventually. Thus, if
an = Ω(bn) or an = Θ(bn) then an, bn must both be positive (for large n). All asymptotics
in this paper refer to n→ ∞.

We first present our main result on the stripping number of Hr(n, cn).

Theorem 3. Consider constants r, k ≥ 2, (r, k) 6= (2, 2) and 0 < δ < 1/2.

(a) If c = cr,k + n−δ then a.a.s. s(Hr(n, cn)) = Θ(nδ/2 log n).

(b) If |c− cr,k| ≤ n−δ then a.a.s. s(Hr(n, cn)) = Ω(nδ/2).

So if we roughly define the following three ranges of c, the behaviour of the stripping
number is as follows:

• c = cr,k + n−δ, 0 < δ < 1/2. Then the stripping number is Θ(nδ/2 log n).
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• c = cr,k − n−δ, 0 < δ < 1/2. Then the stripping number is at least Ω(nδ/2).

• c is between cr,k − n−1/2+o(1) and cr,k + n−1/2+o(1). Then the stripping number is
Ω(n1/4+o(1)).

In the first range, the stripping number is specified within a constant factor. In the other
two ranges, we do not say anything about upper bounds on the stripping number; those
upper bounds will be studied in a subsequent paper.
Remark. With the same proof, n−δ in Theorem 3 (and in all relevant lemmas in Sections 3
and 4) can be replaced by ξn (and correspondingly nδ/2 is replaced by

√
1/ξn) for any ξn =

o(1) such that ξn ≥ n−1/2+ǫ for some constant ǫ > 0 (e.g. ξn = 1/ logn or ξn = n−1/3 log n).
We use the less general statement for a cleaner presentation.

We are also interested in the number of vertices that must be deleted in order to remove
a particular vertex v. I.e. what is the smallest number of vertices that must be deleted in
order to demonstrate that v is not in the k-core?

Definition 4. A k-stripping sequence is a sequence of vertices that can be deleted from a
hypergraph, one-at-a-time, along with their incident hyperedges such that at the time of
deletion each vertex has degree less than k. For any vertex v not in the k-core, the depth of
v is the length of a shortest k-stripping sequence ending with v.

While every non-k-core vertex has depth O(logn) for any constant c > ck,r, as proved
in [1], one of our main contributions in this paper is to prove that when c approaches the
k-core emergence threshold, the maximum depth can rise to nΘ(1).

Theorem 5. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed. There are constants Z = Z(k, r) and
κ = κ(k, r) such that: for any fixed 0 < δ < 1/2, if c = cr,k + n−δ then a.a.s. the maximum
depth of all non-k-core vertices in Hr(n, cn) is between Znδ/2 and nκδ.

Remark.
(a) Again here and in Theorem 41 in Section 5 below, with the same proof, n−δ above (and
in all relevant lemmas in Sections 5 and 6) can be replaced by ξn for any ξn = o(1/ log7 n)
and ξn ≥ n−1/2+ǫ for some constant ǫ > 0. We did not try to optimize the power of logn.
(b) For the upper bound in this theorem, we will actually prove a stronger statement, because
the stronger statement will be used in another paper on solution clustering in random XOR-
SAT. See Theorem 41 in Section 5.

(c) Both Theorems 3 and 5 translate to Hr(n, p) with p = r!c/nr−1. Translations of a.a.s.
properties from Hr(n,m) to Hr(n, p) are usually standard by conditioning the number of
hyperedges X in Hr(n, p) on its typical values, as long the properties under consideration
hold for all m such that |m−EX| = O(

√
VarX). Our situation is a little subtle as our bounds

on the stripping number depend on how close c is to cr,k, and some of our results cover the
case that |(c− cr,k)n| is smaller than the standard deviation of X , e.g. if |c− cr,k| = o(n−1/2).
The reason that the translation holds in this paper is that for c in the range in Theorem 3(b),
the lower bound is uniform for all c and the size of the range is of order n1−δ, which is much
greater than the deviation of X , for any δ < 1/2.

The k-stripping number clearly bounds the maximum depth from below, and so the lower
bound of Ω(nδ/2) from Theorem 3 implies the lower bound in Theorem 5. The difficult part
of the proof of Theorem 5 is to show the upper bound.
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Our requirement that c ≥ cr,k + n−1/2+ǫ in Theorem 5 comes from the similar restriction
on the actual appearance of the k-core, as shown by Kim[24] (see also [9]; a more precise
statement of Theorem 6(b) is given in Lemma 7 in Section 3):

Theorem 6. [24] For r, k ≥ 2, (r, k) 6= (2, 2) and for any constant ǫ > 0.

(a) For c ≤ cr,k − n−1/2+ǫ, a.a.s. the k-core of Hr(n, cn) is empty.

(b) For c ≥ cr,k + n−1/2+ǫ, a.a.s. Hr(n, cn) has a k-core with Θ(n) vertices.

The most challenging difference between the setting of this paper and that of [1] is: when
c = cr,k + Θ(1), the number of vertices with degree less than k remaining after each round
of the parallel stripping process drops geometrically (see the comment following Lemma 16).
That easily implies that a.a.s. the stripping number is O(logn). Furthermore, the property
which implies that this number drops geometrically is also key in the analysis of [1] proving
that the depth is O(logn). For c = cr,k + n−δ, the number of such vertices drops much more
slowly, leading to an increase in the stripping number and hence in the maximum depth,
which is easily seen to be bounded from below by the stripping number. This requires us to
use a very different, and much more intricate, analysis.

One novelty in our analysis of the depth is as follows: The most straightforward approach
to analyze the stripping process is to repeatedly expose the vertices and edges removed in
each iteration. Instead, we only expose the vertex sets S1, S2, .... The advantage is that,
when considering the depth of a vertex v in a particular level Si, we can treat the edges
removed in previous iterations as random. Thus even though we have exposed the fact that
v is in Si, there is still some randomness that we can make use of in the specific sequence of
vertices whose deletions led to v being deleted in iteration i. Of course, exposing the vertex
sets that are deleted in each step exposes something about the edges that are deleted, so we
have to be careful about the conditional distribution of those edges. The details of how we
do this are in Section 5.1.

We excluded the case (r, k) = (2, 2) from our main results as this case has already been
extensively studied. The 2-core of the random graph G(n, cn) is well-studied[27, 28, 35, 10,
11, 14]. For 0 < δ < 1

3
and p = 1 + n−δ a.a.s. the largest component consists of a large

2-core C2, with a Poisson Galton-Watson tree of branching parameter 1−n−δ rooted at each
vertex. In addition, there are Θ(n) smaller components distributed essentially like Poisson
Galton-Watson trees of branching parameter 1 − n−δ, except that some of them contain a
single cycle. We can define the stripping number to be the stripping number of the largest
component, or to be the maximum of the stripping number of all components. Either way,
it is of the order of the height of the tallest of those trees which is nδpoly(log n). Similarly,
the maximum depth is of the order of the size of the largest tree, which is n2δpoly(logn).

We will prove Theorem 3(b), and the upper bound for Theorem 3(a) in Section 4, along
with a weaker version of the lower bound for Theorem 3(a). The lower bound for Theo-
rem 3(a) is proved in Section 6. We prove Theorem 5 in Section 5. In Section 3 we discuss
the size of the k-core as a preparation for the analysis in Sections 4 – 6. A key lemma used
in the proof of Theorems 3(a) and 5 will be presented in Section 6.
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3 Size of the k-core

We give a more precise version of Theorem 6(b), where the size of the k-core is specified,
when c ≥ cr,k + n−1/2+ǫ. We start by defining:

ft(µ) = e−µ
∑

i≥t

µi

i!
(2)

h(µ) = hr,k(µ) =
µ

fk−1(µ)r−1
. (3)

Note that ft(µ) is the probability that a Poisson variable with mean µ, denoted by Po(µ),
is at least t. Thus by (1),

cr,k = inf
µ>0

h(µ)

r
.

Now for any r, k ≥ 2, (r, k) 6= (2, 2), we define µr,k to be the value of µ that minimizes h(µ);
i.e.

µr,k is the unique solution to h(µr,k) = rcr,k (4)

Define

α = αr,k = fk(µr,k), β = βr,k =
1

r
µr,kfk−1(µr,k). (5)

For ease of notation, we drop most of the r, k subscripts. For any c ≥ cr,k, we define µ(c)
to be the larger solution to

c =
h(µ)

r
.

Then, µr,k = µ(cr,k). Define

α(c) = fk(µ(c)), β(c) =
1

r
µ(c)fk−1(µ(c)). (6)

Theorem 1.7 of [24] yields the size of the k-core as follows (Theorem 1.7 of [24] is for
Hr(n, p) but it easily translates to Hr(n,m) by a standard coupling argument for Hr(n, p) and
Hr(n,m), and by the fact that having a non-empty k-core is an increasing graph property):

Lemma 7. Fix r, k ≥ 2, (r, k) 6= (2, 2) and ǫ > 0. If c ≥ cr,k + n−1/2+ǫ then a.a.s. the
k-core of Hr(n, cn) has

• α(c)n+O(n3/4) vertices and

• β(c)n+O(n3/4) edges.

While the proof of [24, Theorem 1.7] (i.e. Lemma 7) is very technical, we give a brief
heuristic explanation of why cr,k is the emergence threshold for a non-empty k-core and why
the k-core of Hr(n, cn) is expected to contain around α(c)n vertices, when c > cr,k. For vertex
v ∈ Hr(n, cn), let λt denote the probability that v survives after t iterations of the parallel
stripping process. Intuitively, λ := limt→∞ λt is the probability that v is in the k-core of
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Hr(n, cn) and thus the k-core is expected to contain λn vertices. It is easy to prove that the
neighbourhood of v locally converges in distribution to a hyper-tree generated by the Poisson
branching process with parameter cr starting at v. Then, v survives after t iterations of the
parallel stripping process if and only if v is incident with at least k hyperedges surviving
from t − 1 iterations of the stripping process, i.e. for each of these surviving hyperedges x,
all the other r−1 vertices in x are incident with at least k−1 other hyperedges that survive
after t − 2 iterations of the stripping process, and so on. To compute λt, let ρt denote the
probability that v is incident with at least k−1 hyperedges surviving after t iterations of the
stripping process. As mentioned before, the number of hyperedges incident with v is Po(cr).
Each hyperedge survives after t− 1 iterations of the stripping process with probability ρr−1

t−1 .
It is then easy to prove that the number of hyperedges incident with v that survive after
t− 1 iterations of the stripping process is Po(ρr−1

t−1 cr). Hence, we derive the recursion for ρt
and λt:

ρ0 = 1;

ρt = Pr(Po(ρr−1
t−1 cr) ≥ k − 1);

λt = Pr(Po(ρr−1
t−1 cr) ≥ k).

Put λ = Pr(Po(ρr−1cr) ≥ k), where ρ satisfies ρ = Pr(Po(ρr−1cr) ≥ k − 1). It is then easy
to show that λ = ρ = 0 if c < cr,k and thus, the heuristics above implies that the k-core is
likely to be empty. For c > cr,k, it is easy to show that ρt converges to the larger root of
ρ = Pr(Po(ρr−1cr) ≥ k − 1) and then λ gives α(c) in (6). The expected sum of the degrees
is n×∑i≥k iPr(Po(ρr−1cr) = i) which is 2β.

By a close analysis of α(c) and β(c) we have:

Lemma 8. Fix r, k ≥ 2, (r, k) 6= (2, 2) and 0 < δ < 1/2. There exist positive constants K1,
K2 and K3 such that if c = cr,k + n−δ then

µ(c) − µr,k = K1n
−δ/2 +O(n−δ),

α(c) − α = K2n
−δ/2 +O(n−δ),

β(c) − β = K3n
−δ/2 +O(n−δ).

We present its proof in the Appendix.
Lemma 7, along with Lemma 8 above, together with the fact that µfk−1(µ)/fk(µ) is an

increasing function on µ > 0 (see Lemma 27 below), yields the following bounds on the size
of the k-core:

Corollary 9. Fix r, k ≥ 2, (r, k) 6= (2, 2) and 0 < δ < 1/2. There exist positive constants
K1 = K1(r, k), K2 = K2(r, k) and K3 = K3(r, k): if c = cr,k + n−δ then a.a.s. the k-core of
Hr(n, cn) has

(a) αn+K1n
1−δ/2 +O(n1−δ + n3/4) vertices and

(b) βn+K2n
1−δ/2 +O(n1−δ + n3/4) hyperedges and

(c) average degree rβ/α+K3n
−δ/2 +O(n−δ + n−1/4).
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We close this section by introducing two terms that are standard when analyzing the
k-core stripping process:

Definition 10. The light vertices of a hypergraph are the vertices of degree less than k. The
heavy vertices are those of degree at least k.

4 Bounding the stripping number

We restate the parallel stripping process in a slowed-down version, which will be more
convenient to analyze. Rather than removing all vertices of Si at once, we remove them one
at a time. When removing a vertex, we slow down further by removing one edge at a time.

To facilitate this, we maintain a queue Q containing all deletable vertices; i.e. all vertices
of degree less than k:

SLOW-STRIP
Input: A hypergraph G.
Initialize: t := 0, G0 := G, Q1 = Q is a list of all vertices of degree less than k in G,

ordered uniformly at random.
While Q 6= ∅:

Let v be the first vertex in Q.
Remove a hyperedge e selected uniformly at random from all those containing v.
If any other vertex of e has its degree drop to below k then add that vertex to the end of Q.
Repeatedly remove the vertex in the front of Q if its degree is zero.
Gt+1 is the resulting hypergraph; Qt+1 := Q; t := t+ 1.

To be clear: Note that the removal of v might cause the degree of a vertex not at the
front of Q to drop to zero. That vertex remains in Q until it reaches the front, at which
point it will be removed. So it it possible that multiple vertices are removed from the front
of Q during one step of SLOW-STRIP.

At any point, Q may contain some vertices from Si and some from Si+1. However, the
vertices of Si are removed before the vertices of Si+1. Note also that when processing a vertex
v ∈ Q, all edges from v are removed (and hence v is removed) before moving to the next
vertex of Q. So this procedure removes vertices in the same order as the parallel stripping
process. In particular, if t is the first step in SLOW-STRIP during which the vertex at the
front of Qt is in Si, then the set of vertices in Qt is exactly Si minus possibly some vertices
with degree zero in Ĥi. Therefore, the total degree of the light vertices in Gt (i.e. vertices in

Qt) equals exactly the total degree of Si in Ĥi.

Definition 11. We use t(i) to denote the first iteration of SLOW-STRIP in which the
vertex at the front of Qt is in Si.

If every vertex of Si has degree 0 in Gi then there is no iteration in which the vertex at
the front of Qt is in Si and so we define t(i) to be the iteration during which all vertices of
Si are removed. If this is the case then i is the final iteration of the parallel stripping process
and t(i) is the final iteration of SLOW-STRIP.
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Roughly speaking, we can view t(i) as the iteration of SLOW-STRIP in which iteration i
of the parallel stripping process begins. This is not quite accurate in that perhaps iteration
i began during iteration t(i)− 1 of SLOW-STRIP if the first vertices of Si to reach the front
of Q had degree zero.

We also define:

τ is the iteration in which SLOW-STRIP halts.

We will focus much of our analysis on the following parameters of Gt:

• Lt is the total degree of the light vertices in Gt; i.e. of the vertices in Qt.

• Nt is the number of heavy vertices in Gt; i.e. of the vertices outside of Qt.

• Dt is the total degree of the heavy vertices in Gt.

We denote the triple of these values as:

Tt = (Lt, Nt, Dt),

and
Ft = {Ts}s≤t := {T0, T1, . . . , Tt}.

We first give an overview of the proof of Theorem 3. As mentioned earlier, Lt(i) equals

the total degree of Si in Ĥi. This will allow us to relate |Si| to Lt(i). The key arguments are
to rather precisely describe the evolution of (Lt)t≥0, especially in a critical range of t. We
will show that after a sufficiently large but bounded number B of iterations of the parallel
stripping process, the number of vertices remaining in the hypergraph becomes very close to
αn (see Lemma 15). Then, we will prove that in SLOW-STRIP, Lt decreases with at least a
certain rate for all t ≥ t(B) (see Lemma 16). Using that we can bound from below the rate
at which Lt(i) (or |Si|, roughly speaking) decreases for each i ≥ B. This allows us to obtain
the upper bound for sk(Hr(n, cn)) as in Theorem 3.

To obtain the lower bound of sk(Hr(n, cn)) in the supercritical case as in Theorem 3(a),
we will tightly bound the rate (from both below and above) at which Lt decreases for t ≥ t(B)
(See Section 6). This enables us to establish a rather precise description of (|Si|)i≥B (see
Lemma 47), and hence deduce the desired lower bound on the stripping number.

However, we will first present a slightly weaker lower bound, i.e. without the logarithmic
factor, with a much simpler proof in Section 4.3. We do so because this weaker bound is
part of the proof of Theorem 3(b). The key idea is to focus on the steps of SLOW-STRIP
during which the last Kn1−δ/2 vertices are removed before reaching the k-core, for some
constant K > 0. We will show that with high probability Lt = O(n1−δ) in all these steps
(see Lemma 19). We will then consider the iterations of the parallel stripping process during
which the last Kn1−δ/2 vertices are removed. In each iteration, the total number of vertices
being removed must be O(n1−δ) since their total degree is O(n1−δ). In order to remove
Kn1−δ/2 vertices, at least Ω(nδ/2) iterations of parallel stripping are required. This yields
the slightly weaker lower bound. This same proof, combined with a coupling argument, will
then yield the lower bound claimed in Theorem 3(b) (see Sections 4.4 and 4.5).
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4.1 The allocation-partition model

We use the following allocation-partition model (AP-model), denoted by APr(n,m). It
was used in [18] and is a slight modification of what is called the pairing-allocation model
in [6]. We are given a set of rm vertex-copies. We represent each vertex v as a bin. We
choose two random objects: (i) a uniformly random partition of the vertex-copies into parts
of size exactly r; (ii) a uniform allocation of each vertex-copy into a bin. We call the output
a configuration.

Having chosen a configuration from APr(n,m), we can transform it into a hypergraph
as follows: We contract the bins into vertices, and each part of the partition becomes a
hyperedge. It is easy to show, with simple counting arguments, that all simple hypergraphs
with n vertices and m edges are generated with equal probability. (Simple means that no
two hyperedges are identical, and no vertex appears twice in the same hyperedge).

The AP-model differs from the configuration model of Bollobás [4] in that the degree
sequence is not fixed in advance, and the vertex-copies are not initially assigned to actual
vertices. Note that the random partition and the random allocation are orthogonal and
they can be chosen independently of each other. This will be very helpful below when we
condition on events (specifically values of Lt, Nt, Dt) which specify partial information about
both the partition and the allocation.

Hr(n,m) only selects simple hypergraphs. Of course, the hypergraph formed by the
AP-model might not be simple, but when m = O(n), the probability of obtaining a simple
hypergraph is at least ǫ for some absolute constant ǫ > 0. This immediately yields:

Corollary 12. If m = O(n) and if property Q holds a.a.s. for APr(n,m), then Q holds
a.a.s. for Hr(n,m).

4.2 SLOW-STRIP on the AP-model

We will analyse the running of SLOW-STRIP on a random configuration generated by the
AP-model, and then use Corollary 12 to translate the results to Hr(n,m). We continue
to use hypergraph terminology to refer to the configuration, and so strictly speaking, a
“vertex” is a bin, a “hyperedge” is an r-tuple of the partition along with an allocation of
the vertex-copies in that r-tuple, Gt is the configuration remaining after t iterations, etc.
We say a vertex-copy is light/heavy if the bin it is allocated to is light/heavy. Where we say
“graph” in this context, we mean the (not neccessarily simple) hypergraph obtained from
the configuration by contracting the bins.

SLOW-STRIP runs on a configuration in APr(n,m) as follows: Initially, the queue Q0

contains all the light bins; i.e. the bins of size less than k. In each step, SLOW-STRIP
removes a vertex-copy x of the bin u in the front of the queue, together with the r − 1
vertex-copies in the same part as x. Each time we delete one of the Dt vertex-copies not
in Qt, we query whether the bin containing that copy now has size k − 1; if so then we
move that bin to the queue. When all vertex-copies of u are removed then u is deleted from
the queue. We define the k-core of a configuration to be what remains when SLOW-STRIP
terminates.
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We use Gt to denote the configuration remaining after t steps. In terms of a configuration,
our three key parameters become:

• Lt is the number of light vertex-copies in Gt; i.e. the total number of copies in Qt.

• Nt is the number of heavy bins in Gt.

• Dt is the number of heavy vertex-copies in Gt.

We will typically condition on the values of Ft = {(Ls, Ns, Ds)}s≤t. The reader has likely
noticed a lack of symmetry: we do not condition on the number of light bins; i.e. there is
no light analogue to Nt. This is because the number and sizes of the light bins have no
significant effect on the running of SLOW-STRIP - all that matters is the number of copies
in Qt. Also note that Dt +Lt = r(cn− t), as this is the number of remaining vertex-copies,
and so it is not necessary for Ft to record both Dt and Lt; but we find it convenient to do
so.

The following observation (first shown in [6]) enables our analysis. Recall that a
configuration consists of (i) a partition of the vertex-copies into parts of size r, and (ii)
an allocation of the vertex-copies to bins. Recall further that in our random model, this
partition and allocation are chosen uniformly and independently of each other.

Observation 13. Upon conditioning on Ft,

(a) every partition of the remaining vertex-copies is equally likely; and

(b) every allocation of the Dt heavy vertex-copies to the Nt heavy bins such that each bin
has size at least k is equally likely.

In other words, {(Lt, Nt, Dt)}t≥0 is Markovian. This Markovian property will allow easy
analysis of E(Lt+1 − Lt | Ft) for instance.

Proof Part (a): Lt, Nt, Dt say nothing about the partition; they are parameters
of the allocation. So every partition of the remaining vertex-copies is equally likely. (The
deleted vertex copies have already been assigned to parts.)

Part (b): We begin with some intuition:
Nt, Dt only change when one of the r − 1 copies that we choose to be in the same part

as x, and hence delete, is heavy. Suppose that the chosen copy is in a bin of size k. Then
that entire bin is moved to Qt, and (at least intuitively) we have not exposed anything new
about the remaining bins. So any allocation in which each remaining heavy bin has size at
least k is equally likely. The more subtle case is when the chosen copy is in a bin of size
greater than k. It is important to note that we do not expose the size of that bin, only the
fact that the size is at least k + 1. So when we delete the vertex-copy, our exposure only
says that the bin now has size at least k. Again, any allocation in which each heavy bin has
size at least k is equally likely.

And now a proof: Consider any configuration G with n vertices and rm vertex-copies.
Let G = G0, G1, ..., Gt be the sequence of configurations obtained by running SLOW-STRIP
on G for t iterations; define F0, ...,Ft similarly.

Expose Θ, the Dt heavy vertex-copies in Gt, and B, the Nt heavy bins. Let Ht be the
allocation of Θ to B in G. Let H ′

t be any other allocation of Θ to B such that each bin in B
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receives at least k members of Θ. We will prove that H ′
t occurs with the same probability

as Ht when conditioning on Θ,B being the heavy vertex-copies and bins. This is what is
asserted by part (b).

Let G′ be the configuration obtained from G by replacing Ht with H ′
t; i.e. by allocating

every vertex-copy in Θ according to H ′
t and allocating every other vertex-copy according to

G. Simliarly, define G′
i to be the configuration obtained from Gi by replacing Ht with H ′

t

for each 0 ≤ i ≤ t. We make two key observations:
Observation 1: If SLOW-STRIP on G′ chooses the same initial ordering of the light bins

as SLOW-STRIP on G, and at each step chooses the same vertex-copy from the bin at the
front of the queue to be deleted, then it will produce the sequence G′

0, ..., G
′
t.

Observation 2: The probability of the sequence G0, ...., Gt is the same as the probability
of the sequence G′

0, ..., G
′
t. To see this, note first that G,G′ are chosen as our random

configuration from APr(n,m) with the same probability as they both have the same n bins
and rm vertex-copies. Then note that G,G′ have the same number of light bins and for
0 ≤ i ≤ t each bin has the same size in Gi as in G′

i. So Observation 1 implies that the two
sequences occur with the same probability.

The probability that after t steps, the set of heavy vertex-copies is Θ, the set of heavy
bins is B and the allocation of Θ to B is Ht, is the sum over all sequences G0, ..., Gt that end
in a Gt with Θ,B, Ht of the probability of that sequence. The analogous statement is true
of H ′

t. We have established a bijection from the sequences yielding Θ,B, Ht to the sequences
yielding Θ,B, H ′

t which preserves probabilities. So the probability of obtaining Ht is equal
to the probability of obtaining H ′

t. This is part (b).
�

Since Hr(n, cn) is relatively hard to analyse directly; many of the existing proofs for the
size of the k-core of Hr(n, cn) use simpler models and then the results are translated to
Hr(n, cn); specifically [24] proved Lemma 7 for the Poisson cloning model. We will show
that monotone results can be translated from the Poisson cloning model to the AP-model
and so we have:

Lemma 14. Both Lemma 7 and Corollary 9 hold for the AP-model.

The proof is in the appendix.
The reader may notice that our result does not actually require Lemma 14. By Lemma 7

and Corollary 9, we may run SLOW-STRIP on a random hypergraph H ∈ Hr(n, cn) until
the remaining subgraph Gt has the desired order as required in Section 4.3. It is easy to
see that by conditioning on Ft, Gt is uniformly distributed over all hypergraphs with graph
parameters agreeing with Tt. Therefore, we could have applied the AP-model to Gt and
started our analysis from there. However, it makes the proof a little easier to understand
if we start with H ∈ APr(n, cn) and apply Lemma 14, which guarantees that with a high
probability, we will obtain some configuration Gt of the desired order. This is how Section 4.3
will be presented.

4.3 The supercritical case: c = cr,k + n−δ
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We first consider the supercritical case in which we assume c = cr,k + n−δ where 0 < δ <
1/2. These conditions on δ are assumed in the rest of Section 4 as desired by the hypotheses
in Theorem 3. Our goal is to prove that s(Hr(n, cn)) is bounded above by O(nδ/2 logn) and
below by Ω(nδ/2). Note that this lower bound is slightly weaker than that of Theorem 3(a),
but the proof is much simpler. The tight bound of Theorem 3(a) will be proved in Section 6.

Recall that we are running SLOW-STRIP on a configuration generated from the AP-
model.

The following lemma allows us to assume that the remaining subgraph is sufficiently close
to the k-core. Roughly speaking, after a constant number of rounds of the parallel stripping
process, we can get within any linear distance of the k-core. Recall that Ĥi is the subgraph
remaining after i− 1 rounds of the parallel stripping process and Ck(H) is the k-core of H .

Lemma 15. Let ǫ, ǫ0 > 0 be fixed. Assume c ≥ cr,k + n−1/2+ǫ. Then, for H ∈ APr(n, cn),

there exists a constant B = B(r, k, ǫ0) > 0, such that a.a.s. |ĤB \ Ck(H)| ≤ ǫ0n.

Proof. Let ǫ′ > 0 be a small constant to be determined later and let c′ = c + ǫ′. Choose H ′

according to the distribution of APr(n, c
′n) and generate H by removing ǫ′n edges chosen

uniformly at random in H ′. (I.e. we remove ǫ′n uniform parts and the vertex-copies contained
in those parts.) Then H ⊆ H ′ and H is distributed as APr(n, cn). Run the parallel k-

stripping process on H ′, using Ĥ ′
i to denote the subgraph remaining after i − 1 iterations.

Several other papers (see eg. Proposition 31 of [1]), show that for any σ > 0 there exists

a constant B > 0 such that |Ĥ ′
B \ Ck(H ′)| ≤ σn, if H ′ ∈ Hr(n, c

′n); the same conclusion
translates to the AP-model with a similar argument.

Note that every vertex removed during the first B− 1 iterations of the parallel stripping
process applied to H ′ would also have been removed during the first B − 1 iterations of the
parallel stripping process applied to H . Thus ĤB ⊆ Ĥ ′

B. Also, Ck(H) ⊆ Ck(H ′) and, by
Lemmas 7 and 14, |Ck(H ′) \ Ck(H)| = (α(c′) − α(c))n+ o(n). Therefore:

|ĤB \ Ck(H)| ≤ |Ĥ ′
B \ Ck(H ′)| + |Ck(H ′) \ Ck(H)| ≤ σn+ (α(c′) − α(c))n+ o(n)

< 2(σ + α(c′) − α(c))n < ǫ0n,

where the last inequality holds as long as ǫ′, σ are sufficiently small (both depending on
ǫ0).

Lemma 15 says that for any ǫ0 > 0 there is a B = B(ǫ0) such that after iteration B − 1
of the parallel process, or equivalently, at the beginning of step t(B) of SLOW-STRIP, the
size of the remaining hypergraph Gt(B) is at most ǫ0n greater than the size of the k-core.
This implies that various parameters are very close to those of the k-core, and this is where
our analysis starts: we focus on t ≥ t(B).

A key part of our analysis is to control the change in Lt. We will express the expected
change of Lt at step t as a function of Lt, Nt and Dt. Recall:

Ft = {Ts}s≤t = {(Ls, Ns, Ds)}s≤t

and we will estimate E(Lt+1 | Ft). The following lemma bounds this expectation.
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Lemma 16. There are constants B,K such that: If c = cr,k + n−δ, then a.a.s. for every
t(B) ≤ t < τ ,

E(Lt+1 | Ft) ≤ Lt −Kn−δ/2.

Remark. The key Lemma 32 of [1] implies that, when c = cr,k + ǫ, we have a.a.s.
E(Lt+1| Ft) ≤ (1 − ζ)Lt for a constant ζ > 0. That difference is what causes the strip-
ping number and depth to rise from O(logn) for c > cr,k + ǫ to nΘ(1) for c = cr,k + nδ. It
is also the cause of most of the difficulties in this paper. However, the weaker fact that
E(Lt+1−Lt| Ft) remains bounded below −Kn−δ/2, no matter how small Lt gets, is still very
useful to our analysis.

Let α = α(r, k) be the constant given in (5) and K1 = K1(r, k) be the constant specified
in Corollary 9. Then, by Corollary 9, for c = cr,k + n−δ, a.a.s. the size of the k-core is
αn+K1n

1−δ/2 + o(n1−δ/2).
Lemma 16 will be used to bound the stripping number from above. To obtain a lower

bound, we will focus on the so-called Phase 2 of SLOW-STRIP, defined as follows:

γ = 3K2n
1−δ/2.

Let i∗ be the first iteration of the parallel stripping process at the beginning of which the
number of hyperedges in the remaining hypergraph is at most ⌊βn+ γ⌋.

Definition 17. t0 is the first step of SLOW-STRIP at the beginning of which the number of
hyperedges in the remaining hypergraph is exactly ⌊βn+γ⌋. We refer to steps t = 0, ...., t0−1
as Phase 1 and the remaining steps as Phase 2.

Note that we can obtain a lower bound on the number of iterations in Phase 2:

Lemma 18. If c = cr,k + n−δ then a.a.s. Phase 2 lasts at least γ/3 = K2n
1−δ/2 iterations.

Proof By Corollary 9(b), a.a.s. the k-core has fewer than βn+2K2n
1−δ/2 hyperedges

and so SLOW-STRIP has to remove at least K2n
1−δ/2 hyperedges to reach it. �

We will show that, throughout Phase 2, Lt is small.

Lemma 19. If c = cr,k + n−δ, then a.a.s. for every t0 < t ≤ τ , Lt = O(n1−δ).

We defer the proofs of Lemmas 16 and 19 to Section 4.4.
We now show how these lemmas nearly yield a proof of Theorem 3(a). Note that

Lemma 18 bounds from below the total number of hyperedges that are removed during
Phase 2. Lemma 19 bounds the total degree of each Si, which bounds from above the num-
ber of hyperedges that are deleted in each iteration. This implies that Phase 2 requires many
iterations; specifically, it yields a lower bound of Ω(n−δ/2) on the stripping number, which
is within a factor of log n of the bound in Theorem 3(a) (see subsection 4.3.1 for details).
For the upper bound: Lemma 16 bounds the rate at which Lt decreases and so implies that
it drops to zero quickly; of course, when Lt = 0 then the stripping process has ended (see
subsection 4.3.2 for details).
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4.3.1 Theorem 3(a): proof of a weaker lower bound

We begin with a lower bound of Ω(n−δ/2) on the stripping number when c = cr,k + n−δ

for some 0 < δ < 1
2
. This lower bound is slightly weaker than that of Theorem 3(a), but the

proof is much simpler. Furthermore, this weaker lower bound will be used in Section 4.5 to
prove Theorem 3(b). The proof for the tight lower bound of Theorem 3(a) will be presented
in Section 6.

We run SLOW-STRIP and recall that this can be viewed as also running the parallel
stripping process slowly. Exactly one hyperedge is deleted in each iteration of SLOW-STRIP.
By Lemma 18, at least K2n

1−δ/2 hyperedges are removed from Gt during Phase 2. By
Lemma 19, at most |Lt(j)| = O(n1−δ) of them belong to Sj for each j. Therefore, we require
at least K2n

1−δ/2/O(n1−δ) = Ω(nδ/2) iterations of the parallel stripping process to remove
them all.

This proves that a.a.s. the stripping number of APr(n, cn) is at least Ω(nδ/2); Corollary 12
implies that the same is true of Hr(n, cn). �

4.3.2 Theorem 3(a): proof of the upper bound

Now we turn to the upper bound on the stripping number when c = cr,k + n−δ for some
0 < δ < 1

2
.

We will focus on the change in Lt(i), the sum, over all v ∈ Si of the degree of v at the
beginning of iteration i of the parallel stripping process.

From iterations t(i) to t(i + 1) − 1 of SLOW-STRIP, all hyperedges from all vertices in
Si must be deleted. One hyperedge is removed in each iteration, and it touches at least one
and at most r members of Si. Thus

1

r
Lt(i) ≤ t(i+ 1) − t(i) ≤ Lt(i). (7)

Let B and K be constants specified in Lemma 16. Let τ ∗ be the first step t such that
t ≥ t(B) and E(Lt+1| Ft) > Lt −Kn−δ/2; if there is no such step then we set τ ∗ = τ . Then,
for all t(B) ≤ t < τ ∗,

E(Lt+1 | Ft) ≤ Lt −Kn−δ/2.

Taking conditional expectation on Ft(i) of both sides, for i ≥ B, yields

E(Lt+1 | Ft(i)) ≤ E(Lt | Ft(i)) −Kn−δ/2, for all t(i) ≤ t < τ ∗.

If t(i+ 1) < τ ∗ then inductively applying the above for all t(i) ≤ t ≤ t(i + 1) we get

E(Lt(i+1)|Ft(i)) ≤ Lt(i)−
(
t(i+1)−t(i)

)
Kn−δ/2 ≤ Lt(i)−

1

r
Lt(i)Kn

−δ/2 = Lt(i)

(
1 − K

r
n−δ/2

)
.

Define the random process (Li)i≥0 as follows. For all i such that t(i) ≤ τ ∗, let Li = Lt(i)

and for all i such that t(i) > τ ∗, define Li = Li−1(1 − (K/r)n−δ/2). Let T denote the
minimum integer such that LT ≤ 0; thus a.a.s. τ = t(T ). By Lemma 16 a.a.s. τ ∗ = τ , and
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so a.a.s. Lt(i) = Li for all 0 ≤ i ≤ T and Lt(T ) = LT = 0. Hence, we only need to obtain an
upper bound for T . Now we have that for every i ≥ B,

E(Li+1 | Li) ≤ Li

(
1 − K

r
n−δ/2

)
.

Taking expectation on both sides we obtain that

ELi+1 ≤ ELi

(
1 − K

r
n−δ/2

)
.

Hence, as LB ≤ n, for each i ≥ B,

ELi ≤ n

(
1 − K

r
n−δ/2

)i−B

.

Thus, for i > B + 2r
K
nδ/2 logn, E(Li) = o(1) and so a.a.s. T ≤ B + (2r/K)nδ/2 log n. This

implies that a.a.s. the process of (Li)i≥0 reaches Li ≤ 0 within B+(2r/K)nδ/2 logn iterations
and so a.a.s. the parallel stripping process halts within B + (2r/K)nδ/2 log n iterations.
Therefore a.a.s. the stripping number ofAPr(n, cn) is at most B+ 2r

K
nδ/2 logn = O(nδ/2 log n);

Corollary 12 implies that the same is true of Hr(n, cn). �

4.4 Bounds on Li: proof of Lemmas 16 and 19

In this section, we prove Lemmas 16 and 19. So throughout, we have c = cr,k + n−δ for
some 0 < δ < 1

2
.

Let H ∈ APr(n, cn) and run the SLOW-STRIP algorithm onH . Recall from Definition 17
that

γ = 3K2n
1−δ/2.

and t0 is the first iteration of SLOW-STRIP in which the number of hyperedges in the
remaining hypergraph is exactly ⌊βn + γ⌋. The Second Phase of SLOW-STRIP consists of
iterations t ≥ t0. Lemma 18 enables us to focus on the case when the algorithm does enter
this phase.

Definition 20. We say that Gt0 is nice if the number of heavy vertices in Gt0 is between αn
and αn+ 2K1n

1−δ/2 + (r − 1)γ, and the total degree of light vertices in Gt0 is at most rγ.

Each iteration of SLOW-STRIP deletes at most r − 1 heavy vertices, and reduces Lt by
at most r. Moreover, a.a.s. Phase 2 of SLOW-STRIP lasts less than γ steps by Lemma 18.
So Corollary 9 immediately implies that a.a.s. Gt0 is nice.

Recall that for every t ≥ 0, Gt is the hypergraph remaining at the beginning of iteration t
of SLOW-STRIP. The light vertices in Gt are defined to be the vertices with degree less than
k and Lt denotes the total degree of the light vertices in Gt. Recall that τ is the iteration in
which SLOW-STRIP halts.

The following proposition follows immediately from Corollary 9 and Lemma 18.
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Proposition 21. A.a.s. t0 + γ/3 ≤ τ ≤ t0 + γ.

It will be convenient to define

τ̂ = min{τ, t0 + γ},
and so Proposition 21 implies that

a.a.s. τ = τ̂ . (8)

The following proposition follows from the definition of t0 and τ̂ .

Proposition 22. Assume τ > t0 and Gt0 is nice. Then for all t0 ≤ t ≤ τ̂ ,

(a) the number of heavy vertices in Gt is αn + O(γ) and the number of hyperedges in Gt

is βn+O(γ);

(b) Lt = O(γ).

Proof. By definition, the number of hyperedges in Gt0 is βn+γ. Since Gt0 is nice, the number
of heavy vertices in Gt0 is αn + O(γ). Moreover, by the definition of τ̂ , τ̂ − t0 = O(γ). We
remove one hyperedge in each step, so for all t0 ≤ t ≤ τ̂ , the number of hyperedges and
heavy vertices in Gt change by O(γ) from those in Gt0 . This immediately confirms part (a).
Moreover, since Gt0 is nice, Lt0 = O(γ). As Lt changes by at most k in each step, we have
Lt = O(γ) for every t0 ≤ t ≤ τ̂ and this proves part (b).

4.4.1 Creating light vertices

The key to analyzing the evolution of Lt is determining the rate at which new vertices are
added to Qt; i.e. become light. We begin by examining the distribution from Observation 13.

Given positive integers N , D and k ≥ 0 such that D ≥ kN , define Multi(N,D, k), the
truncated multinomial distribution, to be the probability space consisting of integer vectors
X = (X1, . . . , XN) with domain Ik := {d = (d1, . . . , dN) :

∑N
i=1 di = D, di ≥ k, ∀i ∈ [N ]},

such that for any d ∈ Ik,

Pr(X = d) =
D!

NDΨ

∏

i∈[N ]

1

di!
=

∏
i∈[N ] 1/di!∑

d∈Ik

∏
i∈[N ] 1/di!

,

where

Ψ =
∑

d∈Ik

D!

ND

∏

i∈[N ]

1

di!
.

The degree distribution of the heavy vertices ofGt, conditional on Ft, is exactly Multi(Nt, Dt, k),
by Observation 13. It was proved in [6, Lemma 1] (also appeared in [2, eq. (7)]) that the
truncated multinomial variables can be well approximated by truncated Poisson random
variables with expectation Dt/Nt. The result is stated as follows. Recall the definition of
fk(λ) from (2). We define:

gk(λ) = λfk−1(λ)/fk(λ). (9)

Note that gk(λ) is the expectation of a Poisson random variable with parameter λ truncated
at k.
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Proposition 23. Let k ≥ 0 be fixed, and N and D satisfy D − kN = Ω(N). Assume
X ∼Multi(N,D, k). For any j ≥ k, let ρj denote the proportion of X that equals j. Then,
with probability 1 − o(1/N),

ρj = e−λ λj

fk(λ)j!
+O(N−1/2logN), (10)

where λ satisfies gk(λ) = D/N .

By Lemma 27 (below), gk(x) is an increasing function on x > 0. It is easy to show that
limx→0 gk(x) = k. Hence, for any D > kN , there is a unique λ that satisfies λfk−1(λ)/fk(λ) =
D/N in the above proposition.

It is easy to check from the definition of µr,k above (4) that

gk(µr,k) = rβ/α. (11)

Define:
ζ = ζr,k = rβ/α. (12)

The following lemma justifies that ζ > k. The proof consists of some tedious calculus, so we
defer it to the Appendix.

Lemma 24. Suppose r, k ≥ 2 and (r, k) 6= (2, 2). Then, k < ζ < r(k − 1).

Thus, Proposition 23 and Corollary 9 imply that a.a.s. the proportion of degree k vertices
in the k-core is approximately

ρ̄r,k = e−µr,k
µk
r,k

fk(µr,k)k!
. (13)

The following technical lemma has appeared in several other papers (e.g. in [1]), but as
the proof is short we include it in the Appendix.

Lemma 25. For every r, k ≥ 2 (r, k) 6= (2, 2),

kρ̄r,k · α
rβ

=
1

(r − 1)(k − 1)
.

And now we can prove the key lemma governing the evolution of Lt. Recall from above (8)
that τ̂ = min{τ, t0 + γ}.

Lemma 26. Assume that τ > t0 and Gt0 is nice. For any t0 ≤ t ≤ τ̂ , Ft must be such
that: for each of the r − 1 random vertex-copies chosen during iteration t, the probability,
conditional on Ft, that the vertex-copy belongs to a heavy bin which becomes light in this
iteration, is 1/(r − 1)(k − 1) +O(γ/n).

Proof. By Observation 13, we can treat the allocation of the Dt heavy vertex-copies to the
Nt heavy bins as a uniform allocation subject to each bin receiving at least k copies. We first
choose the r− 1 vertex-copies, then we choose the allocation. Let x be any one vertex-copy
and let b be the bin to which x is allocated; we wish to bound the probability that |b| = k.

18



Consider a different experiment: first conduct the allocation, and then choose x uniformly
from amongst all vertex-copies, and let b be the bin to which x was allocated; clearly these
two experiments are equivalent ways to choose b. Let λ∗ be the unique root of gk(λ) = Dt/Nt.
By Proposition 23 the probability that we choose x from a bin of size k is:

q =
k

Dt
× e−λ∗ λ∗k

fk(λ∗)k!
Nt +O(n−1/2 log n).

(Note that the o(1/n) failure probability in Proposition 23 is absorbed into the O(n−1/2 log n)
term.)

Since Gt0 is nice, Proposition 22 yields:

Nt = αn+O(γ), Dt = rβn+O(γ). (14)

So

gk(λ
∗) =

rβn+O(γ)

αn+O(γ)
=
rβ

α
+O(γ/n) = gk(µr,k) +O(γ/n).

Let δ = g′k(µr,k); recall that g′k and µr,k are independent of γ, n and so δ is a constant
independent of γ, n. Lemma 27 (below) implies that δ > 0. Thus g′k(λ) > 1

2
δ for all

λ = µr,k + o(n); similarly, Lemma 27 implies that for any ζ > 0, g′k(λ) > 0 for all λ > ζn.
These two bounds, along with (14) easily imply that

λ∗ = µr,k +O(γ/n).

Setting h(x) = e−x xk

fk(x)k!
, recalling (13), and noting that h′(µr,k) = O(1), and applying

Lemma 25, we have

q =
kNt

Dt
h(λ∗) +O(n−1/2log n) =

kα

rβ
h(µr,k) +O(γ/n) =

kαρ̄r,k
rβ

+O(γ/n)

=
1

(r − 1)(k − 1)
+O(γ/n).

We close this subsection with a technical lemma proving the monotonicity of gk(x). The
proof will be given in the Appendix.

Lemma 27. For any x > 0, g′k(x) > 0.

4.4.2 Proof of Lemma 19

Recall that we are running SLOW-STRIP on the AP-model. Recall also from Section 4
that Lt denotes the total degree of the vertices with degree less than k in Gt, and recall from
Definition 17 that t0 is the beginning of Phase 2 of SLOW-STRIP. Corollary 9 ensures that
a.a.s. Gt0 is nice and so Proposition 22 immediately yields a weaker version of Lemma 19:
a.a.s. for all t0 ≤ t ≤ τ̂ , Lt = O(n1−δ/2) = O(γ). This allows us to prove that a weaker form
of Lemma 16 holds for t ≥ t0:
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Lemma 28. Assume that τ̂ > t0 and Gt0 is nice. For every t0 ≤ t < τ̂ ,

E(Lt+1| Ft) = Lt ±O(n−δ/2).

Proof. Let v be the vertex taken from Qt at iteration t. Let u1, . . . , ur−1 denote the other
vertex-copies (except the copy in v) that are selected to be deleted in this step. The removal of
the vertex-copy in v contributes −1 to ∆Lt := Lt+1−Lt always. We consider the contribution
to ∆Lt from the removal of ui. Let v(ui) denote the bin that contains ui. There are four
cases.

Case 1: The removed edge contains two copies of the same vertex. The probability of
this case is O(1/n) and so the contribution of this case to E(Lt+1 − Lt | Ft) is O(1/n).

For the remaining three cases, we can assume that no other copy in v(ui) has already
been removed during iteration t.

Case 2: v(ui) was in Qt in Gt. In this case, the contribution of the removal of ui to
∆Lt is −1. Since ui is chosen by the algorithm u.a.r. from all remaining vertex-copies, the
probability of this event is O(Lt/(Dt + Lt)) = O(γ/n) by (14) and Proposition 22(b).

Case 3: v(ui) enters Qt at iteration t. In this case, the size of v(ui) is k in Gt and
the contribution to ∆Lt from the removal of ui is k − 1. The probability of this event is
1/(r − 1)(k − 1) +O(γ/n) by Lemma 26.

Case 4: v(ui) was not in Qt and does not enter Qt+1 at iteration t+ 1. In this case, the
size of v(ui) is more than k in Gt and the contribution to ∆Lt from the removal of ui is 0.
The probability of this event is 1 − 1/(r − 1)(k − 1) +O(γ/n).

By the linearity of expectation, summing the contributions of u1, . . . , ur−1, we have

E(Lt+1 − Lt | Ft) = −1 + (r − 1)

(
(−1) · O(γ/n) + (k − 1)

(
1

(r − 1)(k − 1)
+O(γ/n)

))

+O(1/n) = O(γ/n).

The lemma follows by noting that γ = Θ(n1−δ/2) by Definition 17.

The following lemma is a simple application of the Hoeffding-Azuma Inequality[3, 20].

Lemma 29. Let an and cn ≥ 0 be real numbers and (Xn,i)i≥0 be random variables with
respect to a random process (Gn,i)i≥0 such that for all t ≥ 0

E(Xn,i+1 | {Gn,s}s≤i) ≤ Xn,i + an,

and |Xn,i+1 − Xn,i| ≤ cn, for every i ≥ 0 and all (sufficiently large) n. Then, for any real
number j ≥ 0,

Pr(Xn,t −Xn,0 ≥ tan + j) ≤ exp

(
− j2

2t(cn + |an|)2
)
.

Proof. Define Yn,i = Xn,i − ian for all i ≥ 0. Then,

E(Yn,i+1 | {Gn,s}s≤i) = E(Xn,i+1 | {Gn,s}s≤i) − (i+ 1)an ≤ Xn,i − ian = Yn,i.
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Thus, (Yn,i)i≥0 is a supermartingale. Moreover, |Yn,i+1− Yn,i| ≤ cn + |an|. By the Hoeffding-
Azuma Inequality,

Pr(Yn,t − Yn,0 ≥ j) ≤ exp

(
− j2

2t(cn + |an|)2
)
.

This completes the proof of the lemma.

We now recall the statement of Lemma 19:

Lemma 19. If c = cr,k + n−δ, then a.a.s. for every t0 ≤ t ≤ τ :

Lt = O(n1−δ).

Proof. Without loss of generality we may assume t0 < τ . By Corollary 9 we may also assume
that Gt0 is nice. Recall that τ̂ = min{τ, t0 + γ}. By Lemma 28, there exists a nonnegative
sequence (an)n≥1 such that an = O(n−δ/2) = O(γ/n) and for every t0 ≤ t < τ̂ ,

E(Lt+1 | Ft) ≤ Lt + an, E(−Lt+1 | Ft) ≤ −Lt + an.

Define Lt such that Lt = Lt for every t ≤ τ̂ and Lt+1 = Lt for all t ≥ τ̂ . Now for every
t ≥ t0,

E(Lt+1 | {Ls}s≤t) ≤ Lt + an, E(−Lt+1 | {Ls}s≤t) ≤ −Lt + an.

It is clear that |Lt+1 − Lt| = O(1) always as Lt+1 = Lt +O(1) always. By Lemma 29 with
j = γ1/2 logn and cn = O(1), for every t0 ≤ t ≤ t0 + γ,

Pr(Lt ≥ Lt0+an(t−t0)+γ1/2 log n) = o(n−1), Pr(−Lt ≥ −Lt0+an(t−t0)+γ1/2 log n) = o(n−1).

We apply the union bound over all t0 ≤ t < t0 + γ, along with the asymptotics an =
O(γ/n), and γ1/2 log n = o(γ2/n) (since γ = 3K2n

1−δ/2 and δ < 1/2), to obtain that a.a.s.
for all t0 ≤ t ≤ t0 + γ:

Lt ≥ Lt0 −O(γ2/n) (15)

Lt ≤ Lt0 +O(γ2/n) (16)

By (8), a.a.s. τ̂ = τ and so a.a.s. τ = τ̂ ≤ t0 + γ and Lτ̂ = Lτ = Lτ = 0. Therefore, (15)
with t = τ yields

Lt0 = Lt0 =O(γ2/n). (17)

Substituting that into (16) yields that for all t0 ≤ t ≤ τ , Lt = Lt = O(γ2/n) = O(n1−δ),
thus establishing the lemma.

4.4.3 ζt and p̄t

In this section, we study two parameters ζt and p̄t to be defined below, which allow for
a more careful analysis of the rate at which new light vertices are formed.
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Recall that Lt is the total degree of the light vertices in Gt (i.e. those of degree less than
k); eventually, our goal is to prove Lemma 16, i.e. to bound E(Lt+1 − Lt | Ft) from above.
This quantity has been bounded from below in the previous section for t ≥ t0 (Lemma 28).
The main challenge for Lemma 16 is that we need to show a uniform bound for all t ≥ t(B),
as long as B is a sufficiently large constant (recall that t0 grows with n). This also makes a
significant difference from Lemma 28 which only requires t ≥ t0.

Now let H ∈ APr(n, cn), where c = cr,k + n−δ and let B be a sufficiently large constant
whose value is to be determined later. Recall that Gt is the hypergraph remaining after t
iterations of SLOW-STRIP and so Gt(B) = ĤB.

Recalling that Nt is the number of heavy vertices, and Dt is the total degree of the heavy
vertices, we define:

ζt = ζt(Ft) = Dt/Nt is the average degree of the heavy vertices in Gt.

Recalling that, by Corollary 9, the k-core a.a.s. has αn+o(n) vertices and βn+o(n) edges
and ζ = rβ/α. Therefore the k-core a.a.s. has average degree ζ + o(1) and so ζt approaches
ζ . Note that ζ = gk(µr,k) by (11).

We are interested in the probability that a particular heavy vertex-copy is allocated to a
bin of size k since this tells the proportion of the heavy vertices in deleted hyperedges that
become light. So, recalling Observation 13, we define:

Definition 30. p̄t = p̄t(Tt) is the probability that a given vertex-copy is assigned to a
bin of size k in a uniformly random allocation of Dt points to Nt bins subject to each bin
receiving at least k points.

We will deduce p̄t as a certain function of ζt, approximately. For all x > k, we define:

λ(x) is the root of gk(λ) = x; i.e. λfk−1(λ) = xfk(λ) (18)

ψ(x) =
e−λ(x)λ(x)k−1

fk−1(λ(x))(k − 1)!
(19)

With some basic calculations we can show that ψ(x) is strictly decreasing for x > k.

Lemma 31. For all x > k, ψ′
k(x) < 0.

We defer the proof to the Appendix.
In the k-core, a.a.s. the proportion of the total degree that comes from vertices of degree

k is approximately ψ(ζ) by Corollary 9 and Proposition 23.
Since p̄t approaches ψ(ζ), we should have p̄t ≈ ψ(ζt). Our next lemma formalizes this

approximation:

Lemma 32. Assume Nt = Ω(n) for every t ≤ τ . Then p̄t = (1 + O(n−1/2 logn))ψ(ζt) for
all t ≤ τ .

Proof. Let λ be chosen such that λfk−1(λ) = ζtfk(λ). Then by Proposition 23, the following
holds for all t ≤ τ :

p̄t =
ke−λλkNt

fk(λ)(k − 1)!Dt

(1 +O(n−1/2 logn))+o(n−1) =
e−λλk

fk(λ)(k − 1)!ζt
(1 +O(n−1/2 logn))

=
e−λλk−1

fk−1(λ)(k − 1)!
(1 +O(n−1/2 log n)) by (18).
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We will analyze ζt, p̄t in order to prove Lemma 16.
Recall that gk(x) = xfk−1(x)/fk(x) as defined in (9) and that ζ = rβ/α. Then, µr,k is

the root of gk(x) = ζ by (11). Recall also that

ψ(x) =
e−λ(x)λ(x)k−1

fk−1(λ(x))(k − 1)!
,

where λ(x) is the root of gk(λ) = x. Now define p∗ = ψ(ζ). Then, we have

p∗ =
e−µr,kµk−1

r,k

fk−1(µr,k)(k − 1)!
.

By the definition of α, β below (4) and ρ̄r,k in (13), we have p∗ = kρ̄r,k/ζ . Then, by
Lemma 25, we have p∗ = 1/(r − 1)(k − 1). As a summary of the above discussion, we have
the following equalities.

gk(µr,k) = ζ = rβ/α; (20)

p∗ = ψ(ζ) =
1

(r − 1)(k − 1)
. (21)

The expected change in Lt, is closely tied to ζt. So in order to prove Lemma 16, we
begin by bounding ζt over the next two lemmas. Recall that ζt = Dt/Nt denotes the average
degree of heavy vertices in Gt. We will apply Lemma 32 to relate p̄t with ψ(ζt) for all t in
the range we analyse and therefore we must restrict to a sequence of “typical” hypergraphs
(Gt) such that Nt = Ω(n) holds in the whole process. To formalise the idea, we define:

Gt is normal if |p̄t − ψ(ζt)| ≤ n−1/2 log2 n.

Note that whether Gt is normal is determined by Ft so, equivalently, we could say Ft is
normal. We define the stopping times:

τ1 is the minimum integer t such that Gt is not normal; (22)

τ1 = τ if Gt is normal for all 0 ≤ t ≤ τ .

We will focus on steps t such that ζt is close to ζ . Hence, we will restrict to sequences (Gt)
such that ζt gets close to ζ eventually. Given a constant ǫ > 0, define:

tǫ is the minimum integer that ||V (Gt)| − αn| ≤ ǫn and |ζt − ζ | ≤ ǫ; (23)

tǫ = τ if such an integer does not exist.

Observation 33. For all tǫ ≤ t ≤ tǫ + kǫn, we have ζt = ζ +O(ǫ).

Proof. Each iteration of SLOW-STRIP removes exactly one hyperedge. So it reduces each
of Dt and Nt by at most r. Since Dtǫ ≥ rβn and Ntǫ ≥ αn, each step can only change
ζt = Dt/Nt by at most O(ǫ), and this will be true for at least kǫn steps.

Lemma 34.
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(a) There are a sufficiently small constant ǫ = ǫ(r, k) > 0 and two constants ρ1 = ρ1(r, k) >
0 and ρ2 = ρ2(r, k) > 0 such that such that for all tǫ ≤ t < min{tǫ + kǫn, τ1},

−ρ1
n

≤ E(ζt+1 − ζt | Ft) ≤ −ρ2
n
.

(b) Given a constant ǫ > 0, a.a.s. there is a large constant B = B(r, k, ǫ) for which: if
c = cr,k + n−δ then tǫ ≤ t(B). Moreover, a.a.s. τ1 = τ and τ < tǫ + kǫn.

Proof. Let ǫ > 0 be be a small constant whose value is to be determined later. We first
prove part (a). We may assume that tǫ < τ1 since otherwise there is nothing to prove.

Consider any t ≥ tǫ, and let v be the vertex taken from Qt during iteration t. Recall that
when SLOW-STRIP runs on the AP-model, it removes one vertex-copy from v and another
r − 1 vertex-copies u1, . . . , ur−1 chosen uniformly at random from the remaining ones. We
will split the single step into r− 1 substeps (Tt,i)1≤i≤r−1, such that ui is removed in step Tt,i
for all 1 ≤ i ≤ r−1 and let Tt,0 = t. We consider the contribution of deleting ui, denoted by
C(ui), to E(ζt+1 − ζt| Ft). If ui+1 is light then C(ui) = 0. If it is heavy (which occurs with
probability at least 1/2 if ǫ is sufficiently small) then (extending the definition of Dt, Nt, p̄t
to DTt,i

, NTt,i
, p̄Tt,i

in the obvious manner):

C(ui) =
DTt,i

− 1

NTt,i

(1 − p̄Tt,i
) +

DTt,i
− k

NTt,i
− 1

p̄Tt,i
− DTt,i

NTt,i

. (24)

In this case, dropping the subscript and substituting 1/(N−1) = (1/N)(1+1/N+O(1/n2))
(as N = Ω(n)), we have that uniformly for all 1 ≤ i ≤ r − 1,

C(ui) =
1

N

(
(D − 1)(1 − p̄) + p̄(D − k)(1 + 1/N +O(n−2)) −D

)

=
1

N

(
− 1 − p̄(D − 1) + p̄(D +

D

N
− k +O(n−1))

)

=
1

N

(
−1 + p̄

(
D

N
− (k − 1) +O(n−1)

))
. (25)

By the definition of tǫ and applying Observation 33, we have ζt = rβ/α + O(ǫ)= ζ +O(ǫ)
for every tǫ ≤ t ≤ tǫ + kǫn. Recall from (21) that

p∗ = ψ(ζ) =
1

(r − 1)(k − 1).

By Lemma 24 ζ > k. Since ζ = ζr,k is a constant, Lemma 31 implies that ψ′(ζ) < 0 and
ψ′(x) is uniformly bounded away from zero in a small neighbourhood of ζ . By the definition
of τ1 in (22), for all tǫ ≤ t < min{tǫ + kǫn, τ1} and 0 ≤ i ≤ r − 1,

p̄Tt,i
= ψ(ζt) + o(1) = ψ(ζ) +O(ǫ) = p∗ +O(ǫ).

If we were to substitute p̄ = p∗, D = rβn, N = αn into the RHS of (25), and simplify it, we
would obtain:
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C(ui) =
1

αn

(
−1 +

1

(r − 1)(k − 1)

(
rβ

α
− (k − 1) +O(n−1)

))

=
1

αn

(
−1 +

1

(r − 1)(k − 1)

(
ζ − (k − 1) +O(n−1)

))
. (26)

By Lemma 24, there is a σ > 0 such that ζ < r(k − 1) − σ. Hence,

−1 +
1

(r − 1)(k − 1)

(
ζ − (k − 1) +O(n−1)

)
< −1 +

1

(r − 1)(k − 1)
((r − 1)(k − 1) − σ/2)

< −σ/2(r − 1)(k − 1).

Since in every step, the quantity of variables in (25) (e.g. p̄ and D/N) differs from that
in (26) by O(ǫ), by choosing ǫ > 0 sufficiently small, there exists constants ρ′1, ρ

′
2 > 0 such

that a.a.s.

−ρ
′
1

n
≤C(ui) ≤ −ρ

′
2

n
for all 1 ≤ i ≤ r − 1,

for all tǫ ≤ t < min{tǫ + kǫn, τ1}. Since there are r − 1 ui’s, part (a) follows with ρ1 =
(r − 1)ρ′1, ρ2 = (r − 1)ρ′2.

Next, we prove part (b). By Lemma 15, there is a constant B = B(r, k, ǫ′), such that
a.a.s. |V (Gt(B)) \ Ck| ≤ ǫ′n. By Corollary 9, a.a.s. the number of vertices and hyperedges in
Gt(B) is αn + O(ǫ′n) and rβn + O(ǫ′n) respectively. Therefore, |ζt(B) − ζ | < Aǫ′ for some
constant A > 0. We choose ǫ′ sufficiently small (correspondingly B sufficiently large), so
that ǫ′ < ǫ and ǫ′ < ǫ/A. Thus we have t(B) ≥ tǫ. Hence, a.a.s. there exists large constant
B = B(ǫ) so that tǫ ≤ t(B). The fact that a.a.s. τ1 = τ follows from the definition of τ1
in (22) and Lemmas 32 and 7.

The fact that a.a.s. τ ≤ tǫ+kǫn follows by the definition of tǫ in (23) and Corollary 9: a.a.s.
there are at most ǫn+ o(n) vertices to be deleted from Gtǫ until SLOW-STRIP terminates,
and it takes at most k − 1 steps to remove each vertex in Qt.

In the next lemma, we obtain a coarse bound on ζt, which will suffice to prove Lemma 16.
We will refine this bound in the later part of this paper when we require a stronger form of
Lemma 16 (see Lemma 50).

Lemma 35. For any sufficiently small constant ǫ > 0, there exists a sufficiently large
constant B such that for every ǫ′ > 0, a.a.s. for all t ≥ t(B): ζt ≥ ζτ − n−1/2+ǫ′ and
|ζt − ζ | ≤ ǫ.

Proof. Take a sufficiently small constant ǫ1 to satisfy Lemma 34(a); then a sufficiently large
constant B = B(r, k, ǫ1) as in Lemma 34(b). Then, a.a.s.

tǫ1 ≤ t(B) and τ1 = τ ≤ tǫ1 + kǫ1n. (27)

Moreover, by Lemma 34(a), for all tǫ1 ≤ t ≤ τ ′ := min{tǫ1 +kǫ1n, τ1}: ζt is a supermartingale
and ζt+1 − ζt is at most O(1/n). We couple ζt with another process Zt as in the proof of
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Lemma 19: for all tǫ1 ≤ t ≤ τ ′, let Zt = ζt; for all t ≥ τ ′, let Zt+1 = Zt. Now, (Zt) is a
supermartingale for t ≥ tǫ1 and Zt+1 = Zt +O(1/n). By Azuma’s inequality, we have that
for all tǫ1 ≤ t2 < t1 ≤ tǫ1 + kǫ1n and for any j > 0,

Pr(Zt1 − Zt2 ≥ j) ≤ exp

(
−Ω

(
j2

(t1 − t2)n−2

))
.

Taking j = n−1/2+ǫ′ and taking the union bound over all pairs tǫ1 ≤ t1 < t2 ≤ tǫ1 + kǫ1n, the
probability that there is a pair t2 < t1 in the above range such that Zt1 − Zt2 > n−1/2+ǫ′ is
at most n2 exp

(
−Ω

(
n2ǫ′
))

= o(1). Hence, a.a.s. Zt2 ≥ Zt1 − n−1/2+ǫ′ for any pair tǫ1 ≤ t1 <
t2 ≤ tǫ1 + kǫ1n.

By (27), a.a.s. t(B) ≥ tǫ1 and τ ′ = τ1 = τ and so a.a.s. Zt = ζt for all tǫ1 ≤ t ≤ τ . So,
a.a.s. ζt ≥ ζτ − n−1/2+ǫ′ for all t ≥ t(B).

To prove that a.a.s. |ζt − ζ | ≤ ǫ, we simply choose ǫ1 to be sufficiently small in terms of
ǫ (and the implicit constant in Observation 33). (27) yields that a.a.s. for all t(B) ≤ t ≤ τ
we have tǫ1 ≤ t ≤ tǫ1 + kǫ1n, so Observation 33 yields

|ζt − ζ | ≤ O(ǫ1) ≤ ǫ.

This immediately yields the following corollary.

Corollary 36. For any sufficiently small constant ǫ > 0, there exist constants B,K > 0
such that a.a.s. for all t ≥ t(B):

(a) ζt ≥ ζ +Kn−δ/2;

(b) |ζt − ζ | ≤ ǫ.

Proof. Choose B and ǫ to satisfy Lemma 35. Immediately, we have a.a.s. |ζt − ζ | ≤ ǫ for all
t ≥ t(B).

Recall the definition of gk(x) in (9). By Lemma 7 and since µr,k > 0, a.a.s.

ζτ =
rβ(c) +O(n3/4)

α(c) +O(n3/4)
= gk(µ(c)) +O(n−1/4)

= gk(µr,k) + g′k(µr,k)(µ(c) − µr,k) + o(µ(c) − µr,k) +O(n−1/4),

By Lemma 27, g′k(µr,k) > 0. By Lemma 8, µ(c)−µr,k = K1n
−δ/2+o(n−δ/2) for some constant

K1 > 0. Recall also that ζ = rβ/α = gk(µr,k). So a.a.s.

ζτ = ζ + Θ(n−δ/2), (28)

as n−1/4 is absorbed by o(n−δ/2) since δ < 1/2. Now applying Lemma 35 with some ǫ′ < 1
4

so that n− 1

2
+ǫ′ = o(n−δ/2), we have that a.a.s.

for all t ≥ t(B), ζt ≥ ζτ − n− 1

2
+ǫ′ ≥ ζ +Kn−δ/2,

for some appropriate constant K > 0.
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4.4.4 Proof of Lemma 16

Recall that we analyze the running of SLOW-STRIP on APr(n, cn). In each step t(B) ≤
t ≤ τ , the algorithm removes a vertex-copy in a light vertex and another r− 1 vertex-copies
u1, . . . , ur−1 chosen uniformly from all remaining ones. For each 1 ≤ i ≤ r−1, let ht,i denote
the probability that ui is light. Recall that p̄t is the probability that a heavy vertex-copy is
allocated to a bin of size k. Then

E(Lt+1 − Lt | Ft) = −1 +

r−1∑

i=1

(
− ht,i + (1 − ht,i)(k − 1)p̄t +O(n−1)

)
, (29)

where O(n−1) accounts for the change of p̄t caused by the removal of the first i − 1 points
and the possibility that we select two copies of the same vertex. (29) is maximized when
ht,i = 0 for all 1 ≤ i ≤ r − 1. Thus,

E(Lt+1 − Lt | Ft) ≤ −1 + (r − 1)(k − 1)p̄t +O(n−1). (30)

As in the proof of Lemma 34, we need a relation between p̄t and ζt and thus it is
convenient to restrict to steps t < τ1 where τ1 is defined in (22). Moreover, we want to
restrict to sequences (Gt) such that Corollary 36(a,b) hold. To formalise the idea, we first
choose constants B, ǫ and K to satisfy Corollary 36 (Note that ǫ can be chosen arbitrarily
small which results in larger B). Then, we define:

τ2 is the minimum t ≥ t(B) such that ζt < ζ +Kn−δ/2 or |ζt − ζ | > ǫ; (31)

τ2 = τ if no such integer exists.

Define
τ ∗ = min{τ1, τ2}. (32)

By Lemma 34(b) and Corollary 36, a.a.s. τ ∗ = τ .
By the definition of τ1 in (22) and noting that τ ∗ ≤ τ1, we have for all t(B) ≤ t < τ ∗:

p̄t = ψ(ζt) + n−1/2 log2 n = ψ(ζ) + ψ′(ζ)(ζt − ζ) +O((ζt − ζ)2) + n−1/2 log2 n, (33)

by expanding ψ(ζt) at ζ .
By Lemmas 31 and 24, and since ζ = ζ(r, k) is a constant, we have ψ′(ζ) < −C for some

constant C > 0. By the definition of τ2 and τ ∗, for all t(B) ≤ t < τ ∗, ζt − ζ can be assumed
sufficiently small (by choosing sufficiently small ǫ) so that

ψ′(ζ)(ζt − ζ) +O((ζt − ζ)2) ≤ −C
2

(ζt − ζ).

By (21), ψ(ζ) = 1
(r−1)(k−1)

. By Corollary 36, there is a constant K1 > 0 such that a.a.s.

for all t(B) ≤ t < τ ∗, ζt ≥ ζ +K1n
−δ/2. Putting all this together yields:

p̄t ≤ 1

(r − 1)(k − 1)
− C

2
K1n

−δ/2 + n−1/2 log2 n

≤ 1

(r − 1)(k − 1)
−K2n

−δ/2, (34)
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for any constant K2 < K1C/2, as δ/2 < 1
2
.

It follows then from (30) that there is a K > 0 such that for all t(B) ≤ t < τ ∗,

E(Lt+1 − Lt | Ft) ≤ −Kn−δ/2. (35)

By (33), this holds a.a.s. for all t(B) ≤ t < τ ∗, and by (32) a.a.s. τ = τ ∗; this proves the
lemma.

4.5 Proof of Theorem 3(b)

In this section, we prove Theorem 3(b). So |c − cr,k| ≤ n−δ for some 0 < δ < 1
2
. Our goal

is to show that a.a.s. the stripping number of H ∈ Hr(n, cn) is Ω(nδ/2). Similarly to the
supercritical case, we will analyse the process on H ∈ APr(n, cn) instead.

We will define δ′ ≈ δ so that c is not very far from c′ = cr,k +n−δ′ and then argue that the
stripping number of H is not much smaller than the stripping number of H ′ = APr(n, c

′n).
We have already proven that the latter stripping number is Ω(nδ′/2) in Section 4.3.1.

We specify a small ǫ > 0 and define δ′ such that:

n−δ′ =

{
n−δ if c = cr,k − n−δ where δ ≤ 1/2 − ǫ
2n−1/2+ǫ if |c− cr,k| < n−1/2+ǫ.

Remark So if |c− cr,k| < n−1/2+ǫ, then δ′ is a function of n, rather than a constant. We can
still apply the results of Section 4.3.1 to H ′ as the proofs work even for non-constant δ, see
the remark following the statement of Theorem 3.

It follows then that in both cases,

1

2
n−δ′ ≤ n−δ′ − (c− cr,k) ≤ 2n−δ′ . (36)

To prove Theorem 3 for these ranges of c, it suffices to show that a.a.s. s(Hr(n, cn)) = Ω(nδ′/2)
with δ′ defined above, since nδ′/2 = Ω(nδ/2).

Let H ′ = AP r(n, c
′n) where c′ = cr,k + n−δ′ , and we generate H by removing (c′ − c)n

edges (i.e. r-tuples), chosen uniformly at random in H ′. This way we couple H ⊆ H ′ and H
is distributed as AP r(n, cn). Consider the following stripping procedure to find the k-core
of H :

1. Run Phase 1 of SLOW-STRIP on H ′, thus obtaining G′
t0
⊆ H ′.

2. For each vertex v removed from H ′ in Step 1, we also remove v from H . We call the
remaining hypergraph Gt0 .

3. Run SLOW-STRIP on Gt0 .

To be clear: γ and t0 are defined for the process of running SLOW-STRIP on H ′, not for
H . So:

γ = 3K2n
1−δ′/2,

and t0 is the first step at which exactly βn+ γ hyperedges remain in H ′.
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Note that since H ⊆ H ′, the k-core of H is contained in the k-core of H ′, and so the
k-core of H is contained in G′

t0
. Gt0 contains every vertex of G′

t0
and contains every edge of

G′
t0

that is an edge of H . So the k-core of H is contained in Gt0 . Thus, this is a valid way
to obtain the k-core of H .

Note also that this is not equivalent to running SLOW-STRIP on H , since doing so
could remove the vertices in a different order. Nevertheless, we still have Gt0 ⊆ H and so
the stripping number of H is at least the stripping number of Gt0 .

The number of hyperedges in H ′ but not in H is (c′− c)n, which is Θ(n1−δ′) by (36). We
use Gi to denote the subgraph of H remaining after i−t0 iterations of SLOW-STRIP on Gt0 .
We define Li, Di, Ni as we did in Sections 4.4.1 and 4.4.2. Similarly we define L′

t0
, D′

t0
, N ′

t0

to be the values of the same parameters for G′
t0

.
G′

t0 is the result of carrying out Phase 1 of SLOW-STRIP on H ′ = APr(n, c
′n). So a.a.s.

L′
t0
, D′

t0
, N ′

t0
satisfy the bounds in (14) and (17). Clearly, |Lt0 − L′

t0
|, |Dt0 −D′

t0
|, |Nt0 −N ′

t0
|

are bounded by r times the number of edges in E(G′
t0)\E(Gt0). Note that |E(G′

t0)\E(Gt0)|
is at most the number of edges in E(H ′)\E(H), which is Θ(n1−δ′) = o(γ). Combining this
with the bounds (14) and (17) on L′

t0
, D′

t0
, N ′

t0
, we have:

Nt0 = N ′
t0

+ o(γ) = αn +O(γ)

Dt0 = D′
t0 + o(γ) = rβn+O(γ)

Lt0 = L′
t0

+O(γ2/n) = O(γ2/n)

Next we prove that a.a.s. SLOW-STRIP applied to Gt0 lasts for at least γ/4 steps.
Applying Proposition 21 to H ′ tells us that applying SLOW-STRIP to G′

t0
would take at

least γ/3 iterations. Each iteration removes one hyperedge, and the removed hyperedge is
not in the k-core of G′

t0
and hence not in the k-core of Gt0 . We have shown that at most

Θ(n1−δ′) = o(γ) of those hyperedges are not in Gt0 . Therefore, SLOW-STRIP takes at
least γ/3 − o(γ) > γ/4 iterations on Gt0 (c.f. Lemma 18). It is then convenient to define
τ ′ = min{t0 + γ/4, τ} and we have just shown that a.a.s. τ ≥ τ ′.

Corollary 9 implies that a.a.s. G′
t0 is nice. Since Gt0 contains all but o(γ) hyperedges

of G′
t0

, a.a.s. Gt0 is also nice. Thus, the analysis of Section 4.4.2 applies to the running of
SLOW-STRIP on Gt0 . The analysis is similar except that δ is replaced by δ′, and yields the
conclusion of Lemma 28; i.e. for every t0 ≤ t ≤ τ ′,

E(Lt+1| Ft) = Lt ± O(n−δ′/2).

The same analysis as in the proof of Lemma 19 yields that (16) holds; i.e. a.a.s. for every
t0 ≤ t ≤ τ ′,

Lt ≤ Lt0 +O(γ2/n) = O(n1−δ′). (37)

The rest of the proof follows as in Section 4.3.1. We argued above that SLOW-STRIP
takes at least γ/3 − o(γ) > γ/4 iterations on Gt0 (thus, a.a.s. τ ′ = t0 + γ/4). It takes at
most k−1 iterations to remove a vertex, and so the parallel stripping process, applied to Gt0

removes at least γ/(4(k − 1)) vertices. By (37) each iteration i removes |Lt(i)| = O(n1−δ′)
vertices. So there must be at least γ/O(n1−δ′) = Ω(nδ′/2) (recalling that γ = Θ(n1−δ′/2))
iterations of the parallel stripping process. I.e. the stripping number of Gt0 is at least
Ω(nδ′/2) and hence the stripping number of H is also Ω(nδ′/2) = Ω(nδ/2).
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This proves that the lemma holds for APr(n, cn). Corollary 12 implies that it also holds
for Hr(n, cn). �

5 Bounding the maximum depth: proof of Theorem 5

We first note that the stripping number provides a lower bound on the maximum depth
over all non-k-core vertices.

Lemma 37. For any vertex v ∈ Si, the depth of v is at least i.

Proof We prove by induction that every vertex v ∈ ∪j≥iSj has depth at least i.
This is trivial for i = 1. Suppose it is true for i, and consider v ∈ ∪j≥i+1Sj. Since v /∈ Si, v
has at least k neighbours which are either in the k-core or in ∪j≥iSj . At least one of those
neighbours must be removed before v can be removed, and by our induction hypothesis, each
such neighbour has depth at least i. So any stripping sequence which removes v must first
include a sequence of length at least i which removes a neighbour of v. Thus it must have
length at least i + 1; i.e. the depth of v is at least i + 1. �

Therefore, Theorem 3(a) provides the lower bound of Theorem 5. We will focus on the
upper bound.

Recall that Si is the set of vertices removed during iteration i of the parallel stripping
process, and Ĥi is the subhypergraph remaining after S1, ..., Si−1 are removed.

Define:

Imax is the number of iterations carried out by the parallel stripping process.

We define the following hypergraph formed by the vertices of Si:

Definition 38. The vertices of Si are Si. For any hyperedge f in Ĥi that includes at least
one vertex of Si, f

′ = f ∩ Si is a hyperedge of Si. If |f ′| = a then f ′ is said to be an a-edge.

Note that Si may contain hyperedges of size one (in fact, for large i, most of the edges
will have size one).

We wish to bound the depth of a non-k-core vertex v. We begin by defining a set R(v)
that contains such a stripping sequence.

Definition 39. For each 1 ≤ i ≤ Imax and any v ∈ Si, we set R′
i = R′

i(v) := {v} and for
each j = i to 1:

(a) we set Rj = Rj(v) to be the union of the vertex sets of all components of Sj that
contain vertices of R′

j .

(b) we set R′
j−1 to be the set of all vertices v ∈ Sj−1 that are adjacent to ∪j

ℓ=iRℓ.

We define R(v) = ∪1
ℓ=iRℓ.
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Remark. For the purposes of this paper, we could have omitted step (a) and replaced R′

by R elsewhere. The set R(v) would still have contained a stripping sequence leading to the
removal of v. We define, and bound, this larger set for our application to clusters in random
XOR-SAT in another paper[16]. (A preliminary version is in [17]).

Observation 40. R(v) contains a stripping sequence ending with v.

Proof We prove this for each v ∈ Si using a simple induction on i. For i = 1, v
is a stripping sequence of length 1. For i ≥ 2, note that R(v) contains every neighbour
of v lying in levels 1, ..., i − 1; call these neighbours u1, ..., uq. The recursive construction
ensures that R(v) also contains R(u1), ..., R(uq) and so, by induction, contains stripping
sequences ending with u1, ..., uq. After the deletion of u1, ..., uq, the degree of v drops below
r (since v ∈ Si), and so adding v to the concatenation of those stripping sequences produces
a stripping sequence ending in v. �

Theorem 41. Let r, k ≥ 2, (r, k) 6= (2, 2) be fixed. There is a constant κ = κ(r, k) such
that: for any 0 < δ < 1/2, if c = cr,k+n−δ, then a.a.s. for every v ∈ Hr(n, cn): |R(v)| ≤ nκδ.

We will prove the upper bound in Theorem 41 by showing that a.a.s. |R(v)| = nO(δ) for
every non-k-core vertex v. Here and in the following sections, the implicit constant involved
in O(.) is always independent of δ. Theorem 5 follows immediately from Theorem 41 and
Observation 40.

We close this section with an overview of the proof for Theorem 41. One natural approach
to bound R(v) is to: (a) carry out the stripping process until v is removed in some iteration
i, then (b) explore R(v) starting with Ri(v) and working through Ri−1(v), Ri−2(v), ...R1(v)
according to Definition 39. However, after exposing all the edges deleted in iterations 1, ..., i
in part (a), we have no randomness left to facilitate the analysis of part (b).

To overcome this difficulty, we only expose a minimal amount of information in part (a).
We expose the vertices of each Si; some information about the deleted edges, such as the
number of vertices an edge has in Si and in Si+1; and some degree information. But crucially
we do not expose the actual vertices in each deleted edge. When we carry out part (b), we
expose the vertices of the edges relevant to R(v). This is enough randomness for us to bound
|R(v)|.

To carry out part (a), we complete the entire stripping process using a procedure called
EXPOSURE. The parameters we expose in this phase are listed at the beginning of the
next subsection. Lemma 47 bounds these parameters. We then expose the vertices in all
deleted edges using a procedure called EDGE-SELECTION. We use this procedure to expose
the vertices in Ri(v), Ri−1(v), ...R1(v) and obtain a recursive bound on |Rj(v)| in terms of
Rj+1(v), ..., Ri(v); see Section 5.2 and its proof in Section 5.4.

5.1 Vertex-exposure and edge-selection

As in Section 4, we will analyze the running of the parallel stripping process on the AP-
model. We will work with the AP-model for the remainder of Section 5. Again, when we
use a graph theoretic term, we mean the obvious analogue for a configuration. Recall:

Imax is the number of iterations carried out by the parallel stripping process.
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We parameterize the hyperedges removed during iteration i as follows:

Definition 42. A hyperedge removed during iteration i is called an (a, b)-edge, where a
is the number of vertex-copies it contains from Si and b is the number of vertex-copies it
contains from Si+1. Thus a ≥ 1 and 0 ≤ b ≤ r − a and if i = Imax then we must have b = 0.

For every i, 1 ≤ a ≤ r, 0 ≤ b ≤ r − a we define:

Ma,b
i is the number of (a, b)-edges in Ĥi.

Definition 43. For each v ∈ Si:

• d+(v) is the degree of v in Ĥi; i.e. the number of vertex-copies of v that are removed
during iteration i.

• (if i < Imax), d
−(v) is the total degree of v amongst the hyperedges in Ĥi−1 that contain

at least one vertex of Si−1; i.e. the number of vertex-copies of v in hyperedges that are
removed during iteration i− 1.

As described above, we expose the hyperedges removed during the parallel stripping
process in two phases. First, we expose the vertices that are removed in each iteration, along
with some degree and edge-count information:

EXPOSURE:

1. Expose Imax.

2. Expose the vertices in S1, ..., SImax
.

3. For each 0 ≤ i ≤ Imax and each vertex v ∈ Si, u ∈ Si+1, expose d+(v), d−(u).

4. For each 0 ≤ i ≤ Imax, 1 ≤ a ≤ r, 0 ≤ b ≤ r − a, expose Ma,b
i .

Of course, this also exposes the vertices and the number of edges in the k-core Ck = Ck(H).
To clarify what is exposed in terms of the AP-model: We have exposed the bins (vertices)

in S1, ..., SImax
. For each bin v ∈ Si, we have exposed the number of copies of v that are

removed in iteration i− 1 and in iteration i respectively. In fact, for convenience we expose
those actual copies. Other vertex-copies may still be allocated to bin v, but any such vertex-
copy must be deleted during iterations 1, ..., i−2. For each relevant i, a, b, we have exposed the
number of r-tuples removed in iteration i that contain a vertex-copies from Si and b vertex-
copies from Si+1; but for each such r-tuple, we do not expose the actual bins (vertices) those
vertex-copies lie in, nor do we expose the remaining r − a− b vertex-copies in the r-tuple.

Next we expose the actual hyperedges (i.e. r-tuples of vertex-copies which are allocated
to bins) that are removed during each iteration. We define:

Ei is the set of hyperedges removed during iteration i.

Ei must satisfy the following conditions for each 1 ≤ i ≤ Imax:

(P1) Each v ∈ Si has exactly d+(v) vertex-copies in Ei.
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(P2) Each u ∈ Si+1 has exactly d−(u) vertex-copies in Ei.
(P3) Ei contains exactly Ma,b

i (a, b)-edges for each a, b.
(P4) In each of those Ma,b

i (a, b)-edges, the r − a− b vertex-copies not in Si ∪ Si+1 must be
allocated to a bin in Ck

⋃Imax

j=i+2 Sj.

Lemma 44. Conditional on the outcome of EXPOSURE, any set of hyperedges (r-tuples)
satisfying properties (P1–P3) is equally likely to be Ei.

Proof Fix all parameters that are exposed in EXPOSURE (i.e. Imax, S1, . . . , SImax
,

d+(v), etc). Consider two sets of hyperedges (i.e. r-tuples of vertex-copies, and an allocation
of those vertex-copies into bins) E1, E2 satisfying properties (P1–P4). We need to show that
E1, E2 are equally likely to be Ei.

Recall that a configuration is a partition of the rm vertex-copies into r-tuples, and an
allocation of the rm vertex-copies into the n bins. Let H1 be a configuration that is consistent
with the outcome of EXPOSURE (i.e. applying the parallel stripping process to H1 will result
in the various parameters being equal to what was exposed in EXPOSURE), and such that
applying the parallel stripping process to H1 will result in Ei = E1. Let H2 be the hypergraph
obtained from H1 by replacing E1 with E2.

We claim that: H2 is also consistent with the outcome of EXPOSURE, and that applying
the parallel stripping process to H2 will result in Ei = E2. To verify this claim, we only need
to show that, when we apply the stripping process to H2, we take Imax iterations, and for
each 1 ≤ j ≤ Imax, the set of vertices removed in iteration j is Sj (the fact that E2 satisfies
(P1–P4) confirms the remainder of the claim.) This follows easily from the fact that E1, E2

do not include any hyperedges that contain vertices from S1, ..., Si−1 and that E1, E2 each
consist of all the hyperedges that contain vertices from Si in what remains after removing
S1, ..., Si−1 from H1, H2, resp.

So we have a bijection between the configurations which yield Ei = E1 and Ei = E2.
Furthermore, every configuration is equally likely to be chosen as APr(n, cn). Thus E1 and
E2 are equally likely to be Ei, which establishes the lemma. �

So our goal is to choose a uniform set of r-tuples satisfying (P1–P4), for each 1 ≤ i ≤ Imax.
EDGE-SELECTION: For each 1 ≤ i ≤ Imax, we expose Ei, the hyperedges deleted in

iteration i: We have already exposed Ma,b
i , the number of (a, b)-edges. Each such edge will

be assigned a vertex-copies from Si, b vertex-copies from Si+1, and r − a − b vertex-copies
from Ck

⋃Imax

j=i+2 Sj . We assign those copies as follows:

1. Each vertex v ∈ Si has d+(v) copies. Noting that
∑

v∈Si
d+(v) =

∑
a,b aM

a,b
i , we take

a uniformly random partition of all vertex-copies in Si so that each (a, b)-edge receives
a part of size a.

2. Each vertex u ∈ Si+1 has d−(u) copies. Noting that
∑

u∈Si+1
d−(v) =

∑
a,b bM

a,b
i , we

take a uniformly random partition of all vertex-copies in Si+1 so that each (a, b)-edge
receives a part of size b.

3. For each (a, b)-edge, we choose the remaining r − a − b vertex-copies uniformly from
those that have not yet been allocated to bins. Then we allocate each of these vertex-
copies to a bin selected uniformly from Ck

⋃Imax

j=i+2 Sj .
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Any two sets of hyperedges (i.e. r-tuples of vertex-copies which are allocated to bins)
satisfying (P1–P4) are equally likely to be chosen by EDGE-SELECTION. Therefore, if we
carry out EDGE-SELECTION, then by Lemma 44, we have chosen the hyperedges from the
correct distribution.

5.2 A recursive bound

Consider some vertex v ∈ Si and recall Definition 39 where we define R(v) = Ri(v)∪Ri−1(v)∪
... ∪ R1(v). That definition naturally lends itself to a recursive bound of |Rj(v)| in terms
of Rj−1(v), ..., Ri(v). We present that definition in this subsection, prove it in Section 5.4,
and then use it to bound |R(v)| in Section 5.5. It will be convenient to restrict our analysis
to deletion rounds which are late enough that certain bounds on various parameters hold.
So we let B = B(r, k) be a sufficiently large constant to be named later (it will come from
Lemma 47 below) and set

R(B)(v) = ∪B
j=iRj = R(v) \ (∪1≤i<BSi) (38)

Lemma 49 bounds |R(v)| = O(|R(B)(v)|+logn) and so bounding R(B)(v) will suffice to prove
Theorem 41.

The expected size of Rj−1 depends not just on the size of Rj , but also on the d− values of
the vertices in Rj . So we will recursively bound the sum of those values, rather than bound
the (nearly equal) |Rj|:

Definition 45. For X ⊆ Si, we define

D−(X) =
∑

u∈X

d−(u).

Note that if i > 1 then d−(u) ≥ 1 for all u ∈ Si as otherwise, u would have been deleted
in iteration i− 1, and so D−(Rj(u)) ≥ |Rj(u)| for all j ≤ i. Therefore, bounding D−(Rj(u))
will suffice to bound |Rj(u)|.

Given our non-k-core vertex v, we define:

Iv is the integer i such that v ∈ Si; i.e. the iteration during which v is removed.

As described above, we are restricting our analysis to vertices deleted after iteration B, so
we will assume that Iv ≥ B. We will bound D−(R(B)(v)). The recursion starts with a base
case bound on D−(RIv(v)), and then bounds D−(RIv−1(v)), D−(RIv−2(v)),...,D−(RB(v)).
Thus, we express D−(Rj(v)) in terms of D−(Rℓ(v)) for ℓ > j, rather than the usual ℓ < j.

Lemma 46. There are constants B = B(r, k), Z = Z(r, k) > 0 such that with probability at
least 1 − n−3: for all B ≤ j ≤ Iv with |Sj| ≥ nδ log2 n, we have

D−(Rj(v)) ≤ D−(Rj+1(v)) + Z
|Sj|
n

j+1∑

ℓ=Iv

D−(Rℓ(v)) + log14 n. (39)
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We will analyze the recursive equation in Lemma 46 to obtain a bound on D−(Rj) for
each j, in Section 5.5.

We prove (39) by analyzing the exposure process from Section 5.1. We begin by analyzing
EXPOSURE: we bound Imax and prove that the parameters d+(v), d−(v),Ma,b

i satisfy certain
properties (Sections 5.3 and 6). Next, we analyze EDGE-SELECTION one iteration at
a time, with i decreasing from Imax. When analyzing Rj to prove (39), iterations i =
Imax, . . . , j + 1 have already been completed. So for v ∈ SIv , we have already exposed
RIv , RIv−1, ..., Rj+1 .

5.3 Properties of Si

We first run EXPOSURE. We prove that a.a.s. the sets Si satisfy certain properties.

Lemma 47. There exist constants B, Y1, Y2, Z1, dependent only on r, k, such that a.a.s.
for every B ≤ i < Imax with |Si| ≥ nδ log2 n:

(a) if |Si| < n1−δ then (1 − Y1n
−δ/2)|Si| ≤ |Si+1| ≤ (1 − Y2n

−δ/2)|Si|;

(b) if |Si| ≥ n1−δ then (1 − Y1

√
|Si|
n

)|Si| ≤ |Si+1| ≤ (1 − Y2

√
|Si|
n

)|Si|;

(c)
∑

j≥i |Sj| ≤ Z1|Si|nδ/2.

(d) |Si| ≤
∑

u∈Si
d−(u) < |Si| + Z1

|Si|2

n
+ log2 n;

(e) |Si+1| ≤
∑

a,b abM
a,b
i ≤ |Si+1| + Z1

|Si|
2

n
+ log2 n;

(f)
∑

a≥2,b≤r−a abM
a,b
i ≤ Z1

|Si|2

n
+ log2 n;

(g)
∑

u∈Si
d+(u)d−(u) ≤∑u∈Si

d+(u) + Z1
|Si|2

n
+ log2 n;

(h)
∑

u∈Si
(d−(u))2 ≤ Z1|Si|;

(i) d−(u) < log n for all u ∈ ∪Imax

i=2 Si.

The proof is deferred until Section 6.

5.4 Proving the recursive bound

Here, we will prove the recursive bound from Section 5.2. Recall that we specified a
vertex v, and Iv ≤ Imax is the iteration during which v was deleted.

Our goal is to prove Lemma 46, and so we can assume j ≥ B and |Sj| > nδ log2 n. For
each j, we will prove the probability that (39) fails is less than n−4, and so a union-bound
implies that the probability it holds for every j is at least 1 − Ivn

−4 > 1 − n−3.
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The setting is that we have carried out EXPOSURE, and we assume that all properties in
Lemma 47 hold. We have also carried out EDGE-SELECTION for iterations Imax, ..., j + 1,
and in particular, we have exposed RIv , ..., Rj+1.

The random experiment in this section is iteration j of EDGE-SELECTION. At this
point, we know that there are Ma,b

j (a, b)-edges for each a ≥ 1, 0 ≤ b ≤ r − a − b, but we
don’t know which vertices are in these edges. Each (a, b)-edge consists of r blanks which
will be filled with vertex-copies: the a level-j blanks will receive vertex-copies from Sj ; the b
level-(j + 1) blanks will receive vertex-copies from Sj+1; the remaining r − a− b blanks will

receive vertex-copies which will then be allocated to bins in Ck
⋃Imax

i=j+2 Si.
We fill in these blanks with three independent steps, in reverse order of how they are

listed above.
Step 1: For each (a, b)-edge, we choose the r − a − b vertex-copies and then

allocate them to Ck
⋃Imax

i=j+2 Si.
In order to bound D−(Rj), we will first bound

Λ : the total number of level-j blanks, amongst all hyperedges

deleted in iteration j that contain a vertex-copy from ∪j+1
i=Iv

Ri. (40)

Note that Λ is an upper bound on |R′
j |.

We let Λ1 denote the number of these level-j blanks whose hyperedge contains a vertex
from ∪j+2

i=Iv
Ri. Note that Λ1 is determined by Step 1: After allocating these vertex-copies to

Ck
⋃Imax

i=j+2 Si, we know exactly which (a, b)-edges contain vertex-copies that are allocated to

∪j+2
i=Iv

Ri.
Each time we allocate one of these copies, the probability that we allocate it to a bin

from ∪j+2
i=Iv

Ri is at most

| ∪j+2
i=Iv

Ri|
|Ck
⋃Imax

i=j+2 Si|
≤ 1

α(c)n+ o(n)

j+2∑

i=Iv

|Ri|, where α(c) is from Lemma 7.

There are at most (k − 1)|Sj| such hyperedges, and for each one we choose at most r − 1
vertices. So the expected number of hyperedges which have at least one vertex-copy allocated
to ∪j+2

i=Iv
Ri is at most (r−1)(k−1)

α(c)n+o(n)
|Sj|

∑j+2
i=Iv

|Ri|. Standard concentration bounds on binomial

variables imply that the probability this number exceeds rk
α(c)n

|Sj |
∑j+2

i=Iv
|Ri| + log2 n is less

than n−5. Each such hyperedge contains fewer than r vertex-copies from Sj . So with
probability at least 1 − n−5, we have

Λ1 ≤
r2k

α(c)

|Sj |
n

j+2∑

i=Iv

|Ri| + r log2 n. (41)

Step 2: For each (a, b)-hyperedge, we choose the b vertex-copies from Sj+1.
We let Λ2 = Λ − Λ1. So Λ2 is the number of level-j blanks whose hyperedge contains a

vertex-copy from Rj+1 and was not counted in Λ1. Note that Λ2 is determined by Steps 1
and 2.
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It will be easier to focus on Λ∗
2 ≥ Λ2 which is defined to be the number of pairs of vertex-

copies v ∈ Sj , u ∈ Rj+1 that both lie in an (a, b)-edge for some a, b. We only require an
upper bound on Λ2, so it will suffice to bound Λ∗

2.
Each (a, b)-edge contributes a to Λ∗

2 for each of its b copies from Sj+1 that lie in Rj+1.
The total number of copies in Rj+1 is D−(Rj+1) so

E(Λ∗
2) =

∑

a,b

abMa,b
j

D−(Rj+1)∑
u∈Sj+1

d−(u)

≤ D−(Rj+1)

|Sj+1|
∑

a,b

abMa,b
j since d−(u) ≥ 1 for all u ∈ Sj+1

≤ D−(Rj+1)

(
1 + 2Z1

|Sj|
n

+
log2 n

|Sj+1|

)
by Lemma 47(e,a,b)

≤ D−(Rj+1) + 2Z1
|Sj|
n
D−(Rj+1) + Z1 log2 n, (42)

since, by Lemma 47(g), D−(Rj+1) ≤ D−(Sj+1) ≤
∑

v∈Sj+1
(d−(v))2 ≤ Z1|Sj+1|.

To bound Λ∗
2, we will prove that it is concentrated. Note that Λ∗

2 ≥ D−(Rj+1) since every
vertex-copy of Rj+1 lies in an (a, b)-edge for some a ≥ 1, and hence contributes at least one
of the pairs counted by Λ∗

2. This allows us to focus instead on proving the concentration of

X = Λ∗
2 −D−(Rj+1).

X is typically much smaller that Λ∗
2. This will be an advantage when we use E(X) rather

than E(Λ∗
2) in our calculations in (43) below. Note that D−(Rj+1) is fixed.

To prove concentration ofX , we apply McDiarmid’s variation on Talagrand’s Inequality[37].
We use the version stated in [33]:
McDiarmid’s Inequality[29] Let X be a non-negative random variable determined by in-
dependent trials T1, ..., Tm and independent permutations Π1, ...,Πm′. We call the outcome
of one trial Tı, or the mapping of a single element in a permutation Πı, a choice. Suppose
that for every set of possible outcomes of the trials and permutations, we have:

(i) changing the outcome of any one trial can affect X by at most ̺;

(ii) interchanging two elements in any one permutation can affect X by at most ̺; and

(iii) for each s > 0, if X ≥ s then there is a set of at most qs choices whose outcomes
certify that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X − E(X)| > t + 25̺
√
qE(X) + 128̺2q) ≤ 4 exp

(
− t2

32̺2q(E(X) + t)

)
.

Our random choice in Step 2 is an assignment of the vertex-copies of Sj+1 to the (a, b)-
edges. This can be done by taking a uniform permutation of those vertex-copies: There
is an implicit listing of all (a, b)-edges over all a, b: For each edge, we know the values of
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a, b corresponding to that edge, but we don’t yet know exactly which a copies from Sj and
b copies from Sj+1 are assigned to each edge; the permutation of Step 2 determines the
assignment of the copies of Sj+1. Thus the choice corresponding to a particular vertex-copy
specifies the hyperedge to which it is assigned. We will apply McDiarmid’s Inequality using
this permutation.

If we exchange the position of two vertex-copies in the permutation, we are swapping the
hyperedges to which they were assigned. This can change Λ∗

2, and hence X , by at most r−1
(the extreme case is when the swap involves an (r − 1, 1)-edge). So we take ̺ = r − 1.

To certify X ≥ s, we can always present ℓ∗ ≤ s vertex-copies u1, ..., uℓ∗ such that each uℓ
is assigned to an (aℓ, bℓ)-edge with aℓ ≥ 2 and

∑ℓ∗

ℓ=1(aℓ − 1)bℓ ≥ s. So this can be certified
by the outcomes of ℓ∗ ≤ s choices, and we can take q = 1.

Setting t = max{E(X), log2 n}, it is easy to see that 25̺
√
E(X) + 128̺2 < t and E(X) +

t ≤ 2t. So McDiarmid’s Inequality yields:

Pr(X > E(X) + 2t) ≤ 4 exp

(
− t2

32̺2(E(X) + t)

)
< 4 exp

(
− t

64̺2

)
= o(n−5). (43)

Therefore, applying (42), with probability at least 1 − n−5, we have

Λ2 ≤ Λ∗
2 ≤ D−(Rj+1) + 6Z1

|Sj |
n
D−(Rj+1) + 3Z1 log2 n. (44)

Step 3: For each (a, b)-hyperedge, we choose the a vertex-copies from Sj.
In most of the analysis for this step, the probabilities are in terms only of the random

choices in Step 3; it is assumed that the choices from Steps 1 and 2 are fixed. We will use
the notation Pr3 and E3 to indicate this.

Recall from Definition 38 that Sj is the hypergraph formed by treating each (a, b)-edge
as a hyperedge on a vertices of Sj ; we call this an a-edge. At this point, each a-edge consists
of a blanks, and we have a pool containing dj(u) vertex-copies of each u ∈ Sj . The random
choice in Step 3 is a uniformly random bijection from these vertex-copies to these blanks.

We define

Φ : the hyperedges of Sj that belong to (a, b)-edges containing vertex-copies from ∪j+1
i=Iv

Ri;
(45)

thus R′
j is the set of vertices of Φ. Note that Φ was determined by Steps 1,2, and that

Λ = Λ1 + Λ2 is the total number of blanks contained in the hyperedges of Φ.
For each hyperedge f ∈ Sj , Cf denotes the component of Sj that contains f . Thus Rj

is the union over all f ∈ Φ of the vertices in Cf , and D−(Rj) ≤
∑

f∈Φ |D−(Cf)| (there is an
inequality here as some pairs f, f ′ ∈ Φ may lie in the same component). In order to bound
E(D−(Rj)), we will bound E3(D

−(Cf )) for each f .
Consider any particular hyperedge f ∈ Sj . We will expose Cf using a branching process

as in [32]:

Initially, every blank of f is labelled open.
While there are open blanks:
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Take any open blank, and choose a uniform vertex-copy for that blank;
the blank is labelled closed.

Assign every other copy of the same vertex to a blank chosen uniformly
from those not yet assigned vertex-copies.

For each blank g that is chosen:
if it is open (i.e. already known to be in Cf), we label it closed;
else, every other blank in the same hyperedge as g is labelled open.

Intuition: By Lemma 47(e,f), the vast majority of blanks lie in 1-edges. So when we
assign copies to blanks, we usually do not create any new open blanks. Thus, the process
tends to die out very quickly and Cf typically has few (in fact, no) vertices outside of f .

To analyze this branching process, we consider the following experiment. Select a se-
quence of vertices u1, ..., ulog2 n, each chosen from Sj without replacement, where the proba-
bility that w ∈ Sj\{u1, ..., uℓ−1} is chosen to be uℓ is proportional to dj(w).

To run the branching process: each time that we need to select a new vertex-copy x
for an open blank, we simply take the next vertex on the list u1, ... and choose one of its
vertex-copies and let x be that vertex-copy. Note that these vertices are chosen with the
correct distribution.

We will prove that there is a constant W1 > 0 such that for any y ≥ 0 and every
1 ≤ t < log2 n:

E3

(
t∑

ℓ=1

d−(uℓ)

)
< t

(
1 + 2Z1

|Sj|
n

+ 2
log2 n

|Si|

)
; (46)

for each a-edge f : Pr3

(
|Cf | ≥ t

∣∣∣∣∣

t∑

i=1

d−(ui) = y

)
<

(
W1|Sj|
n

)⌈ t−a
(r−1)(k−1)

⌉
. (47)

Proof of (46): From Lemma 47(g) and the fact that
∑

u∈Sj
dj(u) ≥ |Sj|, initially the

expected value of d−(uℓ) is:
∑

u∈Sj
dj(u)d−(u)

∑
u∈Sj

dj(u)
≤ 1 + Z1

|Sj|
n

+
log2 n

|Sj|
.

After removing at most log2 n of the vertices of Sj , the expected value of d−(uℓ) rises to at
most (

1 + Z1
|Sj|
n

+
log2 n

|Sj|

) |Sj|
|Sj| − log2 n

< 1 + 2Z1
|Sj|
n

+ 2
log2 n

|Sj|
,

since |Sj| ≥ nδ log2 n.
Proof of (47): Conditioning on the event

∑t
i=1 d

−(ui) = y, exposes information about
d−(u1), ..., d

−(ut). This affects our conditional probability only through its effect on the
conditional distribution of dj(u1), ..., dj(ut), as EXPOSURE determined (dj(u), d−(u)) for
each u ∈ Sj. So we can deal with this conditioning by proving that for any choice of
δ1, ..., δt:

Pr3(|Cu| ≥ t | dj(u1) = δ1, ..., dj(ut) = δt−1) <

(
W1|Sj|
n

)⌈ t−a
(r−1)(k−1)

⌉
. (48)
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Suppose that we selected vertex uℓ. We place one of its vertex-copies into the open blank
that we are filling. In order to create at least one new open blank, we must assign at least
one of the other dj(uℓ) − 1 copies to a blank in an a-edge for some a ≥ 2; we call such an
edge a plural edge.

The total number of blanks in Sj is at least 1
r−1

times the number of vertex-copies
in Sj+1 (the extreme case is when every hyperedge is a (1, r − 1)-edge) and thus is at least
|Sj+1|

r−1
≥ |Sj |

2(r−1)
by Lemma 47(a,b). If we have assigned the copies of fewer than log2 n vertices,

then the number of unfilled blanks is at least
|Sj |

2(r−1)
− (k − 1) log2 n ≥ |Sj |

2r
. Lemma 47(f)

says that the total number of blanks in all plural edges is at most Z1|Sj|2/n+ log2 n. So the
probability that at least one of those dj(uℓ) − 1 ≤ k − 2 copies of uℓ is assigned to a plural
edge at most

(k − 2)

(
Z1|Sj|2
n

+ log2 n

)/ |Sj|
2r

< 2krZ1
|Sj|
n
.

If at least one copy of uℓ is assigned to a plural edge, then we create at most (k − 2)(r − 1)
new open blanks. For an a-edge f , if |Cf | ≥ t, then we must have created at least t − a
open blanks (in addition to the a initial open blanks in f) during the exposure of the first t
vertices u1, . . . , ut. So at least ⌈ t−a

(r−1)(k−1)
⌉ of the vertices u1, ..., ut must have a copy assigned

to a plural edge. The probability of this occurring is at most:

(
t

⌈ t−a
(k−1)(r−1)

⌉

)(
2krZ1

|Sj|
n

)⌈ t−a
(k−1)(r−1)

⌉
<

(
et·2krZ1|Sj|
⌈ t−a
(k−1)(r−1)

⌉n

)⌈ t−a
(k−1)(r−1)

⌉
<

(
W1

|Sj|
n

)⌈ t−a
(k−1)(r−1)

⌉
,

for an appropriate constant W1, thus establishing (47).
Having proven (46) and (47), these imply that there is a constant W such that

for each a-edge f : E3(D
−(Cf)) ≤ a

(
1 +W

|Sj|
n

+ 5
log2 n

|Sj|

)
. (49)

Proof First note that (47) implies:

Pr(|Cf | > log2 n) ≤
(
W1|Sj|
n

)log2 n/(r−1)(k−1)

= o
(
n−10

)
. (50)

Next, note that D−(Cf) ≤ rcn, the number of vertex-copies in the entire configuration.
So
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E3(D
−(Cf)) =

rcn∑

y=1

yPr3(D
−(Cf) = y)

≤
rcn∑

y=1

y


Pr3(|Cf | ≥ log2 n) +

log2 n∑

t=a

Pr3

(
(|Cf | ≥ t) ∧

( t∑

i=1

d−(ui) = y
))



≤ O(n2)Pr3(|Cf | ≥ log2 n)

+
rcn∑

y=1

y

log2 n∑

t=a

Pr3

(
t∑

ℓ=1

d−(uℓ) = y

)(
W1|Sj|
n

)⌈ t−a
(k−1)(r−1)

⌉
by (47)

≤ o(n−1) +

log2 n∑

t=a

(
W1|Sj|
n

)⌈ t−a
(k−1)(r−1)

⌉
E3

(
t∑

ℓ=1

d−(uℓ)

)
by (50)

< o(n−1) +

log2 n∑

t=a

(
W1|Sj|
n

)⌈ t−a
(k−1)(r−1)

⌉
t

(
1 + 2Z1

|Sj|
n

+ 2
log2 n

|Si|

)
by (46)

< o(n−1) +

(
a+ 2k2r2

W1|Sj|
n

)(
1 + 2Z1

|Sj|
n

+ 2
log2 n

|Si|

)

< a+Wa
|Sj|
n

+ 5a
log2 n

|Sj |
, (51)

for an appropriate constant W ; this is (49).
Our goal is to bound D−(Rj) ≤

∑
f∈ΦD

−(Cf) in order to obtain (39). As in Step 2, we
will instead focus on a related quantity: We use |f |∗ to denote the number of vertices in f ;
i.e. if f contains multiple copies of a vertex u then u is counted only once in |f |∗. We define

X =
∑

f∈Φ

min{D−(Cf), log3 n} − |f |∗.

Note thatD−(Cf) ≥ |f |∗ as every vertex u ∈ f satisfies d−(u) ≥ 1. Also, log3 n > r ≥ |f |∗
and so X is non-negative.

We will show that, with very high probability, D−(Cf) < log3 n for every f , which allows
us to work with X . The advantages of doing so are twofold: (i) subtracting |f |∗ from each
term in the summand has the same advantage as switching to X in the analysis of Step 2;
(ii) by introducing an upper bound of log3 n on the contribution of each term, we bound the
effect of each random choice on X . Since

∑
f∈Φ |f | ≤ Λ, (49) implies

E3(X) ≤
∑

f∈Φ

|f |
(
W

|Sj|
n

+
5 log2 n

|Sj |

)
≤ Λ

(
W

|Sj|
n

+
log2 n

|Sj|

)
. (52)

To prove concentration of X , we again use McDiarmid’s Inequality.
Our random choice in Step 3 is an assignment of the vertex-copies of Sj to the blanks

in the a-edges. As in the analysis of Step 2, we do this by taking a uniform permutation of
those vertex-copies.
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We first bound the amount by which exchanging two vertex-copies can affect X . Suppose
that we replace a copy of u in an edge f with a copy of w in an edge f ′. We will show that
this cannot increase the contribution of the edges in Cf to X by more than 2(k − 1) log6 n.

Let C be the component containing f after the copy of u is replaced by a copy ω of
w. Consider removing ω from f ; so the size of f has been reduced by one. Let C ′ by the
hypergraph obtained from C by the removal of ω. Let C1 be the component of C ′ containing
f (if f had size 1 and hence is now empty, then C1 = ∅) and let C2 be the union of the other
components of C ′. Note that before the copy of u was replaced with ω: C1 was a subgraph
of Cf and C2 was a subgraph of the component containing w.

Case 1: |C1|, |C2| ≥ log3 n. Then for every hyperedge f ′ ∈ C1, min(|Cf ′|, log3 n) = log3 n
both before and after the switch. The same is true of every hyperedge in C2. So the
contribution of those edges to X was unchanged by the switch.

Case 2: |C1| ≥ log3 n, |C2| < log3 n. The contribution of the edges of C1 was unchanged
by the switch, but the contribution of each edge in C2 may have increased by up to log3 n.
There are at most (k − 1)|C2| vertex-copies amongst those edges and so there are at most
(k − 1)|C2| < (k − 1) log3 n such edges. So the total contribution from those edges increases
by less than (k − 1) log6 n.

In each of the remaining two cases, similar reasoning shows that the total contribution
of the edges in Cf increases by at most 2(k − 1) log6 n. The same argument shows that the
total contribution of the edges in Cf ′, the component containing f ′ (the other hyperedge
involved in the switch) is at most 2(k − 1) log6 n. Thus no switch can increase X by more
than 4(k − 1) log6 n. By considering the inversion of a switch, no switch can decrease X by
more than 4(k − 1) log6 n. So we can take ̺ = 4k log6 n.

We next show that the event X ≥ s can be certified by revealing the outcomes of at most
2rs choices. If X ≥ s then there must be a subset of the edges of Φ, say f1, ..., fℓ∗ , with
D−(Cf1) ≥ |f1|∗ + s1, ..., D

−(Cfℓ∗) ≥ |fℓ∗|∗ + sℓ∗ , and s1 + ...+ sℓ∗ = s with each sℓ ≥ 1. For
each 1 ≤ ℓ ≤ ℓ∗, we will certify that D−(Cfℓ) ≥ |fℓ|∗ + sℓ by revealing at most 2rsℓ choices
as follows. We discuss two cases.

Case 1: |Cfℓ| ≤ |fℓ|∗ + sℓ. In this case, we reveal a spanning tree of Cfℓ . That is, we
reveal the choice of vertex-copy assigned to each hyperedge of a spanning tree of Cfℓ . This
spanning tree only needs to consist of fℓ, and at most sℓ additional edges, and so the total
number of vertex-copies whose assignments are revealed is at most r(1+sℓ) ≤ 2rsℓ, as sℓ ≥ 1.

Case 2: |Cfℓ| > |fℓ|∗ + sℓ. In this case, we will reveal a connected subgraph of Cfℓ

containing fℓ and at least sℓ additional vertices. As described in Case 1, we can do so using
at most sℓ+1 edges and hence by revealing the assignments of at most r(1+sℓ) ≤ 2rsℓ vertex-
copies. Since each of these vertices has d− ≥ 1, this will certify that D−(Cfℓ) ≥ |fℓ|∗ + sℓ.

This shows that we may certify X ≥ s by exposing at most 2rs choices so we can take
q = 2r. Setting t = max{E(X), 6 × 2048k2r log13 n}, it is easy to see that 25̺

√
qE(X) +

128 × ̺2q < t and E(X) + t ≤ 2t. So applying McDiarmid’s Inequality with ̺ = 4k log6 n
and q = 2r yields:

Pr(X > E(X) + 2t) ≤ 4 exp

(
− t2

1024k2r log12n(E(X) + t)

)
< 4 exp

(
− t

2048k2r log12 n

)

< 4 exp(−6 logn) = o(n−5). (53)
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To use our bound on X to obtain a bound on D−(Rj), we first note that by (50), with
probability at least 1 − n−9: every Cf has size at most log2 n and hence by Lemma 47(i),
D−(Cf) < log3 n for all f . This, (52) and (53) yield that with probability at least 1 − n−5:

D−(Rj) ≤ X +
∑

f∈Φ

|f ∗| ≤ X +
∑

f∈Φ

|f |

≤ X + Λ ≤ E3(X) + 2t+ Λ

≤ 3E3(X) + 12 × 2048k2r log13 n + Λ

≤ Λ

(
1 + 3W

|Sj |
n

+ 3
log2 n

|Sj|

)
+ 12 × 2048k2r log13 n

≤ Λ

(
1 + 3W

|Sj |
n

)
+ 13 × 2048k2r log13 n,

since Λ ≤ (k − 1)|Sj|, fixand so Λ log2 n/|Sj | = o(log13 n). This, with (41) and (44), yields
that with probability at least 1 − 3n−5, we have:

D−(Rj) ≤
(
D−(Rj+1) + Z ′

1

|Sj|
n
D−(Rj+1) +

r2k

α(c)

|Sj|
n

j+2∑

i=Iv

|Ri| + Z ′
1 log2 n

)

×
(

1 + 3W
|Sj|
n

)
+ 13 × 2048k2r log13 n

≤ D−(Rj+1(v)) + Z
|Sj|
n

j+1∑

ℓ=Iv

D−(Rℓ(v)) + log14 n,

for suitable constants Z ′
1 and Z. This is (39).

So the probability that (39) holds for a given j is at least 1 − 3
ǫ
n−5 > 1 − n−4. Taking

the union bound for B ≤ j ≤ Iv yields Lemma 46. �

5.5 Solving the recurrence

Because Lemma 46 holds only for |Sj| > nδ log2 n and for j ≥ B, we define:

i0 = min{i : |Si+1| < nδ log2 n};

i.e. i0 is the largest index so that Lemma 46 applies to SB, ..., Si0 . Note that Lemma 47(a,b)
implies

|Si0| < 2nδ log2 n. (54)

Recall that
R(B)(v) = R(v) \

(
∪1≤i<B Si

)
.

We will prove:
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Lemma 48. There is a constant X = X(r, k) > 0 such that for any 1 ≤ i ≤ Imax and any
v ∈ Si:

Pr(|R(B)(v)| > nXδ)≤ 1

n2
.

Proof. Taking B and Z as specified in Lemma 46, and taking the union bound over all
vertices v, we have that with probability at least 1 − n−2: (39) holds for all v and all
B ≤ j ≤ min{Iv, i0}.

We fix a particular i ≥ B and v ∈ Si. As in the previous section, we say Rℓ instead of
Rℓ(v). Restating (39) and replacing j with j′ (because of an index change below) yields:

D−(Rj′) ≤ D−(Rj′+1) + Z
|Sj′|
n

j′+1∑

ℓ=i

D−(Rℓ) + log14 n, for all B ≤ j′ ≤ min{i, i0}. (55)

This recursive equation bounds D−(Rj′) in terms of D−(Rℓ) for values of ℓ that are larger
than j′. In order to analyze this using a recursive equation where values are bounded by
values with smaller indices, we will perform the change of indices:

j := i− j′.

We will recursively define rj such that:

rj ≥ D−(Ri−j) (56)

First, we set up our base cases. Because (55) only holds for j′ ≤ min{i, i0}, i.e. for
j ≥ max{0, i− i0}, we need a base case for all smaller values of j. We set

j0 = max{0, i− i0}

and define:

For 0 ≤ j ≤ j0 : rj = n2δ.

We verify that something even stronger than (56) holds for this base case. Applying
Lemma 47(i), we have D−(Ri−j) ≤ D−(Si−j) < log n·|Si−j|. Lemma 47(c) and (54) yield

i−i0∑

j=0

D−(Ri−j) ≤ log n

i−i0∑

j=0

|Si−j | ≤ log n
∑

ℓ≥i0

|Sℓ| ≤ log n·Z1|Si0|nδ/2 = O(n3δ/2 log3 n). (57)

This immediately yields (56) for all j ≤ j0.
We define the following recursion.

∀j0 + 1 ≤ j ≤ i− B : rj = rj−1 + Z
|Si−j|
n

j−1∑

ℓ=j0

rℓ + n2δ. (58)
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We argue inductively that (56) holds for all j0 ≤ j ≤ i− B. We have already seen that
it holds for the base case j = j0. For higher values of j, (55) yields:

D−(Ri−j) ≤ D−(Ri−(j−1)) + Z
|Si−j|
n

i−j+1∑

ℓ=i

D−(Rℓ) + log14 n

≤ rj−1 + Z
|Si−j|
n

j−1∑

ℓ=j0

rℓ +

j0−1∑

ℓ=0

D−(Ri−ℓ) + log14 n by Lemma 47(d) and induction on (56)

≤ rj−1 + Z
|Si−j|
n

j−1∑

ℓ=j0

rℓ + n2δ by (57) and noting that log14 n is absorbed by n2δ

= rj.

Thus rj bounds |Ri−j|:

|Ri−j| ≤ D−(Ri−j) ≤ rj, ∀ 0 ≤ j ≤ i− B,

It will be convenient to define:

tj =

j∑

ℓ=j0

rℓ.

Therefore, by (57),

|R(B)(v)| =

i−B∑

j=0

|Ri−j| ≤
i−B∑

j=0

D−(Ri−j) =

i−B∑

j=j0

D−(Ri−j) +

j0−1∑

j=0

D−(Ri−j) ≤ ti−B + n2δ. (59)

To prove Theorem 41, it is sufficient to show that ti−B = nO(δ).
Since rj = tj − tj−1, rearranging (58), we have

tj − tj−1 = tj−1 − tj−2 + Z
|Si−j |
n

tj−1 + n2δ, ∀j ≥ j0 + 1,

where tj0 = n2δ and tj0−1 = 0. We solve this recurrence. It will be helpful to find sequences
(aj)j≥j0 and (bj)j≥j0+1 that satisfy

tj − ajtj−1 = bj(tj−1 − aj−1tj−2) + n2δ, ∀j ≥ j0 + 1. (60)

Rearranging gives

tj − tj−1 = (aj − 1 + bj)tj−1 + (−aj−1bj)tj−2 + n2δ,

so we require that for all j ≥ j0 + 1,

aj − 1 + bj = 1 + Z
|Si−j|
n

−aj−1bj = −1,

and we may set initial condition aj0 = bj0+1 = 1.
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So we define aj , bj recursively as:

bj = 1/aj−1, aj = 2 − 1

aj−1

+ Z
|Si−j|
n

,

and (60) holds. Since aj + 1
aj−1

≥ 2 for each j and aj0 = 1, it follows that aj ≥ 1 for every

j ≥ j0. Next, we show that there is a constant D = D(r, k) > 0 such that for every j ≥ j0+1,

1 + Z
|Si−j|
n

≤ aj ≤ 1 +D

√
|Si−j |
n

. (61)

The lower bound follows immediately from aj−1 ≥ 1 and the recursion aj = 2 − 1/aj−1 +
Z|Si−j|/n. We prove the upper bound by induction. By taking D ≥ Z we ensure that (61)
holds for j = j0 + 1. Now assume that j ≥ j0 + 2 and that (61) holds for j − 1, and so:

1

aj−1
≥ 1 −D

√
|Si−j+1|

n
.

Since aj = 2 + Z|Si−j|/n− 1/aj−1, we have

aj ≤ 1 +
Z|Si−j|
n

+D

√
|Si−j+1|

n
.

By the definition of j0 and i0, we have |Si−j| ≥ nδ log2 n for all j ≥ j0. So by Lemma 47(b),
we have that for all j0 ≤ j ≤ i − B, |Si−j+1| ≤ (1 − Y2

√
|Si−j|/n)|Si−j| for constant

Y2 = Y2(r, k) > 0. Thus,

1 + Z
|Si−j|
n

+D

√
|Si−j+1|

n
≤ 1 + Z

|Si−j|
n

+

(
1 − Y2

2

√
|Si−j|/n

)
D

√
|Si−j|
n

= 1 +D

√
|Si−j|
n

−
(
DY2

2
− Z

) |Si−j|
n

≤ 1 +D

√
|Si−j|
n

where the last inequality holds by choosing D > 2Z/Y2. Thus, (61) holds also for j and thus
it holds for every j0 ≤ j ≤ i− B.

Now we continue to solve the recurrence (58). Let cj = tj − ajtj−1. Then, since bj =
1/aj−1 ≤ 1 for every j ≥ j0 + 1, we have

cj = bjcj−1 + n2δ ≤ cj−1 + n2δ ≤ cj0 + (j − j0)n
2δ ≤ n2δ + (j − j0)n

2δ.

Since j < i = O(nδ/2 logn) by Theorem 3(b), this yields

tj − ajtj−1 ≤ n2δ +O(n5δ/2 log n) ≤ U := n3δ, for all j ≥ j0 + 1. (62)

Let ℓ0 be the maximum integer for which |Sℓ0| ≥ n1−δ. Again applying Theorem 3(b),
we have ℓ0 = O(nδ/2 logn). Note that, due to the monotonicity of |Sℓ| by Lemma 47(a,b),
ℓ0 < i0 trivially by the definition of ℓ0 and i0 and by the fact that 0 < δ < 1/2.

Now is a good time to recall that our goal is to show ti−B = nO(δ).
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(62) says tj ≤ ajtj−1 + U . Applying this recursively yields that for every 1 ≤ ℓ ≤ i− B,

ti−B ≤ ti−B−ℓ

ℓ−1∏

h=0

ai−B−h + U

(
1 +

ℓ−2∑

h2=0

h2∏

h=0

ai−B−h

)
. (63)

Since ah ≥ 1 for each h, we have 1 +
∑ℓ−2

h2=0

∏h2

h=0 ai−B−h ≤ ℓ
∏ℓ−2

h=0 ai−B−h. First assume
that i ≥ ℓ0 + 2. Taking ℓ = ℓ0 − B + 2 in (63) and noting that ai−ℓ0−1 < Uℓ0 by (61) yields

ti−B ≤ ti−ℓ0−2

(
ℓ0−B+1∏

j=0

ai−B−j

)
+ Uℓ0

ℓ0−B∏

j=0

ai−B−j ≤ (1 + ti−ℓ0−2)Uℓ0

ℓ0−B∏

j=0

ai−B−j . (64)

Again applying (61), we have:

ℓ0−B∏

j=0

ai−B−j ≤ exp

(
D

ℓ0−B∑

j=0

√
|Sj+B|
n

)
= exp

(
D

ℓ0∑

j=B

√
|Sj|
n

)
. (65)

Next, we bound exp

(
D
∑ℓ0

j=B

√
|Sj |

n

)
. By Lemma 47(b), we have for all j ≤ ℓ0,

|Sj+1| ≤ exp

(
−Y2

√
|Sj|
n

)
|Sj |,

and so

|Sℓ0+1| ≤ exp

(
−Y2

ℓ0∑

j=B

√
|Sj|
n

)
|SB|.

By the definition of ℓ0 and Lemma 47(a), we have |Sℓ0+1| > 1
2
n1−δ, so

exp

(
Y2

ℓ0∑

j=B

√
|Sj|
n

)
≤ |SB|

|Sℓ0+1|
<

n

|Sℓ0+1|
= O(nδ),

and so

exp

(
D

ℓ0∑

j=B

√
|Sj|
n

)
= nO(δ),

since both D and Y2 are positive constants. This, (64), (65), ℓ0 = O(nδ/2 logn) and U = n3δ

yield
ti−B = nO(δ)ti−ℓ0−2. (66)

It is easy to see that if i < ℓ0 + 2, then the above argument already proves that ti−B = nO(δ),
by taking ℓ = i − B in (58). So we assume that i ≥ ℓ0 + 2. It only remains to show
that ti−ℓ0−2 = nO(δ). The same recursion that produced (63) yields that for every 1 ≤ ℓ ≤
i− ℓ0 − 2 − j0,

ti−ℓ0−2 ≤ ti−ℓ0−2−ℓ

ℓ−1∏

h=0

ai−ℓ0−2−h + U

(
1 +

ℓ−2∑

h2=0

h2∏

h=0

ai−ℓ0−2−h

)
.
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Arguing as for (64), this time taking ℓ = i− ℓ0 − 2− j0 yields (noting that tj0 ≤ n2δ always)

ti−ℓ0−2 ≤ (tj0 + Ui)

i−ℓ0−3−j0∏

j=0

ai−ℓ0−2−j = nO(δ)

i−ℓ0−3−j0∏

j=0

ai−ℓ0−2−j, (67)

and arguing as for (65) yields

i−ℓ0−3−j0∏

j=0

ai−ℓ0−2−j ≤ exp

(
D

i−1−j0∑

j=ℓ0+2

√
|Sj |
n

)
. (68)

By the definition of ℓ0 we have |Sℓ0+2| < n1−δ. By our definition of j0, for every ℓ0 + 2 ≤
j ≤ i− 1 − j0, we have |Sj| ≥ nδ log2 n, and so we can apply Lemma 47(a) to show

|Sj | ≤ (1 − Y2n
−δ/2)j−(ℓ0+2)|Sℓ0+2| ≤ (1 − Y2n

−δ/2)j−(ℓ0+2)n1−δ, ∀ ℓ0 + 2 ≤ j ≤ i− 1 − j0,

which implies that

i−1−j0∑

j=ℓ0+2

√
|Sj|
n

≤ n−δ/2
∑

j≥0

(1 − Y2n
−δ/2)j = O(1).

This proves that ti−ℓ0−2 = nO(δ) by (67) and (68). So by (66) it completes our proof that
ti−B = nO(δ). Since |R(B)(v)| ≤ ti−B + n2δ by (59), this proves the lemma. �

5.6 Bounding the maximum depth

Lemma 48 bounds |R(B)(v)| for any non-k-core vertex v in APr(n,m). Corollary 12
implies that the same bound holds for Hr(n,m).

The following lemma allows us to bound |R(v)| using the bound on |R(B)(v)|. To present
the lemma, we define N s(A) to be the set of vertices with distance at most s from A. The
following easily proved lemma is from [1, Lemma 34].

Lemma 49. Assume s, c > 0 are O(1). A.a.s. for every subset of vertices A in Hr(n, cn)
such that A induces a connected subgraph, |N s(A)| = O(|A| + logn).

Applying Lemma 49 with A = R(B)(v) yields our bound on the maximum depth as
follows:

Proof of Theorem 41: By Lemma 48, there is a constant X > 0 such that in APr(n,m)
a.a.s. there are no vertices v with R(B)(v) > nXδ. Any vertices in R(v) that are not contained
in R(B)(v), must have been removed during the first B rounds of the parallel stripping
process, and must be within distance B of some member of R(v). This bounds each RB(v)
in APr(n,m); Corollary 12 shows that the same bound holds for Hr(n,m). Now we can apply
Lemma 49, to show that a.a.s. for each v ∈ Hr(n,m), |R(v)| ≤ Y (|R(B)(v)| + log n) < n2Xδ,
for some constant Y = Y (B, r, k). �
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6 Proofs of Lemma 47 and Theorem 3(a): the tight

lower bound

In this section, we will prove the key Lemma 47. Throughout this section, we have
c = cr,k + n−δ for some 0 < δ < 1

2
. We have already seen that Lemma 47 is needed to

complete the proof of Theorem 5. Lemma 47(a,b) will also immediately imply the lower
bound in Theorem 3(a):

Proof of Theorem 3(a): The upper bound was proved in Section 4.3.2, so we only need
to establish the lower bound: that a.a.s. the stripping number is Ω(nδ/2 log n).

By Lemma 47(a,b), there must be an iteration i0 in the parallel process such that 1
2
n1−δ <

|Si0| < n1−δ. Taking the constant Y1 from Lemma 47 and noting that 2δ < 1, we let
a > 0 be a constant satisfying 1 − 2Y1a > 2δ. Applying Lemma 47(a) recursively for all
i0 ≤ i ≤ ℓ = anδ/2 log n, we have

|Si0+ℓ| ≥ (1 − Y1n
−δ/2)ℓ|Si0 | ≥ exp(−2Y1ℓn

−δ/2) · 1

2
n1−δ =

1

2
n−2aY1+1−δ.

This is valid since |Si0+j | ≥ |Si0+ℓ| ≥ nδ log2 n for all 0 ≤ j ≤ ℓ (which is desired in order
to apply Lemma 47) by our choice of a. This shows that the number of iterations in the
parallel stripping process applied to APr(n,m) is at least anδ/2 log n; Corollary 12 implies
that the same bound holds for Hr(n,m). This confirms the lower bound in Theorem 3(a).

�

Most of the work in our proof of Lemma 47 goes towards proving parts (a,b). This
requires a very tight analysis of the evolution of Lt, the total degree of the light vertices (i.e.
vertices of degree less than k) in Gt, the hypergraph remaining after t iterations of SLOW-
STRIP. Much of this work can be viewed as a strengthening of the analysis from Section 4.
A key result from that section is Lemma 16 which bounds E(Lt+1 − Lt | Ft) < −K1n

−δ/2.
This sufficed to prove the upper bound for Theorem 3(b), but to prove the lower bound,
we need to strenghten Lemma 16 in two ways: (i) when Lt > n1−δ, the bound on the
expected change is decreased to −Θ(

√
Li/n); and (ii) we obtain matching lower bounds on

the expected change. This is Corollary 54.
Of course, the expected change in Li depends on the rate at which new light vertices

are created. In Section 4.4.3 we studied this rate by examining two key closely related
parameters: roughly speaking, ζt is the average degree of the heavy vertices in Gt (i.e.
vertices of degree at least k) and p̄t is the probability that a uniform vertex-copy from the
heavy vertices is a copy of a degree k vertex. We obtained a coarse bound on ζt (Lemma 35,
Corollary 36) which was sufficient to obtain Lemma 16. For our tighter analysis in this
section, we will require a much tighter bound on ζt (Lemma 50). In addition, we will
introduce two more parameters.

Recall that Gt is the hypergraph (i.e. configuration) remaining after t iterations of SLOW-

STRIP on APr(n,m), and Ĥi is the hypergraph (i.e. configuration) remaining after i − 1
iterations of the parallel stripping process. Recall also that t(i) is the iteration of SLOW-
STRIP corresponding to the beginning of iteration i of the parallel stripping process. Recall
that τ denotes the step when SLOW-STRIP terminates.
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Recall the definitions of Lt, Dt, Nt, p̄t from Sections 4 and 4.4.3, and that ζt = Dt/Nt.
Recall that Ft = {(Ls, Ns, Ds)}s≤t. Our first new parameter is a very close approximation
of Lt+1 − Lt:

brt = −1 + (r − 1)(k − 1)p̄t. (69)

This is a key parameter in analyzing the evolution of (Lt)t≥0. If we view (Lt) as a
branching process then 1+brt approximates the branching parameter of (Lt); i.e. the expected
number of new light vertices formed during step t of SLOW-STRIP. Note that for r = 2, this
is exactly the expected number of new light vertices formed when the other endpoint of a
deleted edge is heavy. But we need to account for (i) the possibility of both endpoints being
light, and (ii) the fact that when r > 2 we typically remove multiple heavy vertex-copies.
By (29) and (30), and noting that ht,i ≤ Lt/(Lt +Dt − (r− 2)) = O(Lt/n) (by Corollary 9),
we have that a.a.s. for every t(B) ≤ t ≤ τ ,

E(Lt+1 − Lt | Ft) = brt +O(Lt/n), E(Lt+1 − Lt | Ft) ≤ brt +O(n−1). (70)

The second part of (70) above is applied when we only require an upper bound on E(Lt+1−Lt |
Ft). However, in some cases we need a lower bound as well, and we will use the first part.

By (32), (33) and (34), there is a constant K > 0 such that

a.a.s. for every t(B) ≤ t ≤ τ, brt ≤ −Kn−δ/2. (71)

By (28), a.a.s. ζτ = ζ + Θ(n−δ/2). By Lemmas 32 and 31 and considering the Taylor
expansion of ψ around ζ , a.a.s.

p̄τ = ψ(ζτ )+O(n−1/2 logn) = ψ(ζ)+ψ′(ζ)(ζτ−ζ)+O((ζτ−ζ)2+n−1/2 log n) = ψ(ζ)−Θ(n−δ/2).

By (21), ψ(ζ) = 1/(r − 1)(k − 1), which implies that a.a.s.

brτ = −Θ(n−δ/2) (72)

by (69).
Our second new parameter, π(Gt), roughly counts the number of vertices in Gt which are

not in the k-core and so will be removed before the process ends. Recall from Corollary 9
that a.a.s. the k-core has size αn+ (K1 + o(1))n1−δ/2, for a particular constant K1 > 0. So
the number of non-k-core vertices is simply |V (Gt)| minus that number.

We will prove (Lemma 52) that brt is the same multiplicative order as the negation of
the proportion of vertices in Gt that are not in the k-core, until that proportion drops below
n−δ/2; from that point on, brt remains at −Θ(n−δ/2) (see (72)). To reflect this, we define
π(Gt) to stay at Θ(n1−δ/2) once the remaining number of vertices drop below that. So we
define:

π(Gt) := |V (Gt)| − αn− K1

2
n1−δ/2.

Over the next few subsections, we obtain tight bounds on brt in terms of Lt (Lemma 53);
coupled with (70), these will yield our bounds on the expected change in Lt. To do so, we
will link brt and πt, using ζt. Our first step will be to obtain a tighter bound on ζt.
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6.1 Controlling ζt

We list below a few facts that we will use. Since c = cr,k + n−δ, δ < 1
2
, we can assume by

Lemma 7 that there is a k-core on a linear number of vertices. At each step of SLOW-STRIP,
we remove at most one hyperedge. Thus there is a constant Q = Q(r, k) such that in every
step, the average degree of the heavy vertices is changed by at most ±Q/n; i.e.

ζt+1 − ζt = O(1/n) uniformly for all 0 ≤ t < τ. (73)

Therefore, for any ǫ > 0, Lemma 15 allows us to choose sufficiently large B such that
|ζt − ζτ | ≤ ǫ/2 for all t ≥ t(B). Recalling the definition of ζ from (12), we also know that
a.a.s. |ζτ − ζ | = o(1) by Corollary 9. Hence, for all t ≥ t(B), |ζt− ζ | ≤ |ζt− ζτ |+ |ζτ − ζ | ≤ ǫ.
This immediately gives (Fa) below.

(Fa) For every ǫ > 0, we can choose B sufficiently large such that a.a.s. for all t ≥ t(B),
|ζt − ζ | < ǫ.

(Fb) A.a.s. for every t ≥ t(B), p̄t = (1+O(n−1/2 log n))ψ(ζt), by Lemma 32 and Theorem 6.

(Fc) We can choose ǫ > 0 sufficiently small so that there are c1, c2 > 0 such that −c1 <
ψ′(x) < −c2 for all x such that |x− ζ | < ǫ by Lemma 31 and since ζ = ζr,k > k.

By (Fa) and (Fc), we may assume B is chosen so that

(Fc’) −c1 < ψ′(ζt) < −c2 uniformly for all t ≥ t(B).

By (73) we have

(Fd) ζi = ζt +O((i− t)/n) uniformly for every 0 ≤ t ≤ i ≤ τ .

We will apply Lemma 29 several times. To formalise its application, we need to define
normal configurations as in Section 4.4.3, and define several stopping times when various
a.a.s. events such as (Fa) and (Fb) fail. We skip such tedious settings of stopping times, and
note that by the same treatment as in Section 4.4.3, we will only create an o(1) error in all
probability bounds if we apply Lemma 29 with events in (Fa)–(Fd) assumed.

In the next lemma, we prove a more precise form of (Fd). This is our strengthening of
Lemma 35.

Lemma 50. A.a.s. for every t(B) ≤ t < i ≤ τ ,

(a) ζi ≤ ζt +O(logn/n) uniformly for every 0 ≤ t ≤ i ≤ τ ;

(b) if i− t ≥ logn, then ζi = ζt − Θ((i− t)/n) uniformly.

Proof. By Lemma 34, there exist two constants ρ1 > ρ2 > 0 such that a.a.s. for every
t(B) ≤ t < τ

−ρ1
n

≤ E(ζt+1 − ζt | Ft) ≤ −ρ2
n
.
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Moreover, |ζt+1−ζt| = O(1/n) by (73). We apply Lemma 29 with cn = O(1/n) and an = ρ2/n
and with a similar argument as in the proof of Lemma 19 to show, for every i > t and j ≥ 0,

Pr(ζi ≥ ζt − (i− t)ρ2/n+ j) ≤ exp(−Ω(j2n2/(i− t))), (74)

Pr(ζi ≤ ζt − (i− t)ρ1/n− j) ≤ exp(−Ω(j2n2/(i− t))). (75)

Then by the union bound (by taking j = (i− t)ρ2/2n in (74) and taking j = (i− t)ρ1/2n
in (75) for each t and each i ≥ t+ log n), we obtain (b). Part (a) follows by (b) and the fact
that for each i ≤ t+ log n, we always have ζi = ζt +O(logn/n) by (Fd).

6.2 Relations between Lt, π(Gt) and brt

The next Lemma essentially says that if we can bound the expected change in Li then we
can show Li is concentrated. Recall that τ is the stopping time of SLOW-STRIP; i.e. the
first iteration t for which Lt = 0.

Lemma 16 says that there are constants K,B > 0 such that a.a.s. for every t(B) ≤ t < τ ,

E(Lt+1 | Ft) ≤ Lt −Kn−δ/2. (76)

It is convenient to consider a random process (Lt)t≥t(B) such that E(Lt+1 | Lt) ≤ Lt −
Kn−δ/2 for all t ≥ t(B). The process (Lt) can be defined in various ways depending on each
application and in many applications we will let Lt = Lt (or sometimes with a shift of the
subscript) for all steps in which (76) holds (c.f. the proof of Lemma 19 and the arguments
in Section 4.3.2). We first prove some a.a.s. properties of such processes.

Lemma 51. Let (Li)i≥0 be a random process and define T to be the minimum integer such
that LT ≤ 0. Suppose there is a constant C > 0 and functions C > a = a(n) > b = b(n) ≥
Θ(n−δ/2) such that the following bounds always hold for every i ≥ 0:

(i) nδ log2 n ≤ L0≤ n;

(ii) |Li+1 −Li| ≤ C;

(ii) −a ≤ E(Li+1 − Li | {Ls}s≤i) ≤ −b.
Then, with probability at least 1 − o(n−1),

(a) L0 − 2ai < Li < L0 − 1
2
bi for all nδ log1.5 n ≤ i ≤ n2;

(b) Li < 2L0 for all 0 ≤ i ≤ n2;

(c) 1
2a
L0 < T < 2

b
L0.

Proof. We start with the upper bound in part (a). We will apply Lemma 29 with Xn,ℓ =
Lℓ −L0. So we can take an = −b. By (ii) we can choose cn = C.

Consider i ≥ nδ log1.5 n. If Li ≥ L0 − 1
2
bi then Xn,i − Xn,0 = Li − L0 ≥ ian + 1

2
ib. By

Lemma 29 with j = 1
2
ib, the probability of this is at most

exp

(
− (1

2
ib)2

2i(C + |b|)2
)

≤ exp(−Ω(b2i)) ≤ exp(−Ω(log1.5 n)) = o(n−3).
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The lower bound in part (a) is nearly identical, but this time we apply Lemma 29 with
Xn,i = L0 −Li, an = a and j = ia. Applying the union bound for the at most n2 choices for
i shows that (a) holds with probability at least 1 − o(n−1).

For part (b): If i < L0/C then the fact that Lj+1≤ Lj + C implies that Li < 2L0. If
i ≥ L0/C, then i > nδ log1.5 n, then part (a) implies Li < L0.

For part (c): Note that 2
b
L0 ≥ nδ log1.5 n, and so part (a) implies that Li reaches 0 for

some i ≤ 2
b
L0 (noting here that 2

b
L0 = o(n2) by assumption (i)); this yields the upper bound

on T . For the lower bound on T , we apply the same argument used for the lower bound in
part (a) with i = 1

2a
L0 but with j = 1

2
L0. This time we get

Pr(Li <
1

2
L0) < exp(−Ω(L2

0/i)) ≤ exp(−Ω(aL0)) = o(n−2),

thus providing the desired lower bound on T .

Our goal is to bound brt in terms of Lt. First we bound it in terms of π(Gt).

Lemma 52. There are two constants C1, C2 > 0 such that a.a.s. −C1π(Gt)/n ≤ brt ≤
−C2π(Gt)/n for every t ≥ t(B).

Proof. Recall that ζt denotes the average degree of heavy vertices in Gt. Let t′ be the
maximum integer such that π(Gt′) = K1n

1−δ/2, where K1 comes from Corollary 9. Note
that π(Gt) is a non-increasing function of t, which decreases by at most 1 in each step.
Hence, for all t ≤ t′, π(Gt) ≥ K1n

1−δ/2 and for all t > t′, π(Gt) < K1n
1−δ/2.

By Corollary 9, a.a.s. π(Gτ) ∼ (K1/2)n1−δ/2. Since for every t, |π(Gt) − π(Gt+1)| ≤ 1 as
at most one vertex is removed in each step, we have that a.a.s. for all t ≤ t′, τ − t ≥ π(Gt)−
π(Gτ )= Ω(π(Gt)). This is because π(Gτ ) ∼ (K1/2)n1−δ/2 and so π(Gτ) ∼ 1

2
π(Gt′) <

2
3
π(Gt)

for every t ≤ t′. The constant bounds involved in the asymptotic notation above and below
will be uniform for all t. In particular, τ − t′ ≥ π(Gt′) − π(Gτ ) ≥ (K1/3)n1−δ/2. On the
other hand, for every t, τ − t ≤ k(π(Gt) − π(Gτ )) ≤ kπ(Gt), since every light vertex in the
queue Qt takes less than k steps to be removed. So a.a.s. uniformly for every t ≤ t′, we have

(K1/3)n1−δ/2 ≤ τ − t′ ≤ τ − t ≤ kπ(Gt); (77)

τ − t = Θ(π(Gt)). (78)

If t ≤ t′ then τ − t= Ω(n1−δ/2) > log n by (77). Thus by Lemma 50(b) we have ζt =
ζτ + Θ((τ − t)/n). By (Fb) and (Fc’) and by (69), a.a.s. for all t(B) ≤ t ≤ τ ,

brt − brτ = Θ(1)(p̄t − p̄τ ) = Θ(1)(ψ(ζt) − ψ(ζτ)) = −Θ(1)(ζt − ζτ ), (79)

and then by the fact that ζt = ζτ + Θ((τ − t)/n) for all t ≤ t′ and (78), a.a.s. for each t ≤ t′,

brt − brτ = −Θ((τ − t)/n) = −Θ(π(Gt)/n). (80)

The constants in the asymptotic notations above are uniform for all t ≤ τ . By (72), a.a.s.
brτ = −Θ(n−δ/2). Since π(Gτ ) ∼ (K1/2)n1−δ/2, it follows then that a.a.s. for all t(B) ≤ t ≤ t′,
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brt = −Θ(π(Gt)/n); note that −Θ(n−δ/2) is absorbed as π(Gt)/n ≥ π(Gτ )/n = Θ(n−δ/2) for
every t. This proves that our lemma holds for all t ≤ t′.

Now we consider t > t′. Applying (77) with t := t′, we obtain that a.a.s. τ − t′ ≤
kπ(Gt′) = kK1n

1−δ/2. This implies that for all t′ ≤ t ≤ τ , τ − t ≤ τ − t′ = O(n1−δ/2). Then
by (73) we have

ζτ − ζt = O(n−δ/2) (81)

So by (79), brt − brτ = −Θ(ζt − ζτ ) = O(n−δ/2) for all t′ ≤ t ≤ τ . Then, we must have
brt = −Θ(n−δ/2) for all t′ < t ≤ τ by (71) and (72). The definition of t′ implies that
π(Gt)/n = Θ(n−δ/2) for all t > t′. This implies that our lemma holds also for t > t′.

And now we are ready to bound brt in terms of Lt:

Lemma 53. There are constants D1, D2, B > 0 such that a.a.s. for all t ≥ t(B),

(a) for all t such that Lt ≥ n1−δ, −D1

√
Lt/n ≤ brt ≤ −D2

√
Lt/n.

(b) for all t such that Lt < n1−δ, −D1n
−δ/2 ≤ brt ≤ −D2n

−δ/2.

Combining Lemma 53 with (70), and applying a slight adjustment to D1, D2 yields our
strengthening of Lemma 16:

Corollary 54. There are constants D1, D2, B > 0 such that a.a.s. for all t ≥ t(B),

(a) for all t such that Lt ≥ n1−δ, −D1

√
Lt/n ≤ E(Lt+1 − Lt | Ft) ≤ −D2

√
Lt/n.

(b) for all t such that Lt < n1−δ, −D1n
−δ/2 ≤ E(Lt+1 − Lt | Ft) ≤ −D2n

−δ/2.

This strenghtening is what we need to prove Lemma 47(a,b).
Proof of Lemma 53 We take B large enough so that the relevant preceding results hold.
We have brt ≤ −Kn−δ/2 for some constant K > 0, for all t(B) ≤ t ≤ τ by (71). For any

t(B) ≤ t ≤ τ , we will consider i such that t ≤ i ≤ τ . By Lemma 50(a), a.a.s. for any such
pair of t, i, we have ζi ≤ ζt + O(logn/n). Thus by (Fb) and (Fc’) and the definition of bri,
a.a.s. for all pairs of t, i such that t(B) ≤ t < i ≤ τ ,

bri = brt − Θ(1)(p̄t − p̄i) = brt − Θ(1)(ψ(ζt) − ψ(ζi)) = brt − Θ(1)(ζi − ζt)

≥ brt − Θ

(
logn

n

)
≥ 2brt,

since log n/n = o(|brt|). By (70), a.a.s. for every t(B) ≤ t < i ≤ τ ,

2brt −O(Li/n) ≤ E(Li+1 − Li | Fi) ≤ bri +O(n−1).

We know that a.a.s. for every t(B) ≤ t < i ≤ τ , we have brt, bri ≤ −Kn−δ/2 by (71). So for
some constant A > 0, we have a.a.s. for all t(B) ≤ t < i ≤ τ :

2brt −ALi/n ≤ E(Li+1 − Li | Fi) ≤ −K
2
n−δ/2. (82)

Let t1 be the smallest t such that Lt+1 < nδ log2 n. We first prove the lemma for all
t ≤ t1.
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Note that since brt ≥ −1 (by 69), we can take B large enough so that for i ≥ B, Li/n
is small enough that the LHS of (82) is at least -3. So we let τ ∗ denote the first step that
the condition −3 < E(Li+1 − Li | Fi) ≤ −K

2
n−δ/2 fails; define τ ∗ = τ if it never fails.

Assume t ≤ t1. Define (Lj)j≥0 by letting L0 = Lt and Li−t = Li for each t < i ≤ τ ∗ and
Li+1−t = Li−t − Kn−δ/2 for all i ≥ τ ∗. Moreover, (82) implies that a.a.s. Li−t = Li for all
t ≤ i ≤ τ .

Now the process (Li) satisfies the hypotheses in Lemma 51(i) (by the definition of t1),
(ii) with C = kr and (iii) with a = 3 and b = Kn−δ/2. Now by Lemma 51(b) (and by taking
the union bound over t), a.a.s. Li < 2Lt (corresponding to Li−t < 2L0 for each given t) for
all pairs of i, t such that t(B) ≤ t ≤ i < τ . Then (82) becomes

2brt − 2ALt/n ≤ E(Li+1 − Li | Fi) ≤ −K
2
n−δ/2. (83)

So we can apply Lemma 51 again to (Li)i≥0 defined as above (except that we modify τ ∗

to reflect (83) rather than (82)) with a = −2brt + 2ALt/n. Letting T denote the first
step that Li becomes at most zero, Lemma 51(c) shows that with probability 1 − o(n−1),
T ≥ 4ALt/(|brt| + Lt/n); i.e. τ ≥ t + 4ALt/(|brt| + Lt/n). Taking the union bound over
t(B) ≤ t ≤ t1 and using that by (83) a.a.s. Li−t = Lt for all t(B) ≤ t < i ≤ τ shows that
a.a.s. for all t(B) ≤ t ≤ t1:

τ ≥ t+ 4ALt/(|brt| + Lt/n).

We delete at least one vertex for every k − 1 steps of SLOW-STRIP, and so |V (Gt) \
V (Gτ )| ≥ (τ − t)/(k − 1). Therefore, applying Corollary 9, we have that a.a.s. for all
t(B) ≤ t ≤ t1:

π(Gt) = |V (Gt)| − αn− K1

2
n1−δ/2 ≥ |V (Gt)| − |V (Gτ )| +

K1

3
n1−δ/2

≥ 4ALt

(k − 1)(|brt| + Lt/n)
+
K1

3
n1−δ/2. (84)

By Lemma 52, there exists a constant C2 > 0 such that a.a.s. for all t(B) ≤ t ≤ t1,

brt ≤ −C2
π(Gt)

n
≤ −C2

(
4ALt/n

(k − 1)(|brt| + Lt/n)
+
K1

3
n−δ/2

)
,

and so

|brt| ≥ C2 max

(
4ALt/n

(k − 1)(|brt| + Lt/n)
,
K1

3
n−δ/2

)
. (85)

Taking B large enough that Lt/n is sufficiently small for t ≥ t(B) (by Lemma 15), and
rearranging (85), there is a constant D2 > 0, such that a.a.s. for all t(B) ≤ t ≤ t1:

|brt| ≥ D2 max

(√
Lt

n
, n−δ/2

)
. (86)

This yields the upper bounds in our lemma for t ≤ t1. Next we prove the lower bounds; i.e.,
we wish to prove that for some constant D1 > 0 for all t(B) ≤ t < i ≤ t1:

|brt| ≤ D1 max

(√
Lt

n
, n−δ/2

)
. (87)
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The proof is similar to that for the upper bound so we briefly describe the arguments.
Let A2, A3> 0 be the implicit constants in (Fd), (79), and set A1 = 1/(2A2A3). Apply-
ing (79), (Fd) we get that a.a.s. for any t(B) ≤ t ≤ i ≤ min{t+ A1|brt|n, τ}:

bri − brt ≤ A3(ζt − ζi) ≤ A2A3((i− t)/n) ≤ A1A2A3|brt| = −1

2
brt,

where the first inequality above comes from (Fb), (Fc’) and (69) (in the same way that (79)
is deduced), the second inequality follows by (Fd) and the third inequality follows by the
upper bound of i; the equality holds by the definition of A1. Thus, bri ≤ 1

2
brt. So, by (70):

E(Li+1 | Fi) − Li ≤
1

2
brt +O(1/n), ∀t(B) ≤ t < i ≤ min{t+ A1|brt|n, τ}. (88)

We can assume |brt| >
√

(8/A1)Lt/n, as otherwise (87) holds with D1 =
√

8/A1. Therefore
we have (i) 8Lt/|brt| < A1|brt|n and (ii) the RHS of (88) is at most 1

4
brt (noting that

|brt| >> 1/n by (71)).
Define (Li)i≥0 analogously to how it was defined above, and apply Lemma 51(c) with b =

1
4
brt (and with a = −2brt +2ALt/n, as argued above). By the a.a.s. correspondence between

Li−t and Lt, and noting that (i) above allows us to apply (88) for all i ≤ min{t+8Lt/|brt|, τ},
we can show that with probability 1 − o(n−1), the stopping time

τ < t+
2

b
Lt = t+ 8Lt/|brt|. (89)

Taking the union bound over t(B) ≤ t ≤ t1 shows that a.a.s. (89) holds for all t(B) ≤ t ≤ t1
for which |brt| >

√
(8/A1)Lt/n.

Since we remove at most one vertex during each iteration of SLOW-STRIP, it follows
that Gt contains at most 8Lt/|brt| non-k-core vertices by (89). Recalling that π(Gt) is
approximately the number of non-k-core vertices in Gt plus 1

2
K1n

−δ/2, this implies that
π(Gt) ≤ A4(Lt/|brt| + n1−δ/2) for some constant A4 > max{8, 1

2
K1}. Now, by Lemma 52,

we have that there is a constant C1 > 0 such that a.a.s. for all t(B) ≤ t ≤ t1 with |brt| >√
(8/A1)Lt/n we have:

brt ≥ −C1π(Gt)/n ≥ −C1A4

(
Lt/n

|brt|
+ n−δ/2

)
.

This implies (87) for t(B) ≤ t ≤ t1 with D1 = max{
√

8/A1, C1A4}.
Now we consider t > t1. Since Lt1 ≥ nδ log2 n, by (89), a.a.s. τ − t1 < 8Lt1/|brt1 |. By

the definition of t1 we also have that Lt1 ≤ Lt1+1 + r < 2nδ log2 n. (86) says that a.a.s.
|brt1 | ≥ D2n

−δ/2. So we obtain: a.a.s. for all t > t1,

τ − t < τ − t1 < (16/D2)n
3δ/2 log2 n.

This implies that a.a.s. for all t1 < t ≤ τ , t− t1 < (16/D2)n
3δ/2 log2 n. Then, recalling that

A2, A3 are the implict constants from (Fd) and (79), and since |brt1 | ≥ D2n
−δ/2 (from (86)),

a.a.s. for all t1 < t ≤ τ ,

|brt − brt1 | ≤ A2A3(t− t1)/n ≤ A2A3(16/D1)n
3δ/2−1 log2 n = o(n−δ/2) = o(brt1),

as δ < 1/2. Since (86), (87) hold for t = t1 then by increasing D1 and decreasing D2, these
bounds hold for t > t1, and hence for all t(B) ≤ t ≤ τ . �
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6.3 Proof of the key lemma

And now we can prove Lemma 47, which we restate.
Recall that we are carrying out SLOW-STRIP on APr(n,m), and so implicitly, this

yields the steps of the parallel stripping process applied to APr(n,m). Imax is the number of
iterations carried out by the parallel stripping process, and Si is the set of vertices removed
in iteration i. The number of hyperedges removed in iteration i that contain u is d+(u) for
each u ∈ Si, and is d−(u) for each u ∈ Si+1 (if i < Imax).

Lemma 47. There exist constants B, Y1, Y2, Z1 dependent only on r, k, such that a.a.s. for
every B ≤ i < Imax with |Si| ≥ nδ log2 n:

(a) if |Si| < n1−δ then (1 − Y1n
−δ/2)|Si| ≤ |Si+1| ≤ (1 − Y2n

−δ/2)|Si|;

(b) if |Si| ≥ n1−δ then (1 − Y1

√
|Si|
n

)|Si| ≤ |Si+1| ≤ (1 − Y2

√
|Si|
n

)|Si|;

(c)
∑

j≥i |Sj| ≤ Z1|Si|nδ/2.

(d) |Si| ≤
∑

u∈Si
d−(u) < |Si| + Z1

|Si|
2

n
+ log2 n;

(e) |Si+1| ≤
∑

a,b abM
a,b
i ≤ |Si+1| + Z1

|Si|2

n
+ log2 n;

(f)
∑

a≥2,b≤r−a abM
a,b
i ≤ Z1

|Si|
2

n
+ log2 n;

(g)
∑

u∈Si
d+(u)d−(u) ≤∑u∈Si

d+(u) + Z1
|Si|2

n
+ log2 n;

(h)
∑

u∈Si
(d−(u))2 ≤ Z1|Si|;

(i) d−(u) < log n for all u ∈ ∪Imax

i=2 Si.

Proof. We take B large enough so that the relevant preceding results hold.
Part (i): We allocate rcn vertex-copies to n bins. So the probability that at least one

bin has size at least logn is at most nPr[Bin(rcn, 1
n
) ≥ logn] which is easily computed to

be o(1). Part (i) follows since d−(u) is less than the size of bin u.
Part (d): We first prove (d) assuming (e). The first inequality follows since d−(u) ≥ 1 for

all u ∈ Si (with i ≥ 2). For the second inequality, note that
∑

u∈Si
d−(u) =

∑
a≥1,b≤r−a bM

a,b
i−1 ≤∑

a,b abM
a,b
i−1, and so the bound follows from Lemma 47(e) and the fact that a.a.s. |Si+1| =

Θ(|Si|) by Lemma 47(a,b).

Part (f):
∑

a≥2,b≤r−a abM
a,b
i ≤ r2

∑
a≥2,1≤b≤r−aM

a,b
i = r2Y , where Y is the number

of hyperedges (i.e. r-tuples) that contains at least two vertex-copies in Si and at least one
vertex-copy in Si+1.

Consider SLOW-STRIP from step t(i) to t(i+ 1) − 1, i.e. the steps when the vertices in
Si are removed. When SLOW-STRIP removes a hyperedge incident with u ∈ Si, it removes
a vertex-copy from u and another r−1 vertex-copies chosen uniformly at random. This edge
counts towards Y only if at least one of these r− 1 vertex-copies are from Si. Regardless of
what happened during the removal of previous vertices from Si, there are at most (k−1)|Si|
remaining vertex-copies from Si, and there are a total of Θ(n) available vertex-copies (by
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Corollary 9). So the probability that at least one vertex-copy is selected from Si is at most
O(|Si|/n). We remove at most (k − 1)|Si| hyperedges during this phase. So Y is dominated
in distribution by a binomial variable Bin((k− 1)|Si|, O(|Si|/n)) and so the Chernoff bound
yields that with probability at least 1−n−2, Y = O(|Si| · |Si|/n+ logn). Multiplying by the
at most n choices for i completes the proof for part (f).

Part (e): The lower bound is trivial as every vertex in Si+1 is incident with at least one
hyperedge counted by

∑
a,bM

a,b
i , and each (a, b)-hyperedge contains b vertices of Si+1. We

now prove the upper bound.
Let Λ denote the sum of d−(u) − 1 over all u ∈ Si+1 with d−(u) ≥ 2. We note that

∑

a,b

abMa,b
i ≤

∑

b

bM1,b
i +

∑

a≥2,b≤r−a

abMa,b
i (90)

=
∑

u∈Si+1

d−(u) +O(|Si|2/n) by part (f) (91)

= |Si+1| + Λ +O(|Si|2/n) since d−(u) ≥ 1 for all u ∈ Si+1. (92)

To bound Λ, we bound Xj which is defined to be the number of vertices u ∈ Si+1 with
d−(u) ≥ j. To do so, we expose the degree sequence of the configuration remaining after i
iterations of the parallel stripping process, and then consider choosing the configuration using
Bollobás’ configuration model. We emphasize that this exposure of the degree sequence, and
choice of the configuration are only carried out for the purposes of the proof of (93) below; the
exposure does not carry on outside of this lemma - in particular to the analysis in Section 5.4.

If a vertex u is counted by Xj, then we must have j ≤ deg(u) ≤ k − 1 + j, where deg(u)
is its degree in the remaining configuration, and j copies of u must be selected for removal.
At most (r− 1)(k − 1)|Si| vertex-copies are randomly selected for removal, and there are at
least αn vertex-copies to choose from (by Corollary 9). So the probability that u is counted
by Xj is at most

(
deg(u)

j

)(
(r − 1)(k − 1)|Si|

αn

)j

≤
(
k − 1 + j

j

)(
(r − 1)(k − 1)|Si|

αn

)j

<

(
Z
|Si|
4n

)j

,

for a suitable constant Z = Z(r, k).
The probability that u, u′ both count towards Xj are negatively correlated - if u counts

towards Xj then at least j copies are chosen from u and hence are not chosen from u′.
(Note: the reason that Xj is defined to be the number of u ∈ Si+1 with d−(u) ≥ j rather
than d−(u) = j is that it makes this negative correlation easier to see.) Noting that there
are at most n vertices with j ≤ deg(u) ≤ k− 1 + j, this implies that Xj is dominated by the

binomial BIN(n, 2−j
(
Z |Si|

n

)j
). Applying the Chernoff Bound and summing over all choices

of j implies that with probability at least 1 − n−2

for all j ≥ 2: Xj ≤ n

(
Z
|Si|
2n

)j

+ log n <
Z

2j

|Si|2
n

. (93)

(93) implies that Λ ≤∑j≥2(j − 1)Xj = O(|Si|2/n + log n). Multiplying by the at most
n choices for i completes the proof for part (e) and hence of part (d).
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Part (g): Here, we focus again on Λ from part (e), this time using the value from
iteration i− 1. So Λ is the sum of d−(u) − 1 over all u ∈ Si with d−(u) ≥ 2. As we showed
in part (e), a.a.s. Λ < Z|Si|2/n+ log2 n (for every i). Part (g) now follows since:

∑

u∈Si

d+(u)d−(u) =
∑

u∈Si

d+(u) +
∑

u∈Si

d+(u)(d−(u) − 1) ≤
∑

u∈Si

d+(u) + (k − 1)Λ.

For the remaining parts, we focus on:

L̂i =
∑

v∈Si

d+(v); i.e. L̂i = Lt(i).

We prove the following relation between L̂i and |Si|: a.a.s. for all i under the assumptions
of this lemma,

L̂i = (k − 1)|Si|(1 +O(|Si|/n+ log2 n/|Si|)). (94)

Since d+(v) ≤ k − 1 for every v ∈ Si, immediately we have L̂i ≤ (k − 1)|Si|. If a vertex v
in Si has d+(v) < k − 1 then d−(v) must be at least two since otherwise v should have been
removed before the i-th iteration of the process. Let I2 denote the set of vertices v ∈ Si with
d−(v) ≥ 2 then

L̂i ≥ (k − 1)|Si \ I2|.
By (d),

|Si \ I2| + 2|I2| ≤
∑

u∈Si

d−(u) ≤ |Si| +O(|Si|2/n + log2 n).

It yields |I2| = O(|Si|2/n + log2 n) and so |Si \ I2| = |Si| + O(|Si|2/n + log2 n) = |Si|(1 +

O(|Si|/n + log2 n/|Si|)). It follows then that L̂i ≥ (k − 1)|Si|(1 + O(|Si|/n + log2 n/|Si|)).
Combining with the upper bound that L̂i ≤ (k − 1)|Si|, (94) follows.

Parts (a,b): For (a), we have L̂i = Ω(nδ log2 n) and L̂i = O(n1−δ) by the assumptions
of the lemma and by (94). We will bound E(Lj+1 −Lj | Fj) in order to apply Lemma 51 as
in the proof for Lemma 53.

Since SLOW-STRIP removes at least one and at most r vertex-copies from Si in every
iteration t(i) ≤ j < t(i + 1), we have t(i + 1) − t(i) = Θ(L̂i), uniformly over i satisfying
the conditions of the lemma. So t(i + 1) > t(i) + nδ log1.5 n. Furthermore, by (Fd), for all

t(i) ≤ j ≤ t(i + 1) − 1, ζj − ζt(i) = O((j − t(i))/n) = O(L̂i/n), and so by (79), we have

brj = brt(i) +O(L̂i/n) = brt(i) +O(n−δ). Corollary 53(b) says that a.a.s.:

−D1n
−δ/2 ≤ E(Lj+1 − Lj | Fj) ≤ −D2n

−δ/2, (95)

for all t(i) ≤ j ≤ t(i + 1) − 1. This allows us to apply Lemma 51 in a similar manner as in
the proof of Lemma 53. I.e. we define a process Lj that is equal to Lj+t(i) so long as (95)
holds, and such that we can apply Lemma 51 to Lj; then we translate what this says about
Lj to Lj since (95) a.a.s. holds for all j. This yields that for each i satisfying the conditions
of the lemma, with probability 1 − o(n−1),

Lt(i+1) = Lt(i) − Θ(n−δ/2)(t(i + 1) − t(i)) = Lt(i)(1 − Θ(n−δ/2)).
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Taking the union bound over all i yields part (a) with |Si| replaced by L̂i. Then part (a)
follows by (94) by noting that n−δ/2 dominates the other errors |Si|/n and log2 n/|Si| for |Si|
in this range.

The proof of part (b) is nearly identical, applying Lemma 53(a) rather than Lemma 53(b).

Part (c): Recall that τ is the stopping time of SLOW-STRIP. As in the proofs of parts
(a,b), we will apply Lemma 51. There are two possible ranges for Lj and in both, we can
take b = Θ(n−δ/2): if Lj < n1−δ we use b = Θ(n−δ/2); if Lj ≥ n1−δ we use b = Θ(

√
Lj/n) ≥

Θ(n−δ/2). Lemma 51(c) yields that with probability 1 − o(n−1), Lt ≤ L0 + tΘ(n−δ/2) for
each t ≥ nδ log1.5 n, which implies (since w.h.p. Lt(i)+t = Lt until step τ when Lt drops to

zero) τ − t(i) ≤ Θ(nδ/2)L̂i.
Since the total degree in Qt decreases by at most r in every iteration of SLOW-STRIP,

we have ∑

j≥i

L̂j ≤ r(τ − t(i)) ≤ Θ(nδ/2)L̂i.

Taking the union bound over all i and then applying (94) yields part (c).

Part (h): By (93) applied to iteration i − 1 and using parts (a,b), we have that with
probability at least 1 − n−2 there is a constant Z1 such that:

∑

u∈Si

(d−(u))2 ≤ |Si| +
∑

j≥2

(j2 − 1)Xj < |Si| +O(|Si−1|) < Z1|Si|. (96)

Part (h) then follows by multiplying the failing probability of at most n−2 by the at most n
choices for i.

�
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Appendix

Proof of Lemma 8. First we bound y := µ(c) − µr,k. Recall that µ(c) is the larger root of
h(µ) = c and µr,k is the unique root of h(µ) = cr,k. As h(x) is convex over x ∈ (0,+∞) and
has derivative 0 at x = µr,k. The Taylor expansion at µ = µr,k gives

c = h(µr,k) +
h′′(µr,k)

2
y2 +O(y3) = cr,k +

h′′(µr,k)

2
y2(1 +O(y)).

Thus, y =
√

2/h′′(µr,k)n
−δ/2 + O(n−δ) = K1n

−δ/2 + O(n−δ), by letting K1 =
√

2/h′′(µr,k).
Next, we bound

fk(µ(c)) − αr,k = fk(µ(c)) − fk(µr,k) = f ′
k(µr,k)y +O(y2).

Recall that
fk(x) = e−x

∑

i≥k

xi/i!.

Thus, f ′
k(x) = e−xxk−1/(k− 1)!. Hence, f ′

k(µr,k) > 0. It follows then that there is a constant
K2 > 0, such that

fk(µ(c)) − α = K2n
−δ/2 +O(n−δ).

Similarly, there is a K3 > 0 such that

1

r
µ(c)fk−1(µ(c)) − β = K3n

−δ/2 +O(n−δ).

Proof of Lemma 25. By the definitions of µr,k and h(µ) from (4), h′(µr,k) = 0. Since

h′(x) =
fk−1(x)r−1 − x(r − 1)fk−1(x)r−2f ′

k−1(x)

fk−1(x)2(r−1)
,

and f ′
k(x) = fk−1(x) − fk(x) for all k ≥ 1, we have

fk−1(µr,k) = µr,k(r − 1)(fk−2(µr,k) − fk−1(µr,k)),

i.e.,
fk−2(µr,k)

fk−1(µr,k)
=

1 + µr,k(r − 1)

µr,k(r − 1)
= 1 +

1

µr,k(r − 1)
.

On the other hand,

fk−2(µr,k) = fk−1(µr,k) + e−µr,k
µk−2
r,k

(k − 2)!
,

it follows immediately that

e−µr,k
µk−2
r,k

(k − 2)!fk−1(µr,k)
=

1

µr,k(r − 1)
. (97)

By the definition of ρ̄r,k(k), α and β, the assertion follows thereby.
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Proof of Lemma 14. The Poisson Cloning Model for a random r-uniform configuration on
n vertices, HPC(n, p; r) is defined in [24] as follows: For each vertex v, select d(v) to be a
Poisson variable with mean p

(
n−1
r−1

)
where these n Poisson variables are independent. Create

d(v) copies (i.e. clones) of each vertex v. If D =
∑
d(v) is a multiple of r then take a

uniformly random partition of the vertex-copies into parts of size r, as in the AP-model.
If D is not a multiple of r then choose one of the parts to have size D mod r, and so the
resulting hypergraph will have one edge of size less than r. Note that the probability that
r divides D is bounded from below by a positive constant. This implies that if a property
Q holds w.h.p. for HPC(n, p; r) then it holds w.h.p. when conditioning on the event that r
divides D.

[24] notes that this model is equivalent to: Choose D to be a Poisson variable with mean
np
(
n−1
r−1

)
, create D vertex-copies, and assign each vertex-copy to a uniformly chosen vertex.

Then take a uniformly random partition as described above. Thus, the AP-model APr(n,m)
is exactly HPC(n, p; r) conditioned on D = rm.

We say that a property Q of configurations is monotone decreasing (resp. increasing) if:
Consider any configuration for which Q holds. Create a new configuration by removing any
part and its vertex-copies (resp. adding a part containing r new vertex-copies and assigning
those vertex-copies to any bin). Then Q holds for the new configuration. We will argue that
if a monotone property Q holds w.h.p. in HPC(n, p; r) then Q holds w.h.p. in APr(n,m) if
m = np

r

(
n−1
r−1

)
.

Note that APr(n,m− 1) is equivalent to: choose a configuration from APr(n,m), select
a uniformly random part, and remove it along with its vertex-copies. It follows that if Q
is monotone increasing (resp. decreasing) then the probability that Q holds in APr(n,m)
is at least (resp. at most) the probability that Q holds in APr(n,m − 1). Suppose Q is
monotone increasing and that Q holds w.h.p. in HPC(n, p; r). Note that the probability
that D = Po(p

(
n−1
r−1

)
) is a multiple of r that is at least p

(
n−1
r−1

)
is bounded from below by a

positive constant. This implies that Q holds w.h.p. for HPC(n, p; r) when conditioning that
D is a multiple of r that is at least p

(
n−1
r−1

)
. Since APr(n,m) is HPC(n, p; r) conditioned on

D = rm = p
(
n−1
r−1

)
and since the probability that Q holds in APr(n,m) is monotone increasing

with m it follows that Q holds w.h.p. for HPC(n, p; r) when conditioning that D = p
(
n−1
r−1

)
,

i.e. for APr(n,m). The argument for Q monotone decreasing is almost identical.
[24] proves that Lemma 7 holds for HPC(n, p; r) where np

r

(
n−1
r−1

)
= m. Note that each part

of Lemma 7 is the intersection of two monotone properties, one increasing and the other
decreasing. For example, the first part says that there is a positive function g(n) = O(n3/4)
such that (i) the k-core has at least α(c)n − g(n) vertices and (ii) the k-core has at most
α(c)n + g(n) vertices. Since all of these properties hold w.h.p. for HPC(n, p; r) they hold
w.h.p. for APr(n,m). Corollary 9 follows from Lemma 7 and Lemma 8, so it also holds
w.h.p. for APr(n,m).

Proof of Lemma 27. Set f(x) = exfk(x), h(x) = xexfk−1(x). So we wish to show that
f ′(x)h(x) < f(x)h′(x).

f(x) =
∑

i≥k

xi

i!
, f ′(x) =

∑

i≥k

xi−1

(i− 1)!
.
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h(x) =
∑

i≥k

xi

(i− 1)!
, h′(x) =

∑

i≥k

ixi−1

(i− 1)!
.

f(x)h′(x) =
∑

i,j≥k

ixi+j−1

(i− 1)!j!
, f ′(x)h(x) =

∑

i,j≥k

xi+j−1

(i− 1)!(j − 1)!
.

When i = j, the contribution to each sum is the same: x2i−1

(i−1)!(i−1)!
. When i 6= j, consider

the contribution of (i, j) plus the contribution of (j, i). The sum of these contributions to
f(x)h′(x) and f ′(x)h(x) is

xi+j−1

(
i

(i− 1)!j!
+

j

i!(j − 1)!

)
, xi+j−1 2

(i− 1)!(j − 1)!
.

The contribution to f(x)h′(x) is larger since i
j

+ j
i
> 2.

Proof of Lemma 31. Let h(λ) = e−λλk−1/fk−1(λ)(k−1)!. Recall gk(x) above Lemma 27 and
recall the definition of ψ(x) in (19). Then,

ψ(x) = h(g−1
k (x)),

where g−1
k is the inverse of gk. It is easy to see and we have mentioned before that

limx→0 gk(x) = k. So for every x > k, g−1
k (x) exists, and by Lemma 27 and the chain

rule, the derivative of g−1
k (x) is positive. Thus, in order to show that ψ′(x) < 0, it is

sufficient to show that for every λ > 0, h′(λ) < 0.
Showing that h′(λ) < 0 is equivalent to showing that for every λ > 0,

(k − 1)
∑

j≥k−1

λj

j!
− λ

∑

j≥k−2

λj

j!
=

λk−2

(k − 2)!

(
−λ + (k − 1 − λ)

∑

j≥k−1

λj−k+2

[j]j−k+2

)

is negative. It is trivially true if λ ≥ k − 1. Now assume that λ < k − 1. Since for every
j ≥ k − 1, we have

λj−k+2

[j]j−k+2
≤
(

λ

k − 1

)j−k+2

,

where the inequality is strict except for j = k − 1. Thus,

−λ + (k − 1 − λ)
∑

j≥k−1

λj−k+2

[j]j−k+2
< −λ + (k − 1 − λ)

∑

j≥0

(
λ

k − 1

)j+1

= −λ + (k − 1 − λ) · λ

k − 1
· 1

1 − λ
k−1

= 0.

This completes the proof that h′(λ) < 0.

We need the following technical lemma before proving Lemma 24.
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Lemma 55. For all k, r ≥ 2 with (r, k) 6= (2, 2), h(x) < 1/(r − 1) for all x ≥ x∗ where

h(x) =
e−xxk−1

fk−1(x)(k − 2)!
, and x∗ = r(k − 1) − r

r − 1
.

Proof. It is easy to see that h(x) is a decreasing function on x > 0 (dividing e−xxk−1 from
both the numerator and the denominator and then the numerator is constant whereas the
denominator is an increasing function of x). Hence if we can prove h(x) < 1/(r−1) for some
x ≤ x∗ then we are done.

We first prove a well-known inequality with respect to fk(µ).

Claim 56. For any integer k < ⌊µ⌋, fk(µ) > 1/2.

Proof. Let M be the maximum integer such that M ≤ µ − 1. Then we must have k − 1 ≤
M − 1. By the definition of fk(µ), we only need to prove that

k−1∑

i=0

e−µµ
i

i!
≤

M−1∑

i=0

e−µµ
i

i!
< 1/2.

Let p(i) = e−µµi/i!; it suffices then to show that for every 1 ≤ i ≤M , p(M − i) ≤ p(M + i).
This follows easily from

p(M − i)

p(M + i)
=

i∏

j=−i+1

M + j

µ
≤

i∏

j=−i+1

(
1 +

−1 + j

µ

)
≤ exp

(
i−1∑

j=−i

j

µ

)
= exp

(
− i

µ

)
< 1.

Now we continue to prove Lemma 55. We split our discussion into two cases. In both, we
will reduce the lemma to checking a finite number of pairs (k, r), which is straightforward.

Case 1: k = 2, r ≥ 3. Now h(x) = e−xx/(1− e−x) and x∗ = r− r/(r−1). By computing
the derivative of (r−1) ·h(x∗(r)) with respect to r, it is easy to see that h(x) is a decreasing
function on r ≥ 3. Hence it suffices to verify that h(x∗(3)) < 1/2 which can be easily done.

Case 2: k ≥ 3. We may easily verify the lemma for (k, r) = (3, 2). So we assume that
(k, r) 6= (3, 2). Let x1 = r(k − 2). Clearly x1 ≤ x∗ and ⌊x1⌋ > k − 1. By Claim 56, we have
fk−1(x1) > 1/2. Since h(x) is decreasing on x > 0, it suffices to prove that h(x1) < 1/(r− 1)
and thus it suffices to prove that e−x1xk−1

1 /(k − 2)! < 1
2(r−1)

. Define

φ(x, r) =
e−rx(rx)x+1

x!
.

Then, e−x1xk−1
1 /(k − 2)! = φ(k − 2, r) and so it suffices to prove

(r − 1)φ(k − 2, r) <
1

2
. (98)

By computing the derivative of (r − 1)·φ(x, r) with respect to r, we see that

for (r − 1)2 ≥ r2/(x+ 1) : (r − 1) · φ(x, r) is non-increasing on r. (99)
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It is easy to see that

φ(x+ 1, r)

φ(x, r)
=
e−r(rx+ r)x+2

(x+ 1)(rx)x+1
= re−r

(
1 +

1

x

)x+1

≤ re−r+1+1/x ≤ re−r+2,

which is strictly less than one for any x ≥ 4 and r ≥ 2. So

for x ≥ 4, r ≥ 2 : (r − 1) · φ(x, r) is decreasing on x. (100)

k ≥ 6: We can easily verify that φ(4, 2) < 1/2, and so by (99), this establishes (98) for
k = 6, r ≥ 2. Then (100) establishes (98) for all k ≥ 6, r ≥ 2.

k = 5: We can easily verify that 2φ(3, 3) < 1/2, and so by (99), this establishes (98) for
k = 5, r ≥ 2.

k = 4: We can easily verify that 3φ(2, 4) < 1/2, and so by (99), this establishes (98) for
k = 4, r ≥ 3. For r = 2, we verify the lemma directly from the definitions of h(x) and x∗.

k = 3: We can easily verify that 5φ(1, 6) < 1/2, and so by (99), this establishes (98) for
k = 3, r ≥ 4. For r ∈ {2, 3}, we verify the lemma directly from the definitions of h(x) and
x∗.

Proof of Lemma 24. We first verify that ζ > k. Recall that gk(x) = xfk−1(x)/fk(x). By
definition of ζ , α and β in (12) and (5),

ζ = gk(µr,k).

It is easy to see that limx→0 gk(x) = k. Lemma 27 says that gk(x) is strictly increasing on
x > 0. It is easy to see that for any (r, k) 6= (2, 2), hr,k(µ) in (3) tends to infinity both
when µ → 0 and when µ → ∞. This implies that µr,k is a positive real number. Thus,
gk(µr,k) > k.

Next we prove that ζ < r(k − 1). By (97),

e−µr,k
µk−1
r,k

(k − 1)!fk−1(µr,k)
=

1

(k − 1)(r − 1)
. (101)

As we said above, ζ = gk(µr,k) and so by (11), ζ = µr,kfk−1(µr,k)/fk(µr,k). Hence, ζ < r(k−1)
is equivalent to

fk(µr,k)

µr,kfk−1(µr,k)
>

1

r(k − 1)
.

Note that fk(µr,k) = fk−1(µr,k)− e−µr,kµk−1
r,k /(k− 1)!; combined with (101) the left hand side

above is equal to

1

µr,k

(
1 − e−µr,k

µk−1
r,k

(k − 1)!fk−1(µr,k)

)
=

1

µr,k

(
1 − 1

(k − 1)(r − 1)

)
.

Hence ζ < r(k − 1) is equivalent to

1

µr,k

(
1 − 1

(k − 1)(r − 1)

)
>

1

r(k − 1)
i.e. µr,k < µ∗ := r(k − 1) − r

r − 1
. (102)
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We consider the function h(x) from Lemma 55; i.e.

h(x) =
e−xxk−1/(k − 2)!

fk−1(x)
.

By (101) (and multiplying k − 1 on both sides), h(µr,k) = 1/(r − 1). So by Lemma 55,
µr,k < µ∗, thus establishing (102) and hence the lemma.
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