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Abstract

Aresult of Spencef[16] states that every collection skts over a universe of sizehas a coloring of
the ground set witf—1, +1} of discrepancy)(y/n). A geometric generalization of this result was given
by Gluskin [10] (see also Giannopoulas [9]) who showed thvarye symmetric convex bodi € R™
with Gaussian measure at least”, for a smalle > 0, contains a poing € K where a constant fraction
of coordinates of; are in{—1, 1}. This is often called a partial coloring result. While bdtlese results
were inherently non-algorithmic, recently Bandal [3] (s¢®0 Lovett-Mekal[12]) gave a polynomial
time algorithm for Spencer’s setting and Rothvbl3 [15] gavaradlomized polynomial time algorithm
obtaining the same guarantee as the result of Gluskin anthGpmulos.

This paper has several related results. First we prove anotnstructive version of the result of
Gluskin and Giannopoulos via an optimization of a linearction. This implies a linear programming
based algorithm for combinatorial discrepancy obtainirggame result as Spencer.

Our second result gives a new approach to obtains partialings and shows that every convex body
K C R™, possibly non-symmetric, with Gaussian measure at keg$t, for a smalle > 0, contains a
pointy € K where a constant fraction of coordinateg/afre in{—1, 1}.

Finally, we give a simple proof that shows that for ahy- 0 there exists a constant> 0 such
that given a body with ~,(K) > 4§, a uniformly randomz from {—1,1}" is in ¢K with constant
probability. This gives an algorithmic version of a speciase of the result of Banaszczyk [2].
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1 Introduction

Discrepancy problems appear in various areas of computarceand mathematics, we refer the reader
to texts by MatouSek [13] and Chazelle [8]. In the combinataliscrepancy problem, we are given a
universe/ = {1,...,n} and sets51, ..., S,, C U and the goal isto findeoloringy : U — {—1,+1}
that minimizes

max Zx(z) .

Jj€[m] ics,

A celebrated result of Spencer[16] states that there is@ioglwith discrepancy (y/n) whenm =
n. There is a natural connection between discrepancy thewrganvex geometry; Gluskinh [10] proved
the same result as Spencer|[16], independently, using rgya@metric arguments. Giannopoulps [9],
building on the work of Gluskiri [10], showed that the followgigeneralization of Spencer’s result: Given
a symmetric convex bodi C R” with Gaussian measure at least™, then for a small enough there
existsy € K such that2(n) coordinates of; are set to either1 or 1A,

Interestingly, all these results were inherently non-gtgmic and obtaining polynomial time algo-
rithms for the combinatorial discrepancy problem was hgitted as an open problem [1]. Bansal [3],
in a breakthrough result, gave a polynomial time algoritiemthe combinatorial discrepancy problem
attaining the same discrepancy as the result of Spenceetiand Mekal[1?] later gave a much sim-
plified algorithm attaining the same guarantee. Both thi&ga@ithms inherently used the combinatorial
structure of the problem and were not applicable to the gésetting of finding a partial coloring in a
convex body as given by the result of Giannopoulos [9]. ReégeRothvoR [15] gave a polynomial time
algorithm that gives an algorithmic version of this result.

Another well-studied case of combinatorial discrepandp isound the discrepancy in terms of the
maximum occurrence of any element amongrihsets. Beck and Fialal[4] showed that any set system
has discrepancg®t — 1 if each element appears in no more thiasets and conjectured that the bound
could be improved t@(+/#). Techniques of Spenceér [16], and its algorithmic versieas, be adapted
to bound the discrepancy ly(v/tlogn). Further improvement was obtained by Banaszczyk [2] who
showed a general result proving that given arbitrary unitmes «4, ..., u,, € R™ and convex body
K with v(K) > % there exists signs,, ..., e, € {—1,1} such thaty, e;u; € K. This implies an
improved bound of)(1/#Tog n) on the discrepancy of any set system whgs¢he maximum occurrence
of any element.

1.1 Our Resaults

In this paper, we prove several algorithmic results for tiserépancy problem. A common feature of all
our results is that we analyze the algorithms for the moreggigeometric formulations of our problem
rather than the combinatorial version. These generadizatallow us to take advantage of many results
in the theory of convex geometry.

Ouir first result shows that optimizing a random linear olyecbver the convex body results in a
partial coloring. Let~, denote then-dimensional standard Gaussian measure with densityiéumct
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Theorem 1.1. For any constand < ¢ < (13V22/”) , there exists a constafit< 0 < 1 such that every

symmetricconvex body< C R™ with ,,(K) > e ", the pointz = argmaxz{T-y:y € KN[-1,1]"}
wherel is a standard Gaussian iR, satisfies#{i € [n] : |z;| = 1} > dn with probability at least;.

IWhile this result gives only partial coloring, by applying this result recursively, one can obtain theesamsult as Spencer’s.



A corollary of the above result is the fact that solving ae&nf linear programs gives a coloring for
the combinatorial discrepancy problem matching the resfuipencer([16]. The proof of this theorem
adapts some of the ideas of Rothvol3 [15] as well as the cidddigshon’s inequality.

Our next result gives a new approach that obtains a partiating without assuming symmetry of
the convex body.

Theorem 1.2. For any constanty > 0, there exist constants < ¢, < 1 such that every convex body
K C R™with v, (K) > e~=" contains a point: € K with {i € [n] : |z;| = a} > dn. Moreover, there
is a polynomial time algorithm that given a membership cedor K, returns such a point with high
probability.

The algorithm uses the covariance matrix of the convex bodyita restrictions. The main technical
ingredient is to use the property that the measygeobtained by restricting;, to the convex bodyx,
is more log-concavéhan the Gaussian measure.

While Theoreni I11 (and the results of Gluskinl[10], Gianndps [S] and Rothvo [15]) guarantee
the pointz € K N [—1,1]", Theoreni IR guarantees only tha€ K. This is necessary since the body
{z € R" : z; > 2} satisfies the conditions of the theorem but does not intetsetiypercubé-1, 1]™.

A consequence of this fact is that Theoilleni 1.2 cannot be esedsively to give an optimal coloring for
the combinatorial discrepancy problem. Nonetheless oivstthat the technical condition of symmetry
is not necessary if one aims to just find a partial coloring.

Our last result gives an algorithmic version of a speciakaashe result of Banaszczykl|[2] where
u; = e; foreachl < ¢ < n.

Theorem 1.3. For everyd > 0, there exists a constant> 0 such the following holds. Ldt C R™ be a
convex and symmetric body such thak') > ¢ and letz be a uniformly random vector frof+-1,1}".
Then

Pr[z € ¢cK] >

DN =

The structure of the rest of the paper is as follows. We prdveofeni 11 in Sectidd 2, Theoréml1.2
in Sectiori B and Theorem 1.3 in Sectidn 4.

2 A linear programming algorithm

Let K C R™ be a convex body and & = (I'y,...,T',,) be a standard Gaussian random vectdRn
For0 # y € R", set

sk (y) = arg gleag@, ),

the supporting point of in K (here, we agree that if there is more than one argument whictimizes
the expression, for the purpose of analysis, we take the plisest to the origin which is unique by
convexity). Note that giver’k andy, the pointsx (y) can be found by optimizing a linear function over
K which is a linear program wheR is a polytope. Next, defin€ = [—1, 1]™, and for any0 # y € R™,
we also define

a(y) = % [#{i;sxnc(y)i € {-1,1}}].

In other words,a(y) denotes the proportion of coordinates which are settoor +1 in the point
sknc(y). In this notation, the proof of Theordm 1.1 boils down to simmithat for alle small enough,
there existd > 0 such that

Y (K) >e " = P(a(l') > §) > ¢

for a universal constant> 0.
A central definition in our proof will be the Gaussiamean-widthof a convex body, defined by

TE

w(K) :=E[l - sg ()] = E [ma%m@} .
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The proof, which shares some ideas with the recent proof ¢iR&([15], relies on three classical
results as its main ingredients. The first ingredieBigak’s Lemmal[18]:

Lemma 2.1. (Sicak) LetK be a symmetric convex body afd= {x : lv; - x| < b;} be astrip. Then
V(K NS) =y (K)(S).

The second ingredient is Sudakov-Tsirelson and Borell kveown Gaussian concentration result
[el:
Theorem 2.2. Let f : R™ — R be anL-Lipschitz function. Then one has for al> 0,
P(f(T) — E[f(D)]| > Lt) < 2e~"/>.
The last classical ingredient is known as Urysohn’s ineityual

Theorem 2.3. (Urysohn's inequality) Lef< be a convex body and Iét be a centered Euclidean ball
satisfyingy(K) = v(B). Thenw(K) > w(B).

When the Gaussian measure is replaced by Lebesgue meassiig & classic inequality in convex
geometry proven iri[17]. The proof for the Gaussian measullefs the same lines. For completeness,
we provide a sketch of this proof.

Proof. (sketch) LetB’ be the centered Euclidean ball satisfyingB’) = w(K). By the monotonicity
of w(-) it is clearly enough to show that B’) > ~(K). For two convex bodie&’;, K, we denote by
K, + K5 the Minkowski-sum of the two, namely

K1+K1:{x+y;x€K1,y€K2}. (1)

It is straightforward to check that, by definitien( K7 + K»2) = w(K7) + w(Ks). LetUy,Us,... be a
sequence of independent orthogonal transformatioR$ inniformly distributed in the orthogonal group
SO(n). Define

1 N
Ky =+ z;UjK.
J=

Then it follows from [[1) and by induction that( K 5 ) = w(K). Moreover, since the Gaussian measure
is log-concave (which follows fron [5]), we have that

. N N 1/N
YKN) =7 (NZUJ'K> > (HV(UJ'K)) = y(K).
j=1 j=1

Therefore, in order to prove the theorem it is enough to slat t

lim v(Ky)=~(B'). (2)

N—o0
But remark that by definition of the bodi and by the strong law of large numbers we have for all
6 esn i,
} _ w(K)
E[ITN

almost surely, a®&v — co. By definition of B’ this implies that, a®v — oo,

max (z,0) —» E {max (x,0)
r€KN TEK,

max (z,6) — max(z,6), V0 e S" 1.
zeKN xeB’

Equation[(2) now follows by the continuity of the Gaussiaraswee of a set with respect to its support
function. O



Urysohn's inequality gives the following simple corollary

Corollary 24. Fix e > 0. Let K C R"™ be a convex set satisfying,(K) > e~ <". Then for large
enoughn, we have
w(K) > (1 —2ve)n.

Proof. Denote byB(r) centered Euclidian ball of radius Let R > 0 be chosen such that,(B(R)) =
~v.(K). An elementary calculation gives that for alt> 0,

W (B(VA—n)) <e /2, ®)

Consequently, we have
Y (B((1 = V2e)V/n)) < e~ (V2 /2 — o—en

which implies that? > (1 — v/2¢),/n. Moreover Inequality[(3) implies that

E[T]] > (vA - 2v/logn)(1 — e~21%") > /i — 3,/logn

for largen and therefore

w(B(R)) =E { max - F] >E {% ~F] = RE[||T|]] > R- (v/n —3y/logn) > (1 — 2y/e)n

z€B(R)
(4)
ife>6 105”. An application of Theorem 2.3 now gives
w(K) = w(B(R)) > (1 - 2v)n
and the corollary is proven. O
ForI C [n] define
K(I):=Kn <ﬂ{xi €1, 1]}) .
iel
The central Lemma needed for our proof will be the following:
Lemma 2.5. Let K be such thaty(K) > e~*". One has
i . _ 1/4 —en
P <§1Cn[£] I-sgy(l) < (1-32 )n) <e M (5)
<en

Proof. Our first step will be to show that it is legitimate to assumat i is contained in a Euclidean
ball of radius2/n. DefineK’ = K N 2y/nB™ (whereB™ denotes the Euclidean unit ball &*). The
fact thatl' - s () (I') > T' - sk (pyn2,mp- (I') allows us to provel(5) with’ in place of X'. Moreover,
a standard calculation gives, (R" \ 2\/EB") < e™™, s0 since we may assume thak i, we have
v(K') > e~=". Therefore, from this point on we will allow ourselves assuthatK C 2,/nB" by
relaxing the assumption on the volumefofto the assumption(K) > %6_5".

Fix I C [n] with |I] < dn. LemmdZ.1 gives

(K (1) = 7 (K) [Trm (i € [1,1]}) = ey (=1, 1)1 = e EFOm, (6)
icl



Corollary[Z.4 now gives
w(K(I)) > (1 -2Ve+d)n
or, in other words,
Elsgn@)] = (1-2vVe+6)n. @
Remark that, by the assumptid C 10,/nB™, we have that the function

y—y-Skm(y)= sup y-z
z€K(I)

is 24/n-Lipschitz (here we use the fact that the supremut-thipschitz functions id.-Lipschitz). Thus,
by applying theorern 212 we get
P (1" ~sgn(T) < (1 —2Ve+0 — 877)n) < 26_"2", vn > 0.
By taking a union bound over all choices bfwe get
P < inf T-sg(l) <(1—-2vVe+d— 8n)n) <n <(§1]) e
n

IC[n]
[I|<én

< (o s,

The proof is concluded by taking= ¢ andn = 2¢/4. O

We are finally ready to prove the main theorem of the section.

Proof of Theorerh 1]1Using the fact that removing constraints which are not tighthe optimal solu-
tion does not change the optimum value, we obtain that

a(l) <6 =T -sknc(l) 2 if T-sp (D).

|I|<é6n

It follows that (choosing = ¢)

P (F ~sxnc(T) < (1 - 3251/4)n) <P@al)>e)+P < Iicn[f] ' s < (1 - 3261/4)7’L>

|I|<en
and by Markov’s inequality together with the result of Len{ig,
E[l - sxnc(D)] > (1 - 3251/4) (1-P(a(l) > &) — e )n

(here we used the fact that contains the origin which implies that- sxnc(I") > 0). But on the other
hand

El: sgkne)] <w(C)=E {mag(a:, F>}

TE
2
=E [Z m] = nE[|[[] = \/;n
i€[n]
Combining those two inequalities finally gives
V2
P(a(T l—-—————— —e ™.
(a(T) > ¢) > (= 32:09) e
The theorem is complete. O



Extension to Full Coloring While Theoreni L2 gives only a partial coloring, it can belagabrecur-
sively to obtain the following result of Spender[16]; searimea 10, Rothvold [15] for details regarding
the recursion.

Corollary 2.6. Given a universd/ = {1,...,n} and setsSy,...,S,, C U, there exists a coloring

X : U — [=1,1]" such thatmax; ¢, |des x( )| = O(y/nlog2m/n).

3 A coordinate-by-coor dinatealgorithm for thenon-symmetric case

In this section, we prove Theordm11.2. The main ingredietténproof is Lemm&a3]1 from which the
proof follows immediately. In Sectidn 3.2, we provide thgaithm implementing the guarantee in the
lemma.

3.1 Themain lemma for therecursion

Our goal in this section is to prove the following Lemma.

Lemma 3.1. For any constanty > 0 there exist constants < n, 7 < 1 such that the following holds.

Suppose thak ¢ R™ is such thaty,, (K) > e~ then there exists € [n] and¢ € {—1, 1} such that
-1 (K N{z; = af}) 2 7 (K).

The proof of Theoreri 112 now follows from Lem|-3 1 by indaotiGivena > 0, let0 < 5,7 < 1
be constants satisfying Lemial3.1. ket= 7 and? := 21 —L+ and it is easy to check that the condition

of Lemmd3.1 continues to hold for at Ieést apphcatlons of Lemm&3.1 giving the existence theorem.
An algorithm which efficiently finds this sequence of cooat#s is described in Sectibn13.2.

Before, we prove Lemnia 3.1, we give a few definitions and miekaries. For a subséf c R”, we
defineyk to the probability measure such that for each measuralieR",
(K N B)
Y (K) .
We will first need the following technical estimate. Lgt|| denote the Euclidian norm di®
Lemma3.2. Forall K C R™ one has

e sa/log@zm)
n_6\m/2log< ) /H:CH dyr(z 9)

Proof. We first provel(8). LefX be a random variable distributed with lay. Defined = HIEXH (if the

denominator is zero thehl(8) follows trivially). Lgfx) be the density of the variableX, 6). We clearly
have that for each € R,

vk (B) =

and

v1(x)
f(x) < K

Defineg(z) = 15024 (K) wherea is chosen such thaf, g(z)dz = 1, i.e.,a = (7, (K))

where® denotes the one dlmen5|onal Gaussian (cumulative) digivibbfunction. Sincef g = [ f, we
have thay(xz) > f(z) forallz > o andg(z) < f(x) for all z < a. Consequently,

[ at@yts = [ @y = [ (@) ~gla)ds = [ @ = a)(s() = gla)de > 0
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Therefore,

ot

=E[(X,0)] :/Rxf(:zr)da: §/Rxg(:c)d:c

_ Sz n(@)de
f{wZa} ~1(x)dx
Now, an elementary calculation gives that

H / vy ()

and equatior[{8) is established.

We turn to the second estimate, whose proof is based on gxaetlsame idea only that - 6 is
replaced byj|z||. Let f(z) be the density of the variableX || and leth(z) be the density ofiT'|| where
I' is a standard Gaussian random variabl®&fn We clearly have

zy1(z)dx
< f{zZa} 71( )

1 1
<2laf+ 5 =207 (1K) + 7 <441
S SA =2 )+ g < Og(

)

flz) <

Defineg(z) = 1|w|§a% wherea is chosen such thaf g(z)dz = 1. Again, since[ g = [ f, we
have thay(xz) > f(z) forall |z| < aandg(z) < f(z) for all |x| > «, and therefore

/R Poads — [ af@dr = [ #o@) = [t = [ @2 = 0?)gle) — f@)dr <0

or, in other words,

f{lmléa} 22h(z)dz
/Rn l|z||2dyr () :/R:va(:v)d:v Z/szg(x)dx: f{mga} s (10)

Next, we recall the following elementary fact (which follswsy a straightforward calculation);If is a
standard Gaussian random variabl&ihthen

(||| - V| > t) < 2¢7/2,

It follows that
h(z)dz < v, (K)

/ 2
|z|<v/n—y/2log oy

and thusy > /n — ,/2log ﬁ Now, we also have

h(z)dz < yu(K)*.

/ 2
|z|</n—k,/2log Fe)

: ) .
First assume tha, (K) < 5. We estimate

22h(z)dx 3 n— o 2 2 k2 _ (k+1)?
Awsm h(z)d Zg;(¢_ %+1)21g%uﬂ> @AK) Vo (K) ) (11)

5 2
\/5—3‘/21%%) Yn(K). (12)

Y



Thus, we have

. f{\w\éa} 22h(x)dx
" Jalcay M@)dz

2
(Vi —3,/2108 =25 ) n(K) 2\
> ) _<\/_—3 210g7n(K)> (14)
giving us the claim.

Otherwise, consider the case whgi(K) >
we decrease, inequality [12) implies

2
/ 2*h(x)dx > <\/_—34 /2log%> T (K)
{lz|<a} 2

/ ]2 (z) (13)

1. Using the fact thaf{‘m‘ga} 2?h(z)dz decreases if

Thus we have

f{|m|<a} 2?h(z)dz
2 S
/HxH () 2 f{\z\ga} h(z)dz 13)
2 2
> (‘/ﬁ_?’”jl(ff) m) <\/‘—3,/21og—7 ?K)> (16)
which finishes the proof. O

An essential ingredient for the proof will be the followingedimensional version of Caffarelli’'s
contraction theoren [7].

Proposition 3.3. Lety be a probability measure di having the form = f(x) = e~*"/2~V(@) where
V(z) is a convex function. Then there exists a unique monotofferaiitiable functiorl’ : R — R
satisfying

(=00, T(x)]) = y((—o0,2]), Vo € R. a7

Moreover, the functioff’ is a contraction, namely
T (z) = T(y)| < |z -y (18)
forall z,y € R.
The proof can be found in[7]. For completeness, we give aisgziproof.

Proof. By differentiating both sides of equatidn{17) with respect, we see thal” must satisfy

T(2) = -3 (19)
f(T(x))
Together with the boundary conditidimn_ ., 7'(x) = inf supp(u) (wheresupp(p) denotes the support
of 1), the existence of’ now follows from the Picard-Lideldf theorem (a standardEO&xistence and
uniqueness theorem).
Next, we want to show that is a contraction. The previous equality suggests that

—22 4+ T(z)?

logT'(z) = 5

+ V(x).



By differentiating this equation twice with respectitpwe get
(logT'(z))" = =1+ T'(x)* + T(x)T"(x) + V" ().

Now, letxy be a point wherd”(z) attains a local maximum, then for this point we have that dfe |
hand side is negative arfd’(x) = 0. Using the fact that’”” > 0, we get that

TI($0)2 S 1.

Equation[(ID) also shows that(x) is continuous, so it is enough to show th&{zr) attains a maximum
in R. This follows by approximating by compactly supported measures. O

We will need two more lemmas. The first lemma shows that thgeption of a restriction of a
Gaussian measure is more log-concave than the Gaussiannmedhe proof follows from Prekopa-
Leindler inequality.

Lemma3.4. Let K be a convex body iR", i € [n] and letf : R — R be the density of the marginal of
~vk on to the directiore;, i.e., the unique (in the almost-everywhere sense) fumstdisfying

/ f(z)dx = vk ({x € R" : x; € B}), VB C R measurable
B

Then the functiorf attains the form
fla)=e w27V (20)

for some convex functidi(z). Moreover, ifX is a random variable with densitf(x) thenVar[X] < 1.

Proof. Consider the functiog(z) = exp (% Do it :17?) 1k (x). Since the functior}_, x7 is convex
and sincel g is log-concave, the function is log-concave. By the Prékopa-Leindler inequality, the
functionh : R — R defined by

h(y) = /g(wl, s Tie1, Yy Tig 1y ooy T )21 ... dXi_1dTip 1 ... dTy,

is log-concave as well. Thus, there exists a convex fundtign) such thati(z) = exp(—V(z)). But
note that by definition of the functiofy, there exists a normalization constaht> 0 such that

fx) = Z 'h(z)e /2.

This establishes the fact thagttains the forn{(20). For the second part of the lemma, w@tggosition
[3.3 to construct a functiof which pushes forward the standard Gaussian measure to tsineavhose
density isf. By equations(17) and(1L8), we have

VarlX] = [ (@ ~BX)?f(e)ds = [ (T(e) - BX]Par(a)

< / (T(x) — T(0))%d(x) < / (2 — 0)2dy(z) = 1.

R
The lemma is complete. O
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Lemma 35. Let V(X) be a convex function such thgt = f(z) = ¢="/2-V(®) is a probability
density. Let, o > 0 be constants which satisfy

1
46?3 < o < 8 1og% — log(2m) (21)

Let X be a random variable with densif(z). Suppose that

|E[X]] = ‘ / we /2 V@) | < ¢ (22)
and
Var[X] = / (z—E[X])?e /2 Vg > 1 —e. (23)
Then we have .
max(f(a), f(~a)) > m (24)

Proof. Let T'(z) be the monotone push-forward of the standard Gaussian neetisthe measurg,
hence the monotone map defined by equafioh (17) of PropoBil According this proposition, we
have that

T (x) = T(y)| < |z —yl, Yo,y €R. (25)

Let v = E[X] denote the expectation of random variallewith density f(x). Now, by definition of
T(z), we have

/(T(:z:) —u)’dy = /(:17 - u)Qezz/va(z)d:r
and by convexity together with (23),

[ o= [owpet s

In other words, we have
[~ @@ - 102 <=
R

Consequently,

/ |z —T(x) +T(0)||lz+T(x) —T(0)|dy = /(x —T(z) +T(0)(x+T(x)—T(0))dy < e. (26)
R R
where the first equality follows since the two tertas— 7'(z) + 7°(0)) and(x + T'(z) — T'(0)) have the
same sign for alk € R, by the fact thaf” is a monotone contraction.

Next, we would like to show thaff’(0)| is bounded by a function of. To this end, lety be a
parameter we fix later. We calculate,

T(0)] = /R T(O)dw‘ < /R v —T(x)+ T(O)dv‘ + /R - T(:c)dv‘ 27)
5
< ’/ r—T(x) +T(0)dy| + / x—T(x)+T(0)dy|+¢e (28)
-5 z€R\[-6,6]
5
< / ody + % |z —T(z) + T(0)||x+ T(z) —T(0)|dy +¢ (29)
=5 2ER\[—5,0]
< 2%+ e (30)

- 0
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where Inequality[{27) follows from triangle inequalitydguality [28) follows from the fach xdy =
0 and| [ T(x)dy| = | [ zdu| < . Inequality [29) follows from thatr — T'(x) + T(0)| < |z| < &
foranyz € [—4,6] and|x + T'(z) — T'(0)| > |z| > é foranyxz € R\ [—4, ] using Inequality[(25).
Inequality [30) follows from standard Gaussian estimateslaequality [26). Now choosing = £'/3,
we obtain thai7'(0)| < 4¢2/3 (note that: < 1). Condition[21 together with the monotonicity &f
finally give
T (a) > 0. (31)

Observe that sinc€ is a differentiable contraction, we ha¥¥(z) < 1 for all z. By differentiating
equation[(Il7) (as in equatidn {19)) we therefore get

F(T(x)) = ﬁ%v@) > #e-*/z, Vo € R. (32)

In light of this inequality, we learn that it enough to showtti —! («) is bounded to establish a lower
bound onf(«). Since we may replacg(x) by f(—x) without changing the statement of the lemma, we
may assume without loss of generality tg0) > 0. Define

A={z> 0z —T(z) > a+4e?3} = [, 00)

(if the setA is the empty set, we agree that= oo). Now consider the case wheh> 2a + 4¢2/3, In
this case

20+ 4623 — T (20 + 4/3) < a4 4£%/3
— TQ2a+4e¥?) >a
= T Ya) < 2a+ 43
Together with[(311), this giveld’ ' (a)| < 2a + 4¢2/3. Therefore, by Inequality (32) we finally get
L —(Ba)?/2
fla) > 7€ (B3e)7/2,
Otherwise, we have that < 2a + 4¢2/3. But in this case we can write

e > /|x—T(:c)+T(O)||x+T(:v) —T(0)|dy (33)
R
> / o — T(2) + T(0)||z + T(x) — T(0)]dvy (34)
x>p3
> / la + 43 + T(0)|zdy (35)
z>p3
> a/z>ﬁ xdry (36)
> o P (37)

where Inequality[(33) follows from Inequality (26), Inedita (B5) follows from the factl'(x) > T(0)
for eachz > 0 and Inequality[(36) follows fromiT’(0)| < 4<2/3. Inequality [37) follows from simple

estimates on Gaussian distribution. But note that the ¢iomd21) implies that < \/%e*@a*%z/a)z”
which contradicts this inequality. The proof is complete. O

We are now ready to prove the main lemma
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Proof of Lemm&3]1Suppose tha,, (K) > e~ where0 < n < 1 is a constant determined later on,
which will depend only onv. Let{ey, ..., e, } be the standard basis&f*. For all1 < i < n, define

R

v = / ((z, €:) — w;)® dyic ()

According to Lemma3]2, we have

S-S ((fomwina) | oo

1=

and

< 16log ( ) < 20mn

_2
Y (K)

for large enough. According to the second part of the same lemma, we have

E—E/ ((@.e) =) du(o) = [ el H/xdw

Lemmd3.% implies that for each< i < n, v; < 1. Let I be uniformly chosen at random from,
then the above implies that

> n(1 —10y/n — 20n)

E[u7] < 20
and
E[v;] <1-10/7—20n
Applying Markov's inequality, we have that

1
P (|us|* < 50n andv; > 1 — 30,/5 — 60n) > 1
Thus there exists arwhich satisfies
lu;|* < 50n and v; > 1 — 30\/5 — 60n. (38)

Let f(z) denote the density of marginal 6fc on directione;. Givena, we choose: small enough
to satisfy the condition of Lemn@ 5. By choosingo be small enough, so that equatidnl(38) is
satisfied (for example < 1555 suffices) we obtain thahax{ f(«), f(—a)} > \/%872042_ Thus setting

_ 1 _—(2a+4e?/3)2/2
T = =¢ o , we obtain that

T

max{y, 1 (K N {zi = a}), yn-1 (K N {zi = a})} > max{y,(K) f(a), v (K) f (=)} = 77 (K)

as claimed. O

3.2 Thealgorithm

In order to make the proof of Lemnia 8.1 constructive, we wdikle to find a way of determining
whether or not a coordinaiec [n] satisfies the conditiofi_(88). Clearly, in order to do thiss inough
to have a good enough approximation for the covariance xatthe Gaussian measure restricted to the
body K. The estimation of this covariance matrix can be done usielfkmown sampling techniques,
based on standard constructions of random walks in logax@measures. We refer to the reader to [11,
2.2] for the construction of two such walks, called the B&atlk and Hit-And-Run random walk.

Then, to get an estimate for the covariance matrix|@f, we can directly apply the following result,
which is an immediate consequence of Corollary 2.7 in [11]:
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Theorem 3.6. (Lovasz-Vempala) For any. € N, ¢ > 0 andd > 0 there exists a numben =
poly(n,1/6, () such that the following holds: Letbe a log-concave probability measure whose density
is f: R" — R, and letvy, ...v,,, be independent samples from the Ball-Walkiasteps inu.. Define for

all g e S1,

m

and

Then with probability at least — ¢, we have for alb,

’Ee — /@,9)@(1) <6 (39)

and
< 4. (40)

W / (. 6)2du(z)

Using this theorem, within polynomial time one can have adyenough approximation for the
covariance matrix of/| x such that with probability at least— —, if a coordinate’ € [n] satisfies the
condition [38) with respect to the empirical covariancenraf the random walk, it will also satisfy the
same condition for the original measure, up to a negligitiere

The above gives us an algorithm for finding a coordinate [n] and a sign¢ which satisfy the
condition of Lemma311 with probability — 1/n2. In order to find the partial coloring, we reiterate by
considering the new convex body N {z; = «£}. Using a union bound, this algorithm will eventually

succeed with probability at least— 1/n.

4  Proof of Theorem
For a symmetric convex body c R™ with non-empty interior, we write
|zl x = inf{\ > 0; x € AK}

to denote the corresponding norm. Iebe a standard Gaussian random vectdRinand let¥ be a
vector distributed according to the uniform measurg en, 1}”. Define

O(K) =E[|¥]%] -

Our proof will rely on the Maurey-Pisier estimate [14], whieads

Theorem 4.1. (Maurey-Pisier) For all symmetriéC C R"™, we have

(K) < ZE[IT]]-

Note that, by definition
(K) < o® = P[¥ € 20K] >

N~

To complete the proof of Theordm 1.3, we therefore need tw $hat for a symmetric, conveX C R”,
1K) =6 =E[|T]%] < C©) (41)

for some constar@ () > 0 which only depends o#.
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Next, note that there exists= ¢(6) > 0 such thattB™ C K, whereB™ is the unit ball. Indeed,
letc >0 satisfy\/% [¢ e **/2dz = 5. Thenfor alld € S"~*, one hasy({z;]z - 6] < c}) < 4, and

therefore we must hav& N {z; |z - 6] > ¢} # 0. By the symmetry of¥, it follows thatcB™ C K.
It now follows that for ally € S™ one has

Iyl < ™!

which implies, using the triangle inequality, that for ally € R,
Il = llyllx| < ¢l =yl (42)

In other words, the functioff - || - is ¢~ !-Lipschitz.
For a functionf which is integrable with respect tg we define foralh < ¢ < 1

Py (t) = inf {a; P(f(T) < a) > t}.

wherel is a standard Gaussian vector. In other waPdg () is thet-percentile of the variablg(T").
The next theorem which is a well known estimate in Gaussiaceotration, is an immediate corol-
lary of Theoreni 2]2:

Theorem 4.2. Forall 0 < ¢ < 1 there exists a constaidt = C(¢) > 0 such that the following holds:
let f be anL-Lipschitz function, then for app > 1,

[E((f(I)") = Py s (8)"] < CLP. (43)
This theorem implies that
E[IT|I%] < Py (6)* + C(8)e,
but note that we actually havé K') = P, ., (0) = 1. This implies[[41) and the proof is complete.
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