
ar
X

iv
:1

40
9.

29
13

v1
  [

cs
.D

S
]  

9 
S

ep
 2

01
4

Efficient Algorithms for Discrepancy Minimization in Convex Sets

Ronen Eldan∗ Mohit Singh†

Abstract

A result of Spencer [16] states that every collection ofn sets over a universe of sizen has a coloring of
the ground set with{−1,+1} of discrepancyO(

√
n). A geometric generalization of this result was given

by Gluskin [10] (see also Giannopoulos [9]) who showed that every symmetric convex bodyK ⊆ Rn

with Gaussian measure at leaste−ǫn, for a smallǫ > 0, contains a pointy ∈ K where a constant fraction
of coordinates ofy are in{−1, 1}. This is often called a partial coloring result. While both these results
were inherently non-algorithmic, recently Bansal [3] (seealso Lovett-Meka [12]) gave a polynomial
time algorithm for Spencer’s setting and Rothvoß [15] gave arandomized polynomial time algorithm
obtaining the same guarantee as the result of Gluskin and Giannopoulos.

This paper has several related results. First we prove another constructive version of the result of
Gluskin and Giannopoulos via an optimization of a linear function. This implies a linear programming
based algorithm for combinatorial discrepancy obtaining the same result as Spencer.

Our second result gives a new approach to obtains partial colorings and shows that every convex body
K ⊆ Rn, possibly non-symmetric, with Gaussian measure at leaste−ǫn, for a smallǫ > 0, contains a
pointy ∈ K where a constant fraction of coordinates ofy are in{−1, 1}.

Finally, we give a simple proof that shows that for anyδ > 0 there exists a constantc > 0 such
that given a bodyK with γn(K) ≥ δ, a uniformly randomx from {−1, 1}n is in cK with constant
probability. This gives an algorithmic version of a specialcase of the result of Banaszczyk [2].

∗Microsoft Research, Redmond.roneneldan@gmail.com
†Microsoft Research, Redmond.mohitsinghr@gmail.com
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1 Introduction

Discrepancy problems appear in various areas of computer science and mathematics, we refer the reader
to texts by Matoušek [13] and Chazelle [8]. In the combinatorial discrepancy problem, we are given a
universeU = {1, . . . , n} and setsS1, . . . , Sm ⊆ U and the goal is to find acoloringχ : U → {−1,+1}
that minimizes

max
j∈[m]

∣

∣

∣

∣

∣

∣

∑

i∈Sj

χ(i)

∣

∣

∣

∣

∣

∣

.

A celebrated result of Spencer [16] states that there is a coloring with discrepancyO(
√
n) whenm =

n. There is a natural connection between discrepancy theory and convex geometry; Gluskin [10] proved
the same result as Spencer [16], independently, using convex geometric arguments. Giannopoulos [9],
building on the work of Gluskin [10], showed that the following generalization of Spencer’s result: Given
a symmetric convex bodyK ⊆ Rn with Gaussian measure at leaste−δn, then for a small enoughδ, there
existsy ∈ K such thatΩ(n) coordinates ofy are set to either−1 or 11.

Interestingly, all these results were inherently non-algorithmic and obtaining polynomial time algo-
rithms for the combinatorial discrepancy problem was highlighted as an open problem [1]. Bansal [3],
in a breakthrough result, gave a polynomial time algorithm for the combinatorial discrepancy problem
attaining the same discrepancy as the result of Spencer. Lovett and Meka [12] later gave a much sim-
plified algorithm attaining the same guarantee. Both these algorithms inherently used the combinatorial
structure of the problem and were not applicable to the general setting of finding a partial coloring in a
convex body as given by the result of Giannopoulos [9]. Recently, Rothvoß [15] gave a polynomial time
algorithm that gives an algorithmic version of this result.

Another well-studied case of combinatorial discrepancy isto bound the discrepancy in terms of the
maximum occurrence of any element among them sets. Beck and Fiala [4] showed that any set system
has discrepancy2t − 1 if each element appears in no more thant sets and conjectured that the bound
could be improved toO(

√
t). Techniques of Spencer [16], and its algorithmic versions,can be adapted

to bound the discrepancy byO(
√
t logn). Further improvement was obtained by Banaszczyk [2] who

showed a general result proving that given arbitrary unit vectorsu1, . . . , um ∈ Rn and convex body
K with γ(K) ≥ 1

2 there exists signsǫ1, . . . , ǫm ∈ {−1, 1} such that
∑

i ǫiui ∈ K. This implies an
improved bound ofO(

√
t logn) on the discrepancy of any set system wheret is the maximum occurrence

of any element.

1.1 Our Results

In this paper, we prove several algorithmic results for the discrepancy problem. A common feature of all
our results is that we analyze the algorithms for the more general geometric formulations of our problem
rather than the combinatorial version. These generalizations allow us to take advantage of many results
in the theory of convex geometry.

Our first result shows that optimizing a random linear objective over the convex body results in a
partial coloring. Let γn denote then-dimensional standard Gaussian measure with density function

1
(2π)n/2 e

−‖x‖2

2 .

Theorem 1.1. For any constant0 < ε <

(

1−
√

2/π

32

)4

, there exists a constant0 < δ < 1 such that every

symmetricconvex bodyK ⊆ R
n with γn(K) ≥ e−εn, the pointx = argmax{Γ ·y : y ∈ K ∩ [−1, 1]n}

whereΓ is a standard Gaussian inRn, satisfies#{i ∈ [n] : |xi| = 1} ≥ δn with probability at least12 .

1While this result gives only apartial coloring, by applying this result recursively, one can obtain the same result as Spencer’s.
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A corollary of the above result is the fact that solving a series of linear programs gives a coloring for
the combinatorial discrepancy problem matching the resultof Spencer [16]. The proof of this theorem
adapts some of the ideas of Rothvoß [15] as well as the classical Uryshon’s inequality.

Our next result gives a new approach that obtains a partial coloring without assuming symmetry of
the convex body.

Theorem 1.2. For any constantα ≥ 0, there exist constants0 < ε, δ < 1 such that every convex body
K ⊆ Rn with γn(K) ≥ e−εn contains a pointx ∈ K with {i ∈ [n] : |xi| = α} ≥ δn. Moreover, there
is a polynomial time algorithm that given a membership oracle forK, returns such a pointx with high
probability.

The algorithm uses the covariance matrix of the convex body and its restrictions. The main technical
ingredient is to use the property that the measureγK , obtained by restrictingγn to the convex bodyK,
is more log-concavethan the Gaussian measure.

While Theorem 1.1 (and the results of Gluskin [10], Giannopoulos [9] and Rothvoß [15]) guarantee
the pointx ∈ K ∩ [−1, 1]n, Theorem 1.2 guarantees only thatx ∈ K. This is necessary since the body
{x ∈ Rn : x1 ≥ 2} satisfies the conditions of the theorem but does not intersect the hypercube[−1, 1]n.
A consequence of this fact is that Theorem 1.2 cannot be used recursively to give an optimal coloring for
the combinatorial discrepancy problem. Nonetheless, it shows that the technical condition of symmetry
is not necessary if one aims to just find a partial coloring.

Our last result gives an algorithmic version of a special case of the result of Banaszczyk [2] where
ui = ei for each1 ≤ i ≤ n.

Theorem 1.3. For everyδ > 0, there exists a constantc ≥ 0 such the following holds. LetK ⊆ Rn be a
convex and symmetric body such thatγ(K) ≥ δ and letx be a uniformly random vector from{−1, 1}n.
Then

Pr[x ∈ cK] ≥ 1

2
.

The structure of the rest of the paper is as follows. We prove Theorem 1.1 in Section 2, Theorem 1.2
in Section 3 and Theorem 1.3 in Section 4.

2 A linear programming algorithm

Let K ⊂ R
n be a convex body and letΓ = (Γ1, ...,Γn) be a standard Gaussian random vector inR

n.
For0 6= y ∈ Rn, set

sK(y) = argmax
x∈K

〈x, y〉,

the supporting point ofy in K (here, we agree that if there is more than one argument which maximizes
the expression, for the purpose of analysis, we take the point closest to the origin which is unique by
convexity). Note that givenK andy, the pointsK(y) can be found by optimizing a linear function over
K which is a linear program whenK is a polytope. Next, defineC = [−1, 1]n, and for any0 6= y ∈ Rn,
we also define

a(y) =
1

n

[

#
{

i; sK∩C(y)i ∈ {−1, 1}
}]

.

In other words,a(y) denotes the proportion of coordinates which are set to−1 or +1 in the point
sK∩C(y). In this notation, the proof of Theorem 1.1 boils down to showing that for allε small enough,
there existsδ > 0 such that

γn(K) > e−εn ⇒ P(a(Γ) ≥ δ) > c

for a universal constantc > 0.
A central definition in our proof will be the Gaussianmean-widthof a convex body, defined by

w(K) := E[Γ · sK(Γ)] = E

[

max
x∈K

〈Γ, x〉
]

.
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The proof, which shares some ideas with the recent proof of Rothvoß[15], relies on three classical
results as its main ingredients. The first ingredient isŠidák’s Lemma [18]:

Lemma 2.1. (Šidák) LetK be a symmetric convex body andS = {x : |vj · x| ≤ bj} be astrip. Then
γ(K ∩ S) ≥ γ(K)γ(S).

The second ingredient is Sudakov-Tsirelson and Borell’s well known Gaussian concentration result
[6]:

Theorem 2.2. Letf : Rn → R be anL-Lipschitz function. Then one has for allt > 0,

P (|f(Γ)− E[f(Γ)]| > Lt) < 2e−t2/2.

The last classical ingredient is known as Urysohn’s inequality.

Theorem 2.3. (Urysohn’s inequality) LetK be a convex body and letB be a centered Euclidean ball
satisfyingγ(K) = γ(B). Thenw(K) ≥ w(B).

When the Gaussian measure is replaced by Lebesgue measure, this is a classic inequality in convex
geometry proven in [17]. The proof for the Gaussian measure follows the same lines. For completeness,
we provide a sketch of this proof.

Proof. (sketch) LetB′ be the centered Euclidean ball satisfyingw(B′) = w(K). By the monotonicity
of w(·) it is clearly enough to show thatγ(B′) ≥ γ(K). For two convex bodiesK1,K2 we denote by
K1 +K2 the Minkowski-sum of the two, namely

K1 +K1 = {x+ y; x ∈ K1, y ∈ K2}. (1)

It is straightforward to check that, by definitionw(K1 +K2) = w(K1) + w(K2). Let U1, U2, ... be a
sequence of independent orthogonal transformations inRn uniformly distributed in the orthogonal group
SO(n). Define

KN =
1

N

N
∑

j=1

UjK.

Then it follows from (1) and by induction thatw(KN ) = w(K). Moreover, since the Gaussian measure
is log-concave (which follows from [5]), we have that

γ(KN) = γ





1

N

N
∑

j=1

UjK



 ≥





N
∏

j=1

γ(UjK)





1/N

= γ(K).

Therefore, in order to prove the theorem it is enough to show that

lim
N→∞

γ(KN ) = γ(B′). (2)

But remark that by definition of the bodyK and by the strong law of large numbers we have for all
θ ∈ Sn−1,

max
x∈KN

〈x, θ〉 → E

[

max
x∈K1

〈x, θ〉
]

=
w(K)

E[|Γ|] .

almost surely, asN → ∞. By definition ofB′ this implies that, asN → ∞,

max
x∈KN

〈x, θ〉 → max
x∈B′

〈x, θ〉, ∀θ ∈ S
n−1.

Equation (2) now follows by the continuity of the Gaussian measure of a set with respect to its support
function.
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Urysohn’s inequality gives the following simple corollary.

Corollary 2.4. Fix ε > 0. Let K ⊂ Rn be a convex set satisfyingγn(K) ≥ e−εn. Then for large
enoughn, we have

w(K) ≥ (1− 2
√
ε)n.

Proof. Denote byB(r) centered Euclidian ball of radiusr. LetR > 0 be chosen such thatγn(B(R)) =
γn(K). An elementary calculation gives that for allη > 0,

γn

(

B
(√

n− η
)

)

≤ e−η2/2. (3)

Consequently, we have
γn(B((1 −

√
2ε)

√
n)) ≤ e−(

√
2ε)2n/2 = e−εn

which implies thatR ≥ (1−
√
2ε)

√
n. Moreover Inequality (3) implies that

E[‖Γ‖] ≥ (
√
n− 2

√

logn)(1− e−2 logn) ≥ √
n− 3

√

logn

for largen and therefore

w(B(R)) = E

[

max
x∈B(R)

x · Γ
]

≥ E

[

RΓ

‖Γ‖ · Γ
]

= RE[‖Γ‖] ≥ R · (√n− 3
√

logn) ≥ (1− 2
√
ε)n

(4)

if ǫ > 6
√

logn
n . An application of Theorem 2.3 now gives

w(K) ≥ w(B(R)) ≥ (1 − 2
√
ε)n

and the corollary is proven.

For I ⊂ [n] define

K(I) := K ∩
(

⋂

i∈I

{xi ∈ [−1, 1]}
)

.

The central Lemma needed for our proof will be the following:

Lemma 2.5. LetK be such thatγ(K) > e−εn. One has

P

(

inf
I⊂[n]
|I|<εn

Γ · sK(I)(Γ) ≤
(

1− 32ε1/4
)

n

)

≤ e−εn. (5)

Proof. Our first step will be to show that it is legitimate to assume thatK is contained in a Euclidean
ball of radius2

√
n. DefineK ′ = K ∩ 2

√
nBn (whereBn denotes the Euclidean unit ball inRn). The

fact thatΓ · sK(I)(Γ) ≥ Γ · sK(I)∩2
√
nBn(Γ) allows us to prove (5) withK ′ in place ofK. Moreover,

a standard calculation givesγn
(

R
n \ 2

√
nBn

)

< e−n, so since we may assume thatε < 1
2 , we have

γ(K ′) ≥ 1
2e

−εn. Therefore, from this point on we will allow ourselves assume thatK ⊂ 2
√
nBn by

relaxing the assumption on the volume ofK to the assumptionγ(K) ≥ 1
2e

−εn.

Fix I ⊂ [n] with |I| < δn. Lemma 2.1 gives

γn(K(I)) ≥ γn(K)
∏

i∈I

γn ({xi ∈ [−1, 1]}) ≥ 1
2e

−εnγ([−1, 1])|I| ≥ e−(ε+δ)n. (6)
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Corollary 2.4 now gives
w(K(I)) ≥ (1 − 2

√
ε+ δ)n

or, in other words,
E
[

Γ · sK(I)(Γ)
]

≥
(

1− 2
√
ε+ δ

)

n. (7)

Remark that, by the assumptionK ⊂ 10
√
nBn, we have that the function

y → y · SK(I)(y) = sup
z∈K(I)

y · z

is2
√
n-Lipschitz (here we use the fact that the supremum ofL-Lipschitz functions isL-Lipschitz). Thus,

by applying theorem 2.2 we get

P

(

Γ · sK(I)(Γ) <
(

1− 2
√
ε+ δ − 8η

)

n
)

≤ 2e−η2n, ∀η > 0.

By taking a union bound over all choices ofI, we get

P

(

inf
I⊂[n]
|I|<δn

Γ · sK(I)(Γ) ≤ (1− 2
√
ε+ δ − 8η)n

)

≤ n

(

n

⌈δn⌉

)

e−η2n

≤ e

((

1+log
1
δ

)

δ−η2
)

n ≤ e(
√
δ−η2)n.

The proof is concluded by takingδ = ε andη = 2ε1/4.

We are finally ready to prove the main theorem of the section.

Proof of Theorem 1.1.Using the fact that removing constraints which are not tightat the optimal solu-
tion does not change the optimum value, we obtain that

a(Γ) < δ ⇒ Γ · sK∩C(Γ) ≥ inf
I⊂[n]
|I|<δn

Γ · sK(I)(Γ).

It follows that (choosingδ = ε)

P

(

Γ · sK∩C(Γ) < (1− 32ε1/4)n
)

< P(a(Γ) > ε) + P

(

inf
I⊂[n]
|I|<εn

Γ · sK(I)(Γ) < (1− 32ε1/4)n

)

and by Markov’s inequality together with the result of Lemma2.5,

E [Γ · sK∩C(Γ)] ≥
(

1− 32ε1/4
)

(1 − P(a(Γ) > ε)− e−εn)n

(here we used the fact thatK contains the origin which implies thatΓ · sK∩C(Γ) ≥ 0). But on the other
hand

E [Γ · sK∩C(Γ)] ≤ w(C) = E

[

max
x∈C

〈x,Γ〉
]

= E





∑

i∈[n]

|Γi|



 = nE[|Γ1|] =
√

2

π
n.

Combining those two inequalities finally gives

P(a(Γ) > ε) > 1−
√
2√

π(1 − 32ε1/4)
− e−εn.

The theorem is complete.
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Extension to Full Coloring While Theorem 1.2 gives only a partial coloring, it can be applied recur-
sively to obtain the following result of Spencer[16]; see Lemma 10, Rothvoß [15] for details regarding
the recursion.

Corollary 2.6. Given a universeU = {1, . . . , n} and setsS1, . . . , Sm ⊆ U , there exists a coloring
χ : U → [−1, 1]n such thatmaxi∈[m] |

∑

j∈Si
χ(j)| = O(

√

n log 2m/n).

3 A coordinate-by-coordinate algorithm for the non-symmetric case

In this section, we prove Theorem 1.2. The main ingredient inthe proof is Lemma 3.1 from which the
proof follows immediately. In Section 3.2, we provide the algorithm implementing the guarantee in the
lemma.

3.1 The main lemma for the recursion

Our goal in this section is to prove the following Lemma.

Lemma 3.1. For any constantα ≥ 0 there exist constants0 < η, τ < 1 such that the following holds.
Suppose thatK ⊂ Rn is such thatγn(K) > e−ηn then there existsi ∈ [n] andξ ∈ {−1, 1} such that

γn−1 (K ∩ {xi = αξ}) ≥ τγn(K).

The proof of Theorem 1.2 now follows from Lemma 3.1 by induction. Givenα ≥ 0, let0 < η, τ < 1
be constants satisfying Lemma 3.1. Letε := η

4 andδ := η
2 log 1

τ

and it is easy to check that the condition

of Lemma 3.1 continues to hold for at leastδn applications of Lemma 3.1 giving the existence theorem.
An algorithm which efficiently finds this sequence of coordinates is described in Section 3.2.

Before, we prove Lemma 3.1, we give a few definitions and preliminaries. For a subsetK ⊂ R
n, we

defineγK to the probability measure such that for each measurableB ⊆ Rn,

γK(B) =
γn(K ∩B)

γn(K)
.

We will first need the following technical estimate. Let‖ · ‖ denote the Euclidian norm onRn

Lemma 3.2. For all K ⊂ Rn one has
∥

∥

∥

∥

∫

xdγK(x)

∥

∥

∥

∥

≤ 4

√

log

(

2

γn(K)

)

(8)

and

n− 6
√
n

√

2 log

(

4

γn(K)

)

≤
∫

‖x‖2dγK(x) (9)

Proof. We first prove (8). LetX be a random variable distributed with lawγK . Defineθ = EX
‖EX‖ (if the

denominator is zero then (8) follows trivially). Letf(x) be the density of the variable〈X, θ〉. We clearly
have that for eachx ∈ R,

f(x) ≤ γ1(x)

γn(K)
.

Defineg(x) = 1x≥α
γ1(x)
γn(K) whereα is chosen such that

∫

R
g(x)dx = 1, i.e., α = Φ−1(γn(K))

whereΦ denotes the one dimensional Gaussian (cumulative) distribution function. Since
∫

g =
∫

f , we
have thatg(x) ≥ f(x) for all x ≥ α andg(x) ≤ f(x) for all x ≤ α. Consequently,

∫

R

xg(x)dx −
∫

R

xf(x)dx =

∫

R

x(f(x) − g(x))dx =

∫

R

(x− α)(f(x) − g(x))dx ≥ 0.

7



Therefore,
∥

∥

∥

∥

∫

xdγK(x)

∥

∥

∥

∥

= E[〈X, θ〉] =
∫

R

xf(x)dx ≤
∫

R

xg(x)dx

=

∫

{x≥α} xγ1(x)dx
∫

{x≥α} γ1(x)dx

Now, an elementary calculation gives that

∥

∥

∥

∥

∫

xdγK(x)

∥

∥

∥

∥

≤
∫

{x≥α} xγ1(x)dx
∫

{x≥α} γ1(x)dx
≤ 2|α|+ 1

4
= 2|Φ−1(γn(K))|+ 1

4
≤ 4

√

log

(

2

γn(K)

)

and equation (8) is established.
We turn to the second estimate, whose proof is based on exactly the same idea only thatx · θ is

replaced by‖x‖. Let f(x) be the density of the variable‖X‖ and leth(x) be the density of‖Γ‖ where
Γ is a standard Gaussian random variable inRn. We clearly have

f(x) ≤ h(x)

γn(K)
.

Defineg(x) = 1|x|≤α
h(x)
γn(K) whereα is chosen such that

∫

g(x)dx = 1. Again, since
∫

g =
∫

f , we
have thatg(x) ≥ f(x) for all |x| ≤ α andg(x) ≤ f(x) for all |x| ≥ α, and therefore

∫

R

x2g(x)dx−
∫

R

x2f(x)dx =

∫

R

x2(g(x)− f(x))dx =

∫

R

(x2 − α2)(g(x)− f(x))dx ≤ 0

or, in other words,

∫

Rn

‖x‖2dγK(x) =

∫

R

x2f(x)dx ≥
∫

R

x2g(x)dx =

∫

{|x|≤α} x
2h(x)dx

∫

{|x|≤α} h(x)dx
. (10)

Next, we recall the following elementary fact (which follows by a straightforward calculation); ifΓ is a
standard Gaussian random variable inRn then

P(|‖Γ‖ − √
n| > t) ≤ 2e−t2/2.

It follows that
∫

|x|≤√
n−

√

2 log 2
γn(K)

h(x)dx ≤ γn(K)

and thusα ≥ √
n−

√

2 log 2
γn(K) . Now, we also have

∫

|x|≤√
n−k

√

2 log 2
γn(K)

h(x)dx ≤ γn(K)k
2

.

First assume thatγn(K) ≤ 1
2 . We estimate

∫

{|x|≤α}
x2h(x)dx ≥

∞
∑

k=1

(

√
n− (k + 1)

√

2 log
2

γn(K)

)2
(

γn(K)k
2 − γn(K)(k+1)2

)

(11)

≥
(

√
n− 3

√

2 log
2

γn(K)

)2

γn(K). (12)

8



Thus, we have

∫

‖x‖2dγK(x) ≥
∫

{|x|≤α} x
2h(x)dx

∫

{|x|≤α} h(x)dx
(13)

≥

(√
n− 3

√

2 log 2
γn(K)

)2

γn(K)

γn(K)
=

(

√
n− 3

√

2 log
2

γn(K)

)2

(14)

giving us the claim.
Otherwise, consider the case whenγn(K) ≥ 1

2 . Using the fact that
∫

{|x|≤α} x
2h(x)dx decreases if

we decreaseα, inequality (12) implies

∫

{|x|≤α}
x2h(x)dx ≥

(

√
n− 3

√

2 log
2
1
2

)2

γn(K)

Thus we have

∫

‖x‖2dγK(x) ≥
∫

{|x|≤α} x
2h(x)dx

∫

{|x|≤α} h(x)dx
(15)

≥
(√

n− 3
√
2 log 4

)2
γn(K)

γn(K)
≥
(

√
n− 3

√

2 log
4

γn(K)

)2

(16)

which finishes the proof.

An essential ingredient for the proof will be the following one-dimensional version of Caffarelli’s
contraction theorem [7].

Proposition 3.3. Letµ be a probability measure onR having the formdµ
dx = f(x) = e−x2/2−V (x) where

V (x) is a convex function. Then there exists a unique monotone, differentiable functionT : R → R

satisfying
µ((−∞, T (x)]) = γ((−∞, x]), ∀x ∈ R. (17)

Moreover, the functionT is a contraction, namely

|T (x)− T (y)| ≤ |x− y| (18)

for all x, y ∈ R.

The proof can be found in [7]. For completeness, we give a heuristic proof.

Proof. By differentiating both sides of equation (17) with respectto x, we see thatT must satisfy

T ′(x) =
γ(x)

f(T (x))
. (19)

Together with the boundary conditionlim−∞ T (x) = inf supp(µ) (wheresupp(µ) denotes the support
of µ), the existence ofT now follows from the Picard-Lidelöf theorem (a standard ODE existence and
uniqueness theorem).

Next, we want to show thatT is a contraction. The previous equality suggests that

logT ′(x) =
−x2 + T (x)2

2
+ V (x).

9



By differentiating this equation twice with respect tox, we get

(logT ′(x))′′ = −1 + T ′(x)2 + T (x)T ′′(x) + V ′′(x).

Now, let x0 be a point whereT ′(x) attains a local maximum, then for this point we have that the left
hand side is negative andT ′′(x) = 0. Using the fact thatV ′′ ≥ 0, we get that

T ′(x0)
2 ≤ 1.

Equation (19) also shows thatT ′(x) is continuous, so it is enough to show thatT ′(x) attains a maximum
in R. This follows by approximatingµ by compactly supported measures.

We will need two more lemmas. The first lemma shows that the projection of a restriction of a
Gaussian measure is more log-concave than the Gaussian measure. The proof follows from Prekopa-
Leindler inequality.

Lemma 3.4. LetK be a convex body inRn, i ∈ [n] and letf : R → R be the density of the marginal of
γK on to the directionei, i.e., the unique (in the almost-everywhere sense) function satisfying

∫

B

f(x)dx = γK({x ∈ R
n : xi ∈ B}), ∀B ⊆ R measurable.

Then the functionf attains the form
f(x) = e−x2/2−V (x) (20)

for some convex functionV (x). Moreover, ifX is a random variable with densityf(x) thenVar[X ] ≤ 1.

Proof. Consider the functiong(x) = exp
(

1
2

∑

j 6=i x
2
j

)

1K(x). Since the function
∑

j 6=i x
2
j is convex

and since1K is log-concave, the functiong is log-concave. By the Prékopa-Leindler inequality, the
functionh : R → R defined by

h(y) =

∫

g(x1, .., xi−1, y, xi+1, .., xn)dx1...dxi−1dxi+1...dxn

is log-concave as well. Thus, there exists a convex functionV (x) such thath(x) = exp(−V (x)). But
note that by definition of the functionf , there exists a normalization constantZ > 0 such that

f(x) = Z−1h(x)e−x2/2.

This establishes the fact thatf attains the form (20). For the second part of the lemma, we useProposition
3.3 to construct a functionT which pushes forward the standard Gaussian measure to the measure whose
density isf . By equations (17) and (18), we have

Var[X ] =

∫

R

(x− E[X ])2f(x)dx =

∫

R

(T (x)− E[X ])2dγ(x)

≤
∫

R

(T (x)− T (0))2dγ(x) ≤
∫

R

(x − 0)2dγ(x) = 1.

The lemma is complete.
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Lemma 3.5. Let V (X) be a convex function such thatdµdx = f(x) = e−x2/2−V (x) is a probability
density. Letε, α > 0 be constants which satisfy

4ε2/3 < α <
1

6

√

log 1
ε − log(2π) (21)

LetX be a random variable with densityf(x). Suppose that

∣

∣E[X ]
∣

∣ =

∣

∣

∣

∣

∫

xe−x2/2−V (x)dx

∣

∣

∣

∣

< ε (22)

and

V ar[X ] =

∫

(x− E[X ])
2
e−x2/2−V (x)dx > 1− ε. (23)

Then we have

max(f(α), f(−α)) >
1√
2π

e−2α2

. (24)

Proof. Let T (x) be the monotone push-forward of the standard Gaussian measure to the measureµ,
hence the monotone map defined by equation (17) of Proposition 3.3. According this proposition, we
have that

|T (x)− T (y)| ≤ |x− y|, ∀x, y ∈ R. (25)

Let u = E[X ] denote the expectation of random variableX with densityf(x). Now, by definition of
T (x), we have

∫

(T (x)− u)2dγ =

∫

(x− u)2ex
2/2−V (x)dx

and by convexity together with (23),
∫

(T (x)− T (0))2dγ ≥
∫

(x− u)2ex
2/2−V (x)dx > 1− ε.

In other words, we have
∫

R

(x2 − (T (x)− T (0))2)dγ ≤ ε.

Consequently,
∫

R

|x− T (x) + T (0)||x+ T (x)− T (0)|dγ =

∫

R

(x− T (x) + T (0))(x+ T (x)− T (0))dγ ≤ ε. (26)

where the first equality follows since the two terms(x− T (x) + T (0)) and(x+ T (x)− T (0)) have the
same sign for allx ∈ R, by the fact thatT is a monotone contraction.

Next, we would like to show that|T (0)| is bounded by a function ofε. To this end, letδ be a
parameter we fix later. We calculate,

|T (0)| =

∣

∣

∣

∣

∫

R

T (0)dγ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R

x− T (x) + T (0)dγ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R

x− T (x)dγ

∣

∣

∣

∣

(27)

≤
∣

∣

∣

∣

∣

∫ δ

−δ

x− T (x) + T (0)dγ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

x∈R\[−δ,δ]

x− T (x) + T (0)dγ

∣

∣

∣

∣

∣

+ ε (28)

≤
∫ δ

−δ

δdγ +
1

δ

∫

x∈R\[−δ,δ]

|x− T (x) + T (0)||x+ T (x)− T (0)|dγ + ε (29)

≤ 2δ2 +
ε

δ
+ ε (30)
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where Inequality (27) follows from triangle inequality, Inequality (28) follows from the fact
∫

R
xdγ =

0 and|
∫

R
T (x)dγ| = |

∫

R
xdµ| ≤ ε. Inequality (29) follows from that|x − T (x) + T (0)| ≤ |x| ≤ δ

for anyx ∈ [−δ, δ] and|x + T (x) − T (0)| ≥ |x| ≥ δ for anyx ∈ R \ [−δ, δ] using Inequality (25).
Inequality (30) follows from standard Gaussian estimates and Inequality (26). Now choosingδ = ε1/3,
we obtain that|T (0)| ≤ 4ε2/3 (note thatε < 1). Condition 21 together with the monotonicity ofT
finally give

T−1(α) ≥ 0. (31)

Observe that sinceT is a differentiable contraction, we haveT ′(x) ≤ 1 for all x. By differentiating
equation (17) (as in equation (19)) we therefore get

f(T (x)) =
1

T ′(x)

d

dx
γ(x) ≥ 1√

2π
e−x2/2, ∀x ∈ R. (32)

In light of this inequality, we learn that it enough to show thatT−1(α) is bounded to establish a lower
bound onf(α). Since we may replacef(x) by f(−x) without changing the statement of the lemma, we
may assume without loss of generality thatT (0) ≥ 0. Define

A = {x > 0;x− T (x) ≥ α+ 4ε2/3} = [β,∞)

(if the setA is the empty set, we agree thatβ = ∞). Now consider the case whenβ > 2α + 4ε2/3. In
this case

2α+ 4ε2/3 − T (2α+ 4ε2/3) ≤ α+ 4ε2/3

=⇒ T (2α+ 4ε2/3) ≥ α

=⇒ T−1(α) ≤ 2α+ 4ε2/3

Together with (31), this gives|T−1(α)| ≤ 2α + 4ε2/3. Therefore, by Inequality (32) we finally get
f(α) ≥ 1√

2π
e−(3α)2/2.

Otherwise, we have thatβ ≤ 2α+ 4ε2/3. But in this case we can write

ε ≥
∫

R

|x− T (x) + T (0)||x+ T (x)− T (0)|dγ (33)

≥
∫

x≥β

|x− T (x) + T (0)||x+ T (x)− T (0)|dγ (34)

≥
∫

x≥β

|α+ 4ε2/3 + T (0)|xdγ (35)

≥ α

∫

x≥β

xdγ (36)

≥ α
1√
2π

e−β2/2 ≥ 1√
2π

e−(2α+4ε2/3)2/2 (37)

where Inequality (33) follows from Inequality (26), Inequality (35) follows from the factT (x) ≥ T (0)
for eachx ≥ 0 and Inequality (36) follows from|T (0)| ≤ 4ε2/3. Inequality (37) follows from simple
estimates on Gaussian distribution. But note that the condition (21) implies thatε < 1√

2π
e−(2α+4ε2/3)2/2

which contradicts this inequality. The proof is complete.

We are now ready to prove the main lemma
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Proof of Lemma 3.1.Suppose thatγn(K) > e−ηn where0 < η < 1 is a constant determined later on,
which will depend only onα. Let {e1, ..., en} be the standard basis ofRn. For all1 ≤ i ≤ n, define

ui =

〈∫

xdγK(x), ei

〉

and

vi =

∫

(〈x, ei〉 − ui)
2 dγK(x)

According to Lemma 3.2, we have

n
∑

i=1

u2
i =

n
∑

i=1

(〈∫

xdγK(x), ei

〉)2

=

∥

∥

∥

∥

∫

xdγK(x)

∥

∥

∥

∥

2

2

≤ 16 log

(

2

γn(K)

)

≤ 20ηn

for large enoughn. According to the second part of the same lemma, we have

n
∑

i=1

vi =

n
∑

i=1

∫

(〈x, ei〉 − ui)
2
dγK(x) =

∫

‖x‖2dγK(x)−
∥

∥

∥

∥

∫

xdγK(x)

∥

∥

∥

∥

2

2

≥ n(1− 10
√
η − 20η)

Lemma 3.4 implies that for each1 ≤ i ≤ n, vi ≤ 1. Let I be uniformly chosen at random from[n],
then the above implies that

E[u2
I ] ≤ 20η

and
E[vI ] ≤ 1− 10

√
η − 20η

Applying Markov’s inequality, we have that

P
(

|uI |2 < 50η andvI > 1− 30
√
η − 60η

)

>
1

4

Thus there exists ani which satisfies

|ui|2 < 50η and vi > 1− 30
√
η − 60η. (38)

Let f(x) denote the density of marginal ofγK on directionei. Givenα, we chooseε small enough
to satisfy the condition of Lemma 3.5. By choosingη to be small enough, so that equation (38) is
satisfied (for exampleη < ε2

1000 suffices) we obtain thatmax{f(α), f(−α)} ≥ 1√
2π

e−2α2

. Thus setting

τ = 1√
2π

e−(2α+4ε2/3)2/2, we obtain that

max{γn−1(K ∩ {xi = α}), γn−1(K ∩ {xi = α})} ≥ max{γn(K)f(α), γn(K)f(−α)} ≥ τγn(K)

as claimed.

3.2 The algorithm

In order to make the proof of Lemma 3.1 constructive, we wouldlike to find a way of determining
whether or not a coordinatei ∈ [n] satisfies the condition (38). Clearly, in order to do this, itis enough
to have a good enough approximation for the covariance matrix of the Gaussian measure restricted to the
bodyK. The estimation of this covariance matrix can be done using well-known sampling techniques,
based on standard constructions of random walks in log-concave measures. We refer to the reader to [11,
2.2] for the construction of two such walks, called the Ball-Walk and Hit-And-Run random walk.

Then, to get an estimate for the covariance matrix ofγ|K , we can directly apply the following result,
which is an immediate consequence of Corollary 2.7 in [11]:

13



Theorem 3.6. (Lovász-Vempala) For anyn ∈ N, ζ > 0 and δ > 0 there exists a numberm =
poly(n, 1/δ, ζ) such that the following holds: Letµ be a log-concave probability measure whose density
is f : Rn → R+ and letv1, ...vm be independent samples from the Ball-Walk ofm steps inµ. Define for
all θ ∈ Sn−1,

Ẽθ :=
1

m

m
∑

i=1

〈vi, θ〉

and

Ṽθ :=
1

m

m
∑

i=1

〈vi, θ〉2.

Then with probability at least1− ζ, we have for allθ,
∣

∣

∣

∣

Ẽθ −
∫

〈x, θ〉dµ(x)
∣

∣

∣

∣

< δ (39)

and
∣

∣

∣

∣

Ṽθ −
∫

〈x, θ〉2dµ(x)
∣

∣

∣

∣

< δ. (40)

Using this theorem, within polynomial time one can have a good enough approximation for the
covariance matrix ofγ|K such that with probability at least1 − 1

n2 , if a coordinatei ∈ [n] satisfies the
condition (38) with respect to the empirical covariance matrix of the random walk, it will also satisfy the
same condition for the original measure, up to a negligible error.

The above gives us an algorithm for finding a coordinatei ∈ [n] and a signξ which satisfy the
condition of Lemma 3.1 with probability1− 1/n2. In order to find the partial coloring, we reiterate by
considering the new convex bodyK ∩ {xi = αξ}. Using a union bound, this algorithm will eventually
succeed with probability at least1− 1/n.

4 Proof of Theorem 1.3

For a symmetric convex bodyK ⊂ Rn with non-empty interior, we write

‖x‖K = inf{λ > 0; x ∈ λK}

to denote the corresponding norm. LetΓ be a standard Gaussian random vector inRn and letΨ be a
vector distributed according to the uniform measure on{−1, 1}n. Define

Φ(K) := E
[

‖Ψ‖2K
]

.

Our proof will rely on the Maurey-Pisier estimate [14], which reads

Theorem 4.1. (Maurey-Pisier) For all symmetricK ⊂ Rn, we have

Φ(K) ≤ π

2
E[‖Γ‖2K ].

Note that, by definition

Φ(K) ≤ α2 ⇒ P[Ψ ∈ 2αK] ≥ 1

2
.

To complete the proof of Theorem 1.3, we therefore need to show that for a symmetric, convexK ⊂ Rn,

γ(K) ≥ δ ⇒ E
[

‖Γ‖2K
]

< C(δ) (41)

for some constantC(δ) > 0 which only depends onδ.
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Next, note that there existsc = c(δ) > 0 such thatcBn ⊂ K, whereBn is the unit ball. Indeed,
let c > 0 satisfy 1√

2π

∫ c

−c
e−x2/2dx = δ. Then for allθ ∈ Sn−1, one hasγ({x; |x · θ| < c}) < δ, and

therefore we must haveK ∩ {x; |x · θ| > c} 6= ∅. By the symmetry ofK, it follows thatcBn ⊂ K.
It now follows that for ally ∈ Sn one has

‖y‖K ≤ c−1

which implies, using the triangle inequality, that for allx, y ∈ Rn,
∣

∣

∣‖x‖K − ‖y‖K
∣

∣

∣ ≤ c−1‖x− y‖2. (42)

In other words, the function‖ · ‖K is c−1-Lipschitz.
For a functionf which is integrable with respect toγ, we define for all0 < t < 1

Pγ,f (t) = inf {α; P(f(Γ) ≤ α) > t} .

whereΓ is a standard Gaussian vector. In other wordsPγ,f(t) is thet-percentile of the variablef(Γ).
The next theorem which is a well known estimate in Gaussian concentration, is an immediate corol-

lary of Theorem 2.2:

Theorem 4.2. For all 0 < t < 1 there exists a constantC = C(t) > 0 such that the following holds:
let f be anL-Lipschitz function, then for allp ≥ 1,

|E((f(Γ))p)− Pγ,f (t)
p| ≤ CLp. (43)

This theorem implies that
E[‖Γ‖2K ] ≤ Pγ,‖·‖K

(δ)2 + C(δ)c−2,

but note that we actually haveγ(K) = Pγ,‖·‖K
(δ) = 1. This implies (41) and the proof is complete.
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