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Abstract. In this paper we study the diameter of inhomogeneous random
graphs G(n, κ, p) that are induced by irreducible kernels κ. The kernels we

consider act on separable metric spaces and are almost everywhere continuous.

We generalize results known for the Erdős-Rényi model G(n, p) for several
ranges of p. We find upper and lower bounds for the diameter of G(n, κ, p) in
terms of the expansion factor and two explicit constants that depend on the

behavior of the kernel over partitions of the metric space.

1. Introduction

In this work we study metric properties of inhomogeneous random graphs, where
edges are present independently but with unequal edge occupation probabilities.
We study the behavior of the diameter for different ranges of the mean edge density.
Under weak assumptions we find tight asymptotic bounds of the diameter for
connected graphs in this random graph model.

Let S be a separable metric space and µ a Borel probability measure on S. Let
κ : S × S → [0, 1] be a measurable symmetric kernel. The inhomogeneous random
graph with kernel κ and density parameter p (depending on n) is the random graph
G(n, κ, p) = (V,E) where the vertex set is V = {1, . . . , n} and we connect each
pair of vertices i, j ∈ V independently with probability pij = κ(Xi, Xj)p, where
X1, . . . , Xn are independent µ-distributed random variables on S.

We study the asymptotic expansions for distances in the graph G(n, κ, p) by
associating to G(n, κ, p) two graphs induced by the kernel κ. Given two subsets
A,B ⊂ S, let

κ`(A,B) = ess inf{κ(x, y) : x ∈ A, y ∈ B},
κu(A,B) = ess sup{κ(x, y) : x ∈ A, y ∈ B}.

For a partition A = {A1, . . . ,Am} of S, we define the lower partition graph P`(A)
induced by A as the graph with vertex set A and where (Ai,Aj) is an edge if
κ`(Ai,Aj) > 0. Analogously, we define the upper partition graph Pu(A) as the
graph with vertex set A and where (Ai,Aj) is an edge if κu(Ai,Aj) > 0.

A kernel κ on (S, µ) is reducible if there exists a set A ⊂ S with 0 < µ(A) < 1
such that κ = 0 almost everywhere on A× (S \ A). Otherwise κ is irreducible.
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Throughout the paper we always assume that n is sufficiently large. We say
that a sequence of events holds with high probability, if it holds with probability
tending to 1 as n→∞. Since we are only interested in results that hold with high
probability, we avoid working with partitions that have measure zero sets. Therefore,
every time we refer to a partition we assume that is has no measure zero sets.

For two vertices u, v ∈ V belonging to the same connected component of a
graph G = (V,E), denote by dG(u, v) the graph distance between u and v, that is,
the number of edges on a shortest path between them. For a connected graph G,
let diamG = maxu,v dG(u, v). We study the diameter of G(n, κ, p) by studying the
diameters of the induced graphs P`(A) and Pu(A).

Our main result is then stated in terms of the following two constants

∆` := inf
A

diamP`(A) and ∆u := sup
A

diamPu(A),

where A ranges over all partitions with no measure zero sets. In Section 3 we show
our first result:

Theorem 1. Suppose ∆` <∞. Then

∆u ≤ ∆` ≤ ∆u + 2,

both bounds being tight.

In order to introduce our next theorem we need to define the expansion factor

Φ :=

⌈
log n

log np

⌉
.

This quantity is about the diameter of G(n, p), where G(n, p) is the Erdős-Rényi
graph, as first shown by [6]. In order to simplify our main result (see below for more
details), we will assume that log n/ log np is at least 2 log log n/ log np away from
every integer.

Our main result is the following:

Theorem 2. Let κ be an irreducible kernel that is continuous (µ ⊗ µ)-almost
everywhere and let G(n, κ, p) be the induced inhomogeneous random graph. With
high probability, the following statements hold:

(i) If Φ < ∆u, then
∆u ≤ diamG(n, κ, p) ≤ ∆`.

(ii) If ∆u ≤ Φ < ∆`, then

Φ ≤ diamG(n, κ, p) ≤ ∆`.

Moreover, if for every partition A there exist Ai and Aj , with no walk of length
exactly Φ between them in Pu(A), then

Φ + 1 ≤ diamG(n, κ, p).

(iii) If ∆` ≤ Φ, then
Φ ≤ diamG(n, κ, p) ≤ Φ + 1.

Moreover,
diamG(n, κ, p) = Φ + 1,

iff for every partition A there exist Ai and Aj, with no walk of length exactly
Φ between them in Pu(A).
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1.1. Background and history. A discrete version of this model was introduced
by Söderberg [20]. The sparse case (when the number of edges is linear in the
number n of vertices) was studied in detail in by Bollobás, Janson and Riordan [8].
Among other things they give an asymptotic formula for the diameter of the giant
component when it exists. Connectivity at the intermediate case was analyzed by
Devroye and Fraiman [13]. The dense case (when the number of edges is quadratic
in n) is closely related with the theory of graph limits started by Lovász and Szegedy
[16] and further studied in depth by Borgs, Chayes, Lovász, Sós and Vesztergombi
[9, 10] among others. For a thorough introduction to the subject of graph limits see
the book by Lovász [15].

The diameter of random graphs has been studied widely. In particular, for the
Erdős-Rényi model, Bollobás [6] generalized the results from Klee and Larman [14]
characterizing the case of constant diameter. Later, Chung and Lu [12] proved con-
centration results in various different ranges. More recently, Riordan and Wormald
[19] completed the program to study the missing cases for the Erdős-Rényi model.

The critical window, when p = 1/n + cn−4/3, for G(n, p) is much harder to
analyze. Nachmias and Peres [17] obtained the order of the diameter, namely
n1/3. Addario–Berry, Broutin and Goldschmidt [1, 2] proved convergence, in the
Gromov–Hausdorff distance, of the rescaled connected components to a sequence of
continuous compact metric spaces. In particular, the diameter rescaled by n−1/3

converges in distribution to an absolutely continuous random variable with finite
mean. Their approach was extended by Bhamidi, Sen and Wang [5] to the Norros–
Reittu [18] random graph model, and then further generalized by Bhamidi, Broutin,
Sen and Wang [4].

1.2. Structure of the paper. In Section 2 we introduce all concepts, additional
definitions and results needed to prove Theorem 2. In Section 3 we prove Theorem 1
on the behavior of the upper and lower diameters ∆u and ∆`. In Section 4 we prove
that the number of vertices that are at a fixed distance from a given vertex grows
exponentially as a function of the distance. Finally, in Section 5 we combine the
results of the previous sections to give the proof of Theorem 2.

2. Framework

In this paper we follow the notation from [8] with minor changes. We also use
the following standard notation: we write f = O(g) if f/g is bounded and f = o(g)
if f/g → 0.

Define N(u) = {v ∈ V : (u, v) ∈ E} the neighborhood of vertex u, and for a
subset U ⊂ V let N(U) = ∪u∈UN(u). Given a subset A ⊂ S we write V (A) for the
set of vertices with type in A, i.e.,

V (A) =
{
v ∈ V : Xv ∈ A

}
.

The asymptotic expansions for distances in the graph G(n, κ, p) are obtained
by looking at the lower and upper partition graphs P`(A) and Pu(A) of a partition
A = {A1, . . . ,Am} of S, as defined in the introduction. These graphs are finite
graphs that describe approximations of κ that may be successively refined. More
formally, we have the following definition:



4 NICOLAS FRAIMAN AND DIETER MITSCHE

Definition 1. We say that a partition A is a refinement of B, denoted by A ≺ B,
if for every A ∈ A there exists B ∈ B such that A ⊂ B. Note that in this case, each

Bi = ∪mip=1A
(i)
p µ-almost everywhere.

Let us examine the effect of a refinement on the partition graphs: It is clear
that κu(Bi,Bj) > 0 if and only if there exists p, q and Ai,Aj with Ai ⊂ Bi and
Aj ⊂ Bj such that κu(Ai,Aj) > 0. This implies that Pu(B) is obtained from Pu(A)
by contracting the vertices Ai ⊂ Bi into one vertex Bi. In particular,

diamPu(B) ≤ diamPu(A),

On the other hand, κ`(Bi,Bj) > 0 if and only if for all Ai ⊂ Bi and Aj ⊂ Bj we
have κ`(Ai,Aj) > 0. This implies that the graph obtained by splitting each vertex
Bi into the parts of A that it contains is a subgraph of P`(A). In particular,

diamP`(B) ≥ diamP`(A).

Note also that if A ≺ B and Ai ⊂ Bi and Aj ⊂ Bj , we always have

dP`(A)(Ai,Aj) ≤ dP`(B)(Bi,Bj),
dPu(A)(Ai,Aj) ≥ dPu(B)(Bi,Bj).

By the above properties it is clear that the values of ∆` = infA diamP`(A) and
∆u = supA diamPu(A) are well defined. When studying ∆` and ∆u we want to
avoid trivial cases where they are infinite because there is an structural obstruction
for connectivity given by κ. If κ is reducible then the whole graph G(n, κ, p) is
disconnected since almost surely there are no edges between the sets V (A) and
V (S \ A). Since we want to work with connected graphs, we restrict our attention
to the irreducible case. Let

λ(x) =

∫
S
κ(x, y)dµ(y) and λ∗ = ess inf λ(x).

In [13] the constant λ∗ is called the isolation parameter and it is shown to determine
the connectivity threshold. Note that the expected degree of a vertex of type x is
λ(x)np. Our arguments require this value to be Θ(np) so we will work with kernels
that satisfy λ∗ > 0. Observe that the assumption λ∗ > 0 implies that all lower
partition graphs P`(A) are connected (the upper partition graphs are connected
anyway, since κ is assumed to be irreducible).

Recall that we defined the expansion factor as Φ = dlog n/ log npe. Its relation
to the diameter of the Erdős and Rényi model G(n, p) is made precise now. Since
we use it in our argument we include the following result obtained first by [6] as a
Lemma.

Lemma 1 ([7], Corollary 10.12). Let k ≥ 2 be finite. If (np)k/n− 2 log n→∞ and
(np)k−1/n− 2 log n→ −∞. Then, with high probability diam(G(n, p)) = k.

Since we assume that log n/ log np is at least 2 log log n/ log np away from every
integer, clearly, the diameter of G(n, p) is with high probability concentrated on one
value, and hence clearly k = Φ. In fact, this assumption is stronger and implies that

(1)
(np)Φ

n
− ω log n→∞ and

(np)Φ−1

n
− 1

ω
log n→ −∞.

The results hold also for the ranges in between with the obvious changes. Since this
is handled as in G(n, p), we focus on the one–value case for the sake of clarity.
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3. Upper and lower diameters

In this section we study the behavior of the diameters ∆u and ∆`. The goal is
to prove Theorem 1. We split the proof into two lemmas. Given two partitions A
and B, we define their common refinement as

A ∨ B := {A ∩ B : µ(A ∩ B) > 0, for A ∈ A and B ∈ B}.

Lemma 2. If ∆` <∞, then ∆u ≤ ∆`.

Proof. Since ∆` <∞, there exists a partition A such that diamP`(A) = ∆`. Let B
be an arbitrary partition. Consider the common refinement A ∨ B. Since P`(A ∨ B)
is a subgraph of Pu(A ∨ B) we have that

diamPu(A ∨ B) ≤ diamP`(A ∨ B).

Moreover, we also have that

diamPu(B) ≤ diamPu(A ∨ B) and diamP`(A ∨ B) ≤ diamP`(A),

because A ∨ B is a refinement of both A and B. Combining these three inequalities
we get that diamPu(B) ≤ diamPu(A) ≤ diamP`(A) = ∆` < ∞. Therefore, the
inequality also holds taking the supremum over all partitions. In particular, we can
choose B such that diamPu(B) = ∆u, and the desired inequality follows. �

In particular, the above bound gives an easy way to determine ∆u and ∆` in
the case they are equal. It suffices to find a partition A that such that

diamPu(A) = diamP`(A).

We can also show the following bound.

Lemma 3. If ∆` <∞, then ∆` ≤ ∆u + 2.

Proof. We state the following claim which we prove below.

Claim 1. Suppose ∆u < ∞. Given a partition B, let Bs,Bf ∈ B. There exists a
refinement A ≺ B such that there exist As,Af ∈ A with c(As) = Bs, c(Af ) = Bf
such that dP`(A)(As,Af ) ≤ ∆u.

Assuming the claim, the lemma follows easily: indeed, start with a partition B
with diamP`(B) <∞. Consider all pairs

P = {(Bi,Bj) ∈ B× B : dP`(B)(Bi,Bj) > ∆u + 2}
If P = ∅ then we are done, as ∆` ≤ maxBi,Bj∈B dP`(B)(Bi,Bj) ≤ ∆u + 2. Therefore
suppose P 6= ∅. Since diamP`(B) < ∞ given (Bi,Bj) ∈ P there exists Bs and Bf
such that κ`(Bi,Bs) > 0 and κ`(Bf ,Bj) > 0.

Since ∆` <∞, by Lemma 2 we have ∆u ≤ ∆` <∞. Thus, by Claim 1, there
exists A ≺ B such that dP`(A)(As,Af ) ≤ ∆u for some As,Af with c(As) = Bs and
c(Af ) = Bf . Then, for any Ai,Aj ∈ A such that c(Ai) = Bi and c(Aj) = Bj we
have that κ`(Ai,As) > 0 and κ`(Af ,Aj) > 0 and therefore dP`(A)(Ai,Aj) ≤ ∆u+ 2.

We construct such a partition A for each pair in P. Since P is finite con-
sider a common refinement C of all of these partitions. It is clear that C has
maxCi,Cj∈C dP`(C)(Ci, Cj) ≤ ∆u + 2, and since ∆` ≤ maxCi,Cj∈C dP`(C)(Ci, Cj), the
lemma follows. �
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Proof of Claim 1. Eliminate from S all points where κ is not continuous.
Note that the removed set has measure 0 and does not affect the calculations of
essential infima and suprema.

Next, suppose that in the remaining set there exist x1, . . . , xr with r ≤ ∆u

with x1 ∈ B1 := Bs, xr ∈ Br := Bf , xi ∈ Bi for i = 2, . . . , r − 1 and κ(xi, xi+1) > 0
for i = 1, . . . , r − 1. By continuity of κ, there exist εi, εi+1 > 0 such that for
any y in the ball B(xi, εi) and z in the ball B(xi+1, εi+1) we have κ(y, z) > 0.
Consider the partition A ≺ B in the following way: all parts except for Bi with
i = 1, . . . , r remain unchanged: for i = 1, . . . , r, Bi is split into Ai = Bi ∩B(xi, εi)
and A′i = Bi \B(xi, εi). Since in A we have dP`(A)(As,Af ) ≤ r ≤ ∆u, we found the
desired partition A.

Otherwise, there exists no such path of length r ≤ ∆u. Consider any path
of minimal distance B1 := Bs,B2, . . . ,Br := Bf of length r ≤ ∆u in Pu(B). For
i = 1, . . . , r let

Asi := {x ∈ Bi : ∃(x1, . . . , xi = x) ∈ (B1, . . . ,Bi) | κ(xj , xj+1) > 0, j = 1, . . . , i− 1}

be the sets of vertices of Bi to which there is a path that starts at Bs. Similarly,

Afi := {x ∈ Bi : ∃(xi = x, . . . , xr) ∈ (Bi, . . . ,Br) | κ(xj , xj+1) > 0, j = i, . . . , r − 1}

be the sets of vertices of Bi from which there is a path that finishes at Bf . Note that

for all i = 1, . . . , r, we must have Asi ∩A
f
i = ∅, as otherwise we would have a path of

length r between Bs and Bf . Consider the partition A ≺ B induced from splitting Bi
into Asi ,A

f
i and Bi \ (Asi ∪A

f
i ). Since some of these sets might be empty we consider

the partition obtained after removing sets of measure zero. Note that for the new
partition A, the shortest path starting from As1 and ending at Afr and using only

elements Asi ,A
f
i ,Bi \ (Asi ∪ A

f
i ) for some i = 1, . . . , r must have length d1 ≥ r + 1

in the upper partition graph corresponding to A1 := A. If there are several minimal
paths of length r in B between Bs and Bf , do independently the same refinement
and obtain for each such path a refined partition Ai ≺ B. Note that there are only
finitely many partitions, since there are only finitely many minimal paths of length
r in B. As before, when refining, distances in the upper partition graph either
stay the same or increase. We may thus take a partition C which is a common
refinement of all Ai, and we have for all Cs, Cf ∈ C with c(Cs) = Bs and c(Cf ) = Bf ,
dPu(C)(Cs, Cf ) ≥ d1. If d1 > ∆u, we found a new partition C with diameter bigger
than ∆u, contradicting our assumption on ∆u. Otherwise we apply the claim with
partition C playing the role of partition B. Note that there are only finitely many
elements Cs, Cf with c(Cs) = Bs and c(Cf ) = Bf . For a fixed pair of such elements
Cs, Cf apply the claim (yielding a sequence of refined partitions corresponding to
all minimal paths of length d between them), giving either the desired path or a
partition being a common refinement of all these partitions. Taking then again
the refinement of all refined partitions corresponding to all pairs Cs, Cf yields a
new refinement D in which all pairs are at distance d2 ≥ d1 + 1, and the claim can
then be applied with D playing the role of C. Since ∆u < ∞, after finitely many
iterations we must have found the desired path of length at most ∆u, and the claim
follows. �

The first part of Theorem 1 follows now easily by combining Lemma 2 and
Lemma 3. For the second part, to show that both bounds can be attained, on
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the one hand consider a constant kernel defined as κ(x, y) = 1 for all x ≤ y, and
extended by symmetry for x > y. Clearly, for any partition A of S, the upper and
lower partitions corresponding to A are the same graphs, and therefore for such a
kernel ∆` = ∆u. On the other hand, to show that ∆` = ∆u + 2 can be attained,
consider for example the following kernel: let S = [0, k + 2], and let ε > 0 be a
sufficiently small constant that ensures that consecutive intervals overlap below
(note that by dividing all values by k + 2 clearly the same result can be obtained
when considering S = [0, 1]). Then define κ(x, y) for x < y as follows:

κ(x, y) = 1A +

k∑
i=1

1Bi\A

(
x− (i− 1)(k + 2)(1− ε)

k

)(
i(k + 2)

k
− y
)
,

where

A =
{

(x, y) ∈ S × S : y − x ≤ 1
}

and

Bi =

{
(x, y) ∈ S × S :

(i− 1)(k + 2)(1− ε)
k

≤ x < y ≤ i(k + 2)

k

}
.

Clearly, for any partition A of S, for both the upper and lower partition graphs
of A the diameter of the corresponding graph is attained for the distance between
0 and k + 2. To see that ∆u = k consider an arbitrarily fine partition A: the
element of A containing 0 is connected by an edge in the upper partition graph to
the element of A containing (k + 2)/k, this one is then connected by an edge to the
element of A containing 2(k+ 2)/k, and continuing like this, the element containing
(k − 1)(k + 2)/k < k is then connected by an edge to the element of A containing
k, and we have found a path of length k. Clearly, in an arbitrarily fine partition
these elements of all A are all different, and no shorter path can be found, since the
element of A containing i(k + 2)/k is not connected by an edge to the element of A
containing only elements bigger than (i+ 1)(k+ 2)/k. By definition of κ is certainly
an optimal strategy, and hence ∆u ≤ k. To show that ∆` ≥ k + 2, observe that the
element of A containing 0 can possibly be connected by an edge to the element of A
containing 1, but not to an element of A containing only elements of S bigger than 1.
For ε small enough, (k+ 2)(1− ε)/k > 1, and therefore in the next step the element
of A containing 1 can possibly be connected by an edge at most to the element of A
containing 2, but not to an element containing only elements of A bigger than 2.
Repeating the same argument, for any i = 2, . . . , k − 1, the element containing i
can possibly be connected by an edge at most to the element of A containing i+ 1,
but not to an element of A containing only elements of S bigger than i + 1. By
construction of κ this is clearly an optimal strategy, and hence ∆` ≥ k + 2. By the
first part of the theorem, we then must have ∆u = k and ∆` = k + 2. The proof of
Theorem 1 is complete.

4. Expansion of neighborhoods

Let G(n, κ, p) be an inhomogeneous random graph induced by an irreducible
kernel κ that is continuous (µ⊗ µ)-almost everywhere. In this section we prove that
the number of vertices at distance k from a given vertex grows exponentially with k.
The main tool we use is concentration inequalities.
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Lemma 4. Let A = {A1, . . . ,Am} be a partition of S. Let U ⊂ V (Ai) ≤ |V (Ai)|/2.
Let Aj ∈ A, with possibly Ai = Aj and suppose that κ`(Ai,Aj) > 0. Define

Si,j := nµ(Aj)
(

1− (1− κ`(Ai,Aj)p)|U |
)

=


nµ(Aj)(1 + o(1)), p|U | = ω(1),

Θ(nµ(Aj)), p|U | = Θ(1),

nµ(Aj)p|U |(1 + o(1)), p|U | = o(1).

Then

P

(
|N(U) ∩ (V (Aj) \ U)| ≤ Si,j

4

)
≤ e−Si,j/16.

Proof. We write the number of vertices as a sum of indicators

|N(U) ∩ (V (Aj) \ U)| =
∑
v/∈U

1Xv∈Aj1v∈N(U).

Note that, for different values of v /∈ U , the events [Xv ∈ Aj ] ∩ [v ∈ N(U)] are
independent and identically distributed. Fix a vertex v /∈ U . We want to bound the
probability of these events conditionally on [U ⊂ V (Ai)]. We begin by noting that

(2) P
(
Xv ∈ Aj | U ⊂ V (Ai)

)
= P (Xv ∈ Aj) = µ(Aj),

Moreover, by independence we have

P
(
v /∈ N(U) | U ⊂ V (Ai), Xv ∈ Aj

)
=
∏
u∈U

P
(
v /∈ N(u) | Xu ∈ Ai, Xv ∈ Aj

)
≤ (1− κ`(Ai,Aj)p)|U |.

Therefore, we can bound

P
(
v ∈ N(U) | U ⊂ V (Ai), Xv ∈ Aj

)
≥ 1− (1− κ`(Ai,Aj)p)|U |(3)

Putting equations (2) and (3) together we obtain

P
(
Xv ∈ Aj , v ∈ N(U) | U ⊂ V (Ai)

)
= P

(
Xv ∈ Aj | U ⊂ V (Ai)

)
·P
(
v ∈ N(U) | U ⊂ V (Ai), Xv ∈ Aj

)
≥ µ(Aj)

(
1− (1− κ`(Ai,Aj)p)|U |

)
The proof is complete by applying a Chernoff bound [11] to |N(U) ∩ (V (Aj) \ U)|
noting that Si,j/2 ≤ E |N(U) ∩ (V (Aj) \ U)|. �

We will the previous lemma iteratively to get concentrations for expansions of
the i-th neighborhood. We need a few definitions: let

κ` := min{κ`(Ai,Aj) : (Ai,Aj) is an edge of P`(A)}

and for a partition A = {A1, . . . ,Ar} set

‖A‖µ = min{µ(Ai) : Ai ∈ A}.

Let S := n‖A‖µκ`p/4 and note that Si,j/4 ≥ S for all Aj ,Ai ∈ A. Define t(k) = k
for 0 ≤ k ≤ Φ−2 and t(k) = Φ−2 for k > Φ−2. Given a partition A, consider a walk
A0,A1, . . . ,A` in P`(A) (possibly making zigzags and reusing partitions) and let
u ∈ V (A0). Define Γ0(u) = {u}, and for k ≥ 1, define first recursively the following
auxiliary variables Γ′k(u): for |Γk−1(u)| ≤ |V (Ak−1)|/2, let Γ′k−1(u) := Γk−1(u),
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and otherwise define Γ′k−1(u) ⊆ Γk−1(u) to be a randomly chosen subset of Γk−1(u)
such that |Γ′k−1(u)| = b|V (Ak−1)|/2c. Define then

Γk(u) =
{
v ∈ V (Ak) \ Γ′k−1(u) : N(v) ∩ Γ′k−1(u) 6= ∅

}
.

We can now prove the following lemma.

Lemma 5. Let ω be a function tending to infinity arbitrarily slowly as n→∞, let
p ≥ ω log n/n and let ` ≤ ω. Let A be a partition of κ and let A0,A1, . . . ,A` be a
walk in P`(A), and let u ∈ V (A0). Then, with probability 1− o(n−ω),

|Γ`(u)| ≥ St(`).

Proof. Note that Γk(u) = N(Γ′k−1(u)) ∩ (V (Ak) \ Γ′k−1(u)). Define the events
F0 = Ω and in general by induction, for k ≥ 1,

Fk =

k−1⋂
i=0

Fi ∩
[
|Γk(u)| ≥ St(k)

]
.

Note that if Fk holds, we have that |Γi(u)| ≥ St(i) for all i = 0, . . . , k. We will now
bound P (Fck|Fk−1) from above and condition under Fk−1. If |Γ′k−1(u)|p = o(1),
then

nµ(Ak)pSt(k−1)(1/2 + o(1)) ≤ nµ(Ak)p|Γ′k−1(u)|(1/2 + o(1))

= nµ(Ak) (1 + o(1))
(

1− (1− κ`(Ak−1,Ak)p)|Γ
′
k−1(u)|

)
/2 ≤ E |Γk(u)|.

Hence by Lemma 4 we have that

P (Fck|Fk−1) ≤ e−Ω(|Γ′k−1(u)|) ≤ e−Ω(St(k−1)).

Otherwise, if |Γk−1(u)|p = Ω(1), then

Θ(nµ(Ak)) = nµ(Ak)
(

1− (1− κ`(Ak−1,Ak)p)|Γk−1(u)|
)
/2 ≤ E |Γk(u)|,

and in this case we have

P (Fck|Fk−1) ≤ e−Ω(n).

Putting together these bounds for different values of k we obtain

P (Fc` ) ≤
∑̀
k=2

P (Fck|Fk−1)

≤
Φ−2∑
k=2

e−Ω(St(k−1)) + `e−Ω(n)

= e−Ω(np) = n−ω.

The lemma follows. �
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5. Bounding the diameter

We dedicate this section to the proof of Theorem 2. We continue to write
G(n, κ, p) for an inhomogeneous random graph induced by an irreducible kernel κ
that is continuous (µ⊗µ)-almost everywhere. We break up the proof of the theorem
into six lemmas where we study the behavior of the diameter of G(n, κ, p) depending
on the relationships between Φ,∆u and ∆`.

Lemma 6. With high probability, diamG(n, κ, p) ≥ ∆u.

Proof. Consider a partition A attaining ∆u. With probability 1, there is no edge
between any pair of vertices w, x and any two elements Ak,A` ∈ A, such that
w ∈ V (Ak), x ∈ V (A`), and Ak,A` /∈ E(Pu(A)). Note that with probability
1− e−Ω(n) we can find two vertices u, v ∈ V (Ai), V (Aj) such that Ai and Aj are at
distance ∆u in Pu(A), and hence the lemma follows. �

Lemma 7. Suppose ∆` > Φ. With high probability, diamG(n, κ, p) ≤ ∆`.

Proof. We may assume ∆` <∞, as otherwise there is nothing to prove. Consider a
partition A attaining ∆`, and consider two arbitrary vertices u, v ∈ V (Ai), V (Aj).
Suppose first that in P`(A) there exists Ar ∈ A such that Ar,As,Aj is a walk
(possibly reusing partitions and making zigzags) of length 2 in P`(A), and such that
there exists a walk (possibly reusing partitions and making zigzags) of length Φ− 2
from Ai to Ar. Then note that by Lemma 5, with probability at least 1− o(n−ω)

(4) |ΓΦ−2(u) ∩ V (Ar)| ≥ (‖A‖µκ`np/4)Φ−2.

Also, with probability at least 1− o(n−ω), |Γ(v)∩V (As)| ≥ ‖A‖µκ`np/4. Assuming
these conditions deterministically, the probability that there is no edge between
ΓΦ−1(u) ∩ V (Ar) and Γ(v) ∩ V (As) is at most

(5) (1− κp)‖A‖µκ`np/4)Φ−1

= e−Ω(nΦ−1pΦ) = n−ω,

and hence with probability 1− n−ω we found a path of length Φ < ∆` between u
and v. Similarly, if there exists Ar ∈ A, where Ar is such that Ar,As,Aj is a walk
of length 2, and a walk of length Φ− 1 from Ai to Ar, by Lemma 5,

|ΓΦ−1(u) ∩ V (Ar)| ≥ (‖A‖µκ`np/4)Φ−2,

and by the same argument as before, we found a path of length Φ + 1 ≤ ∆` between
u and v. Otherwise, there must exist Ar ∈ A, such that Ar,As,Aj is a path of
length 2, and such that the shortest path between Ai and any vertex Ar in P`(A)
has length Φ ≤ ` ≤ ∆` − 2. (If that were not the case, then Ai and Aj would be
at distance bigger than ∆`, contradicting our assumption on P`(A). ) Again by
Lemma 5,

|Γ`(u) ∩ V (Ar)| ≥ (‖A‖µκn(p− p2)/4)Φ−2,

and by the same argument as before, with probability 1− o(n−ω) we get a path of
length `+ 2 ≤ ∆` between u and v. By a union bound over all pairs of vertices, the
statement follows. �
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Lemma 8. With high probability, diamG(n, κ, p) ≥ Φ.

Proof. Note that for p = Θ(1) and p < 1, Φ = 2, ∆u ≥ 2 and since diamG(n, κ, p) ≥
∆u, we have diamG(n, κ, p) ≥ Φ in this case. Otherwise, for p = o(1), using the
same X1, . . . , Xn, since κ ≤ 1 we can couple G(n, κ, p) so that it is a subgraph
of G(n, 1, p). This can be done, for instance, by using uniform random variables
Uij ∈ [0, 1] and letting each edge be present if Uij < κ(Xi, Xj)p or Uij < p. Note
that G(n, 1, p) is nothing but G(n, p). Recall that by Lemma 1 diamG(n, p) = Φ.
Hence, with high probability we have diamG(n, κ, p) ≥ diamG(n, p) = Φ. �

Lemma 9. Suppose Φ ≥ ∆u. If for every partition A there exists i ≤ j, such that
there exists no path of length exactly Φ between Ai and Aj in Pu(A), then with high
probability diamG(n, κ, p) ≥ Φ + 1.

Proof. Fix an arbitrary partition A and let i ≤ j as in the statement of the
lemma. We will show that with high probability there exist two vertices u ∈ V (Ai),
v ∈ V (Aj) such that v cannot be reached by u in exactly Φ steps. Note first that
with probability 1 there is no edge between two vertices w ∈ V (Ak), x ∈ V (A`)
with Ak,A` /∈ E(Pu(A)), so we may assume this. Note that by Lemma 1, if
(np)Φ−1 − 2n log n→ −∞, then there exists with high probability a pair of vertices
u, v such that dG(u, v) ≥ Φ. Recall that we assume that the stronger condition (1)
holds. In this case, observe that with high probability there exist ω disjoint pairs of
vertices such that they are all at distance exactly Φ: to show this we use the idea of
sprinkling new edges, introduced in [3], combined with the coupling using the same
X1, . . . , Xn described in the previous lemma. Indeed, if there were only constantly
many, by adding fresh random edges distributed asG(n, κ,C ′p) for some large enough
constant C ′ = C ′(p), we would on the one hand have a graph that can be coupled
to be a subgraph of G(n, κ, (C ′+ 1)p), while still ((C ′+ 1)pn)Φ−1− 2n log n→ −∞.
On the other hand, the number of new edges added is at least as big as the ones
present before in G(n, κ, p), since the number of new edges added is distributed
as in G(n, κ,C ′p(1 − p)), and C ′p(1 − p) > p for any p < 1 and C ′ sufficiently
large. Hence, among the graph corresponding to the new edges there would also be
at most constantly many pairs of vertices at distance Φ, and the probability that
after adding the new edges, one vertex pair originally at distance Φ would remain
at distance Φ, tends to 0, contradicting Lemma 1. Hence, in G(n, κ, p) with high
probability there are ω disjoint pairs of vertices at distance Φ, and hence, with high
probability there will be at least one pair of vertices u, v satisfying u ∈ V (Ai) and
v ∈ V (Aj). Since they cannot be at distance Φ, they have to be at distance at least
Φ + 1, yielding the lemma. �

Lemma 10. Suppose Φ ≥ ∆`. With high probability diamG(n, κ, p) ≤ Φ + 1.

Proof. As in Lemma 7, consider a partition A attaining ∆`, and consider two
arbitrary vertices u, v ∈ V (Ai), V (Aj). Observe that in P`(A) there exists Ar ∈ A
such that Ar,As,Aj is a walk (possibly reusing partitions and making zigzags) of
length 2 in P`(A), and such that there exists a walk (possibly reusing partitions and
making zigzags) of length Φ− 2 or Φ− 1 from Ai to Ar. The proof is then as is in
Lemma 7. �
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Lemma 11. Suppose Φ ≥ ∆`. If there exists a partition A such that for any i ≤ j,
there exists a path of length exactly Φ between Ai and Aj in P`(A), then with high
probability diamG(n, κ, p) ≤ Φ.

Proof. Consider such a partition A and consider two vertices u, v ∈ V (Ai), V (Aj):
by assumption, in P`(A) there exists Ar ∈ A such that Ar,As,Aj is a walk (possibly
reusing partitions and making zigzags) of length 2 in P`(A), and such that there
exists a walk (possibly reusing partitions and making zigzags) of length exactly
Φ− 2 from Ai to Ar. The proof is then as is in Lemma 7. �

Finally, combining all the lemmas above we obtain the proof of the three
statements in Theorem 2.

Proof of Theorem 2. By combining Lemma 6 and 7 (i) follows. The first part
of (ii) follows by Lemma 8 and Lemma 7, and the second part follows by adding
Lemma 9. Finally, the first part of (iii) follows by Lemma 8 and 10; for the second
part Lemma 9 and Lemma 11 is used. �
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