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Abstract

We consider spin systems with nearest-neighbor interactions on an n-vertex d-dimensional cube

of the integer lattice graph Zd
. We study the e�ects that exponential decay with distance of spin

correlations, speci�cally the strong spatial mixing condition (SSM), has on the rate of convergence to

equilibrium distribution of non-local Markov chains. We prove that SSM implies O(log n) mixing of a

block dynamics whose steps can be implemented e�ciently. We then develop a methodology, consisting

of several new comparison inequalities concerning various block dynamics, that allow us to extend this

result to other non-local dynamics. As a �rst application of our method we prove that, if SSM holds,

then the relaxation time (i.e., the inverse spectral gap) of general block dynamics isO(r), where r is the

number of blocks. A second application of our technology concerns the Swendsen-Wang dynamics for

the ferromagnetic Ising and Potts models. We show that SSM implies anO(1) bound for the relaxation

time. As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang

dynamics in square boxes of Z2
isO(1) throughout the subcritical regime of the q-state Potts model, for

all q ≥ 2. We also prove that for monotone spin systems SSM implies that the mixing time of systematic

scan dynamics is O(log n(log log n)2). Systematic scan dynamics are widely employed in practice but

have proved hard to analyze. Our proofs use a variety of techniques for the analysis of Markov chains

including coupling, functional analysis and linear algebra.
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1 Introduction

Spin systems are a general framework for modeling interacting systems of simple elements, and arise in a

wide variety of settings including statistical physics, computer vision and machine learning (where they

are often referred to as “graphical models” or “Markov random �elds”). A spin system consists of a �nite

graph G = (V,E) and a set S of spins; a con�guration σ ∈ SV assigns a spin value to each vertex v ∈ V .

For de�niteness in this version of the paper, we focus on the classical case where G is a cube in the d-

dimensional lattice Zd. The probability of �nding the system in a given con�guration σ is given by the

Gibbs (or Boltzmann) distribution

µ(σ) = exp(−H(σ))/Z, (1)

where Z is the normalizing factor (or “partition function”) and the Hamiltonian H contains terms that

depend on the spin values at each vertex (a “vertex potential”) and at each pair of adjacent vertices (an

“edge potential”). See Section 2 for a precise de�nition.

One of the most fundamental properties of spin systems is (strong) spatial mixing (SSM), which cap-

tures the fact that the correlation between spins at di�erent vertices decays with the distance between

them (uniformly over the size of the underlying graph G)—again, see Section 2 for a precise de�nition.

SSM is closely related to the classical physical concept of a phase transition, which refers to the sudden

disappearance of long-range correlations as some parameter of the system (typically, the edge or vertex

potential) is continuously varied.
1

SSM has proved to have a number of powerful algorithmic applica-

tions, both in the analysis of spin system dynamics (discussed in detail below) and in the design of e�cient

approximation algorithms for the partition function (a weighted generalization of approximate counting)

using the associated self-avoiding walk trees (see, e.g., [49, 41, 30, 19, 40, 42, 43]).

While SSM is a static property of a spin system, there is equal interest in dynamic properties. By this

we mean the behavior of ergodic Markov chains whose states are the con�gurations of the spin system and

whose equilibrium measure is the Gibbs distribution (1). Such dynamics are of interest in their own right:

they provide algorithms for sampling from the Gibbs distribution and (in many cases) are a plausible model

for the evolution of the underlying system of spins. Of particular interest are Glauber dynamics, which at

each step pick a vertex v ∈ V uniformly at random and update its spin in a reversible fashion depending

on the neighboring spins.

It has been well known since pioneering work in mathematical physics from the late 1980s (see, e.g.,

[26, 1, 50, 44, 33, 34, 8]) that SSM implies that the mixing time (i.e., rate of convergence) of the Glauber

dynamics is O(|V | log |V |), and hence optimal [25]; indeed, the reverse implication is also true, so the

phase transition is manifested in the mixing time of the dynamics (see, e.g., [44, 33, 15]). The above impli-

cation was established using sophisticated functional analytic techniques, though more recently a simple

combinatorial proof was given in [15] for the special case of monotone systems (where the edge potential

favors pairs of equal spins—see Section 6 for a precise de�nition).

The intuition for these mixing time bounds comes from the fact that in the absence of long-range

correlations (i.e., SSM), the system mimics the behavior of one with no interactions where the Gibbs dis-

tribution (1) is simply a product measure. Consequently, local Markov chains like the Glauber dynamics

require Θ(|V | log |V |) steps to mix. On the other hand, non-local dynamics, where a large fraction of the

con�guration may be updated in a single step, could potentially converge to the Gibbs distribution much

faster. These dynamics have to contend with the possibly high computational cost of implementing a sin-

gle step. However, in some cases, non-local steps can be e�ciently implemented by taking advantage of

speci�c features of the models.

1

Actually phase transitions are usually related to a weaker notion called “weak spatial mixing” (WSM); in two dimensional

spin systems WSM and SSM are known to be equivalent [35].
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The current paper concerns the e�ects of SSM on the rate of convergence to equilibrium of non-local
dynamics. Our �rst contribution consists of tight bounds for the mixing time and the spectral gap of a block
dynamics. The spectral gap is the inverse of the relaxation time, which measures the speed of convergence

to the stationary distribution when the initial con�guration is reasonably close to this distribution (a “warm

start”), whereas the mixing time assumes a worst possible starting con�guration. The relaxation time is

another well studied notion of rate of convergence (see, e.g., [27, 28]).

Let {A1, . . . , Ar} be a collection of sets (or blocks) such that V = ∪iAi. A (heat-bath) block dynamics
with blocks {A1, . . . , Ar} is a Markov chain that in each step picks a block Ai uniformly at random and

updates the con�guration inAi with a new con�guration distributed according to the conditional measure

in Ai given the con�guration in V \ Ai. We �rst consider the following choice of blocks. Start with a

regular pattern of non-overlapping d-dimensional lattice cubes of side L � |V |1/d, with a �xed minimal

distance between cubes, and letA denote the union of all cubes in this pattern. By considering all possible

lattice translations of the set A ∩ V we obtain the blocks {A1, . . . , Ar} where r = O(Ld); see Figure 1

on page 8. Each such block Ai is called a tiling of V and the associated block dynamics is called the tiled
block dynamics. We refer to Section 3 for a precise de�nition.

Theorem 1.1. When L is a su�ciently large constant (independent of |V |), SSM implies that the mixing
time of the tiled block dynamics is O(log n) and that its relaxation time is O(1).

In practice, the steps of the tiled block dynamics can be implemented e�ciently in parallel. However,

the main signi�cance of this result is that, in conjunction with a comparison methodology we develop, it

allows us to establish several new results for standard non-local dynamics. The �rst consequence of this

technology is a tight bound for the relaxation time of general block dynamics.

Theorem 1.2. SSM implies that the spectral gap of any heat-bath block dynamics with r blocks is Ω(1
r ), and

hence its relaxation time is O(r).

We observe that there are no restrictions on the geometry of the blocks Ai in this theorem, other than

V = ∪iAi. This optimal bound for the spectral gap was known before only for certain speci�c collections

of blocks (see, e.g., [32, 15]), and previous analytic methods apparently do not apply to the general setting.

A second application of our techniques concerns the so-called Swendsen-Wang (SW) dynamics [45].

The SW dynamics is a widely studied reversible dynamics for the ferromagnetic Ising and Potts models,

which are among the most important and classical of all spin systems. In the ferromagnetic q-state Potts
model, there are q spin values and the edge potential favors equal spins on neighbors. More precisely,

µ(σ) ∝ exp(βa(σ)) where a(σ) is the number of edges connecting vertices with the same spin values in

σ, and β > 0 is a parameter of the model. The Ising model is just the special case q = 2.

The SW dynamics is non-local, and updates the entire con�guration in a single step, according to a

scheme inspired by the related random-cluster model. (The exact de�nition of this dynamics is given in

Section 4.) We prove that the relaxation time of the SW dynamics is Ω(1), provided SSM holds. More

formally, let SW be the transition matrix of the Swendsen-Wang dynamics for the Potts model on an

n-vertex cube in Zd, and let λ(SW ) denote its spectral gap.

Theorem 1.3. For all q ≥ 2, SSM implies that λ(SW ) = Ω(1); hence the relaxation time of the SW
dynamics is O(1).

This optimal bound for the spectral gap is a substantial improvement over the best previous result due to

Ullrich [47], where, in Zd, SSM was shown to imply that λ(SW ) = Ω(n−1). For earlier related work in

Zd see [36, 9]. Tight spectral gap bounds such as ours for the SW dynamics were known previously only

in the mean-�eld setting, where the graph G is the complete graph [31, 18, 4]. For other relevant work

see [22], where Guo and Jerrum proved that when q = 2 the SW dynamics mixes in polynomial time on
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any graph. We note that our spectral gap result does not immediately imply a polylog(n) bound on the

mixing time, as one might hope; this is because there is an inherent penalty of O(n) in relating spectral

gap to mixing time, so the mixing time bound implied by Theorem 1.3 is O(n).

In two dimensions SSM is known to hold for all q ≥ 2 and all β < βc(q), where βc(q) = log(1+
√
q) is

the uniqueness threshold; this is a consequence of the results in [3, 2, 35]. Therefore, we have the following

interesting corollary of Theorem 1.3.

Corollary 1.4. In an n-vertex square box of Z2, for all q ≥ 2 and all β < βc(q) we have λ(SW ) = Ω(1);
hence the relaxation time of the SW dynamics is O(1).

In Z2
, Ullrich’s result [47] implies that the relaxation time of the SW dynamics is O(n) for β < βc(q),

O(n2 log n) for β > βc(q), and at most polynomial in n for β = βc(q) and q = 2. Recently, Gheissari

and Lubetzky [20, 21], using the results of Duminil-Copin et al. [11, 10] settling the continuity of phase

transition, analyzed the dynamics at the critical point βc(q) for all q. They showed that the mixing time

is at most polynomial in n for q = 3, at most quasi-polynomial for q = 4, and exp(Ω(n)) for q > 4.

Previously, Borgs et al. [6, 5] proved an exponential lower bound for the mixing time on the d-dimensional

torus when β = βc(q), but only for su�ciently large q.

Our last contribution concerns the systematic scan dynamics, which is a version of Glauber dynamics

in which the vertex v to be updated is chosen not uniformly at random but according to a �xed ordering

of the vertex set V ; one step of systematic scan consists of updating each vertex v ∈ V once according

to this ordering. Systematic scan is widely employed in practice, and there is a folklore belief that its

mixing time should be closely related to that of standard (random update) Glauber dynamics; however, it

has proved much harder to analyze, and indeed a number of works have been devoted to this topic (see,

e.g., [12, 13, 14, 24]). The best general condition under which systematic scan dynamics is known to be

rapidly mixing is due to Dyer, Goldberg and Jerrum [14], and is closely related to the Dobrushin condition

for uniqueness of the Gibbs measure; this condition in turn is known to be stronger (and in some cases

signi�cantly stronger) than SSM [44, 33].

For the special case of monotone spin systems we can show that the systematic scan dynamics mixes in

O(log n(log log n)2) steps for any ordering of the vertices, whenever SSM holds. Additionally, for a wide

class of orderings we can show that the mixing time is O(log n), provided again that SSM holds. For a

vertex ordering O, let L(O) denote the length of the longest subsequence of O that is a path in G.

Theorem 1.5. In a monotone spin system on Zd, SSM implies that the mixing time for the systematic scan
dynamics on an n-vertex cube in Zd is O(log n(log log n)2) for any ordering O. Moreover, if L(O) = O(1)
then SSM implies that the mixing time is O(log n).

Note that the condition L(O) = O(1) is usually easy to check in practice. Moreover, it is easy to choose

orderingsO for whichL(O) is bounded; for example, in Zd,G is always bipartite, so the orderingEO that

updates �rst all the even vertices, then all the odd ones, has L(EO) = 2. This particular systematic scan

dynamics, called the alternating scan dynamics, is used in practice to sample from the Gibbs distribution

and thus has received some attention [38, 23]. Using our comparison technology we prove that, for general
spin systems, the relaxation time of the alternating scan dynamics is O(1), provided SSM holds.

Theorem 1.6. SSM implies that the relaxation time of the alternating scan dynamics on an n-vertex cube in
Zd is O(1).

We emphasize that Theorem 1.6 applies to general (not necessarily monotone) spin systems. In spin sys-

tems with the SSM property, the best previously known bound for the relaxation time of the alternating

scan dynamics was O(n); this bound follows from a recent result of Guo et al. [23]. We observe that since

the alternating scan dynamics is non-reversible, its relaxation time is de�ned in terms of the spectral gap

of its multiplicative reversiblization; see, e.g., [17, 37].
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The rest of the paper is organized as follows. We conclude this introduction with a brief discussion of

our techniques. Section 2 contains some basic terminology, de�nitions and facts used throughout the paper.

In Section 3 we derive our results for the tiled block dynamics (Theorem 1.1) and introduce our comparison

technology in Section 3.1. In Sections 4 and 5 we provide two applications of this technology: bounds for

the spectral gaps of the SW dynamics (Theorem 1.3) and of the general block dynamics (Theorem 1.2),

respectively. Finally, in Section 6 we provide our proofs for Theorems 1.5 and 1.6 concerning systematic

scan dynamics.

1.1 Overview of Techniques

We conclude this introduction by brie�y indicating some of our techniques. We use the path coupling

method of Bubley and Dyer [7] to establish our results for the tiled (heat-bath) block dynamics in Theo-

rem 1.1. Our proof of this theorem is a generalization of the methods in [15]. We then develop a novel

comparison methodology, consisting of several new comparison inequalities concerning various block

dynamics, that together with this result allow us to establish Theorems 1.2 and 1.3. We provide next a

high-level overview of this technology.

We consider a more general class of tiled block dynamics. Suppose that for each i = 1, . . . , r and

each con�guration τ in V \ Ai, we are given an ergodic Markov chain Sτi that acts only on the tiling Ai,
has τ as the �xed con�guration in V \ Ai and is reversible with respect to µ(·|τ). Given this family of

Markov chains, we consider the tiled block dynamics that chooses a tiling Ai uniformly at random from

{A1, . . . , Ar} and updates the con�guration in Ai with a step of Sτi , provided τ is the con�guration in

V \ Ai. We are able to show that the spectral gap of any such tiled block dynamics is determined by the

spectral gap of the tiled heat-bath block dynamics (which is considered in Theorem 1.1) and the spectral

gaps of the Sτi ’s. To bound the spectral gaps of the Sτi ’s we crucially use the fact that, by design, the Ai’s
consists of non-interacting d-dimensional cubes of constant volume.

We use this methodology in the proof of Theorem 1.2 to show that the heat-bath block dynamics with

exactly two blocks, one “even” block containing all the even vertices and an “odd” one with all the odd

vertices, has a constant spectral gap provided SSM holds. For this, we consider the tiled block dynamics

that picks a tiling Ai uniformly at random and with probability 1/2 performs a heat-bath update in all the

even vertices in Ai, and otherwise in all the odd ones. The other part of the proof consists of establishing

a comparison inequality between the spectral gaps of the even/odd heat-bath block dynamics (i.e., the

block dynamics with exactly two blocks: the even and odd ones) and general heat-bath block dynamics

(i.e., where the collection of blocks {A1, . . . , Ar} is arbitrary). For this, we use two key properties of the

variance functional: monotonicity and tensorization.

To derive our results for the SW dynamics in Theorem 1.3 we introduce an auxiliary variant of the SW

dynamics that only updates isolated vertices (instead of connected components of any size). This isolated

vertices variant can be compared to a tiled block dynamics that in a step updates all the isolated vertices

in a single blockAi chosen uniformly at random from {A1, . . . , Ar}. Our comparison methodology above

is then used to show that the spectral gap of this tiled block dynamics is Ω(1). To establish comparison

inequalities between the spectral gaps of the SW dynamics, the isolated vertices variant of the SW dynamics

and the tiled block dynamics that updates isolated vertices in a tiling, we use elementary functional analysis

and the comparison framework of Ullrich [47, 48, 46].

The proof of our later theorem on systematic scan for monotone systems (Theorem 1.5) is loosely

based on ideas from [15]. Finally, to establish our result for the alternating scan dynamics (Theorem 1.6),

we relate the spectral gap of this dynamics to that of the even/odd heat-bath block dynamics, which we

analyze in the proof of Theorem 1.2.
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2 Background

2.1 Spin systems

Let L = (Zd,E) be the in�nite d-dimensional lattice graph, where for u, v ∈ Zd, (u, v) ∈ E i� ||u− v||1 =
1. Let V be a �nite subset of Zd and let G = (V,E) be the induced subgraph. We use ∂V to denote the

boundary of G, i.e., the set of vertices in Zd \ V connected by an edge in E to V .

A spin system onG consists of a set of spins S = {1, . . . , q}, a symmetric edge potentialU : S×S → R
and a vertex potential W : S → R. A con�guration σ : V → S of the system is an assignment of spins

to the vertices of G; we denote by Ω the set of all con�gurations. A boundary condition ψ for G is an

assignment of spins to some (or all) vertices in ∂V ; i.e., ψ : Aψ → S with Aψ ⊂ ∂V . The boundary

condition where Aψ = ∅ is called the free boundary condition.

Given a boundary condition ψ, each con�guration σ ∈ Ω is assigned probability

µψ(σ) =
1

Z
· e−H

ψ
G(σ),

where Z is the normalizing constant and

Hψ
G(σ) = −

∑
(u,v)∈E

U(σ(u), σ(v)) −
∑

(u,v)∈E :u∈Aψ ,v∈V

U(ψ(u), σ(v)) −
∑
u∈V

W (σ(u)).

In the statistical physics literature, Z is called the partition function andHψ
G the Hamiltonian of the system.

A particularly well known and widely studied spin system is the Ising/Pottsmodel, whereS= {1,. . ., q},
U(s1, s2) = β · 1(s1 = s2) and W (s) = βhs. The parameter β ∈ R is related to the inverse temperature

of the system and (h1, ..., hq) ∈ Rq to an external magnetic �eld. In Section 4 we analyze dynamics for

the Ising/Potts model with ferromagnetic interactions (β > 0) and no external �eld (hi = 0 for all i).

Remark 1. There are important spin systems, such as the hard-core model and the antiferromagnetic Potts

model at zero temperature (proper q-colorings), that require the edge potential U to be in�nite for certain

con�gurations; namely, there are hard constraints in the system that make certain con�gurations invalid.

Our results in Sections 3, 5 and 6 hold in this more general setting provided the system is permissive. A

spin system is permissive if for any V ⊂ Zd and any con�guration τ on Zd \ V , there is at least one

con�guration σ on V such that µ(σ|τ) > 0. This ensures that the measure µ(·|τ) is well-de�ned. It is

easy to verify that, in addition to systems without hard constraints, the hard-core model for all λ > 0 and

proper q-colorings when q ≥ 2d+ 1 are all permissive systems.

2.2 Glauber dynamics

Consider the spin system (S = {1, . . . , q}, U,W ) on G = (V,E) with a �xed boundary condition ψ. Let

M be a Markov chain that, given a con�guration σ on V , performs the following update:

1. Pick v ∈ V uniformly at random (u.a.r.);

2. Replace σ(v) with a spin from S = {1, ..., q} sampled according to the distribution µ(·|σ(V \ v)).

This Markov chain is called the (heat-bath) Glauber dynamics. M is clearly reversible with respect to

(w.r.t.) µψ and, to avoid complications, we assume that it is irreducible. (This is always the case in systems

without hard constraints, butM could be reducible for some permissive systems; e.g., proper q-colorings

when q = 2d+ 1.)
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2.3 Strong spatial mixing (SSM)

Several notions of decay of correlations in spin systems have been useful in the analysis of local algorithms.

A particularly important one is SSM, which says that the in�uence of a set on another decays exponentially

with the distance between these sets.

For a �xed �nite V ⊂ Zd and a, b > 0, let C(V, a, b) be the condition that for all B ⊂ V , all u ∈ ∂V ,

and any pair of boundary conditions ψ, ψu on ∂V that di�er only at u, we have

‖µψB − µψuB ‖tv ≤ b exp(−a · dist(u,B)), (2)

where µψB and µψuB are the probability measures induced in B by µψ and µψu , respectively, ‖ · ‖tv denotes

total variation distance and dist(u,B) = minv∈B ‖u− v‖1.

De�nition 2.1. A spin system on Zd has SSM if there exist a, b > 0 such that C(Λ, a, b) holds for every

d-dimensional cube Λ ⊂ Zd.

Remark 2. The de�nition of SSM varies in the literature. The main di�erence lies in the class of subsets

V ⊂ Zd for which C(V, a, b) is required to hold. The two boundary conditions may also di�er on a larger

subset of ∂V . We work here with one of the weakest versions of SSM. In particular, this notion is known to

hold for the Ising/Potts model on Z2
for all q ≥ 2 and β < βc(q), where βc(q) is the uniqueness threshold.

2.4 Mixing and coupling times

Let M be an ergodic Markov chain over Ω with stationary distribution µψ . Let M t(X0, ·) denote the

distribution of M after t steps starting from X0 ∈ Ω, and let

τmix(M, ε) = max
X0∈Ω

min
{
t ≥ 0 : ‖M t(X0, ·)− µψ‖tv ≤ ε

}
.

The mixing time of M is de�ned as τmix(M) = τmix(M, 1/4).

A (one step) coupling of the Markov chain M speci�es, for every pair of states (Xt, Yt) ∈ Ω × Ω,

a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and {Yt}, viewed in isolation,

are faithful copies of M , and if Xt = Yt then Xt+1 = Yt+1. Let Tcoup(ε) be the minimum T such that

Pr[XT 6= YT ] ≤ ε, maximized over pairs of initial con�gurations X0, Y0. The following inequality is

standard:

τmix(M, ε) ≤ Tcoup(ε);

(see, e.g., [29]). The coupling time is Tcoup = Tcoup(1/4) and thus τmix(M) ≤ Tcoup. Moreover, if T =
k · Tcoup for any positive integer k, then

Pr[XT 6= YT ] ≤ 1/4k. (3)

2.5 Analytic tools

Our proofs use elementary notions from functional analysis, which we brie�y review here. For extensive

background on the application of such ideas to the analysis of �nite Markov chains, see [39, 37].

Let P be the transition matrix of a �nite irreducible Markov chain with state space Ω and stationary

distribution µ. For any f ∈ R|Ω|, we let Pf(x) =
∑

y∈Ω P (x, y)f(y). If we endow R|Ω| with the inner

product 〈f, g〉µ =
∑

x∈Ω f(x)g(x)µ(x), we obtain a Hilbert space denoted L2(µ) = (R|Ω|, 〈·, ·〉µ) and P
de�nes an operator from L2(µ) to L2(µ). The Cauchy-Schwarz inequality implies

〈f, Pf〉µ ≤ 〈f, f〉µ. (4)
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Consider two Hilbert spaces S1 and S2 with inner products 〈·, ·〉S1 and 〈·, ·〉S2 respectively, and let K :
S2 → S1 be a bounded linear operator. The adjoint of K is the unique operator K∗ : S1 → S2 satisfying

〈f,Kg〉S1 = 〈K∗f, g〉S2 for all f ∈ S1 and g ∈ S2. If S1 = S2, K is self-adjoint when K = K∗.
In our setting, the adjoint ofP inL2(µ) is given by the transition matrixP ∗(x, y) = µ(y)P (y, x)/µ(x),

and therefore P is self-adjoint i� P is reversible w.r.t. µ. In this case the spectrum of P is real and we let

1 = λ1 > λ2 ≥ ... ≥ λ|Ω| ≥ −1 denote its eigenvalues (1 > λ2 because P is irreducible). The absolute
spectral gap of P is de�ned by λ(P ) = 1 − λ∗, where λ∗ = max{|λ2|, |λ|Ω||}. If P is ergodic (i.e.,

irreducible and aperiodic), then λ(P ) > 0, and it is a standard fact that for all ε > 0 all reversible Markov

chains satisfy

τmix(P, ε) ≥
(
λ(P )−1 − 1

)
log

(
1

2ε

)
, (5)

(see Theorem 12.4 in [29]). λ−1(P ) is called the relaxation time.
P is positive semide�nite if P = P ∗ and 〈f, Pf〉µ ≥ 0, ∀f ∈ R|Ω|. In this case P has only nonnegative

eigenvalues. The Dirichlet form of a reversible Markov chain is de�ned as

EP (f, f) = 〈f, (I − P )f〉µ =
1

2

∑
x,y∈Ω

µ(x)P (x, y)(f(x)− f(y))2,

for any f ∈ R|Ω|. If P is positive semide�nite, then the absolute spectral gap of P satis�es

λ(P ) = 1− λ2 = min
f∈R|Ω|,Varµ(f)6=0

EP (f, f)

Varµ(f)
, (6)

where Varµ(f) =
∑

x∈Ω(f(x)− µ(f))2µ(x) and µ(f) =
∑

x∈Ω f(x)µ(x).

3 SSM and tiled block dynamics for general spin systems

Let V ⊂ Zd be a d-dimensional cube of volume
2 n. Let G = (V,E) be the induced subgraph and let ψ be

a �xed boundary condition on ∂V . For ease of notation we set µ = µψ .

Let {A1, . . . , Ar} be a collection of sets (or blocks) such that V = ∪iAi. A block dynamics w.r.t. this

collection of sets is a Markov chain that in each step picks a setAi uniformly at random from {A1, . . . , Ar}
and updates the con�guration in Ai. The heat-bath block dynamics corresponds to the case where the

con�guration in Ai is replaced by a new con�guration distributed according to the conditional measure

in Ai given the con�guration in V \Ai.
In this section we consider two di�erent versions of the block dynamics for a particular collection of

sets, that with slight abuse of terminology we call tilings. The steps of this dynamics can be e�ciently

implemented in parallel, so we believe it is interesting in its own right. Moreover, the mixing time and

spectral gap bounds we derive here will be crucially used later in our proofs in Sections 4 and 5, where we

consider the SW dynamics and general block dynamics, respectively.

We de�ne the collection of blocks �rst, which we denote D. Let L� n1/d
be an odd integer. For each

xi ∈ {0, . . . , L + 2}d ⊂ Zd, let C(xi) be the union of all d-dimensional cubes of side length L − 1 with

centers at xi +~h(L+ 3) for some
~h ∈ Zd. The cubes in C(xi) have volume Ld and are at distance 4 from

each other (see Figure 1). For each xi ∈ {0, . . . , L+2}d, letBi = C(xi)∩V and letD = {B1, B2, . . . , Bm};
then m = (L+ 3)d. We call each Bi a tiling of V since it corresponds to a tiling of Zd with cubes of side

lengh L+ 3. Any block dynamics w.r.t. D is called a tiled block dynamics.

2

For A ⊂ Zd, the volume of A is |A|.
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v

L-1

4

(b)

v

L-1

4

(c)

Figure 1: Three distinct tilings of V . In (a) vertex v is in the interior of the tiling; in (b) vertex v is in the

exterior; and in (c) vertex v is right on the boundary of the tiling.

Remark 3. In our proofs we will chooseL to be a su�ciently large constant independent of n. The choice of

the distance 4 between the d-dimensional cubes is so that neighboring cubes do not interact. This distance

is su�cient because we are considering spin systems with only nearest-neighbor interactions. To extend

our proofs to arbitrary �nite range spin systems on Zd it su�ces to choose a larger distance between these

cubes.

Let BD be the transition matrix of the heat-bath tiled block dynamics. That is, given a con�guration

σt ∈ Ω at time t, the chain proceeds as follows:

1. Pick k ∈ {1, ...,m} u.a.r.;

2. Update the con�guration in Bk with a sample from µ(· | σt(V \Bk)).

This chain is clearly ergodic and reversible w.r.t. µ. We prove the following lemma, which corresponds to

Theorem 1.1 from the introduction.

Lemma 3.1. When L is a su�ciently large constant (independent of n), SSM implies that τmix(BD) =
O(log n) and λ(BD) ≥ 1/8.

Proof. The proof is a generalization of the path coupling argument in [15]. Let Xt and Yt be two copies of

the tiled heat-bath block dynamics BD that di�er at a single vertex v ∈ V . We construct a coupling of the

steps of BD such that the expected number of disagreements between Xt+1 and Yt+1 is strictly less than

one.

The region chosen in step 1 of the chain is the same in both copies. For every tiling Bk there are three

possibilities (see Figure 1):

(a) v ∈ Bk, in which case we use the same con�guration for Bk in both copies and so Xt+1 = Yt+1

with probability 1;

(b) v ∈ V \ (Bk ∪ ∂Bk), and again we use the same con�guration to update Bk in both copies. Then,

Xt+1 and Yt+1 di�er only at v with probability 1; or

(c) v ∈ ∂Bk. In this case disagreements could propagate from v to the interior of Bk, but we describe

next a coupling that limits the extent of such propagation.

Case (a) occurs with probability Ld/(L+ 3)d ≥ 1/2, for large enough L. Let us consider case (c); i.e.,

v ∈ ∂Bk. This case occurs with probability at most 2dLd−1/(L+ 3)d ≤ 2d/L. Moreover, v is in the

8



boundary of exactly one of the smaller cubes (of side length at most L − 1) in Bk, which we denote Λ.

The cube Λ can be partitioned into the sets of vertices that are close and far from v. More precisely, let

R = 1
2

(
L
8d

)1/d
, C = {u ∈ Λ : dist(u, v) ≤ R} and F = Λ \ C . SSM implies

‖µψF − µψvF ‖tv ≤ b exp{−adist(v, F )},

where ψ and ψv are the two boundary conditions induced in Λ by Xt and Yt, respectively, and thus di�er

only at v. This implies that there is a coupling of the distributions µψF and µψvF such that if (Z1, Z2) is a

sample from this coupling (so, Z1 and Z2 are con�gurations on F ), then

Pr[Z1 6= Z2] ≤ b exp{−a dist(v, F )} ≤ b exp{−aR} ≤ 1

Ld
,

where the last inequality holds for large enough L. Hence, we can couple the update on Λ such that Xt+1

and Yt+1 disagree on F with probability at most L−d. Then, the expected number of disagreements in Λ
is crudely bounded by

|C|+ |F |
Ld
≤ (2R)d + 1 ≤ L

8d
+ 1.

The same con�guration is used to update both copies inBk \Λ and soXt+1(Bk \Λ) = Yt+1(Bk \Λ) with

probability one. This is possible because the con�guration in the boundary of Bk \ Λ is the same in both

Xt and Yt.
Combining all these facts, we get there is a coupling such that the expected number of disagreements

at time t+ 1 is at most:

1− 1

2
+

2d

L

(
L

8d
+ 1

)
=

3

4
+

2d

L
≤ 7

8
,

provided that L is large enough. The path coupling method [7] then implies that

max
σ∈Ω
‖BtD(σ, ·)− µ(·)‖tv ≤ n

(
7

8

)t
.

This implies that the mixing time of BD is O(log n) and that λ∗(BD) ≤ 7/8 (see, e.g., Corollary 12.6 in

[29]); hence, λ(BD) = 1− λ∗(BD) ≥ 1/8 as claimed.

3.1 Comparing tiled block dynamics

In this subsection we introduce a more general class of tiled block dynamics and relate the spectral gaps

of the dynamics in this class to that of the heat-bath tiled block dynamics. This will allow us to deduce

bounds for the spectral gaps of various tiled block dynamics, a key step in our comparison methodology.

Each dynamics in this class chooses a tiling Bk uniformly at random from D and updates the con�g-

uration in Bk in a reversible fashion. Formally, for each 1 ≤ k ≤ m and each valid con�guration τ in

Bc
k = V \ Bk, let Sτk be the transition matrix of an ergodic Markov chain whose state space is the set of

valid con�gurations in Bk given that τ is the con�guration in Bc
k. That is, Sτk is a Markov chain acting on

the speci�c tilingBk with τ as the �xed con�guration in the exterior ofBk. We assume that, for each k and

τ , Sτk is reversible w.r.t. µ(·|τ) and positive semide�nite. Using the Sτk ’s we de�ne a tiled block dynamics

as follows. Given a spin con�guration σt ∈ Ω, consider the chain that performs the following update to

obtain σt+1 ∈ Ω:

1. Pick k ∈ {1, ...,m} u.a.r.;

2. If τ = σt(B
c
k), let σt+1(Bc

k) = τ and perform a step of Sτk to obtain σt+1(Bk).
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Let SD denote the transition matrix of this chain. The ergodicity and reversibility of SD w.r.t. µ follow from

the ergodicity and reversibility of the Sτk ’s w.r.t. µ(·|τ). We establish the following inequality between the

spectral gaps of BD and SD . For A ⊂ V , let Ω(A) be the set of the valid con�gurations of A. Then,

Lemma 3.2.
λ(SD) ≥ λ(BD) min

k=1,...,m
min

τ∈Ω(Bck)
λ(Sτk ).

In words, this inequality states that the spectral gap of a generic tiled block dynamics SD is bounded from

below by the spectral gap of the tiled heat-bath block dynamics times the smallest spectral gap of any

of the Sτk ’s. This is indeed a natural inequality since roughly λ−1(Sτk ) steps of Sτk should be enough to

simulate one step of BD inBk when τ is the con�guration inBc
k. Lemmas 3.1 and 3.2 put together allow us

to bound the spectral gap of a general class of tiled block dynamics, provided that SSM holds and that we

know the spectral gaps of the Sτk ’s. As we shall see in our later applications of these results, the geometry

of the tilings in D was chosen in a way that facilitates the analysis of many natural choices of the Sτk ’s.

Before proving Lemma 3.2 we state the two standard properties of heat-bath updates which will be

used in the proof. For A ⊂ V let KA be the transition matrix that corresponds to a heat-bath update in

the set A. That is, for σ, σ′ ∈ Ω,

KA(σ, σ′) = 1(σ(Ac) = σ′(Ac))µ(σ′(A) | σ(Ac)).

For ease of notation let EA denote the Dirichlet form of KA; i.e., EA = EKA .

Fact 3.3. KA is positive semide�nite. Moreover, for any f ∈ R|Ω|

EA(f, f) =
∑

τ∈Ω(Ac)

VarτA(f)µ(τ),

where VarτA(f) = EτA[(f − EτA[f ])2] and EτA[f ] =
∑

σ∈Ω(A) f(σ ∪ τ)µ(σ | τ).

We proceed with the proof of Lemma 3.2.

Proof of Lemma 3.2. Let f ∈ R|Ω|. Since BD = 1
m

∑m
k=1KBk ,

EBD(f, f) =
1

m

m∑
k=1

EBk(f, f) =
1

m

m∑
k=1

∑
τ∈Ω(Bck)

VarτBk(f) µ(τ), (7)

by Fact 3.3.

For τ ∈ Ω(Bc
k), let Ωτ (Bk) be the set of valid con�gurations onBk given that τ is the con�guration on

V \Bk. For f ∈ R|Ω|, let fτ ∈ R|Ωτ (Bk)|
be such that fτ (σ) = f(σ∪τ) for any σ ∈ Ωτ (Bk). By assumption,

Sτk is positive semide�nite, ergodic and reversible w.r.t. µ(· | τ). Since also Varµ(·|τ)(fτ ) = VarτBk(f), from

(6), we get

0 < λ(Sτk ) ≤
ESτk (fτ , fτ )

Varµ(·|τ)(fτ )
=
ESτk (fτ , fτ )

VarτBk(f)
. (8)

Let

λmin = min
k=1,...,m

min
τ∈Ω(Bck)

λ(Sτk ).
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Then, from the de�nition of the Dirichlet form, (7) and (8) we get

ESD(f, f) =
1

m

m∑
k=1

∑
τ∈Ω(Bck)

µ(τ)ESτk (fτ , fτ ) (9)

≥ 1

m

m∑
k=1

∑
τ∈Ω(Bck)

µ(τ)λ(Sτk )VarτBk(f) ≥ λminEBD(f, f).

Finally, we claim that both BD and SD are positive semide�nite. BD is an average over heat-bath

updates each of which is positive semide�nite by Fact 3.3. Hence, BD is positive semide�nite. Similarly,

the positivity of SD follows from the fact that by assumption the Sτk ’s are positive semide�nite. Indeed,

from (9) and the de�nition of Dirichlet form, we get

〈f, SDf〉µ =
1

m

m∑
k=1

∑
τ∈Ω(Bck)

µ(τ)〈fτ , Sτkfτ 〉µ(·|τ) ≥ 0.

Therefore, by (6), λ(SD) ≥ λ(BD)λmin, as claimed.

We conclude this section with the proof of Fact 3.3.

Proof of Fact 3.3. Since KA = K∗A = K2
A, KA positive semide�nite. For τ ∈ Ω(Ac), let Ωτ (A) be the set

of valid con�gurations onA when the con�guration on V \A is τ . Then, by the de�nition of the Dirichlet

form,

EA(f, f) =
1

2

∑
τ∈Ω(Ac)

∑
σ,σ′∈Ωτ (A)

µ(σ ∪ τ)µ(σ′ | τ)(f(σ ∪ τ)− f(σ′ ∪ τ))2

=
1

2

∑
τ∈Ω(Ac)

µ(τ)
∑

σ,σ′∈Ωτ (A)

µ(σ | τ)µ(σ′ | τ)(f(σ ∪ τ)− f(σ′ ∪ τ))2

=
∑

τ∈Ω(Ac)

VarτA(f)µ(τ).

4 SSM and the Swendsen-Wang dynamics for the Potts model

In this section we show that SSM implies fast mixing of the Swendsen-Wang (SW) dynamics. In particular,

we prove that when V ⊂ Zd is a �nite d-dimensional cube, the relaxation time (i.e., the inverse spectral

gap) of the SW dynamics on the graph induced by V is at most O(1), provided the system has SSM.

The SW dynamics is a non-local Markov chain for the ferromagnetic Potts model (β > 0) with no

external �eld (hi = 0 for all i); see Section 2.1 for the de�nition of this model. The state space of the SW

dynamics is the set of Potts con�gurations ΩP, and it is straightforward to verify the reversibility of this

chain w.r.t. the Potts measure, which, for distinctness, we will denote π (see, e.g., [16]). We focus here on

the free boundary condition case for clarity, but our results hold without signi�cant modi�cations for the

SW dynamics with arbitrary boundary conditions.

Let V ⊂ Zd be a d-dimensional cube of volume n and let G = (V,E) be the induced subgraph. Given

a Potts con�guration σt, a step of the SW dynamics results in a new con�guration σt+1 as follows:

1. Add each monochromatic edge independently with probability p = 1− e−β to obtain a joint con�g-

uration (At, σt), where At ⊆ E and an edge (u, v) is monochromatic if σt(u) = σt(v);
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2. Assign to each connected component of (V,At) independently a new spin from {1, . . . , q} u.a.r.;

3. Remove all edges to obtain the new Potts con�guration σt+1.

Let SW be the transition matrix of the SW dynamics onG. In this section we prove Theorem 1.3 from the

introduction. Corollary 1.4 follows directly from Theorem 1.3 and the fact that, in Z2
, SSM holds for all

β < βc(q) and q ≥ 2 (see [3, 2, 35]). In the proof of Theorem 1.3 we use several auxiliary Markov chains

that we de�ne and brie�y motivate in Section 4.1. The proof of Theorem 1.3 is then provided in Section 4.2.

4.1 Auxiliary Markov chains

In Section 3 we established that the spectral gap of the heat-bath tiled block dynamics is at least 1/8,

provided SSM holds (see Lemma 3.1). To prove Theorem 1.3 we show that the spectral gap of the SW

dynamics is at least the spectral gap of the heat-bath tiled blocked dynamics times a constant that depends

only on β, L and d. Establishing such inequality directly seems di�cult because the SW dynamics could

change the spins in a large component intersecting many of the d-dimensional cubes in a tiling. To work

around this issue we introduce the following Markov chain.

Isolated vertices (SW) dynamics Isw. Consider the Markov chain that, given a Potts con�guration σt
at time t, performs the following update to obtain σt+1:

1. Add each monochromatic edge independently with probability p to obtain (At ⊆ E, σt);

2. Assign to each isolated vertex of (V,At) independently a new spin from {1, . . . , q} u.a.r.;

3. Remove all edges to obtain σt+1.

We call this chain the isolated vertices dynamics and with a slight abuse of notation we let Isw also denote

its transition matrix. Intuitively, the SW dynamics ought to be faster than the isolated vertices dynamics

since it updates all the components of any size simultaneously, instead of just the isolated vertices. We

show that this is indeed the case.

Lemma 4.1. λ(SW ) ≥ λ(Isw).

The proof of this lemma is given in Section 4.2.2. The motivation for introducing Isw is that now we can

easily de�ne a tiled variant of this chain as follows.

Isolated vertices tiled dynamics ID. Recall that D = {B1, . . . , Bm} is the collection of tilings; see

Section 3 for the precise de�nition. Given a Potts con�guration σt, one step of the isolated vertices tiled
dynamics is given by:

1. Add each monochromatic edge independently with probability p to obtain (At ⊆ E, σt);

2. Pick k ∈ {1, ...,m} u.a.r.;

3. Assign to each isolated vertex in Bk independently a new spin from {1, . . . , q} u.a.r.;

4. Remove all edges to obtain σt+1.

We use ID to denote the transition matrix of this chain. Intuitively, Isw should reach equilibrium faster

than ID since in each step it updates the spins of all isolated vertices, instead of just those in a single tiling.

This intuition is made rigorous in the following lemma, which is proved in Section 4.2.2.

Lemma 4.2. λ(Isw) ≥ λ(ID).
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Finally, it will be useful in our proofs to consider yet another variant of the isolated vertices dynamics

that acts on a particular tiling with a �xed con�guration in its exterior. These chains correspond to the

Sτk ’s from Section 3 for the tiled dynamics ID .

Conditional isolated vertices tiled dynamics Iτk . For each k = 1, . . . ,m and each �xed con�guration

τ in Bc
k, we consider the Markov chain with transition matrix Iτk and state space ΩP(Bk), that if σt ∈

ΩP(Bk), then σt+1 ∈ ΩP(Bk) is obtained as follows:

1. Add each monochromatic edge in E (according to σt ∪ τ ) independently with probability p;

2. Assign to each isolated vertex in Bk independently a new spin from {1, . . . , q} u.a.r.;

3. Remove all edges to obtain σt+1.

4.2 Proof of Theorem 1.3

Let

λmin = min
k=1,...,m

min
τ∈ΩP(Bck)

λ(Iτk ).

(Recall that ΩP(Bc
k) is the set of valid con�gurations of Bc

k and Iτk is the conditional isolated vertex tiled

dynamics on Bk with τ as the �xed con�guration in the exterior of Bk.) We prove the following two

lemmas that, together with Lemmas 4.1 and 4.2 and the results in Section 3, imply Theorem 1.3.

Lemma 4.3.

(i) Isw and ID are reversible w.r.t. π and positive semide�nite.

(ii) For all k = 1, . . . ,m and τ ∈ ΩP(Bc
k), I

τ
k is reversible w.r.t. π(·|τ) and positive semide�nite.

Lemma 4.4. λmin ≥ 1
7e−2βdLd .

Proof of Theorem 1.3. By Lemmas 4.1 and 4.2,

λ(SW ) ≥ λ(Isw) ≥ λ(ID).

ID is a tiled block dynamics. Indeed, if τ is the con�guration in Bc
k, then the con�guration in Bk is

updated with a step of the ergodic Markov chain Iτk . By Lemma 4.3, ID is reversible w.r.t. π and positive

semide�nite. Lemma 4.3 also implies that Iτk is reversible w.r.t. π(·|τ) and positive semide�nite, for all

k = 1, . . . ,m and τ ∈ ΩP(Bc
k). Hence, by Lemma 3.2

λ(ID) ≥ λminλ(BD).

By Lemma 3.1, when L is a su�ciently large constant (independent of n), SSM implies that λ(BD) ≥ 1/8.

Moreover, by Lemma 4.4, λmin ≥ 1
7e−2βdLd

. Then

λ(SW ) ≥ 1

56
e−2βdLd ,

and the result follows from the fact that L = O(1).

The rest of this section is organized as follows. The proofs of Lemmas 4.1, 4.2 and 4.3 use a common

representation of the Markov chains SW , Isw and ID which we introduce in Section 4.2.1. The actual

proofs of these lemmas are provided in Section 4.2.2. The proof of Lemma 4.4 is provided in Section 4.2.3

and crucially uses the fact that by design the d-dimensional cubes of side length L − 1 in each tiling do

not interact with each other.
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4.2.1 Common representation

We provide here a decomposition of the transition matrices SW , Isw and ID as products of simpler

matrices, which will be used in our proofs of Lemmas 4.1, 4.2 and 4.3. We are able to do this because

the steps of these chains all include a “lifting” substep to a joint con�guration space ΩJ ⊂ ΩP×2E , where

con�gurations consist of a spin assignment to the vertices together with a subset of the edges of G. The

joint Edwards-Sokal measure ν on ΩJ is given by

ν(A, σ) = p|A|(1− p)|E\A| 1(A ⊆ E(σ)),

where p = 1− e−β , A ⊂ E, σ ∈ ΩP and E(σ) denotes the set of monochromatic edges of E in σ [16].

Let T be the |ΩP | × |ΩJ | matrix indexed by Potts and joint con�gurations given by:

T (σ, (A, τ)) = 1(σ = τ)1(A ⊆ E(σ))p|A|(1− p)|E(σ)\A|,

where σ ∈ ΩP and (A, τ) ∈ ΩJ. The matrix T corresponds to adding each monochromatic edge of E in σ
independently with probability p, as in step 1 of the SW dynamics, and de�nes an operator from L2(ΩJ, ν)
to L2(ΩP, π). It is straightforward to check that its adjoint operator T ∗ : L2(ΩP, π)→ L2(ΩJ, ν) is given

by the |ΩJ | × |ΩP | matrix

T ∗((A, τ), σ) = 1(τ = σ),

with (A, τ) ∈ ΩJ and σ ∈ ΩP. T ∗ corresponds to step 3 of the SW dynamics. Finally, letR be a |ΩJ |×|ΩJ |
matrix indexed by joint con�gurations such that

R((A, σ), (B, τ)) = 1(A = B)1(A ⊆ E(σ) ∩ E(τ)) · q−c(A),

where c(A) is the number of connected components of (V,A) and (A, σ), (B, τ) ∈ ΩJ. The matrix R
corresponds to assigning a new spin from {1, . . . , q} u.a.r. to each connected component of (V,A) inde-

pendently as in step 2 of the SW dynamics. Hence, we get SW = TRT ∗. This useful decomposition

of the SW dynamics was discovered �rst in [47, 48, 46] and has already been used in other comparison

arguments involving the SW dynamics (see, e.g., [4, 20]).

The following |ΩJ | × |ΩJ | matrices allow us to obtain similar decompositions for Isw and ID . For

(A, σ), (B, τ) ∈ ΩJ, let

Q((A, σ), (B, τ)) = 1(A = B)1(A ⊆ E(σ) ∩ E(τ))1(σ(V \ I(A)) = τ(V \ I(A))) · q−|I(A)|

Qk((A, σ), (B, τ)) = 1(A = B)1(A ⊆ E(σ) ∩ E(τ))1(σ(V \ Ik(A)) = τ(V \ Ik(A))) · q−|Ik(A)|

where I(A), Ik(A) denote the sets of isolated vertices in V andBk, respectively. Then, the following facts

follow straightforwardly from the de�nition of these matrices:

Fact 4.5.

(i) Isw = TQT ∗;

(ii) ID = 1
m

∑m
k=1 TQkT

∗.

4.2.2 Proofs of Lemmas 4.1, 4.2 and 4.3

In this subsection we provide our proofs of Lemmas 4.1, 4.2 and 4.3, all of which use the common repre-

sentation of the transition matrices SW , Isw and ID introduced in Section 4.2.1, as well as the analytic

tools brie�y reviewed in Section 2.5.
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Proofs of Lemmas 4.1 and 4.2. The matrix R is symmetric and ν(A, σ) = ν(A, τ) for all A ⊂ E and σ, τ ∈
ΩP compatible with A; hence R is reversible w.r.t. the joint measure ν and R = R∗. The same holds for Q
and Qk for all k = 1, . . . ,m. Moreover, since the matrices R, Q and Qk assign spins u.a.r. to components

of a joint con�guration, we deduce the following.

Fact 4.6.

(i) R, Q and Qk de�ne self-adjoint idempotent operators from L2(ΩJ, ν) to L2(ΩJ, ν).

(ii) R = QRQ and Q = QkQQk.

Using this fact and the de�nition of the adjoint operator we get that for any f ∈ R|ΩP |

〈f,SW f〉π = 〈f, TRT ∗f〉π = 〈f, TQRQT ∗f〉π = 〈QT ∗f,RQT ∗f〉ν
≤ 〈QT ∗f,QT ∗f〉ν = 〈f, TQ2T ∗f〉π = 〈f, Iswf〉π, (10)

where the inequality follows from (4). Similarly, for any f ∈ R|ΩP |

〈f, Iswf〉π = 〈f, TQT ∗f〉π = 〈f, TQkQQkT ∗f〉π = 〈QkT ∗f,QQkT ∗f〉ν
≤ 〈QkT ∗f,QkT ∗f〉ν = 〈f, TQ2

kT
∗f〉π = 〈f, TQkT ∗f〉π.

Since this holds for every k, we get

〈f, Iswf〉π ≤
1

m

m∑
k=1

〈f, TQkT ∗f〉π = 〈f, IDf〉π. (11)

Putting (10) and (11) together we get

〈f,SW f〉π ≤ 〈f, Iswf〉π ≤ 〈f, IDf〉π.

By Fact 4.6, R2 = R = R∗ and so 〈f,SW f〉π = 〈RT ∗f,RT ∗f〉π ≥ 0. Hence, the matrices SW , Isw and

ID are all positive semide�nite. Then, from the de�nition of the Dirichlet form and (6), we get

λ(SW ) ≥ λ(Isw) ≥ λ(ID),

as claimed.

Proof of Lemma 4.3. Fact 4.6 implies that I∗
sw

= (TQT ∗)∗ = Isw and I∗D = 1
m

∑m
k=1(TQkT

∗)∗ = ID .

Hence Isw, ID de�ne self-adjoint operators from L2(ΩP, π) to L2(ΩP, π) and so Isw, ID are reversible

w.r.t. π. Moreover, Q2 = Q = Q∗ by Fact 4.6 and thus 〈f, Iswf〉π = 〈QT ∗f,QT ∗f〉ν ≥ 0. Therefore, Isw
is positive semide�nite. Similarly, we obtain that ID is positive semide�nite, which concludes the proof of

part (i) of the lemma.

For part (ii), observe that by de�nition Iτk (σ, σ′) = TQkT
∗(σ ∪ τ, σ′ ∪ τ) for all σ, σ′ ∈ ΩP(Bk) and

τ ∈ ΩP(Bc
k). Since TQkT

∗ = (TQkT
∗)∗ by Fact 4.6, TQkT

∗
is reversible w.r.t. π. Hence,

π(σ ∪ τ)TQkT
∗(σ ∪ τ, σ′ ∪ τ) = π(σ′ ∪ τ)TQkT

∗(σ′ ∪ τ, σ ∪ τ)

π(σ | τ)Iτk (σ, σ′) = π(σ′ | τ)Iτk (σ′, σ)

15



and Iτk is reversible w.r.t. π(·|τ). Finally, for f ∈ R|ΩP(Bk)|
let f̂ ∈ R|ΩP |

be such that f̂(σ ∪ τ) = f(σ)
for all σ ∈ ΩP(Bk) and τ ∈ ΩP(Bc

k). Then,

〈f, Iτk f〉π(·|τ) =
∑

σ,σ′∈ΩP(Bk)

f(σ)f(σ′)Iτk (σ, σ′)π(σ | τ)

=
∑

τ∈ΩP(Bck)

∑
σ,σ′∈ΩP(Bk)

f̂(σ ∪ τ)f̂(σ′ ∪ τ)TQkT
∗(σ ∪ τ, σ′ ∪ τ)π(σ ∪ τ)

= 〈f̂ , TQkT ∗f̂〉π = 〈QkT ∗f̂ , QkT ∗f̂〉π ≥ 0,

where in the last equality we used that Qk = Q2
k = Q∗k which follows from Fact 4.6. Thus, Iτk is positive

semide�nite for all 1 ≤ k ≤ m and τ ∈ Ω(Bc
k).

4.2.3 Proof of Lemma 4.4

In this subsection we prove Lemma 4.4 by showing that λ(Iτk ) ≥ 1
7e−2βdLd

for all k = 1, . . . ,m and

τ ∈ ΩP(Bτ
k ). As mentioned earlier, our proof uses the fact in each tiling the small d-dimensional cubes

do not interact with each other. Hence, Iτk is a product Markov chain where each component acts on

exactly one of the d-dimensional cubes of the tiling Bk. The spectral gap of Iτk is then given by the

smallest spectral gap of any component. The spectral gap of any component can be bounded using a crude

coupling argument, since each component acts on a set of constant volume. We proceed to formalize these

ideas.

The following linear algebra fact about the spectrum of a product Markov chain will be used in the

proof of Lemma 4.4.

Lemma 4.7. Let S1, . . . , St be a �nite spaces, and call C = S1 × · · · × St their cartesian product. For i =
1, . . . , t let Pi be the transition matrix of an ergodic Markov chain acting on Si reversible w.r.t. a probability
measure ϕi on Si. Let P =

∏t
i=1 Pi be the matrix given by

P (x, y) =
t∏
i=1

Pi(xi, yi),

where x = (x1, . . . , xt) ∈ C and y = (y1, . . . , yt) ∈ C, xi ∈ Si, and yi ∈ Si. Then, λ(P ) = min
i=1,...,t

λ(Pi).

We provide next the proof of Lemma 4.4.

Proof of Lemma 4.4. Recall that

λmin = min
k=1,...,m

min
τ∈Ω(Bck)

λ(Iτk ).

We claim that Iτk is a product chain. Indeed, if B
(1)
k , . . . , B

(lk)
k are the d-dimensional cubes that form the

tiling Bk and Iτkj is the isolated vertices dynamics acting on B
(j)
k (with the boundary condition induced

by τ ), then for σ, σ′ ∈ ΩP(Bk),

Iτk (σ, σ′) =

lk∏
j=1

Iτkj(σ(B
(j)
k ), σ′(B

(j)
k )).

Hence, by Lemma 4.7

λ(Iτk ) = min
j=1,...,lk

λ(Iτkj).

16



We bound λ(Iτkj) via a crude coupling argument. Since |B(j)
k | ≤ Ld, the probability that in the �rst

step of Iτkj every vertex is isolated is (1− p)K , where K ≤ 2dLd is the number of edges incident to B
(j)
k .

Starting from two arbitrary con�gurations in B
(j)
k , if all vertices become isolated in both con�gurations,

then we can couple them with probability 1. Hence, we can couple two arbitrary con�gurations in one

step with probability at least (1 − p)2dLd
. Therefore, the probability that the two copies have not couple

after 4(1 − p)−2dLd
steps is at most 1/4 by Markov’s inequality. Then, the mixing time of Iτkj is at most

4(1− p)−2dLd = 4e2βdLd
for each k = 1, . . . ,m, τ ∈ ΩP(Bc

k) and j = 1, . . . , lk. Consequently, λ(Iτk ) ≥
1
7e−2βdLd

by (5).

For completeness, we also provide here a proof of Lemma 4.7.

Proof of Lemma 4.7. P is reversible w.r.t. ϕ = ⊗ni=1ϕi. Moreover, if {f (i)
j , l

(i)
j , j = 1, . . . , |Si|} denote

eigenfunctions and eigenvalues of Pi, respectively, then

Fk(x) =

t∏
i=1

f
(i)
ki

(xi), lk =

t∏
i=1

l
(i)
ki
,

are the eigenfunctions and eigenvalues of P , where k = (k1, . . . , kt), and ki = 1, . . . , |Si|, for all i =
1, . . . , t. To see this, note that {Fk}, k = (k1, . . . , kt), form an orthogonal basis in L2(C, ϕ), such that

PFk = lkFk. This implies that Fk, lk are the eigenfunctions and eigenvalues of P .

Now, suppose that l
(i)
2 is the eigenvalue l

(i)
j 6= 1 with maximal absolute value for all i, so that λ(Pi) =

1 − l(i)2 . Then, by taking all l
(i)
ki

= 1 except for the one index i0 and by setting lk = l
(i0)
2 one has λ(P ) =

1−maxi l
(i)
2 .

5 SSM and general block dynamics

In this section we use our results for the tiled block dynamics in Section 3 to deduce a tight spectral gap

bound for general heat-bath block dynamics. Let V ⊂ Zd be a d-dimensional cube of volumen,G = (V,E)
the induced subgraph and ψ a �xed boundary condition on ∂V .

Let A = {A1, . . . , Ar} be a collection of blocks such that Ai ⊂ V and V = ∪iAi. Let BA be the

transition matrix of the heat-bath block dynamics w.r.t. A. Recall that given a con�guration σt ∈ Ω at

time t a step of the heat-bath block dynamics picks a block Ai u.a.r. and updates the con�guration in Ai
with a sample from µψ(·|σt(V \Ai)). We prove here that λ(BA) = Ω(r−1) whenever SSM holds. That is,

we establish Theorem 1.2 from the introduction.

In the proof of this theorem we relate the spectral gap of BA to that of the following block dynamics.

Let Ve and Vo be the set of all even and all odd vertices of V , respectively. A vertex is even (resp., odd) if

its coordinate sum in Zd is even (resp., odd). Let Beo be the heat-bath block dynamics w.r.t. {Ve, Vo}. A

crucial part of the proof of Theorem 1.2 is the following.

Lemma 5.1. SSM implies that λ(Beo) = Ω(1).

The other key ingredients in the proof of Theorem 1.2 are two properties of the variance functional: mono-

tonicity and tensorization. (Recall that forA ⊆ V ,KA denotes the matrix that corresponds to the heat-bath

update in A and that we use EA for the Dirichlet form of KA.)

Fact 5.2. Let A ⊆ B ⊆ V . Then, for any f ∈ R|Ω|, EA(f, f) ≤ EB(f, f).
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Fact 5.3. Let U = ∪Ui ⊆ V such thatKUiKUj = KUjKUi for all i 6= j. Then, for any f ∈ R|Ω|

EU (f, f) ≤
∑
i

EUi(f, f).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. For any f ∈ R|Ω|, we have EBA(f, f) = 1
r

∑r
i=1 EAi(f, f). By Fact 5.2, if A′i ⊂ Ai,

then EAi(f, f) ≥ EA′i(f, f). Thus, we may assume without loss of generality that A is a partition of V .

Fact 5.2 also implies

EAi(f, f) ≥ EAi∩Ve(f, f) + EAi∩Vo(f, f)

2

Hence,

EBA(f, f) ≥ 1

r

r∑
i=1

EAi∩Ve(f, f) + EAi∩Vo(f, f)

2
.

For i 6= j, dist(Ai ∩ Ve, Aj ∩ Ve) ≥ 2, since by assumption Ai ∩Aj = ∅. Then,

KAi∩VeKAj∩Ve = KAj∩VeKAi∩Ve

and

r∑
i=1

EAi∩Ve(f, f) ≥ EVe(f, f)

by Fact 5.3. Similarly, we get

∑r
i=1 EAi∩Vo(f, f) ≥ EVo(f, f). Hence,

EBA(f, f) ≥ EVe(f, f) + EVo(f, f)

2r
=

1

r
EBeo(f, f).

Since BA and Beo are both positive semide�nite we get λ(BA) ≥ 1
rλ(Beo) by (6). The result follows from

Lemma 5.1.

To prove Lemma 5.1 we use our results for tiled block dynamics from Section 3. In particular, we con-

sider the tiled block dynamics that picks one tiling Bi fromD = {B1, . . . , Bm} u.a.r. and with probability

1/2 performs a heat-bath update in Bi ∩ Ve and otherwise updates Bi ∩ Vo. The restriction of this tiled

block dynamics to each Bi is not a product Markov chain, as it was the case in the previous application

of our technology to the SW dynamics in Section 4. Hence, we cannot hope to use Lemma 4.7 for prod-

uct Markov chains directly. To work around this di�culty we consider systematic scan variants of the

restricted chains.

Proof of Lemma 5.1. For ease of notation let µ = µψ . Let P be the transition matrix of the tiled variant of

Beo that given a con�guration σt proceeds as follows:

1. Pick j ∈ {1, ...,m} u.a.r.;

2. With probability 1/2 update the spins of Ve ∩Bj with a sample from µ(·|σt(V \ (Ve ∩Bj)));

3. Otherwise, update the con�guration in Vo ∩Bj with a sample from µ(·|σt(V \ (Vo ∩Bj))).
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This chain is reversible w.r.t. µ and ergodic; the latter follows directly from the assumption that the heat-

bath Glauber dynamics is ergodic (see Section 4.1).

By Fact 5.2, EVe(f, f) ≥ EVe∩Bj (f, f) and EVo(f, f) ≥ EVo∩Bj (f, f) for any f ∈ R|Ω|. Thus,

EBeo(f, f) =
EVe(f, f) + EVo(f, f)

2
≥
EVe∩Bj (f, f) + EVo∩Bj (f, f)

2

≥ 1

m

m∑
j=1

EVe∩Bj (f, f) + EVo∩Bj (f, f)

2
= EP (f, f). (12)

Since both P and Beo are averages of positive semide�nite matrices (see Fact 3.3), they are also positive

semide�nite and so

λ(Beo) ≥ λ(P ).

We bound next λ(P ). For each j = 1, . . . ,m and each con�guration τ ∈ Ω(Bc
j ), we consider the

Markov chain with transition matrix P τj whose state space is the set Ωτ (Bj) of valid con�gurations in Bj
given that τ is the con�guration in Bc

j . Given a con�guration σt, this chain obtains σt+1 as follows:

1. With probability 1/2 update the spins of Ve ∩Bj with a sample from µ(·|σt(Bj \ (Ve ∩Bj)), τ);

2. Otherwise, update the con�guration in Vo ∩Bj with a sample from µ(·|σt(Bj \ (Vo ∩Bj)), τ).

It is straightforward to check that this chain is ergodic and reversible w.r.t. ϕ = µ(·|τ). Moreover, P τj is

positive semide�nite since it is an average of heat-bath updates (see Fact 3.3). (Observe that the Markov

chains P τj ’s correspond to the Sτj ’s from Secion 3.)

Let

λmin = min
j=1,...,m

min
τ∈Ω(Bcj )

λ(P τj ).

By Lemma 3.2, λ(P ) ≥ λminλ(BD) and, by Lemma 3.1, λ(BD) ≥ 1
8 , provided L is a large enough constant

independent of n and that there is SSM. Hence,

λ(Beo) ≥ λmin

8
. (13)

We show next that λmin = Ω(1) by bounding λ(P τj ) for each j and τ . Fix j and τ and let Pe (resp., Po)

be the transition matrix that corresponds to updating the con�guration inVe∩Bj (resp., Vo∩Bj) with a new

con�guration distributed according to the conditional measure given the con�guration in Bj \ (Ve ∩Bj)
(resp., Bj \ (Vo ∩Bj)) and τ . Pe and Po are reversible w.r.t. ϕ and P τj = Pe+Po

2 .

Let Peoe = PePoPe be a systematic scan variant of P τj and let P l

eoe
be the “lazy” version of Peoe that

with probability 7/8 stays put and with probability 1/8 proceeds like Peoe; that is, P l

eoe
= Peoe+7I

8 . We

show that three steps of the chain P τj are as fast as one of P l

eoe
. For this, note that

(P τj )3 =
1

8
(PePoPe + P 3

e
+ P 3

o
+ P 2

e
Po + PoP

2
e

+ P 2
o
Pe + PeP

2
o

+ PoPePo). (14)

Each of the terms in the right hand side of (14) is at most 〈f, f〉ϕ by (4). Thus,

〈f, (P τj )3f〉ϕ ≤
1

8
〈f, PePoPef〉ϕ +

7

8
〈f, f〉ϕ = 〈f, P l

eoe
f〉ϕ.

By Fact 3.3 the matrices Pe and Po are positive semide�nite, and thus P τj , (P τj )3
, Peoe and P l

eoe
are also

positive semide�nite. Then,

λ((P τj )3) ≥ λ(P l

eoe
).
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Since x3 − 3x+ 2 ≥ 0 for |x| ≤ 1, we have 3λ(P τj ) ≥ λ((P τj )3). Moreover,

EP l

eoe

(f, f) = 〈f, (I − P l

eoe
)f〉ϕ =

1

8
EPeoe

(f, f),

and so λ(P l

eoe
) = 1

8λ(Peoe). Hence,

λ(P τj ) ≥ 1

24
λ(Peoe). (15)

We bound next λ(Peoe). LetB
(1)
j , B

(2)
j , . . . , B

(l)
j be the d-dimensional cubes of volume at most Ld that

form the tiling Bj .

For k = 1, . . . , l letP
(k)
e andP

(k)
o be the |Ωτ (B

(k)
j )|×|Ωτ (B

(k)
j )| transition matrices that correspond to

a heat-bath update on Ve∩B(k)
j and Vo∩B(k)

j , respectively. Let P
(k)
eoe = P

(k)
e P

(k)
o P

(k)
e . For σ, σ′ ∈ Ωτ (Bj),

we have

Peoe(σ, σ
′) =

l∏
k=1

P
(k)
eoe (σ(B

(k)
j ), σ′(B

(k)
j )).

Moreover, P
(k)
eoe ergodic and reversible w.r.t. the probability measure induced in B

(k)
j by ϕ. The former

follows from the fact that by assumption the heat-bath dynamics onB
(k)
j is ergodic; see Section 2.2. Thus,

Lemma 4.7 implies

λ(Peoe) = min
k=1,...,l

λ(P
(k)
eoe ). (16)

We bound λ(P
(k)
eoe ) for each k with a crude coupling argument. This is su�cient because each B

(k)
j has

volume at most Ld = O(1). For any U ⊆ B(k)
j and any spin con�guration η onB

(k)
j \U , the probability of

each valid con�guration onU given η and τ can be crudely bounded from below by (q e)−Ω(Ld)
. Since P

(k)
eoe

is irreducible, for any pair of con�gurations σ0, σ
′
0 of B

(k)
j , we can go from σ0 to σ′0 in at most T = qL

d

steps. Therefore, the probability that a realization of P
(k)
eoe follows this sequence of updates is then at least

(q e)−Ω(TLd)
. Moreover, the probability that an instance of P

(k)
eoe that starts in σ′0 remains at σ′0 after T

steps is also at least (q e)−Ω(TLd)
. Thus, there exists a coupling for the steps of P

(k)
eoe that starting from

an arbitrary pair of con�gurations couples in O(1) steps with probability Ω(1). Consequently, λ(P
(k)
eoe ) =

Ω(1) for all k. This bound together with (16) and (15) imply that λ(P τj ) = Ω(1), and so λmin = Ω(1). The

result follows from (13).

We conclude this section with the proofs of Facts 5.2 and 5.3.

Proof of Fact 5.2. Since A ⊆ B, KB = KAKBKA. Then, for any f ∈ R|Ω|

〈f,KBf〉µ = 〈f,KAKBKAf〉µ = 〈KAf,KBKAf〉µ ≤ 〈KAf,KAf〉µ = 〈f,KAf〉µ,

where the inequality follows from (4). Then, we get EB(f, f) ≥ EA(f, f).

Proof of Fact 5.3. To simplify the notation, let Ki = KUi and Kij = KUi∪Uj . By assumption Kij =
KiKj = KjKi; also, K2

i = Ki. Then, I −Ki = (I −Ki)
2
, (I −Ki)(I −Kj) = (I −Kj)(I −Ki) and

〈f, (I −Ki −Kj +Kij)f〉µ = 〈f, (I −Ki)(I −Kj)f〉µ
= 〈(I −Ki)(I −Kj)f, (I −Ki)(I −Kj)f〉µ
≥ 0.

Hence, EKi(f, f) + EKj (f, f) ≥ EKij (f, f). Applying this to U1 and U2 �rst, and then iterating we get

the result.
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6 SSM and the system scan dynamics

Let V ⊂ Zd be a �nite d-dimensional cube of volume n. Let G = (V,E) be the induced subgraph and let

ψ be a �xed boundary condition on ∂V . For ease of notation we use µ for µψ .

We consider in this section the class of systematic scan Markov chains onG. In a systematic scan chain

there is a �xed orderingO of the vertices of G and one step of the chain consists of updating every v ∈ V
according to the conditional distribution at v given the con�guration of its neighbors and the boundary

condition ψ, in the order speci�ed by O. We useM(O) to denote the systematic scan dynamics w.r.t. the

ordering O and S(O) to denote its transition matrix. Hence, if O = {v1, . . . , vn}

S(O) = Kv1 . . .Kvn

(Recall that Kvi is the transition matrix corresponding to a heat-bath update in vi.) Since each Kvi leaves

µ invariant then µ is the equilibrium distribution of S(O). In general S(O) is non-reversible, but one can

obtain a reversible matrix by multiplicative symmetrization (see, e.g., [17, 37]):

S(O)S(O)∗ = Kv1 . . .Kvn−1KvnKvn−1 . . .Kv1 ,

which corresponds to the systematic scan dynamicsM(O′) with O′ = {v1, . . . , vn, . . . , v1}.
In this section we prove three results related to the speed of convergence to equilibrium of systematic

scan dynamics. These results correspond to Theorems 1.5 and 1.6 from the introduction.

The �rst of our results concerns the alternating scan dynamics, which corresponds to the systematic

scan dynamics whose ordering consists of �rst all the even vertices and then all the odd ones. In fact,

we consider the multiplicative reversiblization of this dynamics as above. More formally, let EO be an

ordering of the vertices of V that �rst contains all even vertices and then all the odd ones. Similarly de�ne

the orderingEOE, that contains all even vertices, then all the odd ones, and �nally all the even ones again.

The alternating scan dynamics on G correponds to the systmatic scan dynamicsM(EO). The relaxation

time of the non-reversible chainM(EO) is given by

τrel(M(EO)) =
1

1−
√

1− λ(S(EOE))
; (17)

see, e.g., [17, 37]. Thus, we may restrict our attention to estimating the spectral gap of the reversible

Markov chain M(EOE). Let Ve (resp., Vo) be the set of the even (resp., the odd) vertices of G. Then,

S(EOE) = KVeKVoKVe . We prove the following.

Theorem 6.1. SSM implies that λ(S(EOE)) ≥ Ω(1).

We observe that Theorem 6.1 and (17) imply Theorem 1.6 from the introduction.

For the special case ofmonotone spin systems we show that SSM implies rapid mixing of any systematic

scan dynamics. In a monotone system for each vertex v ∈ V there is a linear ordering �v of the spins.

These linear orderings induce a partial order� over the state space. The spin system is monotone w.r.t. this

partial order if for every B ⊂ V and every pair of boundary conditions ξ1 � ξ2 on ∂B, µξ1B stochastically

dominates µξ2B . From this de�nition it follows that a monotone system has unique maximal and minimal

con�gurations in the partial order �, a fact that will be crucially used in our proofs. Several well-known

spin systems, including the Ising model and the hard-core model, are monotone systems.

For monotone systems we establish the following two theorems which together imply Theorem 1.5

from the introduction.

Theorem 6.2. Let O be an ordering of the vertices in V . In a monotone system SSM implies that the mixing
time ofM(O) is O(log n(log log n)2).
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We emphasize that Theorem 6.2 holds for any ordering O and any boundary condition ψ on ∂V .

Let L(O) be the length of the longest subsequence of O that is a path in G. With the additional

assumption that L(O) = O(1) we can prove a slightly better bound for the mixing time of the systematic

scan dynamics.

Theorem 6.3. LetO be an ordering of the vertices in V such that L(O) = O(1). In a monotone system SSM
implies that the mixing time ofM(O) is O(log n) and that the spectral gap ofM(O) is Ω(1).

We proceed to give proofs to these three theorems. We start with the proof of Theorem 6.1, which is

deduced straightforwardly from the following more general fact.

Lemma 6.4. Let S, T be positive semide�nite stochastic matrices, reversible w.r.t. µ. Assume that S is also
idempotent. Then, for all a ∈ [0, 1]

λ(S TS) ≥ λ(aS + (1− a)T ) (18)

Proof of Theorem 6.1. Since, by Fact 3.3, KVe and KVo are positive semide�nite matrices, and KVe is idem-

potent, it follows from Lemma 6.4 that

λ(S(EOE)) ≥ λ
(
KVe +KVo

2

)
= λ(Beo),

where Beo is the block dynamics considered in Section 5. From Lemma 5.1 we know that λ(Beo) = Ω(1)
whenever SSM holds, and thus the result follows.

Proof of Lemma 6.4. Let P = STS. For any f ∈ R|Ω|

〈f, Pf〉µ = 〈f, STSf〉µ = 〈Sf, TSf〉µ ≥ 0,

since by assumption T is positive semide�nite. Hence, P is positive semide�nite and λ(P ) = 1− λ2(P ),

where λ2(P ) is the maximal eigenvalue of P di�erent from 1. By the variational principle (see (6))

λ2(P ) = max
f : µ(f)=0, ‖f‖≤1

〈f, Pf〉µ,

where µ(f) =
∑

σ∈Ω f(σ)µ(σ) and ‖f‖2 = 〈f, f〉µ.

Let Q = aS + (1− a)T and let g ∈ R|Ω| be such that µ(g) = 0 and ‖g‖ = 1. Then

λ2(Q) = max
f : µ(f)=0,‖f‖≤1

〈f,Qf〉µ ≥ 〈Sg,QSg〉µ = 〈g, SQSg〉µ, (19)

where the inequality follows from the fact that any g with µ(g) = 0 and ‖g‖ = 1 satis�es

µ(Sg) = 〈~1, Sg〉µ = 〈S ·~1, g〉µ = µ(g) = 0, and

‖Sg‖2 = 〈g, S2g〉µ ≤ 1

by (4). On the other hand,

〈f, Pf〉µ = 〈Sf, TSf〉µ ≤ 〈Sf, Sf〉µ = 〈f, Sf〉µ,

where the inequality follows from (4). Hence,

〈g, SQSg〉µ = 〈g, aS3 + (1− a)Pg〉µ = a〈g, Sg〉µ + (1− a)〈g, Pg〉µ ≥ 〈g, Pg〉µ.

Therefore, taking g as a normalized eigenfunction corresponding to λ2(P ) we get

λ2(Q) ≥ λ2(P ).

This proves λ(STS) ≥ λ(aS + (1− a)T ), as desired.
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Remark 4. A reverse inequality for (18) also holds. Indeed, using the same argument as in the proof of the

estimate (15) one has, for all a ∈ (0, 1):

λ(STS) ≤ 3

a2(1− a)
λ(aS + (1− a)T ).

We provide next the proofs of Theorems 6.2 and 6.3.

Proof of Theorem 6.2. Let σ(1), . . . , σ(k)
be spin con�gurations such that σ(1) � · · · � σ(k)

. For any

v ∈ V , the monotonicity of the system implies that there exists a monotone coupling for updating v

simultaneously in σ(1), . . . , σ(k)
such that the resulting con�gurations, denoted σ

(1)
v , . . . , σ

(k)
v , satisfy

σ
(1)
v � · · · � σ

(k)
v . These local couplings can be straightforwardly extended to a monotone coupling

for the steps of any number of copiesM(O). Indeed, let {X(1)
t }, . . . , {X

(k)
t } be k copies ofM(O) and

suppose X
(1)
t � · · · � X

(k)
t . If the local monotone couplings are used to update each vertex v ∈ V in

X
(1)
t , . . . , X

(k)
t , sequentially in the order speci�ed by O, then X

(1)
t+1 � · · · � X

(k)
t+1.

We bound the coupling time of the monotone coupling for two instances {Xt} and {Yt} of M(O).

Since in monotone systems there are unique maximal and minimal con�gurations in the partial order, it

is su�cient to analyze the coupling time starting from these extremal con�gurations. Thus, suppose that

X0 and Y0 are the maximal and minimal con�gurations, respectively, and let Tcoup be the coupling time

of the monotone coupling starting from these two con�gurations.

We show that Tcoup ≤ T = c log n(log log n)2
for a suitable constant c > 0. This implies that the

mixing time of M(O) is O(log n(log log n)2), as claimed. The proof is inductive. For the base case of

the induction, observe that if |V | ≤ n0, where n0 ≥ 0 is a large constant we choose later, then we can

choose c = c(n0) large enough such that for any boundary condition on ∂V the coupling time bound

holds. This is a consequence of the irreducibility ofM(O) which follows from the assumption that the

Glauber dynamics is irreducible; see Section 2.2.

Let us assume now inductively that for all d-dimensional cubes V ′ ⊂ Zd such that |V ′| ≤ (4a−1 log n)d

(where a is the constant in the de�nition of SSM), any boundary condition on ∂V ′ and any orderingO′ of

the vertices of V ′ we have that the coupling time of the monotone coupling in the subgraph induced by

V ′ (w.r.t. ordering O′) is at most c log |V ′|(log log |V ′|)2
.

We show that, for all v ∈ V , after T = c log n(log log n)2
steps of the monotone coupling, we have

Pr[XT (v) 6= YT (v)] ≤ 1

4n
. (20)

A union bound over the vertices implies that Tcoup ≤ T . We introduce some notation �rst.

For v ∈ V and ` > 0, let Bv(`) ⊂ V be the intersection of V with the d-dimensional cube of Zd of

side length 2`+ 1 centered at v. Let r = 2a−1 log n, Bv = Bv(r) and Bc
v = V \Bv .

For each v ∈ V we consider four additional copies ofM(O): {Wt}, {Wµ
t }, {Zt} and {Zµt }. These

four chains ignore all the updates outside of Bv and their steps are coupled with those of {Xt} and {Yt}.
More precisely, for each u ∈ V (in the order speci�ed byO), if u ∈ Bv then the local monotone coupling is

used to update the con�gurations inWt(u),Wµ
t (u), Zt(u), Zµt (u),Xt(u) and Yt(u). Otherwise, if u 6∈ Bv ,

the local monotone coupling is used only to updateXt(u) and Yt(u) andWt(u),Wµ
t (u), Zt(u) and Zµt (u)

are not updated.

We specify next the initial con�guration of these chains. We set W0 = X0, Z0 = Y0, Wµ
0 (Bc

v) =
X0(Bc

v) and Zµ0 (Bc
v) = Y0(Bc

v). To de�ne the con�gurations of Wµ
0 and Zµ0 in Bv , let φw and φz be the

stationary measures of {Wt} and {Zt}, respectively. These are the distributions induced in Bv by the

con�gurations in Wµ
0 (Bc

v) and Zµ0 (Bc
v), respectively, and possibly the boundary condition ψ on ∂V . The

con�gurations in Wµ
0 (Bv) and Zµ0 (Bv) are sampled independently from φw and φz, respectively.
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Our choice of initial con�gurations and the monotonicity of the coupling imply that Wt � Xt � Yt �
Zt for all t ≥ 0. Hence,

Pr[XT (v) 6= YT (v)] ≤ Pr[WT (v) 6= ZT (v)]

≤ Pr[WT (v) 6= Wµ
T (v)] + Pr[Wµ

T (v) 6= ZµT (v)] + Pr[ZµT (v) 6= ZT (v)], (21)

where the second inequality follows from a union bound. We bound the �rst and third terms in the right-

hand side of (21) using the inductive hypothesis. The bound for the inner term follows from SSM.

The chains {Wt}, {Zt}, {Wµ
t } and {Zµt } are systematic scan dynamics onBv w.r.t. the orderingO(Bv)

that O induces on the vertices of Bv . Since |Bv| ≤ (2r)d = (4a−1(log n))d, for n0 su�ciently large and

n ≥ n0

c log n(log log n)2 ≥ c log |Bv|(log log |Bv|)2 log4(12n).

So, the inductive hypothesis and (3) imply that Pr[WT (v) 6= Wµ
T (v)] ≤ 1/(12n). The same bound for

Pr[ZµT (v) 6= ZT (v)] can be deduced analogously.

To bound the probability that Wµ
T (v) 6= ZµT (v), i.e., the inner term of (21), let us assume without of

generality that the linear ordering on the spins is q � q−1 � · · · � 1. Since,Wµ
t (v) � Zµt (v) for all t ≥ 0,

then Wµ
t (v) ≥ Zµt (v). Moreover, the con�gurations in Wµ

t (Bv) and Zµt (Bv) are distribtued according to

φw and φz, respectively, for all t ≥ 0. Therefore,

Pr[Wµ
T (v) 6= ZµT (v)] ≤ E[Wµ

T (v)− ZµT (v)] ≤ (q − 1)‖φw,v − φz,v‖
tv
,

where φw,v and φz,v are the distributions induced in {v} by φw and φz, respectively. Hence, SSM and a

union bound over the boundary of Bv imply that

Pr[Wµ
T (v) 6= ZµT (v)] ≤ (q − 1)b| ∂Bv| exp(−ar) ≤ 2(q − 1)bd(4a−1 log n)d−1

n2
≤ 1

12n
,

where in the second inequality we used that | ∂Bv| ≤ 2d(2r)d−1
and r = 2a−1 log n and the last one

holds for all n ≥ n0 and n0 large enough. Putting all these bounds together we get (20). A union bound

over the vertices implies that Pr[XT 6= YT ] ≤ 1/4. Consequently, Tcoup ≤ T = c log n(log log n)2
and

the mixing time ofM(O) is O(log n(log log n)2).

Proof of Theorem 6.3. Let {Xt}, {Yt} be two copies ofM(O) such thatX0 and Y0 are the unique maximal

and minimal con�gurations of the partial order, respectively. We couple these two realizations ofM(O)
with the monotone coupling described at the beginning of the proof of Theorem 6.2, where we established

that the coupling time of this monotone coupling in a d-dimensional cube V with an arbitrary boundary

condition ψ is at most c log |V |(log log |V |)2
.

Let

ρ(t) = max
v∈V

Pr[Xt(v) 6= Yt(v)].

We show that ρ(T ) ≤ 1/n2
for some T = O(log n). A union bound over the vertices then implies that

Pr[XT 6= YT ] ≤ 1/n, and thus τmix(M(O), 1/n) = O(log n). Consequently, the mixing time ofM(O)
is at most T = O(log n) and its relaxation time is O(1) by (5).

To bound ρwe establish a recurrence relation. Prior to this, we show that after t0 = d(log n0)2 log4 n0e
steps ρ(t0) ≤ 1/n0, where n0 is su�ciently large constant. This will provide a stopping point for our

recurrence for ρ.

As before, for v ∈ V and ` > 0, let Bv(`) ⊂ V be the intersection of the d-dimensional cube of

side length 2` + 1 centered at v with V . Let r = bn1/d
0 /2c and let Bv = Bv(r). Let {Wt} and {Zt} be

two auxiliary copies ofM(O) such that X0(Bv) = W0(Bv) and Y0(Bv) = Z0(Bv). In Bc
v = V \ Bv ,
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W0 and Z0 have the same �xed con�guration; this con�guration can be any valid con�guration provided

W0(Bc
v) = Z0(Bc

v).

These four copies of the chain are coupled with the monotone coupling, but {Wt} and {Zt} ignore all

the updates outside of Bv . That is, for each u ∈ V (in the order speci�ed by O), if u ∈ Bv then the local

monotone coupling is used to update the spins of Wt(u), Zt(u), Xt(u) and Yt(u). Otherwise, if u 6∈ Bv ,

the local monotone coupling is used only to update Xt(u) and Yt(u) and Wt(u), Zt(u) are not updated. A

union bound implies

Pr[Xt0(v) 6= Yt0(v)] ≤ Pr[Xt0(v) 6= Wt0(v)] + Pr[Wt0(v) 6= Zt0(v)] + Pr[Zt0(v) 6= Yt0(v)].

Let l = L(O) and observe that r = bn1/d
0 /2c > t0l for su�ciently large n0. Thus, Pr[Xt0(v) 6= Wt0(v)] =

0 and Pr[Zt0(v) 6= Yt0(v)] = 0, since it is impossible for disagreements to propagate from ∂B to v. Hence,

Pr[Xt0(v) 6= Yt0(v)] ≤ Pr[Wt0(v) 6= Zt0(v)].

Now, let O(Bv) be the ordering induced on Bv by O. Since |Bv| ≤ (2r)d ≤ n0, the coupling time of

the monotone coupling for the systematic scan chain on Bv (w.r.t. O(Bv)) is at most (log n0)2
, provided

n0 is su�ciently large (see proof of Theorem 6.2). Hence, since t0 = d(log n0)2 log4 n0e, (3) implies that

Pr[Wt0(v) 6= Zt0(v)] ≤ 1/n0 and so

ρ(t0) ≤ 1

n0
. (22)

We establish next our recurrence for ρ. We prove that

ρ(2t) ≤ (4tl)dρ(t)2
(23)

for all t = o((log n)2). Let A be the event that Xt(Bv(2tl)) 6= Yt(Bv(2tl)). (The restriction that t =
o((log n)2) is to ensure that 2tl� n and avoid unnecessary complications.) Then,

Pr[X2t(v) 6= Y2t(v)] ≤ Pr[X2t(v) 6= Y2t(v)|A] Pr[A] + Pr[X2t(v) 6= Y2t(v)|¬A].

Observe that Pr[X2t(v) 6= Y2t(v)|A] ≤ ρ(t), since ρ(t) is the maximum probability of disagreement at

any vertex assuming the worst possible pair of staring con�gurations. Moreover, Pr[A] ≤ |Bv(2tl)|ρ(t)
by a union bound and Pr[X2t(v) 6= Y2t(v)|¬A] = 0 since disagreements can only propagate a distance of

at most tl in t steps. Hence, for all v ∈ V ,

Pr[X2t(v) 6= Y2t(v)] ≤ (4tl)dρ(t)2,

and (23) follows.

Finally, we use this recurrence together with the stopping point in (22) to show that ρ(T ) ≤ 1/n2
for

some T = O(log n). Let φ(t) = (8tl)dρ(t). Then, φ(2t) ≤ φ(t)2
, and so for T = 2αt0 we get

ρ(T ) ≤ φ(T ) ≤ φ(t0)T/t0 .

Since φ(t0) = (8t0l)
dρ(t0) ≤ (8t0l)

d/n0 and t0 = d(log n0)2 log4 n0e, for large enough n0 we have

φ(t0) ≤ 1/e and thus ρ(T ) ≤ e−T/t0 . Taking T = O(log n) (i.e., α = O(log log n)), we get ρ(T ) ≤ 1/n2

as desired.
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