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with finite variance degrees∗
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Abstract

We study the growth of two competing infection types on graphs generated by
the configuration model with a given degree sequence. Starting from two vertices
chosen uniformly at random, the infection types spread via the edges in the graph
in that an uninfected vertex becomes type 1 (2) infected at rate λ1 (λ2) times the
number of nearest neighbors of type 1 (2). Assuming (essentially) that the degree
of a randomly chosen vertex has finite second moment, we show that if λ1 = λ2,
then the fraction of vertices that are ultimately infected by type 1 converges to a
continuous random variable V ∈ (0, 1), as the number of vertices tends to infinity.
Both infection types hence occupy a positive (random) fraction of the vertices. If
λ1 6= λ2, on the other hand, then the type with the larger intensity occupies all but
a vanishing fraction of the vertices. Our results apply also to a uniformly chosen
simple graph with the given degree sequence.

Keywords: Random graphs, configuration model, first passage percolation, compet-
ing growth, coexistence, continuous-time branching process.

MSC 2010 classification: 60K35, 05C80, 90B15.

1 Introduction

Fix n ≥ 1 and let (d1, . . . , dn) be a sequence of positive integers that may depend on n.
Consider a graph with n vertices and degrees (d1, . . . , dn) generated by the configuration
model, that is, equip each vertex i ∈ {1, . . . , n} with di half-edges, and pair half-edges

∗The authors are grateful to Olle Nerman for pointing out some relevant references. This work was
in part supported by the Swedish Research Council (grants 237-2013-7302 and 2016-04442 DA, MD) and
by the Knut and Alice Wallenberg Foundation (SJ).

†Department of Mathematics, Stockholm University; daniel.ahlberg@math.su.se
‡Department of Mathematics, Stockholm University; mia@math.su.se
§Department of Mathematics, Uppsala University; svante.janson@math.uu.se

1

http://arxiv.org/abs/1711.02902v1


uniformly at random to create edges. For all half-edges to find a partner we assume
that the total degree

∑
di is even. Assign independently to each edge e in the resulting

graph two independent exponentially distributed passage times X1(e) and X2(e) with
parameter λ1 and λ2, respectively. At time 0, two uniformly chosen vertices are infected
with infections type 1 and type 2, respectively, and the infections then spread via nearest
neighbors: When a vertex becomes type 1 (2) infected, the time that it takes for the
infection to traverse an edge e emanating from the vertex is given by X1(e) (X2(e)). If
the other end point of the edge e is still uninfected at that time, it becomes type 1 (2)
infected and remains so forever. It also becomes immune to the other infection type.

In this paper we study the above competing growth process on a random graph generated
from a given degree sequence subject to the regularity conditions stated below. These
conditions ensure that the graph contains a giant component occupying all but a vanishing
fraction of the vertices as n → ∞, and hence that almost all vertices will w.h.p. be infected
when the process terminates. The question that we will be interested in is the outcome
of this competition. Specifically, will both types occupy a strictly positive fraction of the
vertices in the limit as n → ∞? We show that the answer is yes if and only if λ1 = λ2. This
question has previously been studied for the configuration model with constant degrees [2]
and infinite variance degrees [12]; see the end of this section for a summary of earlier work.

Given a degree sequence (d(n)

1 , d(n)

2 , . . . , d(n)
n ) with

∑
d(n)

i even, write Dn for the degree of
a vertex chosen uniformly at random, so that

P(Dn = k) = #{i : di = k}/n.

Our assumptions on the (sequence of) degree sequences are the following:

(A1) (Dn)n≥1 converges in distribution to a random variable D with E[D2] < ∞, and

E[D2
n] → E[D2];

(A2) di ≥ 2 for all i, and P(D > 2) > 0.

Assumption (A1) could equivalently be formulated as the sequence of empirical distri-
butions being uniformly square integrable and converging to a probability distribution
(pd)d∈N on the positive integers. One standard example in which (A1) is satisfied is when
(d1, d2, . . . , dn) are independent realizations of a random variable D with finite variance.
By increasing a randomly chosen degree by 1, if necessary, we can make sure that the
total degree is even. If we condition on the sequence (Di)

n
i=1 and assume that E[D2] < ∞,

P(D ≥ 2) = 1 and P(D > 2) > 0, then (A1) and (A2) hold w.h.p. and thus our results,
as stated below, apply.

A graph generated by the configuration model may contain self-loops and multiple edges,
but the assumption (A1) implies that the probability of obtaining a simple graph is
bounded away from 0 as n → ∞; see [1, 16, 17]. Furthermore, it is well-known that
conditioning on the resulting graph being simple yields a uniform sample among simple
graphs with the specified degree sequence; see [15, Chapter 7]. Hence our results apply
also for such a uniformly chosen simple graph.
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Let D∗ be a size biased version of D, that is, P(D∗ = d) = dP(D = d)/E[D]. The
threshold for the occurrence of a (unique) giant component in the graph is given by
E[D∗ − 1] = 1; see [18, 19]. This can be seen by exploring the components in the
graph via nearest neighbors, starting from a uniformly chosen vertex. As n → ∞, this
exploration can be approximated by a branching process and, by construction of the
graph, the offspring distribution of explored vertices in the second and later generations
is given by D∗ − 1. The relative size of the giant component is given by the survival
probability in the approximating branching process; see [18, 20]. Condition (A2) above
implies that the survival probability is 1, so that the asymptotic fraction of vertices in
the giant component is 1.

Now consider the competition process described above. Write Ni(n) for the total number
of type i infected vertices when the process terminates, and N̄i(n) = Ni(n)/n for the
corresponding fraction. Note that, since the giant component spans all but a vanishing
fraction of the vertices, we have that N̄1(n) + N̄2(n)

p−→ 1, and it is therefore enough to
consider N̄1(n). Furthermore, by symmetry, we may assume that λ1 ≤ λ2. The following
is our main result.

Theorem 1.1. Assume that the degree sequence satisfies (A1) and (A2).

(a) If λ1 = λ2, then N̄1(n)
d−→ V , where V is a continuous random variable with a

strictly positive density on (0, 1).

(b) If λ1 < λ2, then N̄1(n)
d−→ 0.

Remark. Starting with two given infected vertices, e.g. vertices 1 and 2, or several in-
fected vertices of each type (fixed in number as n → ∞) gives the same results, except
that the distribution of the limiting fraction V will depend on the degrees of the initially
infected vertices. Moreover, the theorem extends to a fixed number of competing types
larger than two, in which case all types of maximal strength each conquer a positive
fraction of the vertices.

Remark. The assumption di ≥ 2 ensures that the giant component comprises almost
all vertices. Weakening this condition to E[D∗ − 1] > 1 gives a graph where the giant
component may contain a smaller fraction of the vertices. The competition process can
be analyzed also on such a graph and the non-trivial case then arises when both initial
vertices belong to the giant component. We believe that our methods apply also in this
case, but it would require dealing with a conditioning on both initial vertices being in
the giant component. Establishing a version of Theorem 1.1 in that case would make it
applicable also for e.g. the Erdős–Renyi graph and the generalized random graph analyzed
in [8]. These models give simple graphs with random degrees and, conditionally on the
degrees, the graph is uniform on the set of all simple graphs with those given degrees.

Outline of the proof

In the proof below we establish that there is an initial phase where the outcome of the
competition is determined, followed by a phase that lasts until close to the end, and
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where the fractions of two types are essentially constant. An important tool in the proof
is a standard technique for exploring the graph and the evolution of the infections simul-
taneously. A vertex is detected when it is reached by the infection and the half-edges
attached to the vertex are then declared active, of type 1 or 2 depending on the type of
the vertex. A half-edge remains active until it is opened for infection. A partner half-edge
is then chosen and, if the vertex of this half-edge is still uninfected at that time, this
leads to infection transfer and activation of new half-edges. The process can be defined
in continuous time or in discrete steps by observing it only at the time points when an
edge is opened; see Section 2 for a more detailed description. Write S(i)

k for the number
of active type i half-edges after k steps in this process and Sk = S(1)

k + S(2)

k for the total
number active half-edges. Define Mk to be the fraction of active type 1 half-edges among
all active half-edges, more precisely defined by

Mk :=

{
S
(1)
k

Sk

if Sk > 0;

Mk−1 if Sk = 0.
(1.1)

In a key step we show that, if λ1 = λ2, then Mk is a martingale. We then give an estimate
of its quadratic variation which implies that Mk is essentially constant for k ≥ νn for any
sequence of integers νn → ∞. The probability that a newly infected vertex is infected
by type 1 is hence roughly constant for k ≥ νn and equal to Mνn . The initial stages
of the competition, on the other hand, can be approximated by a branching process
and asymptotic results on branching processes imply that Mνn converges to a continuous
random variable V ∈ (0, 1) if λ1 = λ2, and to 0 if λ1 < λ2. This yields Theorem 1.1(a).
The proof of Theorem 1.1(b) is completed by letting the weaker type 1 infection spread
with the same larger intensity λ2 as the type 2 infection for k ≥ νn. The fraction of
type 1 vertices among infected vertices for k ≥ νn in such a process is close to 0 by the
above results, and the type 1 infection clearly captures even fewer vertices in the original
process.

The rest of the paper is organized so that the exploration process is described in more
detail in Section 2, along with the initial branching process approximation. The results
on Mk, specifying the evolution of the infections during the main phase, are then given
in Section 3. Theorem 1.1 is proved in Section 4. Finally some directions for future work
are described in Section 5.

Previous work

Competition on the configuration model has previously been studied in the case when
the degree distribution follows a power-law with exponent τ ∈ (2, 3), that is, when the
mean degree is finite, but the variance infinite. In that case one of the types occupies all
but a finite number of vertices as n → ∞, and both types have a positive probability of
winning, regardless of the values of the intensities; see [12]. The process has also been
studied on random regular graphs generated by the configuration model with constant
degree; see [2]. Our results generalize the results in [2] when the competition starts from
fixed initial sets. However, the results in [2] also cover the case with growing initial sets,
and give precise quantifications of the asymptotic number of vertices of each type.
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In the present work, as well as in [2, 12], the passage times are assumed to be exponential.
The model can of course be defined analogously for passage times with arbitrary distri-
butions. It has been analyzed in [5, 6] for configuration graphs with power-law exponent
τ ∈ (2, 3) and constant passage times, so that all randomness comes from the underlying
graph. When the types have different speed, the faster type occupies all but a vanishing
fraction of the vertices, while when the speeds are the same, the types may or may not
occupy positive fractions depending on the specific choice of the two initial vertices. A
slightly different competition process with constant passage times is analyzed in [10], and
the present competition process is analyzed on preferential attachment graphs in [3].

Finally, we mention that competing first passage percolation with exponential passage
times has previously been studied on Z

d. In that setting coexistence may occur for equal
strength competitors, whereas the case of unequal strength remains to be fully resolved;
see [11] for a survey and references.

2 The initial phase

In this section we first define the exploration of the graph and the flow of infection in more
detail. We then describe a branching process approximation of the number of active half-
edges of the two types in the early stages of the growth. This leads to a characterization
of the limiting behavior of a continuous time version of Mk (defined in (1.1)) at the end
of the initial phase.

The exploration process

To describe the exploration process, fix λ1, λ2 > 0, possibly different. At time 0 we start
with the vertices and the attached half-edges. The pairing of the half-edges however
is hidden and is revealed during the process. Each half-edge is throughout the process
classified as either free or paired, and a free half-edge is in turn labeled as active of either
type 1 or 2, or inactive. The initial set of active type i half-edges consists of the half-
edges attached to the uniformly chosen initial type i vertex, while all other half-edges
are inactive. Since the initially infected vertices are chosen randomly, the initial numbers
a1 and a2 of active type 1 and type 2 half-edges, respectively, are random. However, we
condition on them in the sequel, and hence assume that they are given numbers. The
sets of half-edges are now updated inductively in continuous time as follows, with S(i)

t

denoting the number of active half-edges of type i at time t.

(P1) Each active half-edge of type i = 1, 2 infects with intensity λi, that is, it is equipped
with an exponential clock with intensity λi, and infects when the clock rings. When
a half-edge q infects, it picks a partner r uniformly at random from all free half-edges
distinct from q. Let x and y be the vertices that q and r, respectively, are attached
to. Then q and r go from free to paired and form an edge xy.

(P2) If y is already infected, nothing more happens. In this case, r was also active (of
the same type as q or not), and the number of active half-edges decreases by 2.
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(P3) If y is not infected, it becomes infected by the same type as x, and all remaining
half-edges at y become active of this type. This means that, if q has type i and y
has degree dy, then the number S(i)

t of active half-edges of type i increases by dy−2,
while the number of active half-edges of the other type does not change.

A discrete version of the process is obtained by observing the continuous time process at
the times half-edges are paired. In each step k of the discrete time process, an active half-
edge q is chosen at random, with probability proportional to λi where i is its type. The
chosen half-edge infects as in (P1)–(P3) above. In both cases, if there are no remaining
active half-edges, the infections have stopped, but it still remains to complete the graph.
We then join any two uniformly chosen half-edges, that is, we choose a uniform matching
of the remaining half-edges. The number of active type i half-edges after k steps is
denoted by S(i)

k . Throughout, quantities related to discrete time processes will be denoted
by standard roman letter, while quantities related to processes in continuous time will be
denoted by calligraphy letter. For instance Mt denotes the continuous time version of
Mk, defined in (1.1), that is, Mt = S(1)

t /(S(1)

t + S(2)

t ).

Branching process approximation

We now describe how the early evolution of S(i)

t (i = 1, 2) can be coupled with two
independent branching processes. Stronger results in this direction have been obtained
in [7]. However, we only need the coupling up to some time tn → ∞ (without further
restrictions on tn). This is fairly easy to establish and we therefore describe it here.

Our aim is to prove the following result on the fraction of active type 1 half-edges in the
initial phase.

Proposition 2.1. There exists a deterministic sequence of integers tn → ∞ such that

Mtn
d−→ V as n → ∞, where V is a continuous random variable with strictly positive

density on (0, 1) if λ1 = λ2 and V ≡ 0 if λ1 < λ2.

We now consider the initial phase of the continuous time exploration process when t is
so small that rather few vertices have been infected. First consider the general case with
λ1, λ2 > 0, possibly different, and the process described by (P1)–(P3) above. In order to
study the initial phase, we introduce the corresponding process where half-edges in (P1)
are drawn with replacement, that is, the half-edge r is chosen uniformly at random from
the set of all half-edges, independently of previous picks. In this version we do not have
to keep track of the actual sets of active half-edges, only their numbers, which we denote
by B(1)

t and B(2)

t . Moreover, we pretend that the chosen half-edge and its vertex are not
used before, so we ignore (P2) and always update B(1) and B(2) as in (P3). This means
that B(1) and B(2) are two independent continuous time Markov branching processes with
intensities λ1 and λ2, respectively, and the same offspring distribution D∗

n − 1, where
D∗

n is the size-biased distribution corresponding to the empirical distribution Dn, that is,
P(D∗

n = d) := dP(Dn = d)/E[Dn]. Of course, we take B(i)

0 = ai.

Furthermore, define B̂(i)

t to be a branching process defined as B(i)

t but with the offspring
distribution changed to D∗ − 1. Thus B̂(i)

t , unlike S(i)

t and B(i)

t , does not depend on n.
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Since E[D∗ − 1] = E[D(D− 1)]/E[D] < ∞, there is no explosion, and B̂(i)

t is a.s. finite for

all t. Specifically, for every fixed T < ∞, the process B̂(i) has a.s. only a finite number of

births (infections) in [0, T ]. Moreover, since Dn
d−→ D and E[Dn] → E[D] < ∞, we have

that D∗
n

d−→ D∗. It follows that, for every fixed T < ∞, we can couple B(i) and B̂(i) such
that they agree with probability 1− o(1) each time an individual gets offspring at a time

t ≤ T , that is, w.h.p. B(i)

t = B̂(i)

t for all t ≤ T .

Now return to the actual exploration process. We can obtain it from the version with
replacement by accepting a selected half-edge r if it is free, and otherwise resampling.
Moreover, we also check if the accepted half-edge already is active, and then we apply
(P2) instead of (P3). During a fixed time interval [0, T ], the process B̂(i)

t has a.s. only

finitely many births and thus, since B(i)

t = B̂(i)

t w.h.p. on this interval, the number of
births in [0, T ] for B(i)

t is Op(1). Furthermore, the number of half-edges that are paired in
[0, T ] is Op(1), and so is the number of half-edges that are declared active in [0, T ]. Hence,
at each of the Op(1) births in [0, T ], the probability that a paired or active half-edge is
picked in the process B(i)

t is o(1). Consequently, w.h.p., only free inactive half-edges are
selected in B(i)

t for t ≤ T and the process then agrees completely with S(i)

t for t ≤ T .

We have shown that the processes S(i)

t and B̂(i)

t can be coupled (for i = 1, 2 simultaneously)

such that, for every fixed T , we have that S(i)

t = B̂(i)

t for t ≤ T . Let

τn := inf
{
t ≥ 0 : S(i)

t 6= B̂(i)

t for some i ∈ {1, 2}
}
.

It follows that P(τn ≤ T ) → 0 for every fixed T , that is, τn
p−→ ∞. This implies that

there is a deterministic sequence tn → ∞ such that P(τn ≤ tn) → 0. In other words,
w.h.p.

S(1)

t = B̂(1)

t and S(2) = B̂(2)

t for t ≤ tn. (2.1)

Fix such a sequence tn → ∞ where, for later use, we pick the sequence such that each tn is
an integer. For the proof of Theorem 1.1, it will be useful to adjust the sequence slightly
to ensure that the number of vertices that have been infected at time tn is small. Thus,
let Nt be the number of edges identified in the exploration process at time t; this equals
the number of times that (P1) has been performed. Also let N̂t be the analogous quantity

for the process B̂(1)

t ∪ B̂(2)

t . With the coupling above, we have Nt = N̂t for t < τn, and
hence w.h.p. Ntn = N̂tn . We may assume, by decreasing tn if necessary, that N̂tn ≤ n1/3

w.h.p.

We also define a related sequence of integers νn such that, in the discrete time exploration
process, the branching process approximation remains valid beyond step νn. To do this,
note that N̂tn

a.s.−→ ∞ as n → ∞, since tn → ∞. Hence, N̂tn

p−→ ∞ and Ntn

p−→ ∞, and
thus there exists a deterministic sequence νn of integers such that νn → ∞ and w.h.p.

n1/3 ≥ N̂tn = Ntn ≥ νn. (2.2)

Finally note that, by our assumptions, D∗
n ≥ 2 and thus D∗ ≥ 2 so that D∗− 1 ≥ 1. This

means that the branching processes B̂(i)

t never decrease. In particular, they never become
extinct, and therefore B̂(i)

t → ∞ a.s. as t → ∞.

With the above coupling at hand we can prove Proposition 2.1.
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Proof of Proposition 2.1. Suppose first that λ1 = λ2. The branching processes B̂(1)

t and
B̂(2)

t are independent and have the same offspring distribution, but possibly different ini-
tial values a1 and a2. If we restrict to integer values of t, we obtain two independent
Galton–Watson processes B̂(1)

k and B̂(2)

k with the same offspring distribution. Moreover,
this offspring distribution has a finite mean m > 1, since, by assumption, E[D2] < ∞ and
thus E[D∗] < ∞ (in fact we have m = eE[D

∗−1]). By the Seneta–Heyde theorem [14] (see

also [4, Theorem I.10.3]) there exists a derministic sequence ck such that B̂(i)

k /ck → Wi

a.s., where Wi ∈ (0,∞) is a random variable, and thus

B̂(1)

k

B̂(1)

k + B̂(2)

k

a.s.−→ V

for some random variable V ∈ (0, 1). By [4, Theorem II.5.2] and the subsequent remark,
the variable Wi (i = 1, 2) is continuous with strictly positive density on (0,∞) and hence
V is continuous with strictly positive density on (0, 1). Since tn → ∞, and we have
assumed that tn ∈ N, it follows that

B̂(1)

tn

B̂(1)

tn + B̂(2)

tn

a.s.−→ V ∈ (0, 1) (2.3)

as n → ∞. Alternatively, we can use the continuous-time version of the Seneta–Heyde
theorem by Cohn [9] to directly arrive at (2.3). Since S(i)

tn = B̂(i)

tn w.h.p. by (2.1), it follows
from (2.3) that

Mtn =
S(1)

tn

S(1)

tn + S(2)

tn

d−→ V ∈ (0, 1), (2.4)

and the first part of Proposition 2.1 is proved.

Now suppose that λ1 < λ2. By time-scaling we may assume that λ1 = 1 and λ2 = λ > 1.
Then B̂(1)

λt and B̂(2)

t are two independent continuous time branching processes, with the
same intensity and the same offspring distribution (with finite mean). Hence, as in the
case with equal intensities, there exist ck such that a.s.

B̂(1)

λk/ck → W1 (2.5)

B̂(2)

k /ck → W2, (2.6)

where W1 and W2 are random variables with Wi ∈ (0,∞) a.s. Furthermore, ck+1/ck →
m > 1. For any fixed j ≥ 0, we have for large enough k that λk ≥ k + j, and thus
B̂(1)

k+j ≤ B̂(1)

λk . Hence, by (2.5), a.s.

lim sup
k→∞

B̂(1)

k

ck
= lim sup

k→∞

B̂(1)

k+j

ck+j
≤ lim sup

n→∞

B̂(1)

λk

ck
· ck
ck+j

= W1m
−j .

Since W1 < ∞, m > 1 and j ≥ 0 is arbitrary, it follows that lim supk→∞ B̂(1)

k /ck = 0 a.s.

and thus, recalling from (2.6) that B̂(2)

k /ck → W2 > 0, that B̂(1)

k /B̂(2)

k

a.s.−→ 0. Hence, (2.3)
and (2.4) hold with V ≡ 0.
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3 The deterministic phase

In this section we show that the fraction Mk of active type 1 half-edges among all active
half-edges remains roughly constant after the initial phase in the exploration process for
equal intensities. At the very end of the process, when most half-edges have already
been paired, this might fail, but we show that the fraction is indeed constant during the
main part of the process. Here we will work mainly in discrete time, and then connect to
continuous time in the proof of Theorem 1.1. We denote the total number of edges in the
graph by N , that is,

N =
1

2

∑

i

di;

this is the total number of steps in the discrete time exploration process.

Proposition 3.1. Assume that λ1 = λ2 = 1 and let νn be defined as in (2.2). As n → ∞
we have for any ε > 0 that

sup
νn≤k≤(1−ε)N

∣∣Mk −Mνn

∣∣ p−→ 0. (3.1)

Remark. Proposition 3.1 is valid for any sequence νn → ∞ with νn ≤ (1−ε)N . However,
we will apply it to the sequence νn defined in (2.2) and therefore formulate it for this.
The idea is that the branching process approximation in Section 2 remains valid beyond
step νn in the discrete process, and Proposition 3.1 then ensures that the proportion of
type 1 vertices does not change after that.

The key observation in the proof of Proposition 3.1 is that Mk is a martingale when
λ1 = λ2. We then show that the second moment assumption implies that the contribution
to the quadratic variation of this martingale during the range νn to (1−ε)N is vanishingly
small. With this at hand it is not hard to show (3.1).

Lemma 3.2. If λ1 = λ2, then (Mk)
N
k=0 is a martingale.

Proof. Recall that Sk denotes the total number of active half-edges after k steps. Define
∆Sk = Sk+1 − Sk, and similarly for other sequences.

Let Fk be the σ-field generated by all events up to step k. Next, reveal whether a new
vertex is infected in step k, and if so, the identity (and thus the degree) of the new infected
vertex (however, we do not yet reveal the classification of the involved half-edges). Let
F+

k ⊃ Fk denote the σ-field generated by the events revealed so far. If a new node of
degree d is infected, then ∆Sk = d − 2, and ∆S(1)

k is either d − 2 or 0, with conditional
probabilities (given F+

k ) Mk and 1−Mk, respectively. Hence, in this case,

E
[
∆S(1)

k | F+
k

]
= Mk(d− 2)

and thus

E
[
S(1)

k+1 | F+
k

]
= S(1)

k +Mk(d− 2) = Mk(Sk + d− 2) = MkSk+1;
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Hence, E
(
Mk+1 | F+

k

)
= Mk. If no new vertex is infected, and Sk > 0, then ∆Sk =

−2. Since the two paired half-edges are then both drawn uniformly at random (without
replacement) from the active half-edges, each one of them has (conditional) probability
Mk of being of type 1. Hence

E
[
∆S(1)

k | F+
k

]
= −2Mk

and thus
E
[
S(1)

k+1 | F+
k

]
= S(1)

k − 2Mk = Mk(Sk − 2) = MkSk+1.

Consequently, if Sk > 2, so that Sk+1 > 0, then E
[
Mk+1 | F+

k

]
= Mk. If Sk = 2, so

that Sk+1 = 0, or if Sk = Sk+1 = 0, then Mk+1 = Mk by definition. Hence, in all cases
E
[
Mk+1 | F+

k

]
= Mk, and thus E [Mk+1 | Fk] = Mk.

In order to obtain a bound on the quadratic variation of (a stopped version of) Mk, we
need to show that Sk grows at least linearly in k throughout the range νn to (1− ε)N .

Lemma 3.3. If λ1 = λ2, then, for every ε > 0 there exists c > 0 such that w.h.p. Sk ≥ ck
whenever νn ≤ k ≤ (1− ε)N .

Proof. Assume that λ1 = λ2 = 1. The total set of active half-edges then evolves as in a
one-type process with a single unit rate infection type. We consider a continuous time
representation of such a process, inspired by [18]. As in our continuous time exploration
process, each half-edge is throughout classified as free or paired, and free half-edges are
labeled as active or inactive. All half-edges are assigned independent unit rate exponential
life lengths and, to start the growth, two vertices are chosen uniformly at random and
their half-edges are declared active, while all other half-edges are inactive. The process
then evolves in that an active half-edge q is chosen uniformly at random and, when the
life length of a free half-edge r 6= q (active or inactive) expires, then q and r are paired.
The vertex to which r is attached becomes infected (if it was not infected already) and its
remaining half-edges are activated. This procedure is repeated until there are no active
half-edges left. It is straightforward to verify that the process is equivalent to the two-type
growth process with equal rates once types are ignored, and we furthermore ignore the
time scales. Note that, in the original continuous time process, the growth is slow in the
beginning when there are few active half-edges, while in this version, the growth is fast
in the beginning when there are many free half-edges whose life lengths compete.

We first show that a large proportion of the edges are identified in finite time.

Claim 3.4. For every ε > 0 there exists t0 = t0(ε) such that the number of pairings up
to time t0 is at least (1− ε)N w.h.p.

Proof of claim. Note that the time of the kth pairing is the sum of k independent expo-
nentials with parameters 2N−1, 2N−3, . . . , 2N−2k+1. Let ξ1, ξ2, . . . , ξN be independent
and exponentially distributed with parameter 2 and write ξ(1) < ξ(2) < · · · < ξ(N) for the
order statistics of the ξk’s. Due to the memoryless property ξ(k) is the sum of k inde-
pendent exponentials with parameters 2N, 2N − 2, . . . , 2N − 2k + 2, and it follows that
the time of the kth pairing is stochastically dominated by ξ(k+1). We are hence done if
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we show that ξ(⌈(1−ε)N⌉+1) ≤ t0 w.h.p. for some t0 or, equivalently, that the number of ξk
that exceed t0 is at most εN − 1. This however follows from the law of large numbers if
we pick t0 large such that P(ξk > t0) < ε.

Claim 3.5. There exists δ > 0 such that throughout the interval [0, t0] the proportion of
uninfected vertices with degree at least 3 is at least δ w.h.p.

Proof of claim. Fix d ≥ 3 such that pd > 0. Let Vd(t) denote the number of vertices of
degree d with all half-edges with life lengths longer than t. Again by the (weak) law of
large numbers we have that

∣∣∣ 1
n
Vd(t0)− pd e

−dt0
∣∣∣ p−→ 0 as n → ∞.

The number of uninfected vertices of degree d at time t0 is at least Vd(t0)−2, so the claim
follows.

We now return to the discrete time exploration process. Recall that ∆Sk = Sk+1 − Sk

and that Fk is the σ-field of events determined by the process up to time k. After k steps
there are 2N − 2k unpaired half-edges and hence

P
(
∆Sk = −2

∣∣Fk

)
=

Sk − 1

2N − 2k − 1
≤ Sk

2N − 2k
.

If the active half-edge that is paired in step k + 1 is connected to an inactive half-edge
attached to a vertex with degree at least 3, then the number of active half-edges increases.
The degree of the vertex of the inactive half-edge has a size biased distribution, and hence
the probability that it is at least 3 is at least as large as the proportion of uninfected
vertices with degree at least 3. Combining the above two claims we find that, for all
k = 1, 2, . . . , (1− ε)N , w.h.p.

P
(
∆Sk ≥ 1

∣∣Fk

)
≥ δ

(
1− Sk

2N − 2k

)
.

In particular, whenever 1 ≤ Sk ≤ εδN/4, we have that

P
(
∆Sk = −2

∣∣Fk

)
≤ δ/8 and P

(
∆Sk ≥ 1

∣∣Fk

)
≥ δ/2.

Now, let ζ1, . . . , ζN be i.i.d. random variables taking values −2 and 1 with probability δ/8
and δ/4+ εδ/8, respectively, and otherwise the value 0, and define Xk :=

∑k
j=1 ζj. Then,

by the law of large numbers, Xk > εδk/16 w.h.p. for all k ≥ νn, while Xk is unlikely to
ever exceed εδN/4. Moreover, since νn = o(

√
n) by (2.2), the number of active half-edges

is unlikely to ever hit zero in the first νn steps.1 We conclude that there is a coupling
between (Sk)k≥1 and (Xk)k≥1 such that w.h.p.

Sk ≥ Xk for all k = 1, 2, . . . , (1− ε)N.

Consequently, Sk ≥ εδk/16 w.h.p. whenever νn ≤ k ≤ (1− ε)N .

1Indeed, either Sk exceeds 2νn before reaching zero, which is good, or the probability of pairing two
active half-edges is at most 2νn/(N − 2νn) in each of these step, so the claim follows from the union
bound.
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Fix ε > 0 and c as in Lemma 3.3, and let τ be the stopping time min{k ≥ νn : Sk < ck}.
Thus, by Lemma 3.3, w.h.p. τ > (1 − ε)N . Let M̃k := Mk∧τ , that is, the martingale M
stopped at τ . Then (M̃k)

N
k=0 is also a martingale. We consider the quadratic variation of

this martingale.

Lemma 3.6. As n → ∞,

E



(1−ε)N∑

k=νn

|∆M̃k|2

 → 0.

Proof. Throughout the proof, C denotes a constant, possibly depending on ε and c, that
may be different on each occurrence. Let k ∈ [νn, (1 − ε)N ]. We may suppose that
Sk ≥ ck, since otherwise τ ≤ k and ∆M̃k = 0. Then,

∆M̃k = ∆Mk =
S(1)

k +∆S(1)

k

Sk +∆Sk
− S(1)

k

Sk
=

Sk∆S(1)

k − S(1)

k ∆Sk

Sk(Sk +∆Sk)
. (3.2)

If a new vertex of degree d is infected at time k + 1, then ∆S(1)

k equals either 0 or
∆Sk = d− 2. In either case, (3.2) implies that

|∆M̃k| ≤
d− 2

Sk + d− 2
≤ d

Sk + d
≤ d

ck + d
≤ C

d

k + d
.

If no new vertex is infected at time k + 1, then ∆Sk = −2 and (3.2) yields (for large k)

|∆M̃k| ≤
2

Sk − 2
≤ 2

ck − 2
≤ C

k
.

Hence, if d(k) is the degree of the vertex infected at time k + 1, with d(k) = 0 if there is
no such vertex, then

E



(1−ε)N∑

k=νn

|∆M̃k|2

 ≤ CE




(1−ε)N∑

k=νn

( d(k)

k + d(k)

)2


+ C

∞∑

k=νn

1

k2
. (3.3)

After step k, there are 2(N − k) free half-edges and hence, for each vertex i and step
k ≤ (1 − ε)N , the probability that i is infected in step k + 1, given that it has not been
infected earlier, equals di/(2(N − k)− 1) ≤ Cdi/n. Hence, for any k ≤ (1− ε)N ,

E

[( d(k)

k + d(k)

)2
]
≤ C

n∑

i=1

di
n

( di
k + di

)2

= C
1

n

n∑

i=1

d3i
(k + di)2

= CE

[
D3

n

(k +Dn)2

]
. (3.4)

For any d ≥ 1, we have the estimates

∞∑

k=1

d3

(k + d)2
≤

d∑

k=1

d3

d2
+

∞∑

k=d+1

d3

k2
≤ d2 +

d3

d
= 2d2
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and
∞∑

k=νn

d3

(k + d)2
≤

∞∑

k=νn

d3

(k + 1)2
≤ d3

νn
.

Hence,
∞∑

k=νn

D3
n

(k +Dn)2
≤ 2D2

n ∧
D3

n

νn
. (3.5)

By assumption, Dn
d−→ D and νn → ∞, and thus 2D2

n ∧ ν−1
n D3

n ≤ ν−1
n D3

n

p−→ 0.
Furthermore, D2

n is uniformly integrable, and thus so is 2D2
n ∧ ν−1

n D3
n. Consequently, we

have by (3.5) that

E

[
∞∑

k=νn

D3
n

(k +Dn)2

]
≤ E

[
2D2

n ∧
D3

n

νn

]
→ 0. (3.6)

The proposition now follows from (3.3), (3.4) and (3.6).

Proof of Proposition 3.1. Since M̃k−M̃νn , with k ≥ νn, is a martingale, Doob’s inequality
and Lemma 3.6 yield

E

[
sup

νn≤k≤(1−ε)N

∣∣M̃k − M̃νn

∣∣2
]
≤ 4E

[∣∣M̃⌊(1−ε)N⌋ − M̃νn

∣∣2
]
= 4E



⌊(1−ε)N⌋−1∑

k=νn

|∆M̃k|2

 → 0.

Hence, supνn≤k≤(1−ε)N

∣∣M̃k − M̃νn

∣∣ p−→ 0, and (3.1) follows since by Lemma 3.3, w.h.p.

τ > (1− ε)N and thus Mk = M̃k for k ≤ (1− ε)N .

4 Proof of Theorem 1.1

We can now prove Theorem 1.1 by combining Proposition 2.1 and Proposition 3.1.

Proof. First assume that λ1 = λ2. Fix ε > 0 and let the sequences νn and tn be as
in Propositions 2.1 and 3.1. Recall from the paragraph preceding (2.2) that Nt denotes
the number of steps (pairings of half-edges) that have been performed at time t in the
continuous time exploration process. By definition, we have that Mtn = MNtn

and, by
(2.2), that Ntn ≥ νn w.h.p. Hence, by Proposition 3.1,

sup
νn≤k≤(1−ε)N

∣∣Mk −Mtn

∣∣ p−→ 0.

Furthermore, by Proposition 2.1, the fraction Mtn converges in distribution to a continu-
ous random variable with support on (0, 1). Since a vertex that is infected in step k+1 in
the discrete time exploration process is infected by type 1 independently with probability
Mk, it follows from the law of large numbers that the fraction of type 1 vertices among
all vertices that are infected at steps k ∈ [νn, (1− ε)N ] converges in distribution to V .
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Recall from (2.2) that νn ≤ n1/3 by definition. Hence the number of vertices that are
infected before step νn does not exceed n1/3. The number of vertices that are infected
after step (1 − ε)N w.h.p. does not exceed ε(E[D] + 1)n, since N ≤ (E[D] + 1)n w.h.p.
The asymptotic fraction of vertices infected for k ∈ [νn, (1−ε)N ] is hence at least 1−Cε.
Since ε > 0 is arbitrary, part (a) of the theorem follows.

To prove part (b), assume that λ1 < λ2 and consider a modified version of the process
where, after time tn, the weaker type 1 infection spread with the same larger intensity
λ2 as the type 2 infection. To generate this process, we independently equip each half-
edge h with two independent Poisson processes P (1)

h and P (2)

h , both with rate λ2, and let
P̌ (1)

h denote a thinned version of P (1)

h where each point is kept with probability λ1/λ2, so
that P̌ (1)

h is a Poisson process with rate λ1. The process is then generated by letting the
possible infection times for an active type 1 or 2 half-edge h be specified by P̌ (1)

h and P (2)

h ,
respectively, up until time tn, and by P (1)

h and P (2)

h after that time. The original process
can be generated by using the thinned process P̌ (1)

h for type 1 throughout the whole time
course. The corresponding discrete time processes are defined by observing the continuous
time processes at the times of pairings.

Let Š(i)

t denote the number of active type i half-edges at time t in the modified process,
and similarly for other quantities. The above construction provides a coupling of the
original process and the modified process where Š(i)

t = S(i)

t for t ≤ tn and i = 1, 2, while
Š(1)

t ≥ S(1)

t and Š(2)

t ≤ S(2)

t for t > tn. It follows that M̌t = Mt for t ≤ tn and M̌t ≥ Mt

for t > tn. Analogously, if V (i)

i denotes the set of infected vertices of type i at time t, we
have that V̌ (1)

t ⊇ V (1)

t and V̌ (2)

t ⊆ V (2)

t for all t. Hence the number of type 1 infected vertices
is at least as large in the modified process as in the original process, and it will suffice to
show that the fraction of type 1 infected vertices in the modified process converges to 0.

The modified process has equal intensities for the infection types after time tn, that is,
after step Ntn in the discrete time process. By (2.2), we have Ntn ≥ νn w.h.p. and it then
follows from Proposition 3.1 that

sup
Ntn≤k≤(1−ε)N

∣∣M̌k − M̌tn

∣∣ p−→ 0.

Up to time tn, on the other hand, type 1 spreads with a strictly smaller intensity and
thus, by Proposition 2.1, the fraction M̌tn converges to 0 in probability. By the same
arguments as in the proof of part (a), this yields that the fraction of type 1 infected
vertices in the modified process converges to 0, as desired.

5 Further work

We have studied competing first passage percolation on the configuration model with
finite variance degrees and exponential edge weights, and shown that both infection types
occupy positive fractions of the vertex set if and only if they spread with the same intensity.
There are several natural extensions of this work. One would be to investigate the scaling
of the number of vertices of the losing type when the intensities are different. The results
in [2] contain results in this direction for random regular graph and we conjecture that the
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results would be similar for finite variance graphs. Specifically we conjecture that, when
λ1 < λ2, the number of vertices occupied by type 1 is of the order nλ1/λ2 . In contrast to
the case when the degree variance is infinite, treated in [12], the winner hence does not
take it all, but the loosing type also grows to infinity with n.

In [2], also more general initial conditions are considered, where the initial number of one
or both types may grow with n. This could also be done in our case and, in addition, one
could consider initial sets where the vertices are chosen based on degree. Is it for instance
possible for a weaker type to capture a positive fraction of the vertices if it can start from
one or more high degree vertices, while the stronger type starts from a vertex with small
degree?

Another extension would be to study more general passage time distributions, possibly
different for the two types. Also in the general case, the initial growth of the types can be
approximated by branching processes, but these are then not Markovian. A reasonable
guess is that the possibility for both types to occupy positive fractions of the vertex
set is determined by the relation between the Malthusian parameters of these branching
processes, as discussed in [5].
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