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LIST COLOURINGS OF MULTIPARTITE HYPERGRAPHS

ARÈS MÉROUEH AND ANDREW THOMASON

Abstract. Let χl(G) denote the list chromatic number of the r-uniform hy-
pergraph G. Extending a result of Alon for graphs, Saxton and the second
author used the method of containers to prove that, if G is simple and d-
regular, then χl(G) ≥ (1/(r − 1) + o(1)) logr d.

To see how close this inequality is to best possible, we examine χl(G) when
G is a random r-partite hypergraph with n vertices in each class. The value
when r = 2 was determined by Alon and Krivelevich; here we show that
χl(G) = (g(r, α) + o(1)) logr d almost surely, where d is the expected average
degree of G and α = logn d.

The function g(r, α) is defined in terms of “preference orders” and can
be determined fairly explicitly. This is enough to show that the container
method gives an optimal lower bound on χl(G) for r = 2 and r = 3, but,
perhaps surprisingly, apparently not for r ≥ 4.

1. Introduction

Let G be an r-uniform hypergraph: that is to say, its edges are sets of r vertices.
For brevity, we often call G an r-graph: thus a 2-graph is just a graph. Given an
assignment L : V (G) → P(N) of a list L(v) of colours to each vertex v, we say G is
L-chooseable if, for each vertex v, it is possible to choose a colour c(v) ∈ L(v), such
that there is no edge e with c(v) the same for all v ∈ e. The minimum number k
such that G is L-choosable whenever |L(v)| ≥ k for every v, is called the list-
chromatic number of G, denoted by χl(G). This notion was introduced for graphs
by Vizing [29] and by Erdős, Rubin and Taylor [9]. In [9] it was proved, amongst
other things, that χl(Kd,d) = (1 + o(1)) log2 d, and also that the determination of
χl(Kd,d) is intimately related to the study of “Property B” (namely, the study of
the minimum number of edges in a non-bipartite uniform hypergraph). The o(1)
term here, as elsewhere in this paper, denotes a quantity tending to zero as d→ ∞.
(This is a convenient place to point out that logarithms to various different bases
appear in this paper but, where no base is specified, the logarithm is natural.)

The theorem of Erdős, Rubin and Taylor was extended by Alon and Krivele-
vich [2], who proved that χl(G) = (1+o(1)) log2 d holds almost surely for a random
bipartite graph with n vertices in each class, edges being present independently
with probability p, provided d = pn > d0 for some constant d0. (They actually
proved something a little sharper, and they showed that this more general result is
also tied to Property B.)

Alon [1] proved that every graph G of average degree d satisfies χl(G) ≥ (1/2 +
o(1)) log2 d. The value 1/2 can, in fact, be replaced by 1 here (see below), and
so it follows that complete bipartite graphs, and more generally random bipartite
graphs, are graphs whose list chromatic number is (more or less) minimal amongst
graphs of given average degree.

When r ≥ 3 it is not true, in general, that the list chromatic number of an
r-graph grows with its average degree. For example, if F is a 2-graph and G is
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2 ARÈS MÉROUEH AND ANDREW THOMASON

an r-graph on the same vertex set, such that every edge of G contains an edge
of F , then χl(G) ≤ χl(F ), but the average degree of G can be large, even if that
of F is not and χl(F ) is small. However, examples of this kind can be avoided by
considering simple r-graphs, in which different edges have at most one vertex in
common. For this reason, we are particularly interested in simple hypergraphs.

The case when the edges of G form a Steiner triple system was studied by Haxell
and Pei [11], who proved χl(G) = Ω(log d/ log log d). Haxell and Verstraëte [12]

obtained the bound χl(G) ≥ (1 + o(1)) (log d/5 log log d)
1/2

for every simple d-
regular 3-graph, and Alon and Kostochka [3] showed that χl(G) ≥ (log d)1/(r−1)

for every simple r-graph G of average degree d; in particular χl(G) grows with d.
The correct rate of growth was found by Saxton and Thomason [24], who proved,

via the container method, that χl(G) ≥ Ω(log d) if G is a simple d-regular r-graph
(see [26] for a refinement of the argument). An improved bound was obtained
in [25], with an extension to not-quite-simple r-graphs in [27]: we state it here.

Proposition 1.1 ([25, 27]). Let r ∈ N be fixed. Let G be an r-graph with average
degree d. Suppose that, for 2 ≤ j ≤ r, each set of j vertices lies in at most
d(r−j)/(r−1)+o(1) edges, where o(1) → 0 as d→ ∞. Then

χl(G) ≥ (1 + o(1))
1

(r − 1)2
logr d .

Moreover, if G is regular then

χl(G) ≥ (1 + o(1))
1

r − 1
logr d .

In particular, for 2-graphs, the 1/2 in Alon’s bound can be replaced by 1, which
is tight, as described above. Thus the container method gives a best possible
bound for graphs. Does it also give an optimal bound for r-graphs (at least simple
r-graphs) when r ≥ 3? That is the question underlying the results of this paper.

To answer this question, it is natural, in the light of what is known about 2-
graphs, to examine r-partite r-graphs. (Every r-graph contains an r-partite sub-
graph whose average degree is less by only a constant factor, so a lower bound on
χl for r-partite graphs applies to all r-graphs. On the other hand, non-r-partite
d-regular simple r-graphs can have χl as large as Ω(d/ log d), so for upper bound
purposes we consider only r-partite r-graphs.) Our r-graphs G will have order rn,
with vertex set V = V1 ∪ V2 ∪ · · · ∪ Vr, the Vi’s being disjoint sets of size n. Each
edge of G has exactly one vertex in each Vi.

1.1. Properties of r-partite r-graphs. A simple random argument, mimicking
Erdős’s work on Property B [7], shows that if G is such an r-partite r-graph then
χl(G) ≤ logr n+2. (Suppose |L(v)| = ℓ for all v. Throughout the paper we use the
word palette for the set

⋃
v∈V (G) L(v) (or a superset of it); it is a set containing all

colours in all lists. For each colour in the palette, select some Vi at random, and
forbid the colour to be chosen by any vertex in Vi. Then the expected number of
vertices v having every colour in L(v) forbidden is rnr−ℓ. So if rnr−ℓ < 1 then G
is L-chooseable.) This bound holds even for complete r-partite r-graphs — that
is, where every possible edge is present. If r ≥ 3, these r-graphs are not simple.
But it is not difficult to construct a simple d-regular r-partite r-graph G with n
not much larger than d, thereby giving examples of simple d-regular r-graphs with
χl(G) ≤ (1 + o(1)) logr d.

It follows from these remarks and from Proposition 1.1 that the minimum value
of χl(G) amongst simple d-regular r-graphs lies between (1/(r − 1) + o(1)) logr d
and (1+ o(1)) logr d. In the light of the case r = 2, one might expect the minimum
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to be attained by r-partite r-graphs of order rn with n close to d, or by random
r-partite graphs, and so these are the objects we study.

An important definition is the following. Given an r-partite r-graph as just
described, and a subset X ⊂ V , let Xi = X ∩ Vi. We define iX to be the index i
such that |Xi| is largest. For the sake of definiteness, if there is more than one such
index we take iX to be the smallest, though any choice would do. Thus we define

iX = min{i : |Xi| = max{|Xj | : 1 ≤ j ≤ r} } .
We can now define the two properties ofG that will matter to us. Both properties

involve a condition on sets X stated in terms of the product of all |Xi| except
the largest, that is, a product of r − 1 quantities. The first condition is about
independent sets, meaning sets X that contain no edge of G. The second is about
degenerate sets: as usual, we say that X is k-degenerate if, for every non-empty
Y ⊂ X , the subgraph G[Y ] has a vertex of degree at most k. Degenerate sets are
relevant here because they are easily coloured, as noted in Lemma 3.2.

Definition 1.2. Let G be an r-uniform r-partite hypergraph as just described. Let
d be a real number with 1 ≤ d ≤ nr−1.

• G has property I(r, n, d) if every independent set X satisfies

∏

i6=iX

|Xi| <
nr−1

d
log2 d . (1)

• G has property D(r, n, d) if every set X that satisfies

∏

i6=iX

|Xi| <
nr−1

d
(2)

is 4(log d/ log log d)-degenerate.

The properties are useful when the parameter d is equal, or near to, the average
degree, though it is convenient not to make this a requirement. In particular, note
that if G has propertyD(r, n, d) then it hasD(r, n, d′) for every d′ > d; indeed every
G has property D(r, n, nr−1) since the only sets then satisfying (2) have Xi = 0 for
some i. Similarly, if G has property I(r, n, d) then it has I(r, n, d′) for e2 < d′ < d.
The interesting values of d are those for which G has both D(r, n, d) and I(r, n, d).
The apparently strange dependence on d in the definitions is not crucial to our
main theorem: we need only an expression close to nr−1/d in each of (1) and (2).
The definitions are stated in the way they are in order to comply, rather loosely,
with properties of random hypergraphs when d is the expected average degree.

Theorem 1.3. There is a number d0 = d0(r) such that the following holds. Let
G ∈ G(n, r, p) be a random r-partite r-uniform hypergraph where p = p(n), and let
d = pnr−1 ≥ d0. Then G almost surely has properties I(r, n, d) and D(r, n, d).

This theorem is entirely routine: the point of it is that it gives examples of r-
graphs having both properties. As we shall explain shortly, χl(G) can be determined
very precisely for any r-graph G having both properties, and we can then compare
this value with the lower bound given by Proposition 1.1.

The lower bound in Proposition 1.1 is better for regularG. Random r-graphs are
close to regular but not quite regular. In fact the lower bound given for regular r-
graphs holds for such close-to-regular graphs too, but it is worth noting the existence
of regular r-graphs having the two properties.

Theorem 1.4. There is a number d0 = d0(r) such that the following holds. Let
d be an integer with d ≥ d0 and let n ≥ r5d4. Then there is a simple d-regular
r-partite r-graph G having properties I(r, n, d) and D(r, n, d).
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1.2. List chromatic numbers. Our main result is that the list chromatic number
of hypergraphs satisfying both properties can be determined more or less exactly.
It will be expressed in terms of the function g(r, α), a function defined via what
we call preference orders. The precise definition is delayed to §2 because it needs a
little discussion.

The parameter α, however, can be explained now: it will always be true that
α = logn d, where d is as in Definition 1.2. We specified d ≥ 1 in that definition
so that α is well-defined. Since 1 ≤ d ≤ nr−1 we always have 0 ≤ α ≤ r − 1.
Notice that, if G is simple, then the average degree is at most n, and so (since we
are imagining d in the definition to be the average degree), simple hypergraphs are
associated with the range 0 ≤ α ≤ 1. Similarly, complete r-partite hypergraphs are
associated with α = r − 1.

Here, at last, is the main theorem.

Theorem 1.5. Let G be an r-uniform r-partite hypergraph that satisfies the prop-
erties I(r, n, d) and D(r, n, d) of Definition 1.2. Then

χl(G) = (g(r, α) + o(1)) logr d .

Here, α = logn d, the function g(r, α) is described in terms of preference orders by
Definition 2.5, and the o(1) term tends to zero as d→ ∞.

The theorem is a bit opaque without any information about the function g(r, α),
so we describe some of its properties immediately. It is, in fact, quite a straightfor-
ward function: in particular, for r = 2 and r = 3 it is constant, and for every r it is
constant over the range 0 ≤ α ≤ 1 associated with simple hypergraphs. Moreover
in §7 we give an explicit formula for what we believe is the exact value of g(r, α),
though we have no proof.

Theorem 1.6. For each r ∈ N, r ≥ 2, the function g(r, α) maps [0, r − 1] to [0, 1]
as follows:

(a) g(r, α) is continuous and decreasing (that is, non-increasing) in α,
(b) g(r, r − 1) = 1/(r − 1),
(c) g(2, α) = 1 for 0 ≤ α ≤ 1 and g(3, α) = 1/2 for 0 ≤ α ≤ 2,
(d) for r ≥ 4, g(r, α) is constant for 0 ≤ α ≤ 1 + 1/(r + 3),
(e) g(4, 0) = 0.3807 . . ., and
(f) g(r, 0) ∼ (log r)/r as r → ∞.

The fact that g(2, α) = 1 means the case r = 2 of Theorem 1.5 is the theorem of
Alon and Krivelevich [2], though without an explicit bound on the error term.

Likewise, the fact that g(r, r − 1) = 1/(r− 1) means that, if G is complete (and
we take d = nr−1) then χl(G) = (1/(r − 1) + o(1)) logr d = (1 + o(1)) logr n, as
noted at the outset of §1.1.

As mentioned earlier, our motivation is to investigate whether the lower bound
on χl supplied by Proposition 1.1 for regular simple r-graphs, namely (1/(r− 1) +
o(1)) logr d, is tight. We also suggested that, amongst all simple regular r-graphs,
“random-like” r-partite ones would likely have lowest list-chromatic number. In the
light of Theorem 1.3, most such r-graphs enjoy properties I(r, n, d) and D(r, n, d),
so their list-chromatic number is given by Theorem 1.5. Now 0 ≤ α ≤ 1 for simple
r-graphs, and g(r, α) is constant in this range, so the question of whether the above
approach shows Proposition 1.1 to be tight now comes down to the question of
whether g(r, 0) = 1/(r − 1).

As can be seen from Theorem 1.6, g(r, 0) = 1/(r− 1) indeed holds for r = 2 and
r = 3, and so Proposition 1.1 is tight in these cases. For r ≥ 4 we have been unable
to determine the exact value of g(r, 0), but we can prove that g(r, 0) > 1/(r − 1).
Hence the bound in Proposition 1.1 appears not to be tight — indeed, we think it
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more likely that the lower bound (g(r, 0)+ o(1)) logr d might hold in general for all
simple r-graphs of average degree d.

It turns out that the reason why a gap emerges between Theorem 1.4 and Propo-
sition 1.1 only for r ≥ 4 is that, for r = 2, preference orders are more or less trivial,
and even for r = 3 optimal preference orders are tightly constrained. It is only
when r ≥ 4 that there is room for more interesting preference orders to exist; more
detail appears in §7.

As mentioned, we think that (g(r, 0) + o(1)) logr d might be a lower bound on
χl(G) for every r-uniform simple hypergraph G of average degree d, and to prove
this it would be enough to do it for r-partite graphs. In order to obtain a lower
bound it is necessary to show that there is a list function L : V (G) → P(N) with
|L(v)| = (g(r, 0)+ o(1)) logr d for all v ∈ V (G), such that G is not L-chooseable. In
practice the best lists for this job appear to be random lists, such as in the proof
of Theorem 4.4, where the bound is proved for r-graphs having property D(r, n, d).
We don’t have such a proof for all r-graphs, but we can prove a complementary
result, namely, that for any d-regular r-partite r-graph G, if random lists of size
larger than g(r, 0) logr d are assigned, then G is L-chooseable. (It is necessary to
impose a weak bound on n in terms of d for the usual reason that, if we make too
many random choices, then bad things are bound to happen.)

Theorem 1.7. Let ǫ > 0 and M > 1 be given. Let G be a simple d-regular r-partite
r-uniform hypergraph with n ≤ dM vertices in each class. For each v ∈ V (G) let
a list L(v) of size ℓ = ⌊(1 + ǫ)g(r, 0) logr d⌋ be chosen uniformly at random from a
palette of size t ≥ ℓ, independently of other choices. Then, with probability tending
to one as d→ ∞, G is L-chooseable.

It is somewhat curious, to us at least, that preference orders are used in the proof
of Theorem 1.5 in two entirely different ways, both in the upper bound (obtained
from a colouring algorithm designed around preference orders — this is how we
first came across them), and also in the lower bound (for a different reason). This
“coincidence” is reminiscent of the relationship with Property B in the graph case.

As stated earlier, we define preference orders in §2 and discuss them enough to be
able to define the function g(r, α). Then, in §3 we describe the colouring algorithm
and prove Theorems 1.7 and 3.3; the latter theorem is one half of Theorem 1.5,
giving an upper bound for χl(G) when G has property D(r, n, d). A corresponding
lower bound, for graphs with property I(r, n, d), is given by Theorem 4.4 in §4, and
this provides the other half of Theorem 1.5. The elementary probabilistic argument
behind Theorem 1.3 is given in §5, and the twist needed for Theorem 1.4 follows
in §6. Then, in §7, we examine preference orders in more detail, and describe how
to calculate, or at least to estimate, the function g(r, α); we put some effort into
this since it is, of course, at the heart of the paper. Finally in §8 we comment
briefly on the relationship between preference orders and Property B.

We use standard notation for intervals of real numbers, such as [0, 1] = {x ∈ R :
0 ≤ x ≤ 1}, and we denote by [n] the set of integers {1, 2, . . . , n}.

2. Preference Orders

In this section we introduce the notion of preference orders, and define g(r, α).
To motivate the ideas, consider the most basic case of our problem, where G is a

simple d-regular 3-uniform 3-graph with d vertices in each class (that is, n=d): such
a graph is precisely the graph of a Latin square. As mentioned in §1.1, χl(G) ≤
log3 d+2, but this bound holds as well for complete 3-partite 3-graphs. For a lower
bound, we have χl(G) ≥ (1/2+o(1)) log3 d from Proposition 1.1. The upper bound
comes from forbidding each colour on one of the vertex classes, chosen at random
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for each colour. To improve the bound we must allow some colours to appear in
every class: we call these colours free and the other colours forbidden. Suppose, for
each colour, we make it free with probability 1− 3q and otherwise forbid it on one
of V1, V2 and V3, with probability q each. A vertex v ∈ Vi now chooses a non-free
colour from L(v) if possible (meaning a colour forbidden on some Vj , j 6= i), but if
there are no such, it chooses a free colour. Once again, v has no available choice if
every colour in L(v) is forbidden on Vi, and we want the expected number of such
vertices to be small, say 3dqℓ < 1/2. But there is now another potential problem,
which is the presence of monochromatic edges; if each vertex of an edge chooses a
free colour (for each vertex this happens with probability (1−3q)ℓ) then the colours
chosen might be the same. The expected number of edges where each vertex chooses
a free colour is at most d2(1 − 3q)ℓ (we must allow for the lists to be overlapping)
so we require d2(1 − 3q)ℓ < 1/2. Taking say q = 0.3028 and ℓ = 0.92 log3 d + 2
makes both expectations small; hence χl(G) ≤ 0.92 log3 d+ 2.

To get a further improvement, we look for a strategy which will reduce the
likelihood of each vertex in an edge picking the same free colour. For each of V1,
V2 and V3, decide an order of preference on the palette

⋃
v∈V (G) L(v): denote these

orderings by <1, <2 and <3. The triple P = (<1, <2, <3) is called a preference
order. Then the choice of c(v) ∈ L(v) is made as follows: if v ∈ Vi, let c(v) be a
non-free colour in L(v) if one is available, else let c(v) be the most preferred free
colour according to the order <i. We should design the orderings <1, <2 and <3 so
that a colour preferred in one class is deprecated in another. A good way to do this
is in example Pc below. In this manner the likelihood of a monochromatic edge is
reduced and, in fact, using the preference order Pc we obtain χl(G) ≤ 0.78 log3 d+3,
as verified in Theorem 3.1; this is the best bound we have for Latin square graphs
in general, but the algorithm works only for graphs with a small number of vertices.

We can make further progress if we know something of the structure of G. We
cannot demand that every set of a certain size is independent, but we can hope to
describe sparse sets, and that is what propertyD(r, n, d) is doing. For our algorithm
to make use of these sparse sets, we modify it slightly so that v does not commit
immediately to the most preferred free colour in L(v) but, rather, v promises to
restrict its choice to within some small named subset of similarly preferred colours
in L(v). If P is well designed then the collection of vertices promising to use the
same subset spans a sparse subgraph, and the colouring can then be completed
(details are in §3).

What is a good design of preference order P? We assign a value to each P
(Definition 2.3), and pick the P of best value: this value is specifically designed so
that the number of vertices choosing a given colour ties up with the kind of sparse
sets guaranteed by property D(r, n, d).

Are there other ways to use a preference order in a colouring algorithm? In the
simplest conceivable algorithm, each vertex just commits at once to the most pre-
ferred colour in its list. Perhaps surprisingly, such an algorithm is weak (giving no
improvement over logr d). To make a gain we need either to use forbidden colours,
as we do in Theorem 3.1, or to incorporate the method of restrictive promises, as
we do elsewhere, using the algorithm set out in detail in §3. This algorithm makes
no use of forbidden colours; it turns out these give no extra benefit when restrictive
promises are used.

In summary, a preference order is, more or less, a specification of r orders of
preference on the palette, one order for each Vi. If the orderings are all the same
then the same colours will be preferred in each class and a proper colouring is
unlikely to be achieved. When r = 2, and G is a bipartite graph, then, intuitively,
one would expect the best palette order for V2 to be the reverse of that on V1,
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and indeed this is the case — in fact this method reproduces known results about
Property B (see §8). What constitutes a good preference order for r ≥ 3 is what
we shall study and, as hinted at before, whereas it is easy to answer the question
for r = 3, the answer for r ≥ 4 is surprisingly elusive.

Let us get down to specifics.

Definition 2.1. Let < be a total ordering of the set [m]. Given k ∈ [m], the
relative position rpos<(k) of k in the ordering is 1/m times the number of elements
less than or equal to k. So rpos< : [m] → {1/m, 2/m, . . . ,m/m} is a bijection and

rpos−1
< (1/m) < rpos−1

< (2/m) < · · · < rpos−1
< (1) .

Definition 2.2. An (r,m)-preference order is an r-tuple P = (<1, . . . , <r) where
<i is a total ordering of [m], 1 ≤ i ≤ r. Abusing notation, we write x ∈ P if
x ∈ (0, 1]r and there is some k ∈ [m] such that x = (rpos<1

(k), . . . , rpos<r
(k)).

Thus x ∈ P means x is the tuple of relative positions of some element of [m].
Notice that {x : x ∈ P} determines P to within a permutation of [m], because each
x ∈ P tells us the relative position in each order of some element k ∈ [m], but we
do not know which element. Since the actual labels of the elements in the ground
set [m] are usually unimportant (for example, when using P in the algorithm above
we generally begin by randomly mapping the palette to [m]), we often think of the
set {x : x ∈ P} as specifying P .

Here are three examples of preference orders. The identity ordering is the order-
ing 1 < 2 < 3 < · · · < m.

Pa Let r = 2, let <1 be the identity ordering, and let <2 be the reverse of <1;
that is, m <2 (m− 1) <2 · · · <2 1. Then

{x : x ∈ Pa} = {(k/m, 1 + 1/m− k/m) : k ∈ [m]} .
Pb Let r = 3 and let m = 3p be a multiple of three. Let <1 be the identity

ordering and let <2, <3 be “rotations” of <1 by p and by 2p elements,
meaning that

2p+ 1 <2 · · · <2 3p <2 1 <2 · · · <2 p <2 p+ 1 <2 · · · <2 2p

p+ 1 <3 · · · <3 2p <3 2p+ 1 <3 · · · <3 3p <3 1 <3 · · · <3 p .

Then

{x : x ∈ Pb} = {(i/m, 1/3+ i/m, 2/3 + i/m) : i ∈ [p]}
∪ {(1/3 + i/m, 2/3 + i/m, i/m) : i ∈ [p]}
∪ {(2/3 + i/m, i/m, 1/3+ i/m) : i ∈ [p]} .

Pc This is the same as Pb except that, in each of <1, <2 and <3 we reverse
the order of bottom third of the elements, that is, we reverse the order of
those elements with relative positions 1/m to p/m. So

p <1 · · · <1 1 <1 p+ 1 <1 · · · <1 2p <1 2p+ 1 <1 · · · <1 3p

3p <2 · · · <2 2p+ 1 <2 1 <2 · · · <2 p <2 p+ 1 <2 · · · <2 2p

2p <3 · · · <3 p+ 1 <3 2p+ 1 <3 · · · <3 3p <3 1 <3 · · · <3 p ,

and

{x : x ∈ Pc} = {(1/3 + 1/m− i/m, 1/3 + i/m, 2/3 + i/m) : i ∈ [p]}
∪ {(1/3 + i/m, 2/3 + i/m, 1/3 + 1/m− i/m) : i ∈ [p]}
∪ {(2/3 + i/m, 1/3 + 1/m− i/m, 1/3 + i/m) : i ∈ [p]} .
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It turns out that Pc is an essentially optimal choice of preference order when
r = 3. The next definition defines a parameter of a preference order, designed to
measure its effectiveness in our colouring algorithm. The parameter captures the
way the algorithm makes use of various independent sets. The form of the definition
reflects the properties of sparse sets in the r-graphs we are interested in, set out
in properties I(r, n, d) and D(r, n, d). This is explained in a little more detail just
before Theorem 3.3.

Analogously to the definition of iX for a set X ⊂ V (G), we define, for an r-tuple
x = (x1, x2, . . . , xr) ∈ [0, 1]r

ix = min{i : xi = max{xj : 1 ≤ j ≤ r} } ,

that is, ix is a specific index of a largest xj .

Definition 2.3. Let P be an (r,m)-preference order. Let 0 ≤ θ ≤ 1/r. Then

fP (θ) = max
{ ∏

i6=ix

xi : x ∈ [θ, 1]r, x ∈ P
}
.

Observe that fP (θ) depends only on {x : x ∈ P}, supporting the earlier remark
that it is this set that matters rather than P itself. Observe too that the set in the
definition is non-empty, because there are fewer than m/r numbers k ∈ [m] with
rpos<1

(k) < 1/r, and likewise for <2, . . . , <r, so there is some k with rpos<i
(k) ≥

1/r ≥ θ for all i. That is, there is some x ∈ [1/r, 1]r with x ∈ P . In particular,
fP (θ) ≥ (1/r)r−1.

Notice that, by definition, fP (θ) is non-increasing in θ. The value we are mostly
interested in is fP (0), the maximum of

∏
i6=ix

xi over all x ∈ [0, 1]r. This value,
when θ = 0, relates to the case 0 ≤ α ≤ 1 in Theorem 1.5. The reader who wishes,
from now on, to consider only θ = 0 will not miss out on anything of substance.

It is necessary to allow larger θ in order to handle larger α. Somewhat vaguely,
this is because as α increases to r− 1, meaning d increases to nr−1, then the range
narrows of those x ∈ P that play an interesting role, and θ captures this reduced
range. For more, we refer to the proofs of Theorems 3.3 and 4.4.

Consider the three examples Pa, Pb and Pc above. For x ∈ Pa we have x =
(x1, x2) = (k/m, 1 + 1/m − k/m) for some k ∈ [m]. Then x1 + x2 = 1 + 1/m, so
one of x1, x2 is at most 1/2 + 1/2m and the other is at least 1/2 + 1/2m. Thus ix
is the index of the larger co-ordinate and

∏
i6=ix

xi = l/m for some l ≤ (m + 1)/2.

Therefore fPa
(0) = 1/2 if m is even and fPa

(0) = 1/2+1/2m if m is odd. Moreover
it can be seen that fPa

(θ) = fPa
(0) for 0 ≤ θ ≤ 1/r = 1/2, since the maximum

value of
∏

i6=ix
xi = l/m is always attained by some x with x ∈ [1/2, 1]2.

For x = (x1, x2, x3) ∈ Pb it can be seen that one co-ordinate exceeds 2/3 and
the other two are i/m and 1/3 + i/m for some i ≤ p = m/3. Thus

∏
i6=ix

xi =

(i/m)(1/3 + i/m) and fPb
(0) = 2/9. The maximum is achieved by some x with

minxi ≥ 1/3 and so, once again, fPb
(θ) = fPb

(0) for 0 ≤ θ ≤ 1/r = 1/3.
For x = (x1, x2, x3) ∈ Pc, one co-ordinate exceeds 2/3 and the other two are

1/3 + 1/m− i/m and 1/3 + i/m for some i ≤ p = m/3. Thus
∏

i6=ix
xi = (1/3 +

1/m−i/m)(1/3+i/m) and fPc
(0) = 1/9+1/3m. The maximum is achieved by some

x with minxi ≥ 1/3 and so, once again, fPc
(θ) = fPc

(0) for 0 ≤ θ ≤ 1/r = 1/3.
In the three examples, fP (θ) is constant for 0 ≤ θ ≤ 1/r. This is a reflection of

the fact, noted in §1.2, that the overall situation is more straightforward for r ≤ 3
and new phenomena appear only when r ≥ 4.

It turns out that the best preference orders for the colouring algorithm are those
with the lowest values of fP . This leads us to the next definition.
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Definition 2.4. Let r ≥ 2. For 0 ≤ θ ≤ 1/r we define

f(r, θ,m) = min { fP (θ) : P is an (r,m)-preference order}
and f(r, θ) = inf { f(r, θ,m) : m ∈ N} .

It was noted that fP (θ) is non-increasing in θ, and hence so are f(r, θ,m) and
f(r, θ). Moreover we saw that fP (θ) ≥ (1/r)r−1 for all P and θ, so f(r, θ) ≥
(1/r)r−1 for all θ. The examples Pa and Pc show that f(2, θ) ≤ 1/2 for 0 ≤ θ ≤ 1/2
and f(3, θ) ≤ 1/9 for 0 ≤ θ ≤ 1/3. Hence equality holds in each of these cases. In
particular, when r = 2, 3, then f(r, θ) is constant for 0 ≤ θ ≤ 1/r.

We are, at last, in a position to define g(r, α). To do this, we need to relate a
value of θ to each α. Formally, this special value is β(α) = sup{θ : θα ≤ f(r, θ)},
which exists for α > 0. But it follows from simple properties of f(r, θ), given
below in Theorem 2.6 (a)(b), that β(α) is the unique solution to θα = f(r, θ). So,
anticipating those properties, we take the simpler statement as the definition.

Definition 2.5. Let r ≥ 2 and 0 < α ≤ r − 1. Define β = β(α) by βα = f(r, β).
Then we define g(r, α) = −1/ logr(f(r, β)). Note that if α = logn d then

f(r, β)g(r,α) =
1

r
, f(r, β)g(r,α) logr d =

1

d
and βg(r,α) logr d =

1

n
. (3)

Observe that g(r, 0) is not defined by this statement but, since g(r, α) is constant
for 0 < α ≤ 1 (see Theorem 1.6) then we define g(r, 0) to equal this constant value.

We remark that β(r − 1) = 1/r because f(r, 1/r) = (1/r)r−1 (Theorem 2.6 (b)).
Moreover β(α) is strictly increasing: for if α1 < α2 and β(α1) ≥ β(α2), then
f(r, β(α1)) = β(α1)

α1 > β(α1)
α2 ≥ β(α2)

α2 = f(r, β(α2)), contradicting the fact
that f(r, θ) is decreasing (Theorem 2.6 (a)).

Notice how the expression g(r, α) logr d, appearing in Theorem 1.5, appears also
in (3). In the proof of the theorem, we try to appeal to (3) directly rather than to
the definition of g(r, α).

The next theorem lists some basic properties of f(r, θ), in the same way that
Theorem 1.6 lists some of those of g(r, α). In particular it shows that f(r, θ) is
constant for small θ, which is the reason g(r, α) is constant for small α.

Theorem 2.6. For each r ∈ N, r ≥ 2, the function f(r, θ) maps [0, 1/r] to [0, 1]
as follows:

(a) f(r, θ) is continuous and decreasing in θ,
(b) f(r, 1/r) = (1/r)r−1,
(c) for r > 2, f(r, θ) ≤ f(r − 1, θ),
(d) f(2, θ) = 1/2 for 0 ≤ θ ≤ 1/2 and f(3, θ) = 1/9 for 0 ≤ θ ≤ 1/3,
(e) for r ≥ 4, f(r, θ) is constant for 0 ≤ θ ≤ (1 − 1/r)e−r+1,
(f) f(4, 0) = 0.0262 . . ., and
(g) ((r − 1)/er)r−1 ≤ f(r, 0) ≤ (r − 1)!/rr−1.

Theorems 1.6 and 2.6 are proved in §7.

3. A list colouring algorithm and some upper bounds

In order to prove χl(G) ≤ ℓ for some ℓ, we need an algorithm that will colour G
whenever the vertices are given lists of ℓ colours each.

We start with a proof of an upper bound for Latin square graphs, mentioned
earlier in §2, which uses preference orders in an elementary way. The proof makes
no use of the structure of the graph and does not, in fact, require simplicity. It
does make use of randomization.

Theorem 3.1. Let G be a d-regular 3-partite 3-graph with vertex classes of size d.
Then χl(G) ≤ 0.78 log3 d+ 3.
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Proof. Let ℓ = ⌈0.78 log3 d⌉+2 and assume each vertex v has a list L(v) of ℓ colours
to choose from. Let m be the size of the palette

⋃
v∈V (G) L(v); by increasing m if

need be, we can assumem is divisible by 3. Take a randommap Φ :
⋃

v∈V (G) L(v) →
[m], and let Pc be the (3,m)-preference order given as an example in §2.

Let q2 = (1−2q)/9, so q = (−1+
√
10)/9 ≈ 0.24. As described in §2, each colour

in the palette is forbidden on one of V1, V2 or V3, with probability q each, and is
otherwise free, with probability 1− 3q. If v ∈ Vi then c(v) is taken to be a non-free
colour, if L(v) has one available, else it is the free colour whose image under Φ is
most preferred in the ordering <i.

There are two ways the colouring can fail: a vertex might have no colour avail-
able, or an edge might be monochromatic. The expected number of vertices with
no colours available, that is, all colours in L(v) are forbidden on Vi, is 3dq

ℓ < 1/2.
Suppose now some edge e = {vi, v2, v3} is monochromatic, where vi ∈ Vi, 1 ≤ i ≤ 3:
say c(v1) = c(v2) = c(v3) = γ. Then γ must be free. Observe that any other colour
lying in more than one of L(v1), L(v2) and L(v3) is free, else it would have been
chosen by one of the vertices. Let Φ(γ) = k and let pi = rpos<i

(k), 1 ≤ i ≤ 3;
for ease of notation assume k ≤ m/3 so p1 ≤ p2 ≤ p3. If γ′ ∈ L(v1) is free and
γ′ 6= γ then Φ(γ′) <1 Φ(γ). By the definition of Pc this means Φ(γ) <2 Φ(γ′) and
Φ(γ) <3 Φ(γ′), so γ′ /∈ L(v2) ∪ L(v3). Thus L(v1) ∩ L(vi) = {γ} for i = 2, 3; let
j = |L(v2) ∩ L(v3)|.

Consider the event Me that e is monochromatic (necessarily of colour γ, given
what we now know of L(vi)). Let p′i = pi − 1/m, i = 1, 2. The probability that
c(v1) = γ is at most (q + (1 − 3q)p′1)

ℓ−1, because every colour in L(v1) \ {γ} must
either be forbidden on V1 or must map under Φ to a relative position below p1.
Treating in like manner (L(v2) ∩ L(v3)) \ {γ}, L(v2) \ L(v3) and L(v3) \ L(v2), we
have

Pr(Me) ≤ (q + (1− 3q)p′1)
ℓ−1((1 − 3q)p′2)

j−1(q + (1 − 3q)p′2)
ℓ−j(q + (1 − 3q))ℓ−j .

Since p′2 ≤ 2/3 and q ≈ 1/4 we have q > (1 − 3q)p′2, so (1 − 3q)p′2 ≤ (q + (1 −
3q)p′2)/2 < (q+(1− 3q)p′2)(1− 2q). Hence the bound for Pr(Me) decreases with j,
and so

Pr(Me) ≤ [(q + (1− 3q)p′1)(q + (1− 3q)p′2))(1 − 2q)]ℓ−1 .

But p′1 = 1/3− x− 1/m ≤ 1/3− x and p′2 = 1/3 + x for some x ≥ 0, so (q + (1 −
3q)p′1)(q + (1− 3q)p′2) ≤ 1/9. Thus Pr(Me) ≤ ((1 − 2q)/9)ℓ−1 = q2ℓ−2.

Finally, there are d2 edges in G, so the expected number of monochromatic
edges is at most d2q2ℓ−2 < 1/2. Hence there is some mapping Φ for which every
vertex has a choice of colour and for which no edge is monochromatic, proving the
theorem. �

As discussed in §2, the algorithm used in Theorem 3.1 is too weak for general
use, and we turn now to the main algorithm. It too uses randomized preference
orders.

Algorithm for list colouring an r-partite r-graph G having lists of size ℓ.

• Let [t] be the palette. Choose parameters k and δ. Let m = δℓ/k.
• Randomly partition the palette into m blocks B1, . . . , Bm of equal size
(increase t if need be). Choose an (r,m)-preference order P = (<1, . . . , <r).

• Let B = {B1, . . . , Bm}. Say B ∈ B is available to v ∈ V (G) if |L(v)∩B| > k.
• Define b : V (G) → B by b(v) = Bq where, if v ∈ Vi, then q is the member
of {j : Bj is available to v} of greatest relative position in the order <i.

• For B ∈ B let X(B) = {v : b(v) = B}. Colour G[X(B)] using colours
from B.
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We shall choose δ < 1 small. Since, for v ∈ V (G), at mostmk = δℓ colours are in
blocks unavailable to v, there are at least (1−δ)ℓ colours in L(v) in available blocks:
in particular b(v) is well-defined. In effect, v is promising to choose a colour c(v)
from the block b(v), this block being the most preferred amongst blocks available
to v (where v ∈ Vi uses the order <i). The algorithm will succeed — that is, it will
show G is L-chooseable, if for each B ∈ B we can colour G[X(B)] using colours
from B, because the sets X(B) partition V (G) and the sets B partition [t].

Since |L(v) ∩ B| > k for each v ∈ X(B), the algorithm will succeed if the
subgraph G[X(B)] is k-degenerate, as verified by applying the next (standard and
elementary) lemma to H = G[X(B)].

Lemma 3.2. Let H be a k-degenerate r-graph. Let L : V (H) → P(N) be a list
assignment with |L(v)| > k for every vertex v. Then H is L-chooseable.

Proof. Construct an ordering v1, . . . , vn of the vertices of H in which vj has min-
imum degree in the subgraph H [{v1, . . . , vj}], 1 ≤ j ≤ n. Now, for j = 1, . . . , n
in turn, choose a colour c(vj) ∈ L(vj) as follows. There are at most k edges in
H [{v1, . . . , vj}] that contain vj : select a vertex other than vj in each of these edges,
and then choose c(vj) ∈ L(vj) different from the colours of the selected vertices
(possible since |L(vj)| > k). The resultant colouring is a proper colouring of H . �

We give two examples of the use of the algorithm. In each case, proving that
the algorithm succeeds amounts to showing that G[X(B)] is k-degenerate, for each
block B ∈ B. The first example supplies the upper bound for Theorem 1.5, the
second example establishes Theorem 1.7.

Broadly speaking, the first example works for the following reason. There is an r-
tuple x = (x1, . . . , xr) of relative positions of the block B in the preference order P .
If xi is small then the number |Xi| of vertices in Vi for which b(v) = B will, very
likely, be correspondingly small. If xj < θ for some j (where θ is determined by α),
it turns out that Xj = ∅, so certainly G[X ] is k-degenerate. On the other hand, if
xj ≥ θ for all j, then by definition of fP (θ) we know

∏
i6=ix

xi ≤ fP (θ). This leads

to a bound on
∏

i6=iX
|Xi| which, because of property D(r, n, d), again means G[X ]

is k-degenerate. The second example works in a similar way but finishes differently;
because θ = 0 (as G is simple) then

∏
i6=iX

|Xi| must be bounded, and since X is

a random set (as the lists were chosen randomly) we again conclude that G[X ] is
k-degenerate.

We give a quantitative bound in the first example, with a rate at which the
o(1) term tends to zero as d → ∞. This bound depends on two factors, one being
the value of k for which the sets in property D(r, n, d) are k-degenerate, and the
other being the rate at which f(r, θ,m) → f(r, θ) as m → ∞. It turns out to be
the second of these that predominates in our analysis; we use a bound on the rate
proved in §7.
Theorem 3.3. Let r ≥ 2. Then there exists d1 = d1(r) such that, if d > d1 and G
is an r-uniform r-partite hypergraph with property D(r, n, d), then

χl(G) ≤ (g(r, α) + (log log d)−1/5) logr d

where α = logn d.

Proof. All estimates in the proof hold provided d1(r) is large enough: we ignore
integer parts. Let lists of ℓ colours be assigned to each vertex of G, where ℓ =
(g(r, α)+(log log d)−1/5) logr d. Let [t] be the palette comprising all the colours in all
the lists; clearly t ≥ ℓ. Define k = 4 log d/ log log d and δ = (log log d)−1/4. Further
define m = δℓ/k. By adding a few dummy colours to the palette if necessary, we
may assume that t is divisible by m.
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Let β = β(α) as specified in Definition 2.5. There is some (r,m)-preference order
P = (<1, . . . , <r) with fP (β) = f(r, β,m). Apply the algorithm above to G, using
k, δ and P as just specified. What remains is to show that G[X(B)] is k-degenerate
for each B ∈ B.

Here is the central part of the argument. Consider some particular block B, and
let X = X(B). Let x = (x1, . . . , xr) be the r-tuple of relative positions of B in the
preference order P : that is, if, say, B = Bj , then xi is the relative position of j
in <i. Let v ∈ Xi. We know that at least (1 − δ)ℓ of the colours in v’s list lie in
available blocks, and, by definition of X , these blocks all lie in relative positions xi
or below in the i’th order. There are xit colours from [t] in blocks B or below it in
the ith order, so the probability that the random partition of [t] into blocks results
in (1− δ)ℓ of v’s colours being placed in these low blocks is at most

(
ℓ

(1− δ)ℓ

)(
xit

(1− δ)ℓ

)(
t

(1 − δ)ℓ

)−1

≤
(
ℓ

δℓ

)
x
(1−δ)ℓ
i ≤

(e
δ

)δℓ

x
(1−δ)ℓ
i .

Hence, by Markov’s inequality, the inequality |Xi| ≤ rm(e/δ)δℓx
(1−δ)ℓ
i n holds with

probability exceeding 1− 1/rm, and thus, with probability more than 1− 1/m, the
inequality holds for 1 ≤ i ≤ r. Consequently, with positive probability, there exists
a partition of [t] such that the inequality holds for every block B, and for every set
Xi = X(B) ∩ Vi, 1 ≤ i ≤ r.

To finish the proof, it is now enough to check that if x = (x1, . . . , xr) ∈ P , and

X ⊂ V (G) satisfies |Xi| ≤ rm(e/δ)δℓx
(1−δ)ℓ
i n, then X is k-degenerate. There are

two possibilities: either
∏

i6=ix
xi ≤ fP (β), or

∏
i6=ix

xi > fP (β).

Consider the first possibility, that
∏

i6=ix
xi ≤ fP (β). Then

∏

i6=iX

|Xi| ≤ (rm)r
(e
δ

)rδℓ


∏

i6=ix

xi




(1−δ)ℓ

nr−1 ≤ (rm)r
(e
δ

)rδℓ

fP (β)
(1−δ)ℓnr−1 .

Now fP (β) = f(r, β,m) ≤ f(r, β) + 2r
√
(log rm)/m by Lemma 7.8. Theorem 2.6

tells us that f(r, β) and g(r, α) are bounded below (namely f(r, β) ≥ f(r, 1/r) =
(1/r)r−1 and g(r, α) ≥ g(r, 1/r) = 1/(r − 1)) so, recalling the definitions of k, δ
and m, we have fP (β) ≤ f(r, β)(1+ δ) ≤ f(r, β)eδ. Put Λ = (logr d)(log log d)

−1/5,
so ℓ = g(r, α) logr d+ Λ. Then, using (3), we obtain

∏

i6=iX

|Xi| ≤ (rm)r
(e
δ

)rδℓ

f(r, β)(1−δ)ℓeδℓnr−1 = (rm)r
(e
δ

)rδℓ

f(r, β)Λ−δℓeδℓ
nr−1

d
.

By Theorem 2.6, f(r, β) ≤ f(2, 0) = 1/2, so we conclude that
∏

i6=iX
|Xi| ≤

Knr−1/d, where K = (rm)r(e/δ)rδℓeδℓ2−Λ+δℓ. Since Λ is much larger than either
δℓ log(1/δ) or logm, we see that K < 1. Hence

∏
i6=iX

|Xi| < nr−1/d and, because

G has property D(r, n, d), this means X = X(B) is k-degenerate, so resolving the
first of the two possibilites.

Consider now the second possibility, where
∏

i6=ix
xi > fP (β). By definition of

fP (β) there must be some index j with xj < β. Therefore, using equation (3), and
the fact that (by definition) β(α) ∈ [0, 1/r], we have

|Xj | < rm(e/δ)δℓβ(1−δ)ℓn = rm(e/δ)δℓβΛ−δℓ ≤ rm(e/δ)δℓr−Λ+δℓ < K ,

where Λ and K are as in the previous paragraph. But we saw that K < 1, and
so |Xj | < 1, meaning Xj = ∅. But then X contains no edges, and so is certainly
k-degenerate. This resolves the second of the two possibilities, completing the proof
of the theorem. �

Our second example of the use of the algorithm is a proof of Theorem 1.7.
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Proof of Theorem 1.7. Let G and the lists L(v) be as stated. We choose constants
k and δ as follows. First, write ℓ = g(r, 0) logr d + Λ, so Λ ≈ ǫg(r, 0) logr d. Then
choose δ < 1 small enough that (rℓ)r(e/δ)rδℓeδℓ2−Λ+δℓ < 2−Λ/2 (assuming, as we
may, that ℓ is large). Then choose k so that 2−kΛ/2 < 1/dM+1.

As usual, put m = δℓ/k and assume t is a multiple of m. Let α = logn d. Since
G is simple, d ≤ n; thus α ≤ 1 and (by Theorem 1.6) g(r, α) = g(r, 0). Select
an (r,m)-preference order P = (<1, . . . , <r) with fP (0) = f(r, 0,m). Apply the
algorithm with k, δ and P as specified: we need only show that G[X(B)] is k-
degenerate for each block of colours B ∈ B. Fix some block B = Bj and, as in the
proof of Theorem 3.3, let x = (x1, . . . , xr) ∈ P be the tuple of relative positions
of j in the orders <1, . . . , <r.

The vertex lists are chosen randomly. We can imagine the algorithm first makes
the random partition of the palette, and afterwards the assignment of lists is made
to the vertices. The first step determines the collections Li, 1 ≤ i ≤ r, of vertex
lists such that, if v ∈ Vi and L(v) ∈ Li, then b(v) = B. The second step determines
which vertices v ∈ Vi receive a list from Li, namely, it determines Xi. Hence we can
consider Xi to have been generated in the following way: first, its size |Xi| is chosen
from a binomial distribution with parameters n, |Li|/

(
t
ℓ

)
, and then, having decided

the size |Xi|, Xi itself is a random |Xi|-subset of Vi. In fact, having partitioned
the palette, we may choose the sizes |Xi| for every B ∈ B and every i, 1 ≤ i ≤ r,
before choosing the sets Xi themselves. In the proof of Theorem 3.3, we showed
if v ∈ Vi and v has some list L(v) then the probability that b(v) = B is at most

(e/δ)δℓx
(1−δ)ℓ
i . But this probability is the probability that L(v) ∈ Li, and this

equals |Li|/
(
t
ℓ

)
; hence |Li|/

(
t
ℓ

)
≤ (e/δ)δℓx

(1−δ)ℓ
i . Using Markov’s inequality again

as in the proof of Theorem 3.3, we may assume that all the chosen sizes |Xi| satisfy
|Xi| ≤ rm(e/δ)δℓx

(1−δ)ℓ
i n.

We now re-use a calculation performed in the first possibility in the proof of
Theorem 3.3, though much less care is needed with the estimates this time. Taking
β = 0, and noting that m = Θ(log d), we have once again fP (0) ≤ f(r, 0)eδ, and so∏

i6=iX
(|Xi|/n) ≤ K/d, where K = (rm)r(e/δ)rδℓeδℓ2−Λ+δℓ. Since m < ℓ, we have

K < 2−Λ/2 by choice of δ.
Let v ∈ ViX and let E be one of the

(
d
k

)
choices of a set of k edges containing v.

Given that G is simple, the probability, conditional on v ∈ X , that the edges in
E lie within X is

∏
i6=iX

(
n−k

|Xi|−k

)
/
(

n
|Xi|

)
≤ ∏

i6=iX
(|Xi|/n)k ≤ (K/d)k. Thus the

probability that the degree of v in G[X ] exceeds k is at most
(
d
k

)
(K/d)k ≤ Kk <

2−kΛ/2 < 1/dM+1, by choice of k. This probability is less than 1/nd, so with
probability exceeding 1 − 1/d, every vertex in XiX has degree at most k in G[X ];
because G is r-partite this certainly implies G[X ] is k-degenerate.

So, givenB ∈ B, G[X(B)] is k-degenerate with probability more than 1−1/d, and
since |B| = m = o(d) this means that, with probability tending to one, G[X(B)] is
k-degenerate for every B ∈ B and thus G is L-colourable, proving the theorem. �

4. A lower bound

To prove the lower bound in Theorem 1.5 we shall choose some lists for G at
random. We make use of the following basic tail estimate.

Proposition 4.1 ([15, Theorem 2.1, Theorem 2.8]). If Y is binomially distributed,

with mean λ, then P(Y ≤ λ− y) ≤ e−y2/2λ. The same bound holds for any sum Y
of independent Bernoulli variables.

Remark 4.2. The bound of Proposition 4.1 holds if Y is hypergeometrically
distributed. This can be proved either by a comparison of moment generating
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functions, on which the inequality is based (Hoeffding [13]) or by showing that
in this case Y is in fact a sum of independent Bernoulli variables (Vatutin and
Mikhailov [28] — the proof is reproduced in [14] and the idea goes back at least
to Harper [10]). More generally, the bound holds for variables of the form Y =
|X ∩ T1 · · · ∩ Tr|, where X,T1, . . . , Tr ⊂ [n], X is fixed and T1, . . . , Tr are chosen
independently and uniformly of fixed sizes |Ti| = ti, 1 ≤ i ≤ r. When r = 1 then
Y is hypergeometrically distributed: the general case can be derived from the gen-
erating function proof by induction on r, but in fact it is already shown explicitly
in [28, Corollary 5] that Y of this form are sums of independent Bernoulli variables.
The authors thank Svante Janson for pointing them to [28].

The next straightforward lemma provides the properties that we need of the
lists. The size of the palette [t] from which the lists are chosen is not particularly
significant.

Lemma 4.3. Let ℓ, n ∈ N, ℓ ≥ 3, and let ζ ∈ (0, 1]. Let t = ⌈2ℓ2/ζ⌉. Suppose
that nζℓ ≥ 16t. Then there exists a sequence L = (Li)i∈[n] of elements of [t](ℓ) such

that, for every Z ⊂ [t] with |Z| = zt ≥ ζt, we have |{i ∈ [n] : Li ⊂ Z}| ≥ nzℓ/4.

Proof. For each i ∈ [n], choose Li uniformly at random in [t](ℓ), independently of
other choices. Let Z ⊂ [t] have size zt ≥ ζt. Let Y = {i ∈ [n] : Li ⊂ Z}. Then

Y is binomially distributed with parameters n, p =
(|Z|

ℓ

)
/
(
t
ℓ

)
. By Proposition 4.1,

Pr(Y ≤ np/2) ≤ exp(−np/8). Now np = n
(
zt
ℓ

)
/
(
t
ℓ

)
= nzℓ

∏ℓ−1
i=0 (t − i/z)/(t− i) ≥

nzℓ(1 − ℓ/(z(t− ℓ)))ℓ ≥ nzℓ(1 − 1/(2ℓ− 1))ℓ ≥ nzℓ/2, the penultimate inequality
following from the fact that t ≥ 2ℓ2/z and the last because ℓ ≥ 3. Thus Pr(|Y | ≤
nzℓ/4) ≤ Pr(Y ≤ np/2) ≤ exp(−nzℓ/16) ≤ exp(−t). There are at most 2t sets Z,
so with positive probability |{i ∈ [n] : Li ⊂ Z}| ≥ nzℓ/4 holds for every Z ⊂ [t],
proving the lemma. �

The next theorem establishes the lower bound in Theorem 1.5. The argument is
roughly this. We assign lists of colours to the vertices using Lemma 4.3. Suppose
it is possible to colour the graph. We obtain a preference order on the palette by
letting <i be the order of popularity of the colours on Vi in this colouring. Thus
there is some colour (green, say) whose relative positions x = (x1, . . . , xr) satisfy
xj > θ for all j (θ determined by α) and

∏
i6=ix

xi ≥ f(r, θ). By the properties of the

lists this yields a lower bound on
∏

i6=iX
|Xi|, where X is the set of vertices choosing

green. But this lower bound is incompatible with G having property I(r, n, d) and
the fact that X is independent.

Theorem 4.4. Let r ≥ 2. Then there exists d2 = d2(r) such that, if d > d2 and G
is an r-uniform r-partite hypergraph of order rn having property I(r, n, d), then

χl(G) > g(r, α) logr d− 6r log log d .

where α = logn d.

Proof. All estimates hold provided d2 is large enough: we ignore integer parts.
Let G be a graph as in the theorem. Let ℓ = g(r, α) logr d − 6r log log d. Let
ζ = max{β(α), (1/r)r−1}. Recall that β(α) ∈ [0, 1/r], and so (1/r)r−1 ≤ ζ ≤ 1/r.
Using (3), we have

nζℓ+1 ≥ nβ(α)g(r,α) logr d(1/r)−6r log log d+1 = r6r log log d−1 .

Thus nζℓ+1 ≥ 26r log log d−1 ≥ 22 log
2
log

2
d+6 = 64(log2 d)

2 ≥ 64ℓ2, since g(r, α) ≤ 1.
Hence nζℓ ≥ 16t where t = ⌈2ℓ2/ζ⌉. So we can apply Lemma 4.3 to obtain lists
L1, . . . , Ln of ℓ colours each. Assign these lists to the vertices in Vi, for each i,
1 ≤ i ≤ r.
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We claim that there is no vertex colouring compatible with these lists, and hence
χl(G) > ℓ. Suppose, to the contrary, that there is such a colouring. Form an (r, t)-
preference order, where the ith order on [t] is determined by how frequently the
colours are used on Vi. That is, in the ith order, the member of [t] in relative position
1 is the colour appearing most often on Vi and the member in relative position 1/t is
the colour appearing least often (ties can be broken arbitrarily). By Definition 2.4,
there is some colour, green say, such that if xi is the position of green in the ith order,
then xi ≥ β(α) for 1 ≤ i ≤ r, and

∏
i6=ix

xi ≥ f(r, β(α), t) ≥ f(r, β(α)). Because

the second condition implies xi ≥ f(r, β(α)) for 1 ≤ i ≤ r, and Theorem 2.6 states
f(r, β(α)) ≥ f(r, 1/r) = (1/r)r−1, we have xi ≥ ζ for 1 ≤ i ≤ r.

Let X be the set of vertices that are coloured green. We can find a lower bound
for |Xi| as follows. Let Z be the set of colours at or below relative position xi in
the ith order, that is, Z contains green and the colours less popular on Vi. Let X

∗
i

be the set of vertices in Vi that are coloured with some colour in Z. By definition
of the ith order, |Xi| ≥ |X∗

i |/|Z| ≥ |X∗
i |/t.

Now |Z| = xit because green has relative position xi, and we know xi ≥ ζ. So,
by Lemma 4.3, at least nxℓi/4 lists lie within Z, meaning at least nxℓi/4 vertices in
Vi have lists within Z. All of these vertices necessarily choose a colour in Z, and
so lie within X∗

i . Therefore |X∗
i | ≥ nxℓi/4 and hence |Xi| ≥ |X∗

i |/t ≥ nxℓi/4t.
Consequently, using equation (3), and writing f for f(r, β(α)), noting that f ≤

f(2, 0) = 1/2 (see Theorem 2.6), we have

∏

i6=iX

|Xi| ≥
∏

i6=ix

nxℓi
4t

≥ f ℓ
( n
4t

)r−1

= fg(r,α) logr df−6r log log d
( n
4t

)r−1

≥ nr−1

d

(
26 log log d

4t

)r−1

.

Now 26 log log d/4t ≥ ζ26 log log d/9ℓ2 ≥ (1/r)r−126 log log d/10 log2r d ≥ log2 d. Thus∏
i6=iX

|Xi| ≥ nr−1(log2 d)/d. But G has property I(r, n, d) and so X cannot be an
independent set, in contradiction to it being the set of green vertices in a proper
colouring. �

We remark that, if the set X in this proof were a random set of vertices, then the
proof would work for every r-partite r-graph G even without assuming I(r, n, d),
because a random set with the specified lower bounds on |Xi| would not be inde-
pendent. In fact the set of vertices whose lists lie within Z is random, but there
seems no reason why the set X itself should be random.

5. Random r-partite hypergraphs

We begin with a lemma that we shall use several times when treating various
kinds of random r-partite hypergraphs on the vertex set V1 ∪ · · · ∪ Vr.
Lemma 5.1. Let some probability distribution be given on the space of subsets of
V = V1 ∪ · · · ∪ Vr, where |V | = rn. Let E be some event. Suppose, for each non-

empty X ⊂ V , that Pr(X ∈ E) ≤ (|XiX |/2en)(r+1)|XiX
| holds. Then E = ∅ almost

surely, as n→ ∞.

Proof. There are at most (q + 1)r ≤ 2rq possibilities for the tuple (|X1|, . . . , |Xr|)
if |XiX | = q, and, for each such possibility, the number of possible sets X is

∏

i

(
n

|Xi|

)
≤

∏

i

(
en

|Xi|

)|Xi|
≤

(
en

q

)rq

,

because (e/x)x is an increasing function of x for x ≤ 1. Hence the total proba-
bility that there is some set X ∈ E is at most

∑
q≥1 2

rq(en/q)rq(q/2en)(r+1)q =
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∑
q≥1(q/2en)

q. Since (x/2e)x decreases for 0 < x ≤ 1, the first
√
n terms of this

sum add to at most
√
n(1/2en), which tends to zero. Since q ≤ n, the remaining

terms add to at most
∑

q≥√
n(1/2e)

q, which also tends to zero. Therefore E is

almost surely empty. �

The proof of Theorem 1.3 involves a routine verification. In fact, we do slightly
more work than we need to, though the extra effort involved is negligible. We show
that G almost surely has the two stronger properties I ′(r, n, d) and D′(r, n, d).
Property I ′(r, n, d) asserts that every set X containing at most n/2d1/(r−1) edges
satisfies (1), and Property D′(r, n, d) asserts that every set X satisfying (2) is
(4(log d/ log log d)− 1)-degenerate. The reason for adding this complication is that
we can copy over the proof directly for use again in §6.

Proof of Theorem 1.3. Let G ∈ G(n, r, p) be a random r-partite r-uniform hyper-
graph and let d = pnr−1 ≥ d0.

Let X ⊂ V (G) and let xi = |Xi|/n. Let S be the number of edges in G[X ].
Then S ∈ Bi(

∏r
i=1 |Xi|, p), having mean λ = p

∏r
i=1 |Xi| = d|XiX |∏i6=iX

xi.

Let E be the collection of sets X ⊂ V (G) such that
∏

i6=iX
|Xi| ≥ nr−1(log2 d)/d

but G[X ] has at most n/2d1/(r−1) edges. To show that G almost surely has
property I ′(r, n, d), we must show E = ∅ almost surely, and to do this we ap-

ply Lemma 5.1. Let X ⊂ V . If
∏

i6=iX
|Xi| < nr−1(log2 d)/d then X /∈ E so

Pr(X ∈ E) = 0. If
∏

i6=iX
|Xi| ≥ nr−1(log2 d)/d then Pr(X ∈ E) is the probability

that S ≤ n/2d1/(r−1). In this case,
∏

i6=iX
xi ≥ (log2 d)/d so λ > |XiX | log2 d.

Moreover |XiX | ≥ (
∏

i6=iX
|Xi|)1/(r−1) > n/d1/(r−1). Hence certainly Pr(X ∈ E) ≤

Pr(S ≤ λ/2) ≤ e−λ/8 by Proposition 4.1, so Pr(X ∈ E) ≤ e−|XiX
|(log2 d)/8. There-

fore, for Lemma 5.1 to apply, it is enough to show that e−(log2 d)/8 ≤ (|XiX |/2en)r+1.

But |XiX | ≥ n/d1/(r−1) so we need only show that e−(log2 d)/8 ≤ (1/2ed1/(r−1))r+1,
which easily holds if d is large.

Now let X = {X ⊂ V :
∏

i6=iX
|Xi| ≤ nr−1/d}. To show that G almost surely

has property D′(r, n, d) we must show, almost surely, that every X ∈ X is (k − 1)-
degenerate, where k = 4 log d/ log log d. Notice that if X ∈ X and Y ⊂ X then
Y ∈ X , and therefore to show every X ∈ X is (k− 1)-degenerate it suffices to show
that every X ∈ X is either empty or has a vertex of degree at most k− 1. We shall
in fact show that if X ∈ X and X 6= ∅ then G[X ] contains fewer than k|XiX | edges,
and so the largest class of X has a vertex of degree less than k.

So let E = {X ∈ X : X 6= ∅, S ≥ k|XiX |}, where S is the number of edges
in G[X ]. We wish to show that E = ∅ almost surely, and we again use Lemma 5.1.
Since S ∈ Bi(

∏r
i=1 |Xi|, p), the probability that S ≥ k|XiX | is at most

(∏
i |Xi|

k|XiX |

)
pk|XiX

| ≤
(
ep

∏
i |Xi|

k|XiX |

)k|XiX
|
=

(
ed

∏
i6=ix

xi

k

)k|XiX
|

,

where xi = |Xi|/n. To apply the lemma successfully, we need (ed
∏

i6=ix
xi/k)

k ≤
(|XiX |/2en)r+1, or s ≤ 1 where s = (2en/|XiX |)r+1(ed

∏
i6=ix

xi/k)
k. Let z =

d−1/(r−1). For |XiX | ≤ zn, we use the inequality
∏

i6=ix
xi ≤ (|XiX |/n)r−1, and

so s ≤ (2en/|XiX |)r+1(ed(|XiX |/n)r−1/k)k: this is an increasing function of |XiX |
(we can assume k > 3 because d0 is large) and so s ≤ (2e/z)r+1(edzr−1/k)k =
(2e/z)r+1(e/k)k. For |XiX | ≥ zn, we use instead that

∏
i6=ix

xi ≤ 1/d because

X ∈ X , and therefore s ≤ (2en/|XiX |)r+1(e/k)k ≤ (2e/z)r+1(e/k)k. Consequently
s ≤ (2e/z)r+1(e/k)k ≤ (2e)r+1d3(e/k)k holds for every X ∈ X , and this bound is
less than one because k = 4 log d/ log log d and d0 is large. This shows that, almost
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surely, no X ∈ X has more than k|XiX | edges, and almost surely G has property
D(r, n, d). �

6. Regular r-partite hypergraphs

In this section we aim to prove Theorem 1.4. Rather than apply the configu-
ration model, which would work only for n much larger than d4, we work instead
with the space H(n, r, d) of d-regular r-partite hypergraphs that are the union of d
independently chosen perfect matchings M1, . . . ,Md. So Mi is a set of n pairwise
disjoint edges, and M1, . . . ,Md are chosen uniformly and independently from all
possible matchings. Hypergraphs in H(n, r, d) may have multiple edges.

An r-graph H ∈ H(n, r, d) is unlikely to be simple, but a small modification of it,

Ĥ , will be simple. Theorem 1.4 holds if Ĥ has properties I(r, n, d) and D(r, n, d);
for this to happen, we require H to satisfy I ′(r, n, d) and D′(r, n, d), described in §5.
Lemma 6.1. With probability tending to one as d → ∞, H ∈ H(n, r, d) has
properties I ′(r, n, d) and D′(r, n, d).

Proof. Let H ∈ H(n, r, d) be a random d-regular r-partite r-uniform hypergraph.
Let X ⊂ V (H) and let xi = |Xi|/n. Let R be the number of edges in H [X ]. Recall
that in the proof of Theorem 1.3 we studied the distribution of a variable very
similar to R, namely S, the number of edges in G[X ] where G ∈ G(n, r, p) and
d = pnr−1. Thus ES = p

∏r
i=1 |Xi| = d|XiX |∏i6=iX

xi. When proving that G had

property I ′(r, n, d) we used only that ES = d|XiX |∏i6=iX
xi and that the bound

in Proposition 4.1 holds for S. We shall show that the same bound holds for R,
and moreover ER = ES. Therefore the proof that G has I ′(r, n, d) can be used
verbatim to show that H has I ′(r, n, d).

Let Z be the random variable that is the number of edges of M1 lying inside X .
For notational convenience, suppose XiX = X1. Clearly EZ = |X1|

∏r
i=2 xi, since

the edge containing v ∈ V1 has probability
∏r

i=2 xi of meeting each Xi, i ≥ 2. Now
M1 can be generated from r−1 independent random bijections Vi → V1, 2 ≤ i ≤ r,
the edge of M1 containing v ∈ V1 being v together with those vertices that map
to v. So Z = |X1 ∩ T2 ∩ · · · ∩ Tr|, where Ti is the image of Xi, 2 ≤ i ≤ r. By
Remark 4.2, Z is a sum of independent Bernoulli variables. Finally, R is the sum of
d independent copies of Z, so it too is a sum of independent Bernoulli variables, and
hence Proposition 4.1 holds for R. Moreover ER = dEZ = ES, and this completes
the proof that H has I ′(n, r, d).

For the proof that H hasD′(n, r, d) we again copy from the proof of Theorem 1.3,
and again assume XiX = X1. Let T ⊂ X1, |T | = k1. The probability that T ⊂ Ti,

where Ti is as in the previous paragraph, is
(

n−k1

|Xi|−k1

)(
n

|Xi|
)−1 ≤ xk1

i . Thus the

probability is at most (
∏r

i=2 xi)
k1 that, for every v ∈ T , the edge of M1 meeting

v lies inside X . So the probability that X contains at least k1 edges of M1 is at

most
(|X1|

k1

)
(
∏r

i=2 xi)
k1 . If R ≥ k|X1|, that is, H [X ] has at least k|X1| edges, then

there are numbers k1, . . . , kd with k1+ · · ·+kd = k|X1| such that X has kj edges of

Mj, 1 ≤ j ≤ d. Thus Pr(R ≥ k|X1|) ≤
∑

k1+···+kd=k|X1|
∏d

j=1

(|X1|
kj

)
(
∏r

i=2 xi)
kj =

(d|X1|
k|X1|

)
(
∏r

i=2 xi)
k|X1| ≤ ((ed/k)

∏r
i=2 xi)

k|X1|. But this is exactly the same as the

bound on Pr(S ≥ k|XiX |) that was used in the proof of Theorem 1.3, so, copying
the rest of the proof verbatim, we have that H has D′(n, r, d) almost surely. �

The next lemma describes the modification of H ∈ H(n, r, d) that produces Ĥ .
Because H is close to simple, we can remove just a few edges to achieve simplicity,
and replace them with well-chosen new edges to preserve regularity.
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Lemma 6.2. There is a number d3 = d3(r) such that the following holds. Let d be
an integer with d ≥ d3 and let n ≥ r5d4. Then, with probability at least 1/8, H ∈
H(n, r, d) has the following property. There is a set I of at most r3d2 independent
(that is, pairwise disjoint) edges in H, and a set I ′ of |I| independent edges none
of which is in H, such that H − I + I ′ is d-regular and simple.

Proof. A pair of edges {e, f} with |e ∩ f | ≥ 2 is called a butterfly. The body of the
butterfly is e ∩ f . The edges e and f are the wings of the butterfly. An r-graph
is simple if it has no butterflies. We make a series of assertions, each of which
holds with probability (conditional on previous assertions) at least 7/8, if d3 is
large enough.

(i) Every butterfly {e, f} satisfies |e ∩ f | = 2. This is because the expected

number of butterflies with |e ∩ f | ≥ 3 is at most
(
r
3

)
n3

(
d
2

)
(1/n2)2 < 1/8.

(To see this, let {u, v, w} ⊂ e ∩ f . There are
(
r
3

)
ways to choose classes

Vi for u, v, w, n3 ways to choose {u, v, w} in the classes, and
(
d
2

)
ways to

choose matchings Mi containing e and Mj containing f . The probability
that the edge of Mi containing u also contains {v, w} is 1/n2, and likewise
for Mj. Similar considerations explain subsequent assertions.)

(ii) No two butterflies have the same body. This is because, assuming (i), the
expected number of pairs of butterflies {e, f} and {e, g} with e ∩ f = e ∩ g
is at most

(
r
2

)
n2

(
d
3

)
(1/n)3 < 1/8.

(iii) Distinct butterflies have disjoint bodies. For suppose butterflies {e, f} and
{g, h} have bodies {u, v} and {u,w}, where v 6= w by (ii). The expected

number of such with e = g is at most r
(
r
2

)
n3d

(
d
2

)
(1/n2)(1/n)2 < 1/16, and

with e 6= g is at most r
(
r
2

)
n33

(
d
4

)
(1/n)4 < 1/16.

(iv) No two butterflies share a wing. This is because, assuming (ii) and (iii),
the expected number of pairs of butterflies {e, f} and {e, g} is at most

3
(
r
4

)
n4d

(
d
2

)
(1/n3)(1/n)(1/(n− 1)) < 1/8. Here the factors 1/n and 1/(n−

1) arise from f and g containing their bodies, allowing for the fact that,
conceivably, f and g come from the same matching Mi.

(v) Distinct butterflies are disjoint. For suppose butterflies {e, f} and {g, h}
have e ∩ g 6= ∅. By (iv) we cannot have |e ∩ g| ≥ 2, for if e = g then
{e, f} and {g, h} share a wing, and if e 6= g then {e, g} is also a butterfly
sharing a wing with both {e, f} and {g, h}, which are distinct. Hence
|e∩ g| = {u} for some vertex u. By (iii) the expected number of these is at

most r
(
r
2

)2
n5

(
d
2

)2
(1/n2)2(1/(n− 1))2 < 1/8. Here we chose u and the two

bodies, followed by e and g and by f and h.

Let b be the number of butterflies in H . The expected value of b is at most(
r
2

)
n2

(
d
2

)
(1/n)2 < r2d2/4. So with probability at least 1/8, (i)–(v) all hold and

b ≤ r2d2 < r3d2/2. Let {e1, f1}, . . . , {eb, fb} be the butterflies. Beginning with
I = I ′ = ∅, we construct I and I ′ in b steps. At the jth step, we add two
disjoint edges {ej, gj} of H to I, and add to I ′ two disjoint edges {e′j, g′j}, neither
of which is in H , and satisfying ej ∪ gj = e′j ∪ g′j; this last property will ensure that

H − I + I ′ is d-regular. Property (v) and the choice of gj will ensure the edges of
I are independent, and hence so are the edges of I ′.

To find these edges, consider {ej, fj}. Property (i) holds so let ej ∩ fj = {u, v}:
for convenience we assume u ∈ V1 and v ∈ V2. Let Q be the set of vertices in one of
e1, f1, . . . , eb, fb or in some edge of I or in some edge containing either u or v: then
|Q| ≤ 2br+|I|r+2dr ≤ 4br+2rd ≤ 3r3d2. There are at most |Q|d edges meeting Q,
and at most |Q|drd edges meeting these edges. But |Q|drd ≤ 3r5d4 < nd, and H
has nd edges. Hence there is an edge gj of H so that no edge of H meets both
gj and Q. Let x and y be the vertices of gj in V1 and V2 respectively, and put
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e′j = (ej \ {u}) ∪ {x}, g′j = (gj \ {x}) ∪ {u}. Since e′j and g′j meet Q, in v and u
respectively, and both meet gj , neither e

′
j nor g′j is in H .

By choice of Q and by (v), ej and gj are disjoint, ej ∪ gj = e′j ∪ g′j, and this
set of 2r vertices is disjoint from any edge so far in I (and hence also disjoint from
any edge in I ′), and is also disjoint from any butterfly. Furthermore, adding e′j
to H does not create a butterfly: for if {e′j, f} is such a butterfly then f lies in
H , f ∩ ej 6= ∅, f 6= fj, so |f ∩ ej| = 1 and x ∈ f , contradicting the choice of gj .
Likewise {g′j, h} cannot be a butterfly, where h is in H , because {gj, h} is not a
butterfly, implying u ∈ h and h∩ gj 6= ∅, another contradiction. So the addition of
{e′j, g′j} to H will not create a butterfly. Thus after b steps we reach sets I and I ′,

with |I| = |I ′| = 2b ≤ r3d2, as described in the lemma. �

Proof of Theorem 1.4. Take H satisfying Lemmas 6.1 and 6.2, and let Ĥ = H −
I + I ′. By the properties of Lemma 6.2, Ĥ is d-regular and simple. Let X be an

independent set in Ĥ. In H , X contains at most |I| ≤ r3d2 edges. Recalling that
n ≥ r5d4, this means H [X ] has at most n/2d1/(r−1) edges and, since H satisfies

property I ′(r, n, d), this means X satisfies (1). Therefore Ĥ has property I(r, n, d).
Now suppose X is a set satisfying (2). Since H has property D′(r, n, d), this means

H [X ] is (k − 1)-degenerate, where k = 4(log log d)/ log d. But the edges of Ĥ[X ]

not in H [X ] are independent, so Ĥ [X ] is k-degenerate. Therefore Ĥ has property
D(r, n, d) also. �

7. More on preference orders

In this section we aim to establish some basic properties of f(r, θ) and g(r, α).
However the notion of an (r,m)-preference order P and the definition of fP (θ)
are tailored to suit the proof of Theorem 1.5, and in themselves are somewhat
cumbersome to work with. The value of fP (θ) takes no account of any x ∈ P
with xi < θ for some i, and for every x ∈ P it takes no account of xix , making
some information in {x : x ∈ P} appear redundant. Further, it can be difficult to
manipulate simultaneously the r different orders in P .

These drawbacks are resolved by introducing the notion of a cover, which is
nothing more than a perfect matching. Complete information about the function
f(r, θ) can (in principle) be found by studying covers, without the complication
and redundancy of preference orders. Moreover, to obtain a useful lower bound on
f(r, θ) it is more or less necessary to work with covers.

7.1. Preference orders and covers.

Definition 7.1. For r ≥ 1, an r-cover is an r-graph Q with V (Q) ⊂ [0, 1] whose
edges form a perfect matching: that is, |V (Q)| = rn for some n ∈ N and the edge
set E(Q) of Q comprises n pairwise disjoint edges. We define

h(Q) = max{∏y∈e y : e ∈ E(Q)} .
For θ ∈ [0, 1/(r + 1)), we define an (r, θ, n)-cover to be an r-cover Q with V (Q) =
{θ + (1/(r + 1)− θ)j/n : j ∈ [rn]}. We further define

h(r, θ, n) = min{h(Q) : Q is an (r, θ, n)-cover}
and h(r, θ) = inf{h(r, θ, n) : n ∈ N} .

Moreover we define h(r, 1/(r + 1)) = limθ→(1/(r+1))− h(r, θ) = 1/(r + 1)r.

Observe that 1/(r + 1) is always in the vertex set of an (r, θ, n)-cover (when
j = n); another way to represent the vertex set is in the form {1/(r + 1) + jx :
j = −n + 1,−n + 2, . . . , (r − 1)n} where x = (1/(r + 1) − θ)/n. Evidently θr <
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h(r, θ, n) ≤ (θ+ r(1/(r +1)− θ))r for all n, so limθ→(1/(r+1))− h(r, θ) = 1/(r+ 1)r,
as asserted in the definition.

Notice some differences between a cover and a preference order. The edges of
Q are unordered subsets whereas {x : x ∈ P} consists of ordered r-tuples. The
value h(Q) is the maximum, over all edges, of the product of all numbers that are
vertices of the edge. We avoid numbers we are not interested in by specifying the
vertex set of the cover: thus all the vertices of an (r, θ, n)-cover are larger than θ.
Covers are easier to work with than preference orders, but the two are related.

Theorem 7.2. Let r ∈ N, r ≥ 2 and let θ ∈ [0, 1/r]. Then f(r, θ) = h(r − 1, θ).

As might be expected, the proof of this theorem comes by somehow merging the
r orders of P into one single cover, removing the redundant elements and performing
small perturbations of the hypergraphs. In this context, we say that Q and Q′ are
similar if Q is an (r, θ, n)-cover and Q′ is the unique (r, θ′, n)-cover such that the
bijection θ+(1/(r+1)−θ)j/n 7→ θ′+(1/(r+1)−θ′)j/n between V (Q) and V (Q′)
takes edges of Q to edges of Q′.

Lemma 7.3. Let Q be an (r, θ, n)-cover and Q′ be an (r, θ′, n)-cover. If Q and Q′

are similar then |h(Q)− h(Q′)| ≤ r2r|θ − θ′|.

Proof. We may suppose that θ < θ′ and, putting δ = θ′ − θ, that r2rδ < 1 else the
lemma is trivial. Let ξ : V (Q) → V (Q′) be the bijection ξ(θ+(1/(r+1)−θ)j/n) =
θ′ + (1/(r + 1)− θ′)j/n. If y = θ + (1/(r + 1)− θ)j/n, then ξ(y) = y + δ − jδ/n.
Since j ∈ [rn] we have y − rδ < ξ(y) ≤ y + δ. If e is an edge of Q and e′ is the
corresponding edge of Q′ then

∏
ξ(y)∈e′ ξ(y) ≤ ∏

y∈e(y + δ) ≤ ∏
y∈e y + 2rδ, so

h(Q) ≤ h(Q′)+ 2rδ. Likewise
∏

y∈e y ≤ ∏
ξ(y)∈e′(ξ(y)+ rδ) ≤ ∏

ξ(y)∈e′ ξ(y)+ r2rδ,

so h(Q) ≤ h(Q′) + r2rδ. �

To prove Theorem 7.2 we first bound h in terms of f .

Lemma 7.4. Let r ≥ 2, θ ∈ [0, 1/r) and m ∈ N. Then h(r− 1, θ, n) ≤ f(r, θ,m) +
(r − 1)2r−1/m holds, where n = m− r⌈θm⌉+ r.

Proof. Take a preference order P on [m] with fP (θ) = f(r, θ,m). Form an r-cover
Q1 with vertex set {i/rm : i ∈ [rm]} by merging the r orders of P but reducing
the values in the ith order by (i − 1)/rm: that is, for each x = (x1, . . . , xr) ∈ P ,
Q1 has the edge e(x) = {x1, x2 − 1/rm, x3 − 2/rm, . . . , xr − (r − 1)/rm}. Observe
that Q1 is indeed an r-cover. Let k = ⌈θm⌉ − 1, so k/m < θ ≤ (k + 1)/m. Then
the condition xi ≥ θ for 1 ≤ i ≤ r is equivalent to min{v : v ∈ e(x)} > k/m.

We shall transform Q1 but keep the same vertex set. Let A = {1/rm, . . . , k/m}
be the rk smallest elements of V (Q1). For any r-cover Q with V (Q) = V (Q1), let
F (Q) = {e ∈ E(Q) : e∩A = ∅}. So e(x) ∈ F (Q1) if and only if xi > θ for all i. For
e ∈ E(Q) let ψ(e) be the product of the (r−1) elements in e except the largest; then
ψ(e(x)) ≤ ∏

i6=ix
xi for e(x) ∈ E(Q1). So, defining Ψ(Q) = max{ψ(e) : e ∈ F (Q)}

we have Ψ(Q1) ≤ fP (θ).
Let B = {1−1/r+1/rm, . . . , 1} be the m vertices greater than 1−1/r. Suppose

e ∩ B = ∅ for some edge e. Since |B| = m = |E(G)| there must be some edge f
with |f ∩ B| ≥ 2. Let u be the greatest element of e and v be the second greatest
in f . Then u /∈ B and v ∈ B so u < v. Form Q′ from Q by replacing e and
f by e′ = (e \ {u}) ∪ {v} and f ′ = (f \ {v}) ∪ {u}. Then ψ(e′) = ψ(e) and
ψ(f ′) ≤ ψ(f), since u < v. Note that e′ ∈ F (Q′) only if e ∈ F (Q), and f ′ ∈ F (Q′)
only if f ∈ F (Q), so Ψ(Q′) ≤ Ψ(Q). This operation increases the number of
edges meeting B, so, by repeating it as necessary, we arrive at an r-cover Q2 with
Ψ(Q2) ≤ fP (θ), and |e ∩B| = 1 for every edge e ∈ E(Q2).
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Let C = {1 − 1/r − (r − 2)k/m+ 1/rm, . . . , 1 − 1/r} be the r(r − 2)k vertices
immediately below B. We show there is an r-cover Q3 with Ψ(Q3) ≤ fP (θ),
|e∩B| = 1 for every edge e ∈ E(Q3), f ∩C = ∅ for f ∈ F (Q3), and f ⊂ A∪B ∪C
for every edge f /∈ F (Q3). If either k = 0 or r = 2 we can take Q3 = Q2, in the
first case because A = C = ∅ so F (Q2) = E(Q2), and in the second case because
C = ∅, and |f ∩ B| = |f ∩ A| = 1 for f /∈ F (Q3). So we can assume k > 0 and
r > 2; that is, C 6= ∅. Suppose that |f ∩ C| < r − 2 for some edge f /∈ F (Q2).
Since |C| = r(r − 2)k > 0 and there are at most rk edges not in F (Q2) (because
each contains a vertex of |A|), we have e ∩ C 6= ∅ for some edge e ∈ F (Q2). Now
|f ∩ B| = 1; pick some w ∈ f ∩ A, and then there exists u ∈ f , u /∈ B ∪ C and
u 6= w. Let v ∈ e ∩ C; then u < v. Form Q′′ from Q2 by replacing e and f by
e′′ = (e \ {v}) ∪ {u} and f ′′ = (f \ {u}) ∪ {v}. Notice w ∈ f ′′ ∩ A so f ′′ /∈ F (Q′′);
also ψ(e′′) ≤ ψ(e) and e ∈ F (Q2). Thus Ψ(Q′′) ≤ Ψ(Q2), and the edges in
E(Q′′) \F (Q′′) contain more vertices of C than do those in E(Q2) \F (Q2). Hence
repeating this operation results in an r-cover Q3 with Ψ(Q3) ≤ fP (θ), |e ∩ B| = 1
for all e ∈ E(Q3) and |f ∩ C| = r − 2 for every edge f /∈ F (Q3). Thus |f ∩ A| = 1
for all f /∈ F (Q3). But |C| = r(r − 2)k = (r − 2)|A| so C lies entirely within edges
not in F (Q3); in other words, |e ∩B| = 1 and e ∩ C = ∅ for every e ∈ F (Q3).

Let V (Q4) = V (Q)−A−B−C = {k/m+1/rm, . . . , 1−1/r−(r−2)k/m}. Let the
edges of Q4 be the edges of F (Q3) with the element in B removed. By the properties
of Q3, Q4 is an (r−1)-cover. Note |E(Q4)| = |E(Q3)|−|A| = m−rk = n; so in fact,
Q4 is precisely an (r−1, k/m, n)-cover, because V (Q4) = {k/m+jx : j ∈ [(r−1)n]}
where x = 1/rm = (1/r − k/m)/n. By definition of Ψ(Q3) and of Q4 we see that
h(Q4) = Ψ(Q3) ≤ fP (θ).

Finally, let Q5 be the (r − 1, θ, n)-cover that is similar to Q4. Since k/m < θ ≤
k/m + 1/m, Lemma 7.3 shows h(Q5) ≤ h(Q4) + (r − 1)2r−1/m ≤ fP (θ) + (r −
1)2r−1/m, and this proves the lemma. �

Now we bound f in terms of h. The proof seeks to mimic, as far as possible, the
reverse of the previous proof, though the steps are now much easier.

Lemma 7.5. Let r ≥ 2, θ ∈ [0, 1/r) and n ∈ N. Then f(r, θ, rm) ≤ h(r− 1, θ, n)+
(r − 1)2r−1/m holds, where m− r⌈θm⌉+ r = n.

Proof. Take an (r − 1, θ, n)-cover Q with h(Q) = h(r − 1, θ, n). Choose m with
n = m− r⌈θm⌉+ r; such a choice is possible because the right hand side increases
by at most one as m increases by one. Let Q1 be the (r − 1, k/m, n)-cover that is
similar to Q, where k = ⌈θm⌉ − 1. By Lemma 7.3, h(Q1) ≤ h(Q) + (r− 1)2r−1/m.

Now form an r-cover Q2 with V (Q2) = {1/rm, . . . , 1} = V (Q1) ∪ A ∪ B ∪ C,
where A = {1/rm, . . . , k/m}, B = {1−1/r+1/rm, . . . , 1} and C = {1−1/r− (r−
2)k/m+1/rm, . . . , 1− 1/r}. For each edge e of Q1 let e∪{v} be an edge of Q2, for
some v ∈ B, and then add m− n = rk further edges each comprising one vertex in
A, one in B and r − 2 in C. Observe that it is possible to form an r-cover in this
way, because |V (Q2)| = rm, E(Q1) = n, |A| = rk, |B| = m and |C| = r(r − 2)k.

Finally, we form an (r, rm)-preference order P from Q2. For each edge f =
{v1, . . . , vr} ∈ E(Q2), where v1 < . . . < vr, let each of the r-tuples y1f , y

2
f , . . . , y

r
f

belong to P , where yif = (v1+i, v2+i, . . . , vr+i), subscripts being evaluated modulo r.

Note that for each ℓ ∈ [rm] and i ∈ [r] there is a unique x = (x1, . . . , xr) ∈ P
with xi = ℓ/rm, and P is indeed an (r, rm)-preference order. Let x ∈ P satisfy∏

i6=ix
xi = fP (θ). Then x = yif for some f ∈ E(Q2). Now xi ≥ θ for 1 ≤ i ≤ r, so

u ≥ θ > k/m for all u ∈ f . Hence f ∩ A = ∅, so f = e ∪ {v} for some e ∈ E(Q1)
and some v ∈ B. Since f ∩ B = {v} we have f(r, θ, rm) ≤ fP (θ) =

∏
i6=ix

xi =∏
z∈f,z 6=v z =

∏
z∈e z ≤ h(Q1) ≤ h(Q) + (r − 1)2r−1/m, proving the lemma. �
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When proving Theorem 7.2, we need consider only large m and n.

Lemma 7.6. For r ≥ 2, 0 ≤ θ < 1/r and m,n, k ∈ N, f(r, θ, km) ≤ f(r, θ,m) and
h(r − 1, θ, kn) ≤ h(r − 1, θ, n) hold. In particular, f(r, θ) = lim infm→∞ f(r, θ,m)
and h(r − 1, θ) = lim infn→∞ h(r − 1, θ, n).

Proof. Take an (r,m)-preference order P with fP (θ) = f(r, θ,m). Produce an
(r, km)-preference order P ′ in the following natural way: if j is the number at
relative position x in the ith order of P , then place j, j+m, j+2m, . . . , j+(k−1)m
at relative positions x, x − 1/km, x − 2/km, . . . , x − (k − 1)/km in the ith order
of P ′. Then if x′ ∈ [θ, 1]r and x′ ∈ P ′, there exists x ∈ [θ, 1]r with x ∈ P and∏

i6=ix′
x′i ≤

∏
i6=ix

xi, and so f(r, θ,mk) ≤ fP ′(θ) ≤ fP (θ) = f(r, θ,m).

In a similar manner, ifQ is an (r−1, θ, n)-cover with h(Q) = h(r−1, θ, n), then we
form an (r − 1, θ, kn)-cover Q′ as follows. Note that, by definition, V (Q) ⊂ V (Q′).
For each e ∈ E(Q) place the edges e, e − 1/rkn, . . . , e − (k − 1)/rkn into E(Q′),
where e− y = {x− y : x ∈ e}. It is easy to see that Q′ is an (r− 1, θ, kn)-cover and
h(Q′) = h(Q). �

Proof of Theorem 7.2. Let θ ∈ [0, 1/r). By Lemma 7.6 there is a sequence (mj)
∞
j=1

with mj → ∞ and f(r, θ,mj) → f(r, θ). Let nj = mj − r⌊θmj⌋. By Lemma 7.4,
h(r − 1, θ) ≤ h(r − 1, θ, nj) ≤ f(r, θ,mj) + 2r−1/mj holds for all j, and taking
the limit as j → ∞ gives h(r − 1, θ) ≤ f(r, θ). A corresponding argument, but
using Lemma 7.5, shows that f(r, θ) ≤ h(r − 1, θ), so f(r, θ) = h(r − 1, θ) for
θ < 1/r. When θ = 1/r, we have h(r− 1, 1/r) = limθ→(1/r)− h(r− 1, θ) = (1/r)r−1

by definition. Thus, using the result for θ < 1/r, we have limθ→(1/r)− f(r, θ) =

(1/r)r−1. But we know (see after Definition 2.4) that f(r, θ) is decreasing and
f(r, 1/r) ≥ (1/r)r−1. Therefore f(r, 1/r) = (1/r)r−1 = h(r − 1, 1/r), completing
the proof. �

7.2. Further properties. We now establish some basic properties of the functions
f(r, θ) and f(r, θ,m), namely continuity, rate of convergence and initial constancy.
In the light of Theorem 7.2 and Lemmas 7.4 and 7.5 we could derive these from
corresponding properties of h(r − 1, θ) and h(r − 1, θ, n), and generally we do so
since it is usually easier to argue in terms of covers than preference orders.

Lemma 7.7. For r ≥ 1 and θ, θ′ ∈ [0, 1/(r + 1)), |h(r, θ) − h(r, θ′)| ≤ r2r|θ − θ′|.
In particular, h(r, θ) is continuous for θ ∈ [0, 1/(r + 1)].

Proof. Let ǫ > 0. Choose n so that h(r, θ, n) < h(r, θ) + ǫ and let Q be an (r, θ, n)-
cover with h(Q) = h(r, θ, n). Let Q′ be the similar (r, θ′, n)-cover. By Lemma 7.3,
h(r, θ′) ≤ h(Q′) ≤ h(Q)+r2r|θ−θ′| ≤ h(r, θ)+r2r |θ−θ′|+ǫ. So h(r, θ)−h(r, θ′) ≤
r2r|θ−θ′|+ǫ, and since this holds for all ǫ > 0 we have h(r, θ)−h(r, θ′) ≤ r2r|θ−θ′|,
The same holds with θ and θ′ interchanged, establishing the first half of the lemma,
and hence also the continuity of h(r, θ) for θ ∈ [0, 1/(r+1)). But h(r, θ) is continuous
at θ = 1/(r + 1) by definition of h(r, 1/(r + 1)) = limθ→(1/(r+1))− h(r, θ). �

The next lemma bounds how fast f(r, θ,m) converges to f(r, θ). Though we
could derive this from a corresponding result for h(r − 1, θ, n), we need only the
bound on f(r, θ,m), and it is slightly quicker to prove this directly. The idea of
the proof is straightforward: we choose a large preference order P ′ with fP ′(θ)
close to f(r, θ), and from some randomly chosen elements y ∈ P ′ we build an
(r,m)-preference order P with fP (θ) close to f(r, θ).

Lemma 7.8. For r ≥ 2, 0 ≤ θ ≤ 1/r and m ∈ N, f(r, θ) ≤ f(r, θ,m) ≤ f(r, θ) +

2r
√
(log rm)/m holds. In particular f(r, θ) = limm→∞ f(r, θ,m).
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Proof. The lower bound holds by Definition 2.4. For the upper bound, let ǫ > 0
and choose N with f(r, θ,N) ≤ f(r, θ) + ǫ. By Lemma 7.6 we may assume that
N is as large as we wish, certainly larger than m. Let P ′ = (<′

1, . . . , <
′
r) be an

(r,N)-preference order with fP ′(θ) = f(r, θ,N). Let S = {y ∈ P ′ : y ∈ [θ, 1]r}.
By definition, fP ′(θ) = max{∏i6=iy

yi : y ∈ S}. Since, for each i, fewer than θN

elements y ∈ P ′ satisfy yi < θ, we have |S| > (1− rθ)N .
We now construct an (r,m)-preference order P = (<1, . . . , <r). More precisely,

we specify only {x : x ∈ P}, but this is enough to determine fP (θ). Put k = ⌈θm⌉−
1, so k/m < θ ≤ (k+1)/m. Let q = m−rk, so q > m(1−rθ). Partition the relative
positions into three sets A = {1/m, . . . , k/m}, Q = {(k+1)/m, . . . , 1− (r−1)k/m}
and B = {1 − (r − 1)k/m + 1/m, . . . , 1}, so |A| = k, |B| = (r − 1)k and |Q| = q.
By definition, fP (θ) = max{∏i6=ix

xi : x ∈ P, x ∈ (Q ∪B)r}.
Begin by placing rk r-tuples x into P , so that each x ∈ (A ∪ B)r, and for each

x there is a unique index j with xj ∈ A and xi ∈ B for i 6= j. It is possible to find
such r-tuples because |B| = (r − 1)|A|. We finish the construction of P by adding
to P a further set R of q r-tuples (to be described), so that if x ∈ R then x ∈ Qr.
Observe that, when this is done, fP (θ) = max{∏i6=ix

xi : x ∈ R} holds.

Note at this point that we may assume that 2r
√
(log rm)/m < 1 and in par-

ticular m ≥ 4r, since otherwise the lemma is trivial because f(r, θ,m) ≤ 1. A
further simple observation is that, whatever the choice of R, f(r, θ,m) ≤ fP (θ) =
max{∏i6=ix

xi : x ∈ R} ≤ (1/r+q/m)r−1 ≤ (1/r)r−1+2r−1q/m ≤ f(r, θ)+2r−1q/m

by Theorem 2.6. If, say, q ≤ 2r, then usingm ≥ 4r we have q/m ≤ 2r/m < 2/
√
m <

2
√
(log rm)/m, and the lemma holds. So we may assume that 2r ≤ q = m− rk ≤

m− rθm + r, and hence 1 − rθ ≥ r/m. Since N is large we may therefore assume
that |S| > (1 − rθ)N ≥ rN/m ≥ m ≥ q.

To find R, we turn to the large preference order P ′, and choose a random subset
R′ ⊂ S of size q (we know |S| > q). We then take R to be the q elements ofQr whose
relative orders are the same as those of R′. Formally, define an injection ι : R′ → Qr

so that if y ∈ R′ and x = ι(y) then xi = (k+ j)/m, where j = |{y′ ∈ R′ : y′i ≤ yi}|.
Then take R = ι(R′). This completes the construction of P . What remains is to
show there is a choice of R′ such that fP (θ) is suitably bounded.

We say y ∈ S spoils <i if y ∈ R′ and xi > yi + (r +
√
2q log rq)/m, where

x = ι(y) ∈ R. What is the probability that y spoils <i? Conditioned on the event
y ∈ R′, the remaining q − 1 elements of R′ are chosen randomly from S − {y}.
Let X be the subset of these taken from the subset Y ⊂ S of elements whose i’th
co-ordinate exceeds yi: that is, Y = {y′ ∈ S : y′i > yi} and X = R′ ∩ Y . Then
xi = (k + q − |X |)/m. Now |X | is distributed hypergeometrically with parameters
|S|− 1, |Y |, q− 1, with mean λ = (q− 1)|Y |/(|S|− 1). Note that, by definition of S,
there are at most yiN − θN elements of S not in Y , so |Y | ≥ |S| − yiN + θN .

Since xi = (k + q − |X |)/m, we have xi = (m − (r − 1)k − |X |)/m ≤ 1 −
(r − 1)θ + (r − 1)/m − |X |/m. Now λ > (q − 1)|Y |/|S| > q|Y |/|S| − 1, because
|Y | < |S|; thus |Y | < |S|(λ + 1)/q. So the inequality |Y | ≥ |S| − yiN + θN means
yi ≥ |S|/N − |Y |/N + θ > (|S|/N)(1 − (λ + 1)/q) + θ. Using |S| > (1 − rθ)N
and q > (1 − rθ)m this gives yi > 1 − (r − 1)θ − (λ + 1)/m. Therefore xi − yi <
(r − |X |+ λ)/m.

If y spoils <i then xi− yi > (r+
√
2q log rq)/m, and so |X | < λ−√

2q log rq. By
Proposition 4.1, the probability of this is at most e−(2q log rq)/2λ < e− log rq = 1/rq.
We say y spoils P if y spoils <i for some i ∈ [r]. Thus, conditional on y ∈ R′,
the probability that y spoils P is less than 1/q. The unconditional probability that
y ∈ R′ is q/|S|, and so the expected number of elements y ∈ S spoiling P is less
than |S|(q/|S|)(1/q) = 1.
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Hence there is some choice of R′ for which no element spoils P , and xi − yi ≤
(r+

√
2q log rq)/m for every y ∈ R′ and every i ∈ [r]. We have (r+

√
2q log rq)/m <

r/m+
√
(2/m) log rm < 2

√
(log rm)/m because m ≥ 4r. There is some x = ι(y) ∈

R with fP (θ) =
∏

i6=ix
xi, and so f(r, θ,m) ≤ fP (θ) =

∏
i6=ix

xi ≤ ∏
i6=iy

xi ≤
∏

i6=iy
(yi+2

√
(log rm)/m) ≤ ∏

i6=iy
yi+2r

√
(log rm)/m. Since y ∈ S, so

∏
i6=iy

yi ≤
fP ′(θ) ≤ f(r, θ) + ǫ, we have f(r, θ,m) ≤ f(r, θ) + ǫ+2r

√
(log rm)/m. The bound

holds for every ǫ > 0, and so the lemma is proved. �

We now explain why the function f(r, θ) is constant for small θ.

Definition 7.9. For each r ≥ 1, let ϕr be the smallest solution to the equation
θ(1− 1/(r + 1)− (r − 1)θ)r−1 = h(r, θ) = f(r + 1, θ).

Note that there is a solution to this equation, because h(r, 1/(r + 1)) = (1/(r +
1))r, and h(r, θ) = f(r+1, θ) by Theorem 7.2. Moreover h(r, θ) ≥ h(r, 1/(r+1)) > 0
for all θ ∈ [0, 1/(r + 1)], so 0 < ϕr ≤ 1/(r + 1).

Theorem 7.10. For each r ≥ 1, h(r, θ) = f(r + 1, θ) is constant for θ ∈ [0, ϕr].

Proof. In a nutshell, we take an h(r, ϕr, n) cover Q0 with h(Q0) ≈ h(r, ϕr) and
then, given θ < ϕr, we increase the vertex set V (Q0) above and below to obtain an
(r, θ, n+ ℓ)-cover V (Qℓ) by adding edges containing the new vertices: the property
of ϕr means that these new edges don’t affect h(Qℓ), so h(Qℓ) = h(Q0) and hence
h(r, θ) ≤ h(r, ϕr), which is what we are after. In practice the outline given needs
to be perturbed a little, for technical reasons.

By the continuity of h(r, θ) (Lemma 7.7) and the definition of ϕr, we know
that θ(1 − 1/(r + 1) − (r − 1)θ)r−1 < h(r, θ) for θ < ϕr. Let ǫ > 0. Since
h(r, θ) is continuous we may choose 0 < θ′ < ϕr with h(r, θ′) < h(r, ϕr) + ǫ. By
properties of continuity there exists δ > 0 such that θ(1−1/(r+1)− (r−1)θ)r−1 <
h(r, θ)−δ for θ ∈ [0, θ′]. Because θ′ < 1/(r+1) there is some (r, θ′, n)-cover Q0 with
h(Q0) < h(r, θ′) + ǫ where, by Lemma 7.6, n can be as large as we please. Then
V (Q0) = {1/(r+1)+jx : j = −n+1,−n+2, . . . , (r−1)n} with x = (1/(r+1)−θ′)/n;
we choose n so that x < δ.

Let θ ∈ (0, θ′). Choose ℓ minimal so that θ′ − ℓ(1/(r + 1) − θ′)/n ≤ θ, and for
k = 0, 1, . . . , ℓ, define θk = θ′ − k(1/(r + 1) − θ′)/n. Thus θ0 = θ′ and θℓ ≤ θ.
(Moreover, by increasing n again if necessary, we can guarantee that θℓ > 0.)
Observe that (1/(r + 1)− θk)/(n+ k) = (1/(r + 1)− θ′)/n = x. Hence if Qk is an
r-cover with V (Qk) = {1/(r + 1) + jx : j = −n − k + 1,−n + 2, . . . , (r − 1)(n +
k)}, then Qk is an (r, θk, n + k)-cover, and V (Q0) ⊂ V (Q1) ⊂ · · · ⊂ V (Qℓ). We
construct such covers by defining E(Qk) = E(Qk−1) ∪ {ek}, k = 1, . . . , ℓ, where
ek = {1/(r + 1) + jx : j = −n− k + 1, (r − 1)(n+ k − 1) + 1, . . . , (r − 1)(n+ k)}.

For each k ≥ 1,
∏

y∈ek
y < (θk + x)(1 − 1/r − (r − 1)θk)

r−1 ≤ θk(1 − 1/(r +

1)− (r − 1)θk)
r−1 + x < h(r, θk) because x < δ, and h(r, θk) ≤ h(Qk), because Qk

is an (r, θk, n + k)-cover. Therefore h(Qk) = max{∏y∈e y : e ∈ E(Qk), e 6= y} =

h(Qk−1). Hence h(r, θℓ) ≤ h(Qℓ) = h(Q0) < h(r, θ′) + ǫ < h(r, ϕr) + 2ǫ. The outer
inequality holds for all ǫ > 0 so h(r, θℓ) ≤ h(r, ϕr). But we know (comment after
Definition 2.4) that f(r, θ) decreases with θ, meaning by Theorem 7.2 that h(r, θ)
decreases, and so h(r, θℓ) = h(r, ϕr). Since θℓ ≤ θ < ϕr and h is decreasing, we
have h(r, θ) = h(r, ϕr). �

It is readily checked, say by taking logarithms and differentiating, that the func-
tion θ(1−1/(r+1)−(r−1)θ)r−1 increases for θ ≤ 1/(r2−1) and decreases thereafter.
For r = 1 the function is always increasing and because h(1, θ) is decreasing we
have ϕ1 = 1/(r + 1) = 1/2. Likewise, for r = 2, the function is increasing for
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θ ∈ [0, 1/3] = [0, 1/(r + 1)], and so ϕ2 = 1/(r + 1) = 1/3. Consequently Theo-
rem 7.10 means both h(1, θ) and h(2, θ) are constant throughout, as are therefore
f(2, θ) and f(3, θ) (though we knew this already for other reasons). To get infor-
mation for other values of r we need a useful lower bound on h(r, θ), which is what
we do next.

7.3. Lower bounds. A simple averaging argument provides an initial, but non-
trivial, lower bound on h(r, θ) = f(r + 1, θ), in terms of the following function.

Definition 7.11. For r ≥ 1 and θ ∈ [0, 1/(r + 1)), define

w(r, θ) = e−r

(
u(1− 1/(r + 1)− (r − 1)θ)

u(θ)

)1/(1/(r+1)−θ)

where u(y) = yy and u(0) = 1.

Lemma 7.12. Let r ≥ 1 and θ ∈ [0, 1/(r+1)). Then f(r+1, θ) = h(r, θ) ≥ w(r, θ)
holds. In particular, h(r, 0) ≥ (r/e(r + 1))r.

Proof. Let Q be an (r, θ, n)-cover, with V (Q) = {θ + jx : j ∈ [rn]} and x =
(1/(r + 1)− θ)/n. For e ∈ E(Q) let π(e) =

∏
y∈e y. Then

h(Q) = max
e∈E(Q)

π(e) ≥
( ∏

e∈E(Q)

π(e)
)1/n

=
( ∏

v∈V (Q)

v
)1/n

= e−S

where nS =
∑

v∈V (Q) log(1/v). Now xnS ≤
∫ 1−1/(r+1)−(r−1)θ

θ log(1/t)dt = − log(u(1−
1/(r+1)−(r−1)θ)+log(u(θ))+r(1/(r+1)−θ). Hence h(Q) ≥ e−r(u(1−1/(r+1)−
(r − 1)θ)/u(θ))1/(1(r+1)−θ) = w(r, θ) holds for every (r, θ, n)-cover Q, and, bearing
in mind Theorem 7.2 and the definition of h(r, θ), this proves the lemma. �

We explore the properties of w(r, θ) a little further. The next definition is close
to that of ϕr in Definition 7.9.

Definition 7.13. For each r ≥ 1, let φr be the smallest positive solution to the
equation θ(1−1/(r+1)−(r−1)θ)r−1 = w(r, θ), where w(r, θ) is as in Definition 7.11.

Lemma 7.14. Let r ≥ 1. Then the function w(r, θ) is increasing for θ ≤ φr and
decreasing for θ ≥ φr.

Proof. It is possible to prove the lemma by just calculating from the definitions, but
it is more illuminating to interpret the result in terms of covers. We argue in a way
parallel to the proof of Theorem 7.10; this time, to avoid excessive technicalities,
we content ourselves with a detailed sketch.

Let n be very large and let Q0 be the (r, 0, n)-cover with V (Q0) = {j/(r+ 1)n :
j ∈ [rn]} and edge set {ek : 0 ≤ k < n} where e0 comprises the least vertex and
(r−1) largest vertices, e1 the second least and (r−1) largest remaining vertices, and
so on: that is, ek = {(k+1)/(r+1)n, (rn− (r−1)k− r+2)/(r+1)n, . . . , (rn− (r−
1)k)/(r + 1)n}. Then Qk, which is Q0 with the edges and vertices of e0, . . . , ek−1

removed, is an (r, k/(r + 1)n, n− k)-cover.
The product

∏
y∈ek

y is very close to p(θ) = θ(1 − 1/(r + 1)− (r − 1)θ)r−1 (the

more so as n grows). Recall from the comment at the end of §7.2 that p(θ) increases
for θ ≤ 1/(r2−1) and decreases thereafter. It must therefore be that φr < 1/(r2−1)
in order for Definition 7.13 to be satisfied. In the proof of Lemma 7.12 we saw that
w(r, θ) was very close to the rth power of the geometric mean of the vertices of the
(r, θ, n)-cover Q. Hence if θ = k/(r+1)n for some k then w(r, θ) is very nearly the
rth power of the geometric mean of V (Qk). If θ < φr this quantity is greater than
p(θ) ≈ ∏

y∈ek
y so the mean of V (Qk+1) is greater than that of V (Qk); thus w(r, θ)

is increasing at this point.
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On the other hand, when p(θ) > w(r, θ) then
∏

y∈ek
y exceeds the rth power

of the geometric mean of V (Qk), so the mean of V (Qk+1) will be less than that
of V (Qk) and w(r, θ) will be decreasing. Certainly p(θ) > w(r, θ) while φr < θ <
1/(r2−1) since p(θ) is increasing in this range and so w(r, θ) is perforce decreasing.
But now, the fact that p(θ) decreases for θ ≥ 1/(r2 − 1) means that

∏
y∈ek

y is a
decreasing function of k in the remaining range; that is, when moving from Qk to
Qk+1 we are always removing the edge with the largest product, so the mean of
V (Qk) continues to decrease, and thus so does w(r, θ). �

In the proof of his lemma it was seen that p(θ) increases for θ ≤ φr . Comparing
Definitions 7.9 and 7.13, and noting h(r, θ) ≥ w(r, θ) as stated in Lemma 7.12, we
then observe that φr ≤ ϕr.

Definition 7.15. For r ≥ 1 and 0 ≤ θ ≤ 1/(r + 1), let

H(r, θ) =

{
w(r, φr) for θ ≤ φr

w(r, θ) for θ ≥ φr

where φr is as in Definition 7.13.

Lemma 7.14 means that H(r, θ) is a decreasing function of θ. The importance
of H(r, θ) lies in the next result.

Theorem 7.16. Let r ≥ 1 and 0 ≤ θ ≤ 1/(r + 1). Then

f(r + 1, θ) = h(r, θ) ≥ H(r, θ).

Proof. Theorem 7.2 shows f(r + 1, θ) = h(r, θ). Lemma 7.12 shows f(r + 1, θ) ≥
w(r, θ) for all θ, and it was noted after Definition 2.4 that f(r+1, θ) is decreasing.
Thus, for θ ≤ φr, f(r + 1, θ) ≥ f(r + 1, φr) ≥ w(r, φr) = H(r, θ), and for θ ≥ φr ,
f(r + 1, θ) ≥ w(r, θ) = H(r, θ). �

As can be seen from the proofs of Theorem 7.10 and Lemma 7.12, what lies
behind the bound in the theorem is this. If Q is an (r, θ, n)-cover, where n is large,
and θ < ϕr, then the edge product

∏
y∈e y has no effect on h(Q) if e contains an

element less than ϕr. On the other hand, if θ > ϕr, then h(Q) is near to the lower
bound w(r, θ) only if all edge products are more or less equal.

Surprisingly, it seems that such covers, where all edge products are roughly
equal, might exist. The case of most immediate interest is r = 3. In this case,
φ3 = 0.070906 . . . and w(3, φ3) = 0.026227 . . .. Using a computer program to
generate (3, φ3, n)-covers, which aims to minimise the sum of edge products by
switching pairs of edges in the manner of the proof of Lemma 7.4, we have ex-
amples of (3, φ3, 10000)-covers Q with h(Q) ≤ 0.026232 . . ., meaning h(3, φ3) ≤
h(3, φ3, 10000) ≤ 0.026232 . . .. Given that φ3 ≤ ϕ3 and that h(3, θ) is decreas-
ing, this shows h(3, ϕ3) ≤ 0.026232 . . . and so Theorem 7.10 implies h(3, 0) ≤
0.026232 . . .. But by Theorem 7.16 we have h(3, 0) ≥ H(3, φ3) = w(3, φ3) =
0.026227 . . .. In summary, 0.026227 . . .≤ h(3, 0) = f(4, 0) ≤ 0.026232 . . ..

Having tried the computer program on a few other pairs (r, θ), we are led to
make the following conjecture.

Conjecture 7.17. Equality holds in Theorem 7.16 for all r and θ.

For what it’s worth, we remark that, if true, this conjecture would imply ϕr = φr .

7.4. Proofs of Theorems 1.6 and 2.6. We have already proved most of the prop-
erties of f(r, θ) stated in Theorem 2.6; to finish the proof, and to derive Theorem 1.6
about g(r, α), we need only add a few more observations.
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Proof of Theorem 2.6. We noted after Definition 2.4 that f(r, θ) is decreasing, and
Lemma 7.7 (together with Theorem 7.2) shows f(r, θ) is continuous, giving as-
sertion (a) of the theorem. Assertion (b) was established as part of the proof of
Theorem 7.2. As for (c), let P = (<1, . . . , <r) be an (r,m)-preference order and
let P ′ be the (r − 1,m)-preference order (<1, . . . , <r−1). If x = (x1, . . . , xr) ∈ P
and minxi ≥ θ then x′ = (x1, . . . , xr−1) ∈ P ′, and

∏
i6=ix

xi ≤ ∏
i6=ix′ ,i6=r xi, so

fP (θ) ≤ fP ′(θ), which implies (c). Assertion (d) was noted already after Defini-
tion 2.4, and again after Theorem 7.10.

By Definition 7.9, Theorem 7.10 and Lemma 7.12, we have ϕr−1(1 − 1/r)r−2 ≥
ϕr−1(1 − 1/r − (r − 2)ϕr−1)

r−2 = h(r − 1, ϕr−1) = h(r − 1, 0) ≥ ((r − 1)/er)r−1,
so ϕr−1 ≥ (1 − 1/r)e−r+1. In the light of Theorem 7.10, assertion (e) follows.
Assertion (f) was explained immediately before Conjecture 7.17. The first inequality
of assertion (g) is part of Lemma 7.12, given that f(r, 0) = h(r−1, 0). For the second
inequality, consider the (r−1, 0, n)-coverQ with V (Q) = {j/rn : j ∈ [(r−1)n]} and
edge set E(Q) = {ek : k ∈ [n]} where ek = {k/rn, (k + n)/rn, (k + (r − 2)n)/rn}.
Then h(Q) =

∏
y∈en

y = (r − 1)!/rr−1, and f(r, 0) = h(r − 1, 0) ≤ h(Q). This
completes the proof. �

Proof of Theorem 1.6. We appeal throughout to the properties of f(r, θ) given in
Theorem 2.6 and to the fact that g(r, α) = −1/ logr f(r, β(α)).

By Definition 2.5, β(α)α = f(r, β(α)) so, by Theorem 2.6 (a), β(α) is continuous
in α and, by the remark following the definition, strictly increasing. Again appeal-
ing to Theorem 2.6 (a) we see that g(r, α) is continuous and decreasing, which is
assertion (a). Assertion (b) is a consequence of Theorem 2.6 (b) and assertion (c)
follows from Theorem 2.6 (d).

Let r ≥ 4. Define δ by ϕ1+δ
r−1 = f(r, ϕr−1). By Definition 2.5, β(1 + δ) = ϕr−1;

by Theorem 7.10 and the fact that β(α) is increasing, g(r, α) is constant for α ≤
1 + δ, so to prove assertion (d) it is enough to show that δ > 1/(r + 3). In the
previous proof we showed that ϕr−1(1 − 1/r)r−2 ≥ h(r − 1, ϕr−1) = f(r, ϕr−1),
so ϕδ

r−1 ≤ (1 − 1/r)r−2. We also showed ϕr−1 ≥ (1 − 1/r)e−r+1. Hence [(1 −
1/r)e−r+1]δ ≤ (1 − 1/r)r−2, and so e−δ(r−1) ≤ (1 − 1/r)r−2−δ < e(r−2−δ)/r, or
−δ(r − 1) < (r − 2 − δ)/r. Thus δ > (r − 2)/(r2 − r + 1), and, since r ≥ 4, this
implies δ > 1/(r + 3) as desired.

Assertion (e) follows from the bounds 0.026227 ≤ f(4, 0) ≤ 0.026233 mentioned
before Conjecture 7.17, and (f) follows straightaway from Theorem 2.6 (g), which
completes the proof. �

8. Property B

An ℓ-uniform hypergraph H is k-colourable if its vertices can be coloured with
k colours so that no edge is monochromatic, and χ(H) is the smallest k for which
H is k-colourable. Erdős [7, 8] studied the minimum number of edges in a bi-
partite hypergraph H — that is, χ(H) = 2: such hypergraphs are said to have
“Property B”.

Let m(ℓ, r) be the minimum number of edges in an ℓ-graph H with χ(H) > r.
Let Q(r, ℓ) be the minimum number of vertices in an r-partite r-graph G with list
chromatic number χl(G) ≥ ℓ. Extending the result of Erdős, Rubin and Taylor [9],
who proved the case r = 2, Kostochka [16] proved that m(ℓ, r) and Q(r, ℓ) are
closely tied: indeed m(ℓ, r) ≤ Q(r, ℓ) ≤ rm(ℓ, r).

There has been no significant improvement on the upper bound for m(ℓ, 2)
since Erdős [8] proved m(ℓ, 2) ≤ ℓ22ℓ. The lower bound has been improved a
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few times, the best to date being m(ℓ, 2) = Ω((ℓ/ log ℓ)1/22ℓ) by Radhakrish-
nan and Srinivasan [18]. A simple proof of this bound, and of the generalisation
m(ℓ, r) = Ω((ℓ/ log ℓ)1−1/rrℓ), was given by Cherkashin and Kozik [6].

The method of [6] is close to that of Pluhár [17]. If an ℓ-graph H has fewer edges
than is stated in the bound, then a random argument shows there is some ordering
of the vertices without any chain of edges e1, e2, . . . , er, such that the last vertex
of ei is the first of ei+1, 1 ≤ i ≤ r − 1. A simple greedy colouring algorithm then
colours H with r colours.

The relevant part of the proof in [9] and [16] that relates m(ℓ, r) to Q(r, ℓ) is as
follows: let G be a complete r-partite r-graph with |E(H)| vertices in each class.
Consider V (H) to be a palette and let E(H) be assigned as lists to each vertex
in Vi, 1 ≤ i ≤ r. If G can be coloured from these lists then χ(H) ≤ r. Any list
colouring algorithm can thus be translated to give some lower bound on m(ℓ, r).

Our colouring algorithm for complete r-partite r-graphs selects some preference
order P , after which each vertex v ∈ Vi chooses the colour in L(v) most preferred
by <i. In the case r = 2, where we choose <1 to be the identity and <2 to be its
reverse, the translation is to find an ordering of the vertices of H without a chain
e1, e2 and then to colour the first vertex of each edge red and the last blue. This is
not quite the same as the method of [6] but is effectively equivalent, and the bound
obtained on m(ℓ, 2) is the same.

However our method makes no use of the fact that the lists in each Vi are the
same, and for r > 2 the translated method is less effective than the method in [6],
though it does show m(ℓ, r) = Ω((ℓ/ log ℓ)1/2rℓ).
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