
LIMIT THEOREMS FOR MONOCHROMATIC STARS

BHASWAR B. BHATTACHARYA AND SUMIT MUKHERJEE*

Abstract. Let T (K1,r, Gn) be the number of monochromatic copies of the r-star K1,r in a uni-
formly random coloring of the vertices of the graph Gn. In this paper we provide a complete
characterization of the limiting distribution of T (K1,r, Gn), in the regime where E(T (K1,r, Gn)) is
bounded, for any growing sequence of graphs Gn. The asymptotic distribution is a sum of mutually
independent components, each term of which is a polynomial of a single Poisson random variable
of degree at most r. Conversely, any limiting distribution of T (K1,r, Gn) has a representation of
this form. Examples and connections to the birthday problem are discussed.

1. Introduction

Let Gn be a simple labelled undirected graph with vertex set V (Gn) := {1, 2, · · · , |V (Gn)|},
edge set E(Gn), and adjacency matrix A(Gn) = {aij(Gn), i, j ∈ V (Gn)}. In a uniformly random
cn-coloring of Gn, the vertices of Gn are colored with cn colors as follows:

P(v ∈ V (Gn) is colored with color a ∈ {1, 2, . . . , cn}) =
1

cn
, (1.1)

independent from the other vertices. An edge (a, b) ∈ E(Gn) is said to be monochromatic if
Xa = Xb, where Xv denotes the color of the vertex v ∈ V (Gn) in a uniformly random cn-coloring
of Gn. Denote by

T (K2, Gn) =
∑

1≤u<v≤|V (Gn)|

auv(Gn)1{Xu = Xv}, (1.2)

the number of monochromatic edges in Gn.
The statistic (1.2) arises in several contexts, for example, as the Hamiltonian of the Ising/Potts

models on Gn [2], in non-parametric two-sample tests [14], and the discrete logarithm problem
[15]. Moreover, the asymptotics of T (K2, Gn) is often useful in the study of coincidences [11]
as a generalization of the birthday paradox [1, 9, 10, 11]: If Gn is a friendship-network graph
colored uniformly with cn = 365 colors (corresponding to birthdays), then two friends will have the
same birthday whenever the corresponding edge in the graph Gn is monochromatic.1 Therefore,
P(T (K2, Gn) > 0) is the probability that there are two friends with the same birthday. Note that

P(T (K2, Gn) > 0) = 1 − P(T (K2, Gn) = 0) = 1 − χGn(cn)/c
|V (Gn)|
n , where χGn(cn) counts the

number of proper colorings of Gn using cn colors. The function χGn is known as the chromatic
polynomial of Gn, and is a central object in graph theory [12, 16, 17].

It is well-known that the limiting distribution of T (K2, Gn), exhibits a universality, that is,

T (K2, Gn)
D→ Pois(λ), whenever E(T (K2, Gn)) = |E(Gn)|

cn
→ λ, for any graph sequence Gn. This
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1When the underlying graph Gn = Kn is the complete graph Kn on n vertices, this reduces to the classical birthday
problem.
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was shown by Barbour et al. [1, Theorem 5.G], using the Stein’s method for Poisson approximation,
for any sequence of deterministic graphs. Recently, Bhattacharya et al. [3, Theorem 1.1] gave a
new proof of this result based on the method of moments, which illustrates interesting connections
to extremal combinatorics.

For a general graph H, define T (H,Gn) to be the number of monochromatic copies of H in Gn,
where the vertices of Gn are colored uniformly at random with cn colors as in (1.1). Conditions
under which T (H,Gn) is asymptotically Poisson are easy to derive using Stein’s method based on
dependency graphs [6, 8]. However, the class of possible limiting distributions of T (H,Gn), for a
general graph H in the regime where E(T (H,Gn)) = O(1), can be extremely diverse (including
mixture and polynomials in Poissons [3]), and there is no natural universality, as in the case of
edges. Recently, Bhattacharya et al. [4] proved the following second-moment phenomenon for the
asymptotic Poisson distribution of T (H,Gn), for any connected graph H: T (H,Gn) converges to
Pois(λ) whenever ET (H,Gn) → λ and VarT (H,Gn) → λ. Moreover, for any graph H, T (H,Gn)
converges to linear combination of independent Poisson variables, when Gn is a converging sequence
of dense graphs [5].

However, there is no description of the set of possible limits of T (H,Gn), other than the case
of monochromatic edges (H = K2) or dense graphs Gn (where the limits are Poisson or a linear
combination of independent Poissons respectively). In this paper, we consider the case of the r-star
(H = K1,r). This arises as a generalization of the birthday problem, for example, with r = 2 and
a friendship network Gn, T (K1,2, Gn) counts the number of triples with the same birthday where
someone is friends with the other two. This is especially relevant when Gn has a few influential
nodes which have many friends (“superstar” vertices [7]), and we wish to count the number of triple
birthday matches with a superstar.

In this paper we identity the set of all possible limiting distributions of T (K1,r, Gn), for any
graph sequence Gn. We show that the asymptotic distribution of T (K1,r, Gn) is a sum of mutually
independent components, each term of which is a polynomial of a single Poisson random variable
of degree at most r, and, conversely, any limiting distribution of T (K1,r, Gn) has this form.

1.1. Limiting Distribution for Monochromatic r-Stars. LetGn be a simple graph with vertex
set V (Gn) and edge set E(Gn). For a fixed graph H, denote by N(H,Gn) the number of isomorphic

copies of H in Gn. Note that N(K1,r, Gn) =
∑

v∈V (Gn)

(
dv
r

)
, where dv is the degree of the vertex

v ∈ V (Gn).
Now, suppose Gn is colored with cn colors as in (1.1). If Xv denotes the color of vertex v ∈ V (Gn),

then the number of monochromatic copies of K1,r in Gn is

T (K1,r, Gn) :=

|V (Gn)|∑
v=1

∑
u∈(V (Gn)

r )

av(u, Gn)1{Xv = Xu}, (1.3)

where

–
(
V (Gn)
r

)
is the collection of r-element subsets of Gn;

– av(u, Gn) =
∏r
s=1 avus(Gn), for v ∈ V (Gn) and u = {u1, u2, . . . , ur} ∈

(
V (Gn)
r

)
;

– 1{Xv = Xu} := 1{Xv = Xu1 = · · · = Xur}, for v ∈ V (Gn) and u ∈
(
V (Gn)
r

)
, as above.

Note that

E(T (K1,r, Gn)) =
1

crn

|V (Gn)|∑
v=1

∑
u∈(V (Gn)

r )

av(u, Gn) =
1

crn
N(K1,r, Gn).



LIMIT THEOREMS FOR MONOCHROMATIC STARS 3

It is known that the limiting behavior of T (K1,r, Gn) is governed by its expectation:

Proposition 1.1. [4, Lemma 3.1] Let {Gn}n≥1 be a sequence of deterministic graphs colored uni-
formly with cn colors as in (1.1). Then

T (K1,r, Gn)
P→
{

0 if limn→∞ E(T (K1,r, Gn)) = 0,
∞ if limn→∞ E(T (K1,r, Gn)) =∞.

Therefore, the most interesting regime is where E(T (K1,r, Gn)) = Θ(1),2 that is, cn → ∞ such
that

E(T (K1,r, Gn)) =
N(K1,r, Gn)

crn
=

1

crn

∑
v∈V (Gn)

(
dv
r

)
= Θ(1). (1.4)

Theorem 1.2. Let {Gn}n≥1 be a sequence of graphs colored uniformly with cn colors, as in (1.1).
Assume cn →∞ such that the following hold:

(1) For every k ∈ [1, r + 1], there exists λk ≥ 0 such that

lim
n→∞

∑
F∈Cr,k

Nind(F,Gn)

crn
= λk, (1.5)

where Nind(F,Gn) is the number of induced copies of F in Gn and Cr,k := {F ⊇ K1,r :
|V (F )| = r + 1 and N(K1,r, F ) = k}.

(2) Let d(1) ≥ d(2) ≥ . . . ≥ d(|V (Gn)|) be the degrees of the vertices in Gn arranged in non-
increasing order, such that

lim
n→∞

d(v)

cn
= θv, (1.6)

for each v ∈ V (Gn) fixed.

Then

T (K1,r, Gn)→
∞∑
v=1

(
Tv
r

)
+

r+1∑
k=1

kZk, (1.7)

where the convergence is in distribution and in all moments, and

– T1, T2, . . . , are independent Pois(θ1),Pois(θ2), . . ., respectively;
– Z1, Z2, . . . , Zr+1 are independent Pois(λ1− 1

r!

∑∞
u=1 θ

r
u),Pois(λ2), . . .Pois(λr+1), respectively;

– the collections {Tk, k ≥ 1} and {Zk, 1 ≤ k ≤ r + 1} are independent.

Conversely, if T (K1,r, Gn) converges in distribution, then the limit is necessarily of the form as in
the RHS of (1.7), for some non-negative constants θ1 ≥ θ2 ≥ · · · , and {λk, 1 ≤ k ≤ r + 1}.

This result gives a complete characterization of the limiting distribution of T (K1,r, Gn), in the
regime where E(T (K1,r, Gn)) = Θ(1) (in fact, under the assumptions of the theorem E(T (K1,r, Gn))→∑r+1

k=1 kλk). Note that the limit in (1.7) has two components:

– a non-linear part
∑∞

v=1

(
Tv
r

)
which corresponds to the number of monochromatic K1,r in

Gn with central vertex of “high” degree, that is, the vertices of degree Θ(cn); and

– a linear part
∑r+1

k=1 kZk which is the number of monochromatic K1,r from the “low” degree
vertices, that is, degree o(cn);

2For two non-negative sequences (an)n≥1 and (bn)n≥1, an = Θ(bn) means that there exist positive constants C1, C2,
such that C1bn ≤ an ≤ C2bn, for all n large enough.
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and, perhaps interestingly, the linear and the non-linear parts are asymptotically independent.
The proof is given in Section 2. It involves decomposing the graph based on the degree of the
vertices, and then using moment comparisons, to establish independence and compute the limiting
distribution.

Remark 1.1. An easy sufficient condition for (1.5) is the convergence of 1

c
|V (F )|−1
n

Nind(K1,r, Gn)

for every super-graph F of K1,r with |V (F )| = r+ 1. However, condition (1.5) does not require the
convergence for every such graph, and is applicable to more general examples, as described below:
Define a sequence of graphs Gn as follows:

Gn =

{
disjoint union of n isomorphic copies of the 3-star K1,3 if n is odd

disjoint union of n isomorphic copies of the (3, 1)-tadpole ∆+ if n is even,

where the (3, 1)-tadpole is the graph obtained by joining a triangle and a single vertex with a

bridge. Now, choosing cn = bn1/3c, gives E(T (K1,3, Gn))→ 1. In this case,∑
F∈CH,1

Nind(F,Gn)

c3
n

=
Nind(K1,3, Gn) +Nind(∆+, Gn)

c3
n

→ 1,

and 1
c3n

∑
F∈CH,4

Nind(F,Gn) = 1
c3n

∑
F∈CH,4

Nind(F,Gn) = 1
c3n

∑
F∈CH,2

Nind(F,Gn) = 0. Therefore,

Theorem 1.2 implies that T (K1,3, Gn)
D→ Pois(1) (which can also be directly verified, because, in

this case, T (K1,3, Gn) is a sum of independent Ber( 1
c3n

) variables). However, it is easy to see that

individually both 1
c3n
Nind(K1,3, Gn) and 1

c3n
Nind(∆+, Gn) are non-convergent.

The limit in (1.7) simplifies when the graph Gn has no vertices of high degree. The following
corollary is a consequence of Theorem 1.2.

Corollary 1.3. Let {Gn}n≥1 be a sequence of deterministic graphs. Then the following are equiv-
alent.

(a) Condition (1.5) and limn→∞
∆(Gn)
cn

= 0, where ∆(Gn) := maxv∈V (Gn) dv.

(b) T (K1,r, Gn)
D→∑r+1

k=1 kZk, where Z1, . . . , Zr+1 are independent Pois(λ1), . . .Pois(λr+1), re-
spectively.

The proof of the corollary is given in Section 2.6. Applications of this corollary and Theorem
1.2 are discussed in Section 3. In Section 4 we discuss open problems and directions for future
research.

2. Proofs of Theorem 1.2 and Corollary 1.3

The proof of Theorem 1.2 has four main steps:

(1) Decomposing Gn into the “high”-degree and “low”-degree vertices, and showing that the
resulting error term vanishes (Section 2.1).

(2) Showing that the contributions from the “high”-degree and “low”-degree vertices are asymp-
totically independent in moments (Section 2.2).

(3) Computing the limiting distribution of the number of monochromatic r-stars with central
vertex at one of the “high”-degree vertices, which gives the non-linear term in (1.7) (Section
2.3).

(4) Computing the limiting distribution of the number of monochromatic r-stars from the
“low”-degree vertices, which gives the linear combination of independent Poisson variables
in (1.7) (Section 2.4).
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The proof of Theorem 1.2 can be easily completed by combining the above steps (Section 2.5). The
proof of Corollary 1.3 is given in Section 2.6.

Before proceeding we recall some standard asymptotic notation. For two nonnegative sequences
(an)n≥1 and (bn)n≥1, an . bn means an = O(bn), and an ∼ bn means an = (1 + o(1))bn. We will
use subscripts in the above notation, for example, O�(·), .� to denote that the hidden constants
may depend on the subscripted parameters.

2.1. Decomposing Gn. To begin with, note that the number of r-stars in Gn remains unchanged
if all edges (u, v) in Gn such that max{du, dv} ≤ r − 1 are dropped. Hence, without loss of
generality, assume that max{du, dv} ≥ r, for all edges (u, v) ∈ Gn. This ensures that N(K1,r, Gn) =∑

v∈V (Gn)

(
dv
r

)
has the same order as

∑
v∈V (Gn) d

r
v as shown below:

Observation 2.1. If max{du, dv} ≥ r, for all edges (u, v) ∈ Gn, then assumption (1.4) implies∑
v∈V (Gn)

drv = Θ(crn). (2.1)

Proof. In this case, the following inequality holds

1

2

∑
v∈V (Gn)

dv ≤
∑

v∈V (Gn)

dv1{dv ≥ r}. (2.2)

To see this note that if an edge (u, v) ∈ E(Gn) has min{du, dv} ≥ r, then that edge is counted
two times in the RHS above, and an edge (u, v) ∈ E(Gn) which has min{du, dv} ≤ r − 1 (but
max{du, dv} ≥ r) is counted once in the RHS, whereas every edge of E(Gn) is counted twice in the
LHS.

Then ∑
v∈V (Gn)

drv =
∑

v∈V (Gn)

drv1{dv < r}+
∑

v∈V (Gn)

drv{dv ≥ r}

≤(r − 1)r−1
∑

v∈V (Gn)

dv + rr
∑

v∈V (Gn)

(
dv
r

)

≤2rr−1
∑

v∈V (Gn)

dv1{dv ≥ r}+ rr
∑

v∈V (Gn)

(
dv
r

)
(using (2.2))

≤2rr
∑

v∈V (Gn)

(
dv
r

)
+ rr

∑
v∈V (Gn)

(
dv
r

)
= 3rr

∑
v∈V (Gn)

(
dv
r

)
,

from which the desired conclusion follows on using (1.4). �

Throughout the rest of this section, we will thus assume, that max{du, dv} ≥ r, for all edges
(u, v) ∈ Gn and, hence, (1.4) implies (2.1). Note that (2.1) implies

∆(Gn) := max
v∈V (Gn)

dv = Θ(cn).

In fact, using (2.1) it can be shown that there are not too many vertices v ∈ V (Gn) with dv = O(cn).
To this end, we have the following definition:

Definition 2.1. Fix ε > 0, such that ε 6= θu for any u ∈ N. (This can be done, as the set
{θu, u ∈ N} is countable.) A vertex v ∈ V (Gn) is said to be ε-big if dv ≥ εcn. Denote the subset of
ε-big vertices by Vε(Gn).
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The following lemma is an easy consequence of (2.1) and the above definition.

Lemma 2.1. Assume (2.1) holds. Then for n large enough, number of ε-big vertices |Vε(Gn)| does
not depend on n.

Proof. Let η = η(ε) ∈ N be such that θη > ε > θη+1. (Note that such a η exists for ε small
enough, whenever η0 = limε→0 η(ε) ≥ 1.3) Then for all n large enough, dη+1 < εcn < dη, and so
|Vε(Gn)| = η. Thus the number of ε-big vertices is free of n, and depends only on ε. �

Define Gn,ε to be the subgraph of Gn obtained by removing the edges between the ε-big ver-
tices. Denote by T (K1,r, Gn,ε) the number of monochromatic r-stars in Gn,ε. The following lemma
shows that removing the edges between the ε-big vertices of Gn does not change the number of
monochromatic r-stars in Gn, in the limit:

Lemma 2.2. Assume (1.4) holds. Then for every fixed ε > 0, as n→∞,

N(F,Gn)−N(F,Gn,ε) = o(crn) and Nind(F,Gn)−Nind(F,Gn,ε) = o(crn),

for all F ⊇ K1,r with |V (F )| = r + 1. Consequently,

lim
n→∞

E|T (K1,r, Gn)− T (K1,r, Gn,ε)| → 0.

Proof. If a graph F ⊇ K1,r with |V (F )| = r + 1 is a subgraph of Gn, but not a subgraph of Gn,ε,
then it must have at least one edge with both end-points in Vε(Gn). Choosing this edge in |Vε(Gn)|2
ways and the remaining r−1 vertices in O(cr−1

n ) ways (since the maximum degree ∆(Gn) = Θ(cn)),
it follows that

N(F,Gn)−N(F,Gn,ε) = O(cr−1
n |Vε(Gn)|2) = o(crn),

as n → ∞, since by Lemma 2.1 |Vε(Gn)| = Oε(1). As the number of induced copies of F in Gn
which are not in Gn,ε, is bounded by the total number of copies of F in Gn,ε which are not in Gn,
the result on induced copies follows.

In particular,

E|T (K1,r, Gn)− T (K1,r, Gn,ε)| .
1

crn
(cr−1
n |Vε(Gn)|2) =

1

cn
|Vε(Gn)|2 → 0,

as cn →∞. �

We now decompose the graph Gn,ε based on the degree of the vertices as follows:

– Let G+
n,ε be the sub-graph of Gn,ε formed by the ε-big vertices and the edges incident on

them. More formally, it has vertex set Vε(Gn)
⋃
NGn,ε(Vε(Gn)), where NGn,ε(Vε(Gn)) is

neighborhood of Vε(Gn) in Gn,ε,
4 and edge set {(u, v) ∈ Gn,ε : v ∈ Vε(Gn)}. Note that by

construction G+
n,ε is a bipartite graph.

– Let G−n,ε denote the induced subgraph of Gn,ε with vertex set V (Gn)\Vε(Gn).

The decomposition of the graph Gn,ε is illustrated in Figure 1. Note that G+
n,ε and G−n,ε have

common vertices (the black vertices in Figure 1), but no common edges, and consequently no
common r-stars. This implies

T (K1,r, Gn,ε) = T+(K1,r, G
+
n,ε) + T (K1,r, G

−
n,ε) +R(K1,r, Gn,ε),

3Since η(ε) is monotonic non-increasing in ε, the limit η0 := limε→0 η(ε) exists. If η0 = 0, then maxv∈V (Gn) dv = o(cn),
and the first term in the RHS of (2.5) is trivially zero.
4For a graph H = (V (H), E(H)) and S ⊆ V (H), the neighborhood of S in H is NH(S) = {v ∈ V (H) : ∃ u ∈
S such that (u, v) ∈ E(H)}.
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where T (K1,r, G
−
n,ε) is the number of monochromatic r-stars in G−n,ε; and (recalling the definition

of av(u, Gn) from (1.3))

T+(K1,r, G
+
n,ε) :=

|Vε(Gn)|∑
v=1

∑
u∈(V (Gn)

r )

avu1(Gn)av(u, Gn)1{Xv = Xu1 = Xu}, (2.3)

counts the number of monochromatic r-stars in G+
n,ε with central vertex in Vε(Gn);5 and the

remainder term

R(K1,r, Gn,ε) :=
∑

v/∈Vε(Gn)

∑
u1∈Vε(Gn)

∑
u∈(V (Gn)

r−1 )

avu1(Gn)av(u, Gn)1{Xv = Xu}. (2.4)

Vε(Gn)

G+
n,ε

G−
n,ε

Figure 1. The decomposition of Gn,ε: The graph formed by the blue edges is G+
n,ε and

the graph formed by the red edges is G−
n,ε. Note that the black vertices belong to both G+

n,ε

and G−
n,ε.

The following lemma shows that the remainder term goes to zero in expectation, and therefore,
in probability.

Lemma 2.3. Let R(K1,r, Gn,ε) be as defined above in (2.4). Under the assumptions of Theorem
1.2,

lim
ε→0

lim
n→∞

E(R(K1,r, Gn,ε)) = 0.

Proof. Note that for v /∈ Vε(Gn) ∑
u∈(V (Gn)

r−1 )

av(u, Gn) ≤ dr−1
v ≤ (εcn)r−1.

Moreover
∑

v/∈Vε(Gn) avu1(Gn,ε) ≤ du1 . Then, using (2.4), for any M > 0,

E(R(K1,r, Gn,ε)) ≤
(εcn)r−1

crn

∑
u1∈Vε(Gn)

du1

5Note that T+(K1,r, G
+
n,ε) is not the number of r-stars in G+

n,ε: It does not include the r-stars in G+
n,ε with central

vertex in NGn,ε(Vε(Gn)) (the black vertices in Figure 1). Instead, these r-stars are included in the remainder term
R(K1,r, Gn,ε).
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=
εr−1

cn

 ∑
u:εcn≤du<Mεcn

du +
∑

u:du≥Mεcn

du


≤ 1

crn

∑
u:εcn≤du<Mεcn

dru +
1

M r−1crn

∑
u∈V (Gn)

dru. (2.5)

Since lim supn→∞
1
crn

∑
u∈V (Gn) d

r
u < ∞ (from Observation 2.1), the second term in the RHS of

(2.5) converges to 0 on letting n→∞ followed by M →∞.
Next, recall that η = η(ε) is such that θη+1 < ε < θη. Thus, for all n large enough, dη+1 < εcn <

dη, and as n→∞, the first term in the RHS above becomes

lim sup
n→∞

η∑
u=1

dru
crn

1{du < Mεcn} ≤
η∑

u=1

θru1{θu ≤Mε} =

∞∑
u=1

θru1{ε ≤ θu ≤Mε},

which converges to 0 on letting ε → 0, by using DCT along with the fact that
∑∞

u=1 θ
r
u ≤

lim supn→∞
1
crn

∑
u∈V (Gn) d

r
u <∞ (by Fatou’s lemma). �

Combining Lemma 2.2 and Lemma 2.3 it follows that

T (K1,r, Gn) =T (K1,r, Gn,ε) + oP (1)

=T+(K1,r, G
+
n,ε) + T (K1,r, G

−
n,ε) + oP (1). (2.6)

Therefore, the limiting distribution of the T (K1,r, Gn) is the same as that of T+(K1,r, G
+
n,ε) +

T (K1,r, G
−
n,ε).

2.2. Independence in Moments of the Contributions from G+
n,ε and G−n,ε. In this section

we show that the number of monochromatic K1,r coming from G+
n,ε and G−n,ε are asymptotically

independent in moments. Without loss of generality, assume the vertices in V (Gn) are labelled
1, 2, . . . , |V (Gn)| such that d1 ≥ d2 ≥ · · · ≥ d|V (Gn)|, and η = η(ε) such that θη+1 < ε < θη
(assuming η0 = limε→0 η(ε) ≥ 1). Then, by definition (2.3),

T+(K1,r, G
+
n,ε) =

η∑
v=1

(
TG+

n,ε
(v)

r

)
, where TG+

n,ε
(v) :=

∑
u∈V (Gn,ε)

auv(Gn)1{Xu = Xv}, (2.7)

is the number of monochromatic r-stars in Gn,ε, with central vertex v ∈ Vε(Gn).
Now, fix a finite positive integer K ≤ η0. Then, for ε > 0 small enough, η(ε) ≥ K, and so

{TG+
n,ε

(v) : 1 ≤ v ≤ K} are well defined. The following lemma shows that this collection and

T (K1,2, G
−
n,ε) are asymptotically independent in the moments.

Lemma 2.4. Assume (1.4) holds. Then for every finite K ≤ η0 and non-negative integers
s, t1, · · · , tK ,

lim
ε→0

lim
n→∞

∣∣∣∣∣E
(
T (K1,2, G

−
n,ε)

s
K∏
v=1

TG+
n,ε

(v)tv

)
− ET (K1,2, G

−
n,ε)

s

(
E

K∏
v=1

TG+
n,ε

(v)tv

)∣∣∣∣∣ = 0. (2.8)

Proof of Lemma 2.4. For any labeled subgraph H of Gn, define

β(H) := E
∏

(u,v)∈E(H)

1{Xu = Xv} =

(
1

cn

)|V (H)|−ν(H)

, (2.9)
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where ν(H) is the number of connected components of H. Note that the definition of β(·) is
invariant to the labelling of H, and so, it extends to unlabelled graphs as well. Thus, without loss
of generality, we will define β(H) as in (2.9), for an unlabelled graph H as well.

Let H1 = (V (H1), E(H1)) and H2 = (V (H2), E(H2)) be two (labelled) subgraphs of Gn, that
is, V (H1) and V (H2) are subsets of V (Gn), which inherits the labelling induced by V (Gn), and
E(H1) and E(H2) are subsets of E(H). Let H1

⋃
H2 = (V (H1)

⋃
V (H2), E(H1)

⋃
E(H2)).

Lemma 2.5. For any two finite graphs H1 and H2, β (H1
⋃
H2) ≥ β(H1)β(H2), where β(·) is

defined above in (2.9).

Proof. Denote by F = H1
⋃
H2, and let F1, F2, . . . , Fν(F ) be the connected components of F . Define

I1 = {s ∈ [ν(F )] : V (Fs)
⋂
V (H1) 6= ∅ and V (Fs)

⋂
V (H2) = ∅},

I2 = {s ∈ [ν(F )] : V (Fs)
⋂
V (H1) = ∅ and V (Fs)

⋂
V (H2) 6= ∅},

I12 = {s ∈ [ν(F )] : V (Fs)
⋂
V (H1) 6= ∅ and V (Fs)

⋂
V (H2) 6= ∅}. (2.10)

Fix s ∈ I12, that is, V (Fs)
⋂
V (H1) 6= ∅ and V (Fs)

⋂
V (H2) 6= ∅. Then Fs = F ′s

⋃
F ′′s , where

F ′s = (V (Fs)
⋂
V (H1), E(Fs)

⋂
E(H1)), and F ′′s = (V (Fs)

⋂
V (H2), E(Fs)

⋂
E(H2)).

Let F ′s1, F
′
s2 . . . F

′
sa be the connected components of F ′s and similarly, F ′′s1, F

′′
s2 . . . F

′′
sb be the con-

nected components of F ′′s , where a = ν(F ′s) and b = ν(F ′′s ). Construct a bipartite graph Bs =
(B′s

⋃
B′′s , E(Bs)), where B′s = {F ′s1, F ′s2, . . . F ′sa} and B′′s = {F ′′s1, F ′′s2, . . . F ′′sb} and there is any edge

between F ′sx and F ′′sy if and only if V (F ′sx)
⋂
V (F ′′sy) 6= ∅, for x ∈ [a] and y ∈ [b]. Note that

|V (F ′s)
⋂
V (F ′′s )| ≥ |E(Bs)|, and since the graph Fs is connected, the graph Bs is also connected.

Therefore,

|V (F ′s)
⋂
V (F ′′s )| ≥ |E(Bs)| ≥ |V (Bs)| − 1 = ν(F ′s) + ν(F ′′s )− 1,

This implies,

|V (Fs)| = |V (F ′s)|+ |V (F ′′s )| − |V (F ′s)
⋂
V (F ′′s )| ≤ |V (F ′s)| − ν(F ′s) + |V (F ′′s )| − ν(F ′′s ) + 1.

Then, recalling (2.10), it follows that

β(H) =
∏
s∈I1

β(Fs)
∏
s∈I2

β(Fs)
∏
s∈I12

β(Fs)

=
∏
s∈I12

(
1

cn

)|V (Fs)|−1 ∏
s∈I1

β(Fs)
∏
s∈I2

β(Fs)

≥

 ∏
s∈I12

(
1

cn

)|V (F ′s)|−ν(F ′s) ∏
s∈I1

β(Fs)

 ∏
s∈I12

(
1

cn

)|V (F ′′s )|−ν(F ′′s ) ∏
s∈I2

β(Fs)


=β(H1)β(H2),

completing the proof of the lemma. �

Now, recall the definitions of the graph G−n,ε from Section 2.1, and note that

T (K1,r, G
−
n,ε) =

∑
u∈Sr(G

−
n,ε)

1{X=u}, (2.11)

where
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– Sr(G
−
n,ε) is the collection of ordered (r+1)-tuples u = (u0, u1, · · · , ur), such that u0, u1, . . . , ur ∈

V (G−n,ε) are distinct and (u0, ui) ∈ E(G−n,ε), for i ∈ [1, r]; and
– 1{X=u} = 1{Xu0 = Xu1 = · · · = Xur}.

For any u ∈ V (Gn), let NG+
n,ε

(u) be the neighborhood of u in G+
n,ε. Index the vertices in NG+

n,ε
(u)

as {b1(v), b2(v), . . . bd+v (v)}, where d+
v is the degree of the vertex v in G+

n,ε. Let

Γ =
K∏
v=1

NG+
n,ε

(v)tv ×Sr(G
−
n,ε)

s

denote the collection of vertices {bj(v), 1 ≤ j ≤ tv, 1 ≤ v ≤ K} and s ordered (r + 1)-tuples

u1 = (u10, u11, u12, · · · , u1r),u2 = (u20, u21, u22, · · · , u2r), . . . ,us = (us0, us1, . . . usr),

such that bj(v) ∈ NG+
n,ε

(v), for j ∈ [tv] and v ∈ [1,K], and ua ∈ Sr(G
−
n,ε), for a ∈ [1, s].

Then expanding the product T (K1,2, G
−
n,ε)

s
∏K
v=1 TG+

n,ε
(v)tv over the sum, the LHS of (2.15) can

be bounded above by:

∑
Γ

∣∣∣∣∣E
 K∏
v=1

tv∏
j=1

1{Xv = Xbj(v)}E
s∏

a=1

1{X=ua}

− K∏
v=1

E
tv∏
j=1

1{Xv = Xbj(v)}E
s∏

a=1

1{X=ua}

∣∣∣∣∣
=
∑

Γ

∣∣∣β (H1

⋃
H2

)
− β(H1)β(H2)

∣∣∣ (2.12)

where β(·) is defined in (2.9) and

– H1 is the simple labelled subgraph of G+
n,ε obtained by the union of the edges (v, bj(v)) for

j ∈ [1, tv] and v ∈ [1,K].
– H2 is the simple labelled subgraph of G−n,ε obtained by the union of the r-stars formed by

the collection of (r + 1)-tuples {u1, · · · ,us}. More formally, H2 = (V (H2), E(H2)), where

V (H2) =
s⋃
j=1

uj and E(H2) =
s⋃
j=1

{(uj0, uja) : 1 ≤ a ≤ r} .

Note that if V (H1)
⋂
V (H2) = ∅, then β (H1

⋃
H2) = β(H1)β(H2), and so without loss of gener-

ality we may assume that the sum over Γ includes only terms for which H1
⋂
H2 6= ∅.

Definition 2.2. Let Hm1,m2 denote the set of all unlabelled graphs H = (V (H), E(H)) which can
be formed by the union of m1 edges and m2 copies of K1,r.

Now, recalling that β (H1
⋃
H2) = β(H1)β(H2), if V (H1)

⋂
V (H2) = ∅, and β (H1

⋃
H2) ≥

β(H1)β(H2) otherwise, the RHS of (2.12) can be bounded as follows:∑
Γ

∣∣∣β (H1

⋃
H2

)
− β(H1)β(H2)

∣∣∣ ≤∑
Γ

β
(
H1

⋃
H2

)
=

s1∑
m1=1

s2∑
m2=1

∑
H∈Hm1,m2

∑
Γ:H1

⋃
H2
∼=H

β
(
H1

⋃
H2

)

.
s1∑

m1=1

s2∑
m2=1

∑
H∈Hm1,m2

β(H)N(H,G+
n,ε[K], G−n,ε), (2.13)

where
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– G+
n,ε[K] be the induced sub-graph of G+

n,ε formed by the vertices labeled {1, 2, . . . ,K}, that
is, the K highest degree vertices in Gn; and

– N(H,G+
n,ε[K], G−n,ε) is the number of copies of H = H1

⋃
H2 in G+

n,ε[K]
⋃
G−n,ε, such that

H1 is formed by the union of m1 edges from G+
n,ε[K] and H2 is formed by the union of m2

copies of K1,r from G−n,ε, and V (H1)
⋂
V (H2) 6= ∅.

Now, using β(H) = 1

c
|V (H)|−ν(H)
n

(by Lemma 2.5), and since the sum over m1,m2, H in (2.13) are

all finite, to prove (2.15) it suffices to show that for every H ∈ Hm1,m2 ,

lim sup
ε→0

lim sup
n→∞

N(H,G+
n,ε[K], G−n,ε)

c
V (H)−ν(H)
n

= 0. (2.14)

To this end, fix H ∈ Hm1,m2 such that H = H1
⋃
H2, such that H1 is formed by the union

of m1 edges from G+
n,ε[K] and H2 is formed by the union of m2 copies of K1,r from G−n,ε, and

V (H1)
⋂
V (H2) 6= ∅ (otherwise N(H,G+

n,ε[K], G−n,ε) = 0). Let C1, C2, . . . , Cν(H) the connected
components of H. Fix 1 ≤ j ≤ ν(H) and consider the following three cases:

– V (Cj) only intersects V (H1). Since G+
n,ε[K] is a bi-partite graph with bi-partition with

|E(G+
n,ε[K])| ≤ K∆(Gn) .r Kcn (using ∆(Gn) = O(cn)). This gives

N(Cj , G
+
n,ε[K]) ≤ |E(G+

n,ε[K])||V (Cj)|−1 .r,m1 (Kcn)|V (Cj)|−1.

– V (Cj) only intersects V (H2). Then there exists 1 ≤ h ≤ m2 such that H2 is spanned by
h isomorphic copies of K1,r. Thus, using the bounds N(K1,r, Gn) = Θ(crn) and gives the
bound

N(Cj , G
−
n,ε) ≤ N(K1,r, Gn)∆(Gn)|V (Cj)|−r+1 .r,m2 c

|V (Cj)|−1
n ,

using ∆(Gn) = O(cn).
– V (Cj) intersects both V (H1) and V (H2). If Cj is such that it intersects both H1 and H2,

then there is a vertex v ∈ V (H1)
⋂
V (H2), such that (u, v) is an edge in G+

n,ε[K], and (v, w)

is an edge G−n,ε. Thus, using the estimate ∆(Gn) = O(cn),

N(Cj , G
+
n,ε[K], G−n,ε) . |E(G+

n,ε[K])|
(

max
v∈V (G−n,ε)

dv

)
∆(Gn)|V (Cj)|−3

.r,m1,m2 Kεc
|V (Cj)|−1
n .

Taking a product over 1 ≤ j ≤ ν(H) and, since V (H1)
⋂
V (H2) 6= ∅, gives

N(H,G+
n,ε[K], G−n,ε) .r,m1,m2εK

|V (H)|−ν(H)c|V (H)|−ν(H)
n ,

which implies (2.14), from which the desired conclusion follows. �

2.3. Contribution from G+
n,ε. In this section we compute the asymptotic distribution of T+(K1,r, G

+
n,ε)

(recall (2.3)). This involves showing that the collection {TG+
n,ε

(v) : 1 ≤ v ≤ K} are asymptotically

independent, by another moment comparison.

Lemma 2.6. Assume (1.4) holds, and ε > 0 small enough. Then for all non-negative integers
s1, · · · , sK ,

lim
n→∞

∣∣∣∣∣E
(

K∏
v=1

TG+
n,ε

(v)sv

)
−

K∏
v=1

ETG+
n,ε

(v)sv

∣∣∣∣∣ = 0. (2.15)
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As a consequence, T+(K1,r, G
+
n,ε)

D→ ∑η
v=1

(
Tv
r

)
, as n → ∞, where T1, T2, . . . , Tη are independent

Pois(θ1),Pois(θ2), . . . ,Pois(θη), respectively. (Recall that η = η(ε) is such that θη+1 < ε < θη.)

Proof. Expanding the moments, we have∣∣∣∣∣E
K∏
v=1

TG+
n,ε

(v)sv −
K∏
v=1

ETG+
n,ε

(v)sv

∣∣∣∣∣ =
∑

Γ

∣∣∣∣∣∣E
K∏
v=1

sv∏
j=1

1{Xv = Xbj(v)} −
K∏
v=1

E
sv∏
j=1

1{Xv = Xbj(v)}

∣∣∣∣∣∣
=
∑

Γ

∣∣∣∣∣β
(

K⋃
v=1

H(v)

)
−

K∏
v=1

β(H(v))

∣∣∣∣∣
where

– Γ is the collection of all possible choices of bj(v) ∈ NGn,ε(v), for j ∈ [sv] and v ∈ [K]; and
– H(v) denotes the simple graph formed by union of all the edges (v, bj(v)), for j ∈ [sv]. Note

that H(v) is isomorphic to a star graph, for every v ∈ [K].

If
⋃K
v=1H(v) is a forest, then the collection of random variables {1{Xv = Xbj(v), j ∈ [sv], v ∈ [K]}

are mutually independent, and so, β(
⋃K
v=1H(v)) =

∏K
v=1 β(H(v)). Thus, without loss of generality,

assume that
⋃K
v=1H(v) is not a forest, that is, it contains a cycle. Then denoting Hm to be the

set of unlabelled graphs with m vertices and s :=
∑K

v=1 sv, using Lemma 2.5 gives∣∣∣∣∣E
K∏
v=1

TG+
n,ε

(v)sv −
K∏
v=1

ETG+
n,ε

(v)sv

∣∣∣∣∣ .
2s∑
m=2

∑
H∈Hm

H contains a cycle

∑
Γ:
⋃K
v=1H(v)'H

β

(
K⋃
v=1

H(v)

)

=
2s∑
m=2

∑
H∈Hm

H contains a cycle

N(H,G+
n,ε[K])β(H)

=
2s∑
m=2

∑
H∈Hm

H contains a cycle

N(H,G+
n,ε[K])

c
|V (H)|−ν(H)
n

. (2.16)

Now, fix H ∈ Hm with connected components H1, H2, . . . ,Hν(H), and assume without loss of
generality that H1 contains a cycle of length g ≥ 3. Invoking [3, Lemma 2.3] gives,

N(H1, G
+
n,ε[K]) . |E(G+

n,ε[K])||V (H1)|−g/2 . (K∆(Gn))|V (H1)|−g/2,

where the last inequality uses |E(G+
n,ε[K]| ≤ K∆(Gn). Also, by [3, Lemma 2.3], for j ≥ 2,

N(Hj , G
+
n,ε[K]) . |E(G+

n,ε[K])||V (Hj)|−1 ≤ (K∆(Gn))|V (Hj)|−1.

Taking a product over j and using ∆(Gn) = O(cn), gives

N(H,G+
n,ε[K]) ≤

ν(H)∏
j=1

N(Hj , Gn) . K |V (H)|−ν(H)|c|V (H)|−g/2
n ,

which implies lim supn→∞
N(H,G+

n,ε[K])

c
|V (H)|−ν(H)
n

= 0, as g ≥ 3. Since the sum in (2.16) is finite (does not

depend on n, ε), the conclusion in (2.15) follows.
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Moreover, since TG+
n,ε

(v)→ Pois(θv) in distribution and in moments, (2.15) implies that

lim
n→∞

∣∣∣∣∣E
(

η∏
v=1

TG+
n,ε

(v)sv

)
−

η∏
v=1

EPois(θv)
sv

∣∣∣∣∣ .
This implies, as the Poisson distribution is uniquely determined by its moments,

(TG+
n,ε

(1), TG+
n,ε

(2), . . . , TG+
n,ε

(η))→ (T1, T2, . . . , Tη),

as n→∞, in distribution and in moments, where T1, T2, . . . , Tη are independent Pois(θ1),Pois(θ2),
. . . ,Pois(θη), respectively. Finally, recalling (2.7) and by the continuous mapping theorem T+(K1,r, G

+
n,ε) =∑η

v=1

(T
G+
n,ε

(v)

r

)
→∑η

v=1

(
Tv
r

)
in distribution and in moments, as n→∞. �

2.4. Contribution from G−n,ε. In this section we derive the limiting distribution of T (K1,r, G
−
n,ε),

by invoking [4, Theorem 2.1], which gives conditions under which the number of monochromatic
subgraphs (in particular monochromatic stars) converges to a linear combination of Poisson vari-
ables.

Lemma 2.7. As n→∞ followed by ε→ 0,

T (K1,r, G
−
n,ε)→

r+1∑
k=1

kZk,

in distribution and in moments, where Z1, Z2, . . . , Zr+1 are independent Pois(λ1 − 1
r!

∑∞
u=1 θ

r
u),

Pois(λ2), . . .Pois(λr+1), respectively.

Proof of Lemma 2.7. We will prove this result by invoking [4, Theorem 2.1]. To begin with, let
F be a graph formed by union of two isomorphic copies of K1,r, such that |V (F )| > r+ 1. Then F
is connected, and

N(F,G−n,ε) . N(K1,r, G
−
n,ε) ·∆(Gn)|V (F )|−r−1 ≤ N(K1,r, Gn) · (εcn)|V (F )|−r−1

= ε|V (F )|−r−1c|V (F )|−1
n .

Therefore, 1

c
|V (F )|−1
n

N(F,G−n,ε) = o(1), n→∞ followed by ε→ 0, when |V (F )| > r + 1.

It remains to consider super-graphs F ⊇ K1,r with |V (F )| = r+1. Recalling Cr,k := {F ⊇ K1,r :
|V (F )| = r + 1 and N(K1,r, F ) = k}, we have the following lemma.

Lemma 2.8. For any F ∈ Cr,k, with k ∈ [2, r+1], Nind(F,Gn,ε) = Nind(F,G−n,ε)+o(crn), as n→∞
followed by ε→ 0.

Proof. Let k ∈ [2, r + 1] and suppose F ∈ Cr,k is an induced subgraph of Gn,ε, such that V (F ) is
not completely contained in V (G−n,ε). Then, since F has at least two vertices of degree r and any
two degree r vertices must be neighbors, the vertices of F can be spanned by a r-star whose central
vertex is in NGn,ε(Vε(Gn)). Therefore, the difference Nind(F,Gn,ε)−Nind(F,G−n,ε) is bounded above
by (up to constants depending only on r)∑

v/∈Vε(Gn)

∑
u1∈Vε(Gn)

∑
u∈(V (Gn)

r−1 )

avu1(Gn)av(u, Gn), (2.17)

which is o(crn) (from the proof of Lemma 2.3). �
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Using the above lemma and Nind(F,Gn) = Nind(F,Gn,ε)+o(crn) (by Lemma 2.2), it follows that,
for k ∈ [2, r + 1],

lim
ε→0

lim
n→∞

∑
F∈Cr,k

Nind(F,G−n,ε)

crn
= lim

ε→0
lim
n→∞

∑
F∈Cr,k

Nind(F,Gn)

crn
= λk,

where the last equality uses (1.5).
It remains to consider the case k = 1. To begin with, observe that for any graph G,

N(K1,r, G) =
r+1∑
k=1

∑
F∈Cr,k

kNind(F,G). (2.18)

Moreover, using Lemma 2.2 and (2.6) gives

N(K1,r, G
−
n,ε) = N(K1,r, Gn)−

η∑
v=1

(
dv
r

)
+ o(crn).

Now, using this and (2.18) with G = G−n,ε gives∑
F∈Cr,1

Nind(F,G−n,ε)

crn
=
N(K1,r, Gn)

crn
− 1

crn

η∑
v=1

(
dv
r

)
−

r+1∑
k=2

k
∑

F∈Cr,k

Nind(F,G−n,ε)

crn
+ o(1)

→
r+1∑
k=1

kλk −
∞∑
u=1

θru
r!
−

r+1∑
k=2

kλk (using (2.18) with G = Gn and (1.5))

= λ1 −
∞∑
u=1

θru
r!
,

as n→∞ followed by ε→ 0. Then by [4, Theorem 2.1], we have T (K1,r, G
−
n,ε)

D→∑r+1
k=1 kZk, where

Z1, Z2, . . . , Zr+1 are as in the statement of the lemma.
The convergence in moments is a consequence of uniform integrability as E(T (K1,r, G

−
n,ε)) ≤

ET (K1,r, Gn)r = Or(1) for every fixed integer r ≥ 1 [3, Theorem 1.2].

2.5. Completing the Proof of Theorem 1.2. To begin use Lemma 2.3 to note that it suffices
to find the limiting distribution of

η∑
v=1

(
TG+

n,ε
(v)

r

)
+ T (K1,r, G

−
n,ε),

under the double limit as n → ∞ followed by ε → 0. Fix an integer M ≥ 1 and write the above
random variable as

M∑
v=1

(
TG+

n,ε
(v)

r

)
+

η∑
v=M+1

(
TG+

n,ε
(v)

r

)
+ T (K1,r, G

−
n,ε).

Under the double limit the random vector(
TG+

n,ε
(1), · · · , TG+

n,ε
(M), T (K1,r, G

−
n,ε)
)

D→
(
T1, · · · , TM ,

r+1∑
k=1

kZk

)
,



LIMIT THEOREMS FOR MONOCHROMATIC STARS 15

by invoking Lemmas 2.4, 2.6 and 2.7. By continuous mapping theorem this gives

M∑
v=1

(
TG+

n,ε
(v)

r

)
+ T (K1,r, G

−
n,ε)

D→
M∑
v=1

(
Tv
r

)
+

r+1∑
k=1

kZk,

the RHS of which on letting p → ∞ converges in distribution to
∑∞

v=1

(
Tv
r

)
+
∑r+1

k=1 kZk. It thus
suffices to show that

lim
M→∞

lim
ε→0

lim
n→∞

η∑
v=M+1

E
(
TG+

n,ε
(v)

r

)
= 0.

The LHS above is bounded above by
∑η

v=M+1
1
r!
drv
crn

, which on letting n → ∞ followed by ε → 0

gives 1
r!

∑∞
v=M+1 θ

r
v. This converges to 0 as M → ∞, as

∑∞
v=1 θ

r
v < ∞, as noted in the proof of

Lemma 2.3. (Note that if limε→0 η(ε) := L < ∞, then the term
∑η

v=L+1

(T
G+
n,ε

(v)

r

)
+ T (K1,r, G

−
n,ε)

vanishes, thus simplifying the proof. )
Finally, the convergence in moments is a consequence of uniform integrability as all moments of

T (K1,r, Gn) are bounded: that is, ET (K1,r, Gn)r = Or(1) for every fixed integer r ≥ 1 (this follows
from the proof of [3, Theorem 1.2]).

To prove the converse, invoking Proposition 1.1 we can assume, without loss of generality, that
N(K1,r, Gn) = O(crn). This in turn implies that for every graph F on r + 1 vertices which is a
super graph of K1,r we have Nind(F,Gn) = O(crn). Thus by passing to a subsequence, assume
that Nind(F,Gn)/crn converges for every F which is a super graph of K1,r. This implies existence
of the limits in (1.5). Finally, using (2.2) we have maxv∈V (Gn) dv = O(cn), and so the infinite

tuple {dv/cn}v≥1 is an element of [0,K]N for some K fixed. Since [0,K]N is compact in product
topology, there is a further subsequence along which dv/cn converges for every v ≥ 1 simultaneously.
Thus, moving to a subsequence, we can assume that dv/cn converges to θv for every v. Invoking
the sufficiency part of the theorem gives that T (K1,r, Gn) converges in distribution to a random
variable of the desired form, completing the proof.

2.6. Proof of Corollary 1.3. The proof of (a) ⇒ (b) is immediate from Theorem 1.2, so it

suffices to prove (b) ⇒ (a). To this end, note that T (K1,r, Gn)
D→ ∑r+1

k=1 kZk implies that (1.4)
holds (Proposition 1.1). Thus, by a similar argument which was used to prove the converse of
Theorem 1.2, it follows that along a subsequence the limits limn→∞

1
crn
Nind(F,Gn) exist for all

super graphs F of K1,r on r + 1 vertices, and so, for k ∈ [1, r + 1],

λ′k := lim
n→∞

∑
F∈Cr,k

Nind(F,Gn)

crn

is well defined. Then, as before, by passing to another subsequence the limits θ′v := limn→∞
dv
cn

exist for every v ≥ 1, and by the if part of Theorem 1.2 along this subsequence,

T (K1,r, Gn)
d→
∞∑
v=1

(
T ′v
r

)
+

r+1∑
k=1

kZ ′k,

where {T ′v}v≥1 and {Z ′k}1≤k≤r+1 are mutually independent, and T ′1, T
′
2, . . . , are independent Pois(θ′1),

Pois(θ′2), . . ., respectively, and Z ′1, Z
′
2, . . . , Z

′
r+1 are independent Pois(λ′1 − 1

r!

∑∞
u=1(θ′u)r),Pois(λ′2),

. . . ,Pois(λ′r+1), respectively.
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However, since T (K1,r, Gn) converges in distribution to
∑r+1

k=1 kZk which has finite exponential
moment everywhere, it follows that θ′v = 0 for all v ≥ 1, and consequently, the maximum degree
∆(Gn) = o(cn). This also gives

r+1∑
k=1

kZk
D
=

r+1∑
k=1

kZ ′k,

and so the corresponding probability generating functions must match, that is,

r+1∏
k=1

eλk(sk−1) =
r+1∏
k=1

eλ
′
k(sk−1), for all s ∈ (0, 1).

This implies,
∑r+1

k=1 λk(s
k−1) =

∑r+1
k=1 λ

′
k(s

k−1), for all s ∈ (0, 1), and so the corresponding coeffi-

cients must be equal, giving λk = λ′k. Therefore, every sub sequential limit of
∑

F∈Cr,k
Nind(K1,r,Gn)

crn
equal λk, for k ∈ [1, r + 1], hence, (1.5) holds.

3. Examples

In this section we apply Theorem 1.2 to different deterministic and random graph models, and
determine the specific nature of the limiting distribution.

Example 1. (Disjoint Union of Stars) The proof of Theorem 1.2 shows that the quadratic term in
the limiting distribution of T (K1,r, Gn) appears due to the r-stars incident on vertices with degree
Θ(cn). This can be seen when Gn is a disjoint union of star graphs.

• To begin with suppose Gn = K1,n is the n-star. Then N(K1,r,K1,n) =
(
n
r

)
, and if we color

K1,n with cn colors such that n/cn → 1, then E(T (K1,r, Gn)) = 1
r! . Note that the maximum

degree d(1) = n, which implies θ1 = 1. Moreover, d(2) = 1, which implies θv = 0, for all
v ≥ 2. Therefore, by Theorem 1.2,

T (K1,r, Gn)
D→
(
T1

r

)
,

where T1 ∼ Pois(1). (Note that the graph G−n,ε is empty in this case.)
• Next, considerGn to be the disjoint union of the following stars: K1,bna1c,K1,bna2c, . . . ,K1,bnanc,

such that
∑∞

s=1 a
r
s < ∞. In this case, N(K1,r, Gn) =

∑n
s=1

(bnasc
r

)
∼ nr

r!

∑n
s=1 a

r
s. If Gn

is colored with cn colors such that n/cn → 1, then E(T (K1,r, Gn)) → 1
r!

∑∞
s=1 a

r
s. Also,

d(v) = bnavc, which implies θv = av, for v ≥ 1. This implies, by Theorem 1.2,

T (K1,r, Gn)
D→
∞∑
s=1

(
Ts
r

)
,

where Ts ∼ Pois(as) and T1, T2, . . . are independent. Here, the linear terms linear in Poisson
do not contribute, as G−n,ε is empty, and ET (K1,r, Gn) ∼ 1

r!

∑∞
v=1 θ

r
v.

• Finally, consider Gn to be the disjoint union of the following stars:

K
1,bna1+n

r−1
r c

,K
1,bna2+n

r−1
r c

, . . . ,K
1,bnan+n

r−1
r c

.

In this case,

N(K1,r, Gn) =
n∑
s=1

(bnas + n
r−1
r c

r

)
∼ nr

r!
+
nr

r!

n∑
s=1

ars,
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since
∑n

s=1 a
k
s = o(n1− k

r ), for 1 ≤ k < r (see Observation 3.1 below). If Gn is colored

with cn colors such that n/cn → 1, then E(T (K1,r, Gn)) → 1
r! (1 +

∑∞
s=1 a

r
s). Also, d(v) =

bnav + n
r−1
r c, which implies θv = av, for v ≥ 1, and so Theorem 1.2 gives

T (K1,r, Gn)
D→
∞∑
s=1

(
Ts
r

)
+ Z,

where Ts ∼ Pois(as) and T1, T2, . . . are independent, and Z ∼ Pois( 1
r!) independent of

{Ts}s≥1.

Observation 3.1. If {as}s≥1 is a sequence of non-negative real numbers such that
∑∞

s=1 a
r
s < ∞

then
∑n

s=1 a
k
s = o(n1− k

r ), for 1 ≤ k < r.

Proof. Fixing ε > 0 and a positive integer N ≥ 1 we get

n∑
s=1

aks =

N∑
s=1

aks +

n∑
s=N+1

aks1{as ≤ εn−
1
r }+

n∑
s=N+1

aks1{as > εn−
1
r }

≤
N∑
s=1

aks + εkn1− k
r +

n1− r
k

εr−k

∞∑
s=N+1

ars.

On dividing by n1− k
r and letting n→∞, the first term goes to 0 as it is a finite sum, and, therefore,

lim sup
n→∞

∑k
s=1 a

r
s

n1− k
r

≤ εk +
1

εr−k

∞∑
s=N+1

ars.

The desired conclusion now follows on letting N →∞ followed by ε→ 0, on noting that
∑∞

s=1 a
r
s <

∞. �

Next, we see examples where there are no vertices of high degree, in which case, the quadratic
term vanishes (Corollary 1.3).

Example 2. (Regular Graphs) Let Gn be a d-regular graph. In this case, N(K1,r, Gn) = n
(
d
r

)
.

Consider uniformly coloring the graph with cn colors such that 1
crn
n
(
d
r

)
→ λ. In this case, ∆(Gn) =

maxv∈V (Gn) dv = d = o(cn). Therefore, by Corollary 1.3, T (K1,r, Gn)
D→ ∑r+1

k=1 kZk, where

Z1, Z2, . . . , Zr+1 are independent Pois(λ1),Pois(λ2), . . . ,Pois(λr+1) (recall (1.5)). (Note that
∑r+1

k=1 kλk =
λ.) The limit simplifies in special cases:

– Gn = Kn,n, the regular bipartite graph. Since, bipartite graphs are triangle-free, Nind(F,Gn) =
0, for any super-graph F of K1,r with |V (F )| = r+1. This implies λk = 0, for 2 ≤ k ≤ r+1,

and λ1 = λ, and T (K1,r,Kn,n)
D→ Pois(λ).

– Gn = Kn, the complete graph on n vertices. In this case, any induced graph on r + 1
vertices is isomorphic to Kr+1. This implies λk = 0, for 1 ≤ k ≤ r and λr+1 = λ

r+1 , and

T (K1,r,Kn)
D→ (r + 1)Zr+1, where Zr+1 ∼ Pois( λ

r+1).

Note that in all the above examples, the limiting distribution either involves only the quadratic
part or only the linear part. It is easy to construct examples where both the components show
up by taking disjoint unions (or connecting them with a few edges) of the graphs in the above
examples, as shown below:



18 BHATTACHARYA AND MUKHERJEE

K1,n

Kn2/3

Pn2

Figure 2. Illustration for Example 3.

Example 3. Let Gn be the graph in Figure 2. Note that it has three parts, a K1,n, where one of
the leaves is connected by a single edge to a Kn2/3 , which is connected by a single edge to a path
Pn2 . Consider coloring this graph by cn colors such that cn/n→ κ. This implies

E(T (K1,2, Gn)) =
1

c2
n

N(K1,2, Gn) ∼
(
n
2

)
+ 3
(dn2/3e

3

)
+ n2

c2
n

→ 2κ2.

Next, note that ∆(Gn) = n, which corresponds to the central vertex of the K1,n. Therefore,
θ1 = κ. For every other vertex the degree is o(n), which implies θv = 0, for all v ≥ 2. Finally, since

N(K3, Gn) =
(dn2/3e

3

)
, ν := limn→∞

1
c2n
N(K3, Gn) = κ2

6 . Therefore, by Theorem 1.2

T (K1,2, Gn)
D→
(
T1

2

)
+ 3Z3 + Z1,

where T1 ∼ Pois(κ), Z3 ∼ Pois(κ
2

6 ), and Z1 ∼ Pois(κ
2

2 ).

Remark 3.1. (Extension to random graphs) By a simple conditioning argument, Theorem 1.2 can
be extended to random graphs by conditioning on the graph, under the assumption that the graph
and its coloring are jointly independent (see [4, Lemma 4.1]). In this case, whenever the limits in
(1.4) and (1.6) exist in probability, the limit (1.7) holds. For example, when Gn ∼ G(n, p(n)) is
the Erdős-Rényi random graph, then the limiting distribution of T (K1,r, Gn) (when cn is chosen
such that 1

crn
E(N(K1,r, Gn))→ λ) can be easily derived using Theorem 1.2. In this case, depending

on whether (a) n
r+1
r p(n) → O(1), (b) p(n) → 0, n

r+1
r p(n) → ∞, or (c) p(n) = p ∈ (0, 1) is fixed,

T (K1,r, Gn) converges to (a) zero in probability, or (b) Pois(λ), or (c) a linear combination of
independent Poisson variables (see [4, Theorem 1.3] for details).

4. Conclusion and Open Problems

This paper studies the limiting distribution of the number of monochromatic r-stars in a uni-
formly random coloring of a growing graph sequence. We provide a complete characterization of
the limiting distribution of T (K1,r, Gn), in the regime where E(T (K1,r, Gn)) = Θ(1).

It remains open to understand the limiting distribution of T (K1,r, Gn) when E(T (K1,r, Gn)) =
1
c2n
N(K1,r, Gn) grows to infinity. For the case of monochromatic edges, [3, Theorem 1.2] showed

that T (K2, Gn) (centered by the mean and scaled by the standard deviation) converges to N(0, 1),



LIMIT THEOREMS FOR MONOCHROMATIC STARS 19

whenever E(T (K2, Gn)) = 1
cn
|E(Gn)| → ∞ such that cn →∞. Error rates for the above CLT were

obtained by Fang [13]. It is natural to wonder whether this universality phenomenon extends to
monochromatic r-stars, and more generally, to any fixed connected graph H.

On the other hand, when E(T (K2, Gn)) → ∞ such that the number of colors cn = c is fixed,
then T (K2, Gn) (after appropriate centering and scaling) is asymptotically normal if and only if
its fourth moment converges to 3 [3, Theorem 1.3]. It would be interesting to explore whether this
fourth-moment phenomenon extends to monochromatic r-stars.

Acknowledgement: The authors are indebted to Somabha Mukherjee for his careful comments on an
earlier version of the manuscript, and Swastik Kopparty for helpful discussions.
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