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Abstract. We prove the endpoint case of a conjecture of Khot and Moshkovitz related to
the Unique Games Conjecture, less a small error.

Let n ≥ 2. Suppose a subset Ω of n-dimensional Euclidean space Rn satisfies −Ω = Ωc

and Ω + v = Ωc (up to measure zero sets) for every standard basis vector v ∈ Rn. For
any x = (x1, . . . , xn) ∈ Rn and for any q ≥ 1, let ‖x‖qq = |x1|q + · · · + |xn|q and let

γn(x) = (2π)−n/2e−‖x‖
2
2/2 . For any x ∈ ∂Ω, let N(x) denote the exterior normal vector at

x such that ‖N(x)‖2 = 1. Let B = {x ∈ Rn : sin(π(x1 + · · · + xn)) ≥ 0}. Our main result
shows that B has the smallest Gaussian surface area among all such subsets Ω, less a small
error: ∫

∂Ω

γn(x)dx ≥ (1− 6 · 10−9)

∫
∂B

γn(x)dx+

∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx.

In particular, ∫
∂Ω

γn(x)dx ≥ (1− 6 · 10−9)

∫
∂B

γn(x)dx.

Standard arguments extend these results to a corresponding weak inequality for noise sta-
bility. Removing the factor 6 · 10−9 would prove the endpoint case of the Khot-Moshkovitz
conjecture. Lastly, we prove a Euclidean analogue of the Khot and Moshkovitz conjecture.

The full conjecture of Khot and Moshkovitz provides strong evidence for the truth of
the Unique Games Conjecture, a central conjecture in theoretical computer science that is
closely related to the P versus NP problem. So, our results also provide evidence for the
truth of the Unique Games Conjecture. Nevertheless, this paper does not prove any case of
the Unique Games conjecture.

1. Introduction

The Unique Games Conjecture is a central unresolved problem in theoretical computer
science, of similar significance to the P versus NP problem. That is, proving or disproving
the Unique Games Conjecture will have significant ramifications throughout both computer
science and mathematics [Kho10]. Both positive and negative evidence has been found
for the Unique Games Conjecture since its formulation in 2002 by Khot [Kho02], but the
Conjecture remains open. Khot’s Conjecture can be formulated as follows.

Definition 1.1 (Gap Unique Games Problem [Kho02, KKMO07]). Let 0 < s < c < 1
and let p > 1 be a prime. We refer to GapUGp(c, s) as the following problem. Suppose
a2, a4, . . . , a2n ∈ Z/pZ are fixed, x1, . . . , xk are variables with k ≤ n, 1 ≤ i1, . . . , i2n ≤ k,
and we have a system of n two-term linear equations in Z/pZ of the form xi1 − xi2 = a2,
xi3 − xi4 = a4, . . . , xi2n−1 − xi2n = a2n. Let OPT be the maximum number of these linear
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equations that can be satisfied by any assignment of values to the variables xi1 , . . . , xi2n .
Decide whether OPT ≥ cn or OPT ≤ sn.

As |c− s| increases to a value near 1, the GapUG problem becomes easier to solve. The
Unique Games Conjecture says that, even when |c− s| is very close to 1, the GapUG problem
is still hard to solve. That is, the GapUG problem is nearly as hard as one could expect.

Conjecture 1.2 (Unique Games Conjecture [Kho02, KKMO07]). For any ε > 0, there
exists some prime p = p(ε) such that GapUGp(1− ε, ε) is NP-hard.

In short, Conjecture 1.2 says that approximately solving linear equations is hard. If all n
of the equations could be satisfied, then classical Gaussian elimination could find values for
the variables xi1 , . . . , xi2n satisfying all of the linear equations in polynomial time in n. On
the other hand, if only almost all of the equations can be satisfied, then it is hard to satisfy
a small fraction of them, according to Conjecture 1.2. Note also that p must depend on ε in
Conjecture 1.2, since if p is fixed, then a random assignment of values to the variables will
satisfy a positive fraction of the linear equations.

The most significant negative evidence for Conjecture 1.2 is a subexponential time algo-
rithm for the Unique Games Problem [ABS10]. That is, there exists a constant 0 < a < 1
such that, for any ε > 0, and for any prime p > 1, there is an algorithm with runtime
exp(pnε

a
) such that, if (1− ε)n equations among n two-term linear equations in Z/pZ of the

form x1−x2 = a2, x3−x4 = a4, . . . , x2n−1−x2n = a2n can be satisfied, then the algorithm can
satisfy 1− εa of the equations. If the quantity exp(pnε

a
) could be replaced by a polynomial

in n, then Conjecture 1.2 would be false.
A recent breakthrough of [KMS18], culminating the work of [DKK+18, KMS17, KMMS18]

and [BKS19], gives significant positive evidence for Conjecture 1.2.

Theorem 1.3 ([KMS18, page 55]). For any ε > 0, there exists some prime p = p(ε) such
that GapUGp(

1
2
− ε, ε) is NP-hard.

As discussed in [KMS18], since the subexponential algorithm of [ABS10] solves the GapUG
problem for certain parameters 0 < s < c < 1 where c can have values in (0, 1), this “... is
a compelling evidence, in our opinion, that the known algorithmic attacks are (far) short of
disproving the Unique Games Conjecture.”

Due to Theorem 1.3, it remains to investigate the hardness of GapUGp(c, s) where c ≥ 1/2.
In a 2015 paper, Khot and Moshkovitz [KM16] show that if a certain Gaussian noise stability
inequality holds, then a weaker version of the NP-hardness of GapUG2(1 − ε, 1 − Ω(

√
ε))

is true for any 0 < ε < 1. We describe this noise stability inequality below in Conjecture
1.8. The weaker version of the GapUG problem is stated in [KM16, page 3]. Resolving
this weaker conjecture would provide significant evidence for the hardness of GapUGp(1 −
ε, 1 − Ω(

√
ε)) and for Conjecture 1.2 itself. (Recall that f : [0, 1] → R satisfies f = Ω(

√
ε)

if lim supε→0+ |f(ε)/
√
ε| > 0. We change notation below so that Ω denotes a subset of

Euclidean space.)
For a review of positive and negative evidence for the Unique Games Conjecture, see

[AKKT15] and also [ABS10, RST12, BBH+12]. See also [HNW19, Corollary 5.3] for more
recent positive evidence.

For more background on the Unique Games Conjecture and its significance, see [Kho10].
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Definition 1.4 (Gaussian density). Let n be a positive integer. Define the Gaussian
density so that, for any x = (x1, . . . , xn) ∈ Rn,

γn(x) := (2π)−n/2e−(x21+···+x2n)/2.

Recall that a standard n-dimensional Gaussian random vector X satisfies

P(X ∈ C) =

∫
C

dγn(x), ∀C ⊆ Rn.

Let f : Rn → [0, 1] and let ρ ∈ (−1, 1), define the Ornstein-Uhlenbeck operator with corre-
lation ρ applied to f by

Tρf(x) :=

∫
Rn
f(xρ+ y

√
1− ρ2)dγn(y)

= (1− ρ2)−n/2(2π)−n/2
∫
Rn
f(y)e

− ‖y−ρx‖
2
2

2(1−ρ2) dy, ∀x ∈ Rn.

(1)

Tρ is a parametrization of the Ornstein-Uhlenbeck operator. Tρ is not a semigroup, but it
satisfies Tρ1Tρ2 = Tρ1ρ2 for all ρ1, ρ2 ∈ (0, 1). We have chosen this definition since the usual
Ornstein-Uhlenbeck operator is only defined for ρ ∈ [0, 1].

Definition 1.5 (Noise Stability). Let Ω ⊆ Rn. Let ρ ∈ (−1, 1). We define the noise
stability of the set Ω with correlation ρ to be∫

Rn
1Ω(x)Tρ1Ω(x)dγn(x)

(1)
= (2π)−n(1− ρ2)−n/2

∫
Ω

∫
Ω

e
−‖x‖22−‖y‖

2
2+2ρ〈x,y〉

2(1−ρ2) dxdy.

Equivalently, if X, Y ∈ Rn are independent n-dimensional standard Gaussian distributed
random vectors, then∫

Rn
1Ω(x)Tρ1Ω(x)dγn(x) = P

(
X ∈ Ω, ρX + Y

√
1− ρ2 ∈ Ω

)
.

1.1. Khot-Moshkovitz Conjecture on the Noise Stability of Periodic Sets. Recall
that the standard basis vectors v1, . . . , vn ∈ Rn are defined so that, for any 1 ≤ i ≤ n, vi has
a 1 entry in its ith coordinate, and zeros in the other coordinates.

Definition 1.6 (Periodic Set). We say a subset Ω ⊆ Rn is periodic if Ω + v = Ωc for every
standard basis vector v ∈ Rn, and −Ω = Ωc (up to changes to Ω of Lebesgue measure zero).

Definition 1.7 (Periodic Half Space). Let ε1, . . . , εn ∈ {−1, 1}. We define a peri-
odic half space to be any set B ⊆ Rn of the form

B = {x = (x1, . . . , xn) ∈ Rn : sin(π(ε1x1 + · · ·+ εnxn)) ≥ 0}.

The following Conjecture of Khot and Moshkovitz [KM16] says that periodic half spaces
are the most noise stable periodic sets.

Conjecture 1.8 ([KM16]). Let 1/2 < ρ < 1. Let Ω ⊆ Rn be a periodic set. Let B ⊆ Rn be a
periodic half space. Let X, Y ∈ Rn be independent standard Gaussian random vectors. Then

P
(
X ∈ Ω, ρX + Y

√
1− ρ2 ∈ Ω

)
≤ P

(
X ∈ B, ρX + Y

√
1− ρ2 ∈ B

)
.

3



B

Figure 1. A periodic half space B.

Conjecture 1.8 implies that a weaker version of Conjecture 1.2 holds; see [KM16, page 3]
and [KM16, page 5]. For this reason, this paper studies Conjecture 1.8. In fact, as stated on
[KM16, page 5], a stronger version of Conjecture 1.8 is required for the main application of
[KM16], but we only focus on Conjecture 1.8 in this work. We are unable to prove Conjecture
1.8, so we instead study the endpoint case ρ→ 1− of Conjecture 1.8. As discussed in [KM16],
Conjecture 1.8 is most interesting and relevant to Conjecture 1.2 when ρ approaches 1. That
is, the case of Conjecture 1.8 most relevant to the Unique Games Conjecture occurs when
ρ→ 1−.

It is well known that, as ρ → 1−, the noise stability (when normalized appropriately)
converges to Gaussian surface area. That is, if ∂Ω is a C∞ manifold, then [Kan11, Lemma
3.1] [Led96, Proposition 8.5] [DMN17]

lim
ρ→1−

√
2π

cos−1(ρ)

[
P(X ∈ Ω)− P

(
X ∈ Ω, ρX + Y

√
1− ρ2 ∈ Ω

)]
=

∫
∂Ω

γn(x)dx. (2)

Here and below, dx denotes Lebesgue measure restricted to the surface ∂Ω ⊆ Rn. Recall
that a C∞ manifold is locally the graph of a C∞ function.

Letting ρ→ 1− in Conjecture 1.8 and applying (2) (along with P(X ∈ Ω) = P(X ∈ B) =
1/2 which follows since −Ω = Ωc), we obtain the following statement.

Conjecture 1.9 (Endpoint ρ → 1− case of Conjecture 1.8). Let Ω ⊆ Rn be a peri-
odic set. Let B ⊆ Rn be a periodic half space. Then∫

∂Ω

γn(x)dx ≥
∫
∂B

γn(x)dx.

1.2. Our Contribution. Our main result verifies Conjecture 1.9, up to a small error, nearly
verifying the endpoint ρ = 1 case of Conjecture 1.8, and providing evidence for the p = 2 case
of Conjecture 1.2. Theorem 1.10 also demonstrates that, if a set Ω is far from a periodic half
space, in the sense that the normal vector typically has `1 norm less than

√
n, then Ω has

large Gaussian surface area. Such a “robustness” statement was required in the application
of [KM16] to the Unique Games Conjecture, Conjecture 1.2.
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Theorem 1.10 (Main Theorem; Weak Version of Conjecture 1.9). Let n ≥ 2. Let
Ω ⊆ Rn be a periodic set. Let B ⊆ Rn be a periodic half space. Assume ∂Ω is a C∞ manifold.
Then ∫

∂Ω

γn(x)dx ≥ (1− 6 · 10−9)

∫
∂B

γn(x)dx+

∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx. (3)

In particular, ∫
∂Ω

γn(x)dx ≥ (1− 6 · 10−9)

∫
∂B

γn(x)dx. (4)

The right-most term of (3) is nonnegative by the Cauchy-Schwarz inequality.
Standard methods can derive from Theorem 1.10 the following statement for noise stability.

Corollary 1.11 (Weak Version of Khot-Moshkovitz Conjecture 1.8). Let d > 0. Let
n ≥ 2. Let g : Rn → R be a degree d polynomial. Let Ω = {x ∈ Rn : g(x) ≥ 0}. Let X, Y
be independent standard n-dimensional Gaussian random vectors. Let 1/2 < ρ < 1. Assume
that Ω is a periodic set and ∂Ω is a C∞ manifold. Let B ⊆ Rn be a periodic half space. Then

P(X ∈ Ω, ρX + Y
√

1− ρ2 ∈ Ω) ≤ P(X ∈ B, ρX + Y
√

1− ρ2 ∈ B) + 3 · 10−9

−
√

1− ρ2

√
2π

∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx+ o(

√
1− ρ2).

In particular,

P(X ∈ Ω, ρX + Y
√

1− ρ2 ∈ Ω) ≤ P(X ∈ B, ρX + Y
√

1− ρ2 ∈ B) + 3 · 10−9 + o(
√

1− ρ2).

Here the implied constants o(
√

1− ρ2) can depend on Ω.

Remark 1.12. If ρ is close to 1 and
∫
∂Ω
γn(x)dx is small, then Corollary 1.11 is vacuous. In

particular, if
√

1− ρ2 < 3 · 10−9n−1/2, then the 3 · 10−9 term will be larger than the ensuing
term.

Remark 1.13. The “robustness” terms
∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx in Theorem 1.10 and Corol-

lary 1.11 can be improved slightly. See Remark 3.3 below.

Remark 1.14. Under certain assumptions, the “robustness” term
∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx

is comparable to the Gaussian measure of the symmetric difference of Ω and a periodic half
space B. See Remark 3.5 below for a slightly more precise statement.

If we modify the random variable X in Conjecture 1.8, then we can improve Corollary
1.11.

Corollary 1.15 (Modified Version of Khot-Moshkovitz Conjecture 1.8). Let n ≥ 2.
Let Ω ⊆ Rn be a periodic set such that ∂Ω is a C∞ manifold. Let X, Y ∈ Rn be independent
random variables such that X is uniformly distributed in [−1/2, 1/2]n and Y is a standard
Gaussian random vector. Let 0 < ε < 1/2. Let B ⊆ Rn be a periodic half space. Then

P(X ∈ Ω, X + εY ∈ Ω) ≤ P(X ∈ B, X + εY ∈ B)−
∫

[− 1
2
, 1
2

]n∩∂Ω

(
1− ‖N(x)‖1√

n

)
dx+ o(ε).

In particular,

P(X ∈ Ω, X + εY ∈ Ω) ≤ P(X ∈ B, X + εY ∈ B) + o(ε).

Here the implied constants o(ε) can depend on Ω.
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1.3. Background on Gaussian Isoperimetry. In the 1970s, Borell and Sudakov-Tsirelson
proved the Gaussian Isoperimetric Inequality [Bor75, SC74]: among all sets Ω ⊆ Rn of fixed
Gaussian measure

∫
Ω
dγn(x), the smallest Gaussian surface area

∫
∂Ω
γn(x)dx occurs when Ω

is a half space. That is, Ω is the set of points lying on one side of a hyperplane. The works
[Bor75, SC74] used symmetrization methods. That is, they replace any set Ω with a “more
symmetric” set with the same Gaussian measure and with smaller Gaussian surface area. In
1985, Borell generalized the Gaussian Isoperimetric Inequality to noise stability [Bor85]: for
any 0 < ρ < 1, among among all sets Ω ⊆ Rn of fixed Gaussian measure, the maximum value
of P(X ∈ Ω, ρX + Y

√
1− ρ2 ∈ Ω) occurs when Ω is a half space. Once again, Borell used

symmetrization methods. Borell’s result [Bor85] was further elucidated by many authors,
including [Led96, BS01].

The inequality of [Bor85] gained renewed attention due to its applications in theoretical
computer science. In particular, the inequality of [Bor85] was a key component in the
proof of the Majority is Stablest Theorem [MOO10], and in the proof of the sharp Unique
Games hardness of the MAX-CUT problem [KKMO07, MOO10]. Due to this renewed
interest, Borell’s result was re-proved and strengthened in [MN15, Eld15]. The results of
[MN15, Eld15] show that if a set Ω ⊆ Rn is close to maximizing the noise stability P(X ∈
Ω, ρX + Y

√
1− ρ2 ∈ Ω), then Ω is close to a half space. The work [MN15] uses heat

flow methods, and [Eld15] uses stochastic calculus methods. All known proofs of Borell’s
inequality [Bor85] somehow use translation invariance of the inequality: any translation of
a half space is still a half space.

Note that Conjectures 1.8 and 1.9 do not have any translation invariance property. It
is possible to translate a periodic half space and produce a set that is a not a periodic half
space. For this reason, all known proofs of Gaussian isoperimetric inequalities seem entirely
unable to prove Conjectures 1.8 or 1.9.

1.4. Method of Proof of the Main Result. Theorem 1.10 is proven in an almost ele-
mentary way. Conjectures 1.8 and 1.9 can be restated as isoperimetric problems on the torus
equipped with the heat kernel measure on the torus. For example, the Poisson Summation
formula allows the following equivalent formulation of Conjecture 1.9.

Conjecture 1.16 (Restatement of Conjecture 1.9). The minimum value of∫
[0,1]n∩(∂Ω)

∑
z∈Zn

e2πi〈y,z〉e−2π2‖z‖22dy.

over all periodic sets Ω ⊆ Rn occurs when Ω is a periodic half space.

Here 〈y, z〉 :=
∑n

i=1 yizi for any y, z ∈ Rn, and ‖z‖2
2 = 〈z, z〉.

The heat kernel measure pn(y) :=
∑

z∈Zn e
2πi〈y,z〉e−2π2‖z‖22 is very close to the constant

function 1 (see Lemma 3.2). This fact may make it difficult to apply Gaussian isoperimetric
methods to approach Conjecture 1.9. So, we instead treat Conjecture 1.9 as an essentially
Euclidean problem. That is, we solve exactly the analogue of Conjecture 1.16 when the
integrand is the constant function 1. In this case, an exact solution follows by projecting
∂B onto each facet of the unit cube, and noting that this projection is injective. The error
between this exact solution and the integral in Conjecture 1.16 is then small since pn is a
product measure (see Lemma 3.1). This approach allows us to prove Theorem 1.10 using

6



an elementary argument. The error term 6 · 10−9 arises since this is roughly the supremum
norm of 1− p1. That is, 6 · 10−9 is roughly the difference of p1 from being constant.

1.5. Other Related Work. Isoperimetric problem on the torus equipped with Haar mea-
sure have been studied in several places including [CS06, Ros01], though many problems
are unresolved here. Any relation of the present work to [CS06, Ros01] is unclear, since the
measures under consideration are different.

Different isoperimetric problems exhibiting “crystallization” (or the optimality of sets
consisting of parallel stripes) have been studied in, e.g. [The06, BPT13, GM12, GS16, DR19],
though these studies have typically focused only on n = 2 or n = 3.

2. Poisson Summation Formula

We recall some standard facts about the Poisson Summation formula.

Lemma 2.1 (Poisson Summation Formula, [Ste70, p. 252]). Let f : Rn → R be a C∞

function such that |f(x)| ≤ 100(1 + ‖x‖2)−2n for all x ∈ Rn. Define f̂(ξ) = F(f)(ξ) :=∫
Rn f(x)e−2πi〈x,ξ〉dx, ∀ ξ ∈ Rn. Let α > 0. Then∑

z∈(αZ)n

f(y + z) = α−n
∑

w∈(Z/α)n

f̂(w)e2πi〈y,w〉, ∀ y ∈ Rn.

Lemma 2.2 (Eigenfunction of the Fourier Transform, [SS03, p. 173]). ∀ x ∈ R, define

h0(x) := e−πx
2

.

Then

ĥ0(y) = h0(y), ∀ y ∈ R.

Using the identity ĥ(·/λ)(y) = λĥ(λy), with λ = 1/
√

2π, we get

Lemma 2.3. For any y ∈ R,

1√
2π
e−y

2/2 = F [e−2π2x2 ](y).

Combining Lemmas 2.1, 2.2 and 2.3,

Lemma 2.4. ∀x ∈ R,∑
z∈Z

γ1(x+ z) =
∑
z∈Z

e−2π2z2e2πixz = 1 +
∞∑
k=1

2e−2π2k2 cos(2πxk).

3. Weak Version of Isoperimetric Conjecture

We denote the periodization pn(x) of the Gaussian density by

pn(x) :=
∑
z∈Zn

γn(x+ z), ∀x ∈ Rn. (5)

We first note that pn is a product measure. This follows directly from the definition of pn.
7



Lemma 3.1. Let x = (x1, . . . , xn) ∈ Rn. Then

pn(x) =
n∏
i=1

p1(xi).

We now note that p1 is remarkably close to the constant function 1.

Lemma 3.2. Let x1 ∈ R. Then

|1− p1(x1)| ≤ 54 · 10−10, ∀x1 ∈ R.

Proof. Using Lemma 2.4 and an integral comparison,

|p1(x1)− 1| (5)
=
∣∣∣∑
z∈Z

γ1(x1 + z)− 1
∣∣∣ ≤ 2

∞∑
k=1

e−2π2k2 = 2(e−2π2

+ e−8π2

) + 2
∞∑
k=3

e−2π2k2

≤ 2(e−2π2

+ e−8π2

) + 2

∫ ∞
2

e−2π2y2dy ≤ 2(e−2π2

+ e−8π2

) + 2

∫ ∞
2

ye−2π2y2dy

= 2(e−2π2

+ e−8π2

) + π−2e−8π2 ≤ 54 · 10−10.

�

Combining Lemmas 3.1 and 2.4 proves the Main Theorem, Theorem 1.10.

Proof of Theorem 1.10. ∀ 1 ≤ i ≤ n, let vi ∈ Rn be the vector with a 1 in its ith coordinate
and a 0 in all other coordinates. Let Πi : [0, 1]n → [0, 1]n be the projection onto the facet of
the cube perpendicular to the ith coordinate, so that Πi(x) = x− 〈x, vi〉vi for all x ∈ [0, 1]n.
Since Ω is periodic , Definition 1.6 implies that

Πi([0, 1]n ∩ ∂Ω) = Πi([0, 1]n), ∀ 1 ≤ i ≤ n. (6)

We first consider the case that ∂Ω consists of a finite number of flat polyhedral facets. If
F ⊆ [0, 1]n is one such facet, and if N(x) is a unit normal vector at x ∈ F , then Lemmas
3.1 and 3.2 together with the Cauchy projection formula (or the coordinate definition of a
surface integral) imply∫

F

|〈N(x), vi〉| pn(x)dx =

∫
F

|〈N(x), vi〉|
n∏
j=1

p1(xj)dx

≥ (1− 54 · 10−10)

∫
F

|〈N(x), vi〉|
∏
j : j 6=i

p1(xj)dx

= (1− 54 · 10−10)

∫
Πi(F )

∏
j : j 6=i

p1(xj)dx.

Summing over 1 ≤ i ≤ n, we get∫
F

‖N(x)‖1 pn(x)dx ≥ (1− 54 · 10−10)
n∑
i=1

∫
Πi(F )

∏
j : j 6=i

p1(xj)dx.

By approximating an arbitrary C∞ manifold ∂Ω by a set of flat polyhedral faces, we get∫
[0,1]n∩∂Ω

‖N(x)‖1 pn(x)dx ≥ (1− 54 · 10−10)
n∑
i=1

∫
Πi([0,1]n∩∂Ω)

∏
j : j 6=i

p1(xj)dx. (7)

8



Then, using (6), we get∫
[0,1]n∩∂Ω

‖N(x)‖1 pn(x)dx ≥ (1− 54 · 10−10)
n∑
i=1

∫
Πi([0,1]n)

∏
j : j 6=i

p1(xj)dx

= (1− 54 · 10−10)n
n−1∏
i=1

∫ 1

0

p1(x1)dx1 = (1− 54 · 10−10)n.

In the last line, we used Lemma 2.4 (or just the definition (5) of p1), which implies that∫ 1

0
p1(x1)dx1 = 1. Adding and subtracting the same term, we get

√
n

∫
[0,1]n∩∂Ω

pn(x)dx+

∫
[0,1]n∩∂Ω

(‖N(x)‖1 −
√
n)pn(x)dx ≥ (1− 54 · 10−10)n.

Dividing by
√
n and using

∫
∂Ω
γn(x)dx

(5)
=
∫

[0,1]n∩∂Ω
pn(x)dx,∫

∂Ω

γn(x)dx ≥ (1− 54 · 10−10)
√
n+

∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx.

Then (3) follows since
∫
∂B
γn(x)dx =

∑
z∈(Z/

√
n) γ1(z) =

√
n
∑

w∈(
√
nZ) e

−2π2w2
by rotating

∂B so that all of its hyperplanes are perpendicular to the x1-axis, using Lemma 2.1, and
using n ≥ 2. Also, ‖N(x)‖1 ≤

√
n for all x ∈ ∂Ω, so (4) follows from (3). �

Remark 3.3. The “robustness” term in Theorem 1.10 can be improved in the following
way. Equation (7) can be improved so that it counts multiple preimages of Πi([0, 1]n ∩ Ω).
For any 1 ≤ i ≤ n and for any x ∈ ∂Ω, let |Π−1

i Πi(x)| denote the number of preimages of
Πi(x) under Πi. Then (7) can be improved to∫

[0,1]n∩∂Ω

n∑
i=1

|(N(x))i|
|Π−1

i Πi(x)|
pn(x)dx ≥ (1− 54 · 10−10)

n∑
i=1

∫
Πi([0,1]n∩∂Ω)

∏
j : j 6=i

p1(xj)dx.

This leads to the following improvement in Theorem 1.10:∫
∂Ω

γn(x)dx ≥ (1− 6 · 10−9)

∫
∂B

γn(x)dx+

∫
∂Ω

(
1−

n∑
i=1

|(N(x))i|√
n|Π−1

i Πi(x)|

)
γn(x)dx.

Remark 3.4. The only properties of pn used in the proof of Theorem 1.10 are Lemmas 3.1
and 3.2, i.e. that pn is a product of one-dimensional probability measures, and each product
term is close to 1. For example, one can replace the Gaussian measure with Lebesgue measure
and prove the following similar (sharp) inequality: for any periodic set Ω ⊆ Rn,∫

[− 1
2
, 1
2

]n∩∂Ω

dx ≥
∫

[− 1
2
, 1
2

]n∩∂B
dx+

∫
[− 1

2
, 1
2

]n∩∂Ω

(
1− ‖N(x)‖1√

n

)
dx.

9



Remark 3.5. Let Ω be a periodic set. Applying the divergence theorem to the vector field

−pn(x)
π
√
n
∇ sin(π(x1 + · · ·+ xn)), we get

−
∫

[0,1]n∩∂Ω

∑n
i=1(N(x))i√

n
cos(π(x1 + · · ·+ xn))pn(x)dx

= π
√
n

∫
[0,1]n∩Ω

(
sin(π(x1 + · · ·+ xn))−

(∑n
i=1

∂
∂xi
pn(x)

√
n pn(x)

)
cos(π(x1 + · · ·+ xn))

)
pn(x)dx.

The integral of the cos term is bounded in absolute value by 10−7
√
n by Lemmas 3.1 and

3.2. In the case that Ω = {x ∈ Rn : sin(π(x1 + · · ·+ xn)) ≥ 0}, we then get∣∣∣∣∫
[0,1]n∩∂Ω

‖N(x)‖1√
n

γn(x)dx− π
√
n

∫
[0,1]n∩Ω

sin(π(x1 + · · ·+ xn))γn(x)dx

∣∣∣∣ ≤ 10−7
√
n.

So, if Ω is close to a periodic half space, then the “robustness” term
∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx

in Theorem 1.10 and Corollary 1.11 measures how close Ω is to a periodic half space.

4. Weak Versions of Noise Stability Conjecture

Theorem 1.10 implies a similar statement for noise stability from Definition 1.5 with
parameters 0 < ρ < 1 that are close to 1, using routine methods, if some smoothness is
assumed for the boundary of Ω ⊆ Rn.

In this section, when Ω ⊆ Rn, we denote

f := 1Ω : Rn → R.

Lemma 4.1 ([Kan11, Proof of Lemma 3.1]). Let d > 0. Let g : Rn → R be a degree d
polynomial. Let Ω = {x ∈ Rn : g(x) ≥ 0}. Let X, Y ∈ Rn be independent standard Gaussian
random vectors. Let ε > 0. Then

P(f(X) = 1, f(X + εY ) = 0) =
ε√
2π

∫
∂Ω

γn(x)dx+ o(ε).

Here and below, the implied constant o(ε) can depend on g.

Lemma 4.2 ([Kan11, Lemma 3.4]). Let d > 0. Let g : Rn → R be a degree d polynomial.
Let Ω = {x ∈ Rn : g(x) ≥ 0}. Let X, Y ∈ Rn be independent standard Gaussian random
vectors. Let ε > 0. Then

P(f(X) 6= f(X(1 + ε))) ≤ dε

√
n

4π
.

Lemma 4.3. Let d > 0. Let g : Rn → R be a degree d polynomial. Let Ω = {x ∈ Rn : g(x) ≥
0}. Let X, Y ∈ Rn be independent standard Gaussian random vectors. Let 0 < η < 1/2.
Then

P(X ∈ Ω, X
√

1− η2 + ηY ∈ Ω) = γn(Ω)− η√
2π

∫
∂Ω

γn(x)dx+ o(η).

Here and below, the implied constant o(η) can depend on g.
10



Proof. Let Z := X
√

1− η2 + ηY , and let r := 1/
√

1− η2. Using the identity P(A1) =
P(A1 ∩ A2) + P(A1 ∩ Ac2) for events A1, A2,

P(f(X) = 1, f(Z) = 1) = P
(
f(X) = 1, f(Z) = 1, f(Z) = f(rZ)

)
+ P

(
f(X) = 1, f(Z) = 1, f(Z) 6= f(rZ)

)
.

(8)

We apply Lemma 4.2 to the second term of (8) with ε := (1− η2)−1/2 − 1 to get

P
(
f(X) = 1, f(Z) = 1, f(Z) 6= f(rZ)

)
≤ P

(
f(Z) 6= f(rZ)

)
≤ dη2

√
n.

And the first term of (8) is equal to

P
(
f(X) = 1, f(rZ) = 1, f(Z) = f(rZ)

)
= P(f(X) = 1, f(rZ) = 1

)
− P

(
f(X) = 1, f(rZ) = 1, f(Z) 6= f(rZ)

)
.

Using Lemma 4.2 again, the last quantity is at most dη2
√
n, while

P(f(X) = 1, f(rZ) = 1
)

= P(f(X) = 1)− P
(
f(X) = 1, f(rZ) = 0

)
= γn(Ω)− η√

2π

∫
∂Ω

γn(x)dx+ o(η).

In the last line we used Lemma 4.1. Combining the above estimates gives

P(X ∈ Ω, X
√

1− η2 + ηY ∈ Ω) = P(f(X) = 1, f(Z) = 1)

= γn(Ω)− η√
2π

∫
∂Ω

γn(x)dx+ o(η).

�

Proof of Corollary 1.11. Let η :=
√

1− ρ2. From Lemma 4.3,

P(X ∈ Ω, ρX + Y
√

1− ρ2 ∈ Ω) ≤ γn(Ω)−
√

1− ρ2

√
2π

∫
∂Ω

γn(x)dx+ o(
√

1− ρ2).

Since Ω is periodic , Ωc = −Ω, so γn(Ω) = 1/2. Applying Theorem 1.10 gives

P(X ∈ Ω, ρX + Y
√

1− ρ2 ∈ Ω)

≤ 1

2
−
√

1− ρ2

√
2π

(
(1− 6 · 10−9)

∫
∂B

γn(x)dx+

∫
∂Ω

(
1− ‖N(x)‖1√

n

)
γn(x)dx

)
+ o(

√
1− ρ2).

Finally, applying Lemma 4.3 to B completes the proof. �

By repeating the proof of Lemma 4.1, we get the following. For completeness, we provide
a proof with a dimension-dependent implied constant.

Lemma 4.4. Let Ω ⊆ Rn be a periodic set. Assume that ∂Ω is a C∞ manifold. Let X, Y ∈
Rn be independent random variables such that X is uniformly distributed in [−1

2
, 1

2
]n and Y

is a standard Gaussian random vectors. Let ε > 0. Then

P(f(X) = 1, f(X + εY ) = 0) =
ε√
2π

∫
[− 1

2
, 1
2

]n∩∂Ω

dx+ o(ε).
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Proof. For any s > 0, x ∈ Rn, and for any f : Rn → [0, 1], let Usf(x) :=
∫
Rn f(x +

y
√

2s)γn(y)dy. Let ∆ :=
∑n

i=1 ∂
2/∂x2

i . It is well known that (d/ds)Usf(x) = ∆Usf(x)
for all s > 0, x ∈ Rn. Using the divergence theorem,

d

ds

∫
[− 1

2
, 1
2

]n∩Ω

Us1Ωc(x)dx =

∫
[− 1

2
, 1
2

]n∩Ω

∆Us1Ωc(x)dx =

∫
[− 1

2
, 1
2

]n∩Ω

div(∇Us1Ωc(x))dx

=

∫
[− 1

2
, 1
2

]n∩∂Ω

〈∇Us1Ωc(x), N(x)〉dx+

∫(
Ω∩∂[− 1

2
, 1
2

]n
)
\∂Ω

〈∇Us1Ωc(x), N(x)〉dx.
(9)

Changing variables and differentiating,

∇Us1Ωc(x) =
1√
2s

∫
Rn
y1Ωc(x+ y

√
2s)γn(y)dy, ∀x ∈ Rn.

Therefore, lims→0+ 2
√
πs∇Us1Ωc(x) = N(x) for all x ∈ ∂Ω. That is,

∇Us1Ωc(x) =
1

2
√
πs
N(x) + o(s−1/2), ∀x ∈ ∂Ω. (10)

Also, lims→0+ 2
√
πs∇Us1Ωc(x) = 0 for all x /∈ ∂Ω. So, using f = 1Ω,

P(f(X) = 1, f(X + εY ) = 0) =

∫
[− 1

2
, 1
2

]n∩Ω

Uε2/21Ωc(x)dx

=

∫ s=ε2/2

s=0

d

ds

(∫
[− 1

2
, 1
2

]n∩Ω

Us1Ωc(x)dx
)
ds

(9)∧(10)
=

(∫
[− 1

2
, 1
2

]n∩∂Ω

dx
)∫ s=ε2/2

s=0

( 1

2
√
πs

+ o(s−1/2)
)
ds =

ε√
2π

∫
[− 1

2
, 1
2

]n∩∂Ω

dx+ o(ε).

�

Proof of Corollary 1.15. Note that P(X ∈ Ω) = 1/2 since −Ω = Ωc. Using Lemma 4.4,

P(X ∈ Ω, X + εY ∈ Ω) = P(X ∈ Ω)− P(X ∈ Ω, X + εY /∈ Ω)

=
1

2
− ε√

2π

∫
[− 1

2
, 1
2

]n∩∂Ω

dx+ o(ε).

So, by Remark 3.4 and Lemma 4.4 applied to B,

P(X ∈ Ω, X + εY ∈ Ω) ≤ 1

2
− ε√

2π

(∫
[− 1

2
, 1
2

]n∩∂B
1 +

(
1− ‖N(x)‖1√

n

)
dx
)

+ o(ε)

= P(X ∈ B, X + εY ∈ B)−
∫

[− 1
2
, 1
2

]n∩∂Ω

(
1− ‖N(x)‖1√

n

)
dx+ o(ε).

�
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